JP2001116611A - Apparatus for measuring liquid level in filled container and flow control type filling method - Google Patents

Apparatus for measuring liquid level in filled container and flow control type filling method

Info

Publication number
JP2001116611A
JP2001116611A JP29664699A JP29664699A JP2001116611A JP 2001116611 A JP2001116611 A JP 2001116611A JP 29664699 A JP29664699 A JP 29664699A JP 29664699 A JP29664699 A JP 29664699A JP 2001116611 A JP2001116611 A JP 2001116611A
Authority
JP
Japan
Prior art keywords
container
liquid
gas
infrared camera
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29664699A
Other languages
Japanese (ja)
Other versions
JP3881813B2 (en
Inventor
Toyoichi Uchida
豊一 内田
Yasushi Ito
靖史 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29664699A priority Critical patent/JP3881813B2/en
Publication of JP2001116611A publication Critical patent/JP2001116611A/en
Application granted granted Critical
Publication of JP3881813B2 publication Critical patent/JP3881813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
  • Basic Packing Technique (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To rapidly and surely measure a liquid level for containers such as an opaque can as well as a transparent glass bottle, PET (polyethylene terephthalate) bottle, and the like. SOLUTION: A container 22 filled with a beverage is conveyed into a measuring box 20, and is fanned by a blower 26. Immediately after the container 22 is filled with the beverage, there is a significant temperature difference between liquid and gas sides. The heat distribution of the container 22 is relaxed during the movement on a conveyor 21 and the like, relaxing the temperature distribution of a gas-liquid interface. Then, by feeding the wind forcedly from outside to the container 22, the heat transfer in a surface of the container 22 is improved so as to rapidly change the surface temperature of the container 22. Accordingly, since the outside surface temperature of the container 22 to the gas-liquid interface is highlighted, an infrared radiation intensity radiated from the surface of the container 22 is photographed by an infrared camera 27 and is input into an image-processing device 28. A photographed image of the infrared camera 27 is processed by the image-processing device 28 to extract a noticeable tone portion as the gas-liquid interface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば飲料充填機
械等で、容器に充填された液体の充填高さを計測する容
器内液体充填高さ計測装置及び流量制御式充填方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid filling height measuring device for measuring the filling height of a liquid filled in a container, for example, with a beverage filling machine or the like, and to a flow control type filling method.

【0002】[0002]

【従来の技術】従来、飲料充填機械では、容器に定量の
飲料を充填した後、最終検査工程で容器に正しく飲料が
充填されているか否かをチェックしている。上記容器と
しては、例えばガラスビン、PETボトル、アルミ缶、
鉄缶、紙パック、アルミパック等が用いられる。
2. Description of the Related Art Conventionally, in a beverage filling machine, after filling a container with a fixed amount of beverage, it is checked in a final inspection step whether or not the container is properly filled with the beverage. Examples of the container include a glass bottle, a PET bottle, an aluminum can,
Iron cans, paper packs, aluminum packs and the like are used.

【0003】上記容器内の飲料高さを計測する方法とし
ては、ガラスビンやPETボトルのように内容液が目視
でも見えるものは、可視光や近赤外線光を使用し、飲料
により透過光量が減衰することを利用して飲料高さを計
測する方法、あるいは可視光や近赤外線光にて照明され
た液面部分をカメラで撮影し、画像処理によって液界面
を抽出する方法等が用いられている。
[0003] As a method of measuring the height of the beverage in the above-mentioned container, for a glass bottle or a PET bottle in which the content liquid is visible visually, visible light or near-infrared light is used, and the amount of transmitted light is attenuated by the beverage. There is used a method of measuring the height of a beverage utilizing the above, or a method of taking a liquid surface portion illuminated with visible light or near-infrared light with a camera and extracting a liquid interface by image processing.

【0004】また、上記アルミ缶、鉄缶、紙パック、ア
ルミパック等では、内容液が不可視なため、X線やγ線
を用いて飲料の有無を確認する方法、あるいはX線カメ
ラを用いて液面部分を撮影し、画像処理にて容器内の液
界面を抽出する方法等が用いられる。
[0004] Further, in the above-mentioned aluminum cans, iron cans, paper packs, aluminum packs and the like, since the content liquid is invisible, a method of confirming the presence or absence of beverages using X-rays or γ-rays, or using an X-ray camera A method of taking an image of a liquid surface portion and extracting a liquid interface in the container by image processing or the like is used.

【0005】上記容器外部から放射される赤外線量を計
測し、液面を抽出するような技術は、例えば実開平4−
109329号(容器内液面位置検知装置)に開示され
ている。図5は上記実開平4−109329号に開示さ
れた容器内液面位置検知装置の要部構成図を示したもの
である。同図に示すように液体用容器1内に液体2、例
えば水、油、その他、化学薬品類が入っており、液体2
の上面が液面である。この場合、液体2の温度と気体6
の温度により、容器1の外表面は、それぞれT1とT2
の温度となり、これによりステファンボルツマンの法則
に従う赤外線が放射される。この赤外線を赤外線カメラ
3で捉え、赤外線画像処理装置4により処理してディス
プレイ5上に表示する。これによりT1とT2の温度差
を計測することができる。このときのT1とT2の温度
境界位置から液面位置を確定させる。また、上記計測に
際し、赤外ヒータ等で強制的に容器1を加熱して熱容量
の違いにより温度上昇の差を測定する。
A technique for measuring the amount of infrared radiation radiated from the outside of the container and extracting the liquid level is disclosed in, for example, Japanese Utility Model Application Laid-Open Publication No. Hei.
No. 109329 (liquid level detecting device in a container). FIG. 5 is a view showing the configuration of a main part of a liquid level detecting device in a container disclosed in the above-mentioned Japanese Utility Model Application Laid-Open No. 4-109329. As shown in FIG. 1, a liquid 2, for example, water, oil, and other chemicals are contained in a liquid container 1.
Is the liquid level. In this case, the temperature of the liquid 2 and the gas 6
, The outer surface of the container 1 has T1 and T2, respectively.
, Which emits infrared radiation according to Stefan-Boltzmann's law. This infrared light is captured by the infrared camera 3, processed by the infrared image processing device 4, and displayed on the display 5. Thereby, the temperature difference between T1 and T2 can be measured. The liquid level position is determined from the temperature boundary position between T1 and T2 at this time. At the time of the above measurement, the container 1 is forcibly heated by an infrared heater or the like, and a difference in temperature rise is measured due to a difference in heat capacity.

【0006】一般に容器内に液体がある状態とは、底面
側に液体があり、この液体の上面側に空間が存在する。
液体は空間側にある空気に比較して熱容量が大きく、こ
のため周囲温度変化があると気体部と液体部に温度差が
生じる。従って、この温度差から容器内液面位置を検知
することができる。また、上記のように計測時に赤外ヒ
ータ等で積極的に熱エネルギを与えると、熱容量の差に
よる温度差が顕著になり、容器内液面位置を容易に計測
することができる。
In general, a state in which a liquid is present in a container means that a liquid exists on the bottom side and a space exists on the upper side of the liquid.
The liquid has a larger heat capacity than the air in the space side, so that a change in ambient temperature causes a temperature difference between the gas part and the liquid part. Therefore, the liquid level position in the container can be detected from the temperature difference. Further, when heat energy is positively applied by an infrared heater or the like at the time of measurement as described above, a temperature difference due to a difference in heat capacity becomes remarkable, and the liquid level position in the container can be easily measured.

【0007】また、類似の技術として特開平9−333
20号に開示された容器内の液面探査装置がある。図6
は、上記容器内の液面探査装置の構成図である。図6に
おいて、11は容器で、この容器11内に気体12と液
体13が収納されており、その側壁11aには、内部に
収納されている液体13のレベルLを観察するための窓
11bが形成されている。容器11の本体部分は、鉄合
金等で形成されており、窓11bは強化プラスチック等
の熱伝導率が低く、強度の大きな透明部材で覆われてい
る。また、容器11の側壁11aを加熱するための熱源
14が設けられる。また、容器11の側壁11aと熱源
14との間に必要に応じて熱遮蔽板15が設けられる。
この熱遮蔽板15は、容器11の側壁11aを所望温度
まで加熱した後、熱源14と容器11の側壁11aとの
間を熱的に遮蔽するためのものである。更に、加熱され
た容器11の側壁11aを撮像するための赤外線カメラ
16が設けられる。この赤外線カメラ16で撮像され画
像は、画像処理装置17へ送られて処理される。
A similar technique is disclosed in Japanese Patent Application Laid-Open No. 9-333.
No. 20 discloses a device for detecting a liquid level in a container. FIG.
FIG. 2 is a configuration diagram of a liquid surface exploration device in the container. In FIG. 6, reference numeral 11 denotes a container, in which a gas 12 and a liquid 13 are stored, and a window 11b for observing the level L of the liquid 13 stored therein is provided on a side wall 11a thereof. Is formed. The main body of the container 11 is formed of an iron alloy or the like, and the window 11b is covered with a transparent member having a low thermal conductivity such as reinforced plastic and a high strength. Further, a heat source 14 for heating the side wall 11a of the container 11 is provided. Further, a heat shield plate 15 is provided between the side wall 11a of the container 11 and the heat source 14 as needed.
The heat shielding plate 15 is for thermally shielding the space between the heat source 14 and the side wall 11a of the container 11 after heating the side wall 11a of the container 11 to a desired temperature. Further, an infrared camera 16 for imaging the side wall 11a of the heated container 11 is provided. The image captured by the infrared camera 16 is sent to the image processing device 17 for processing.

【0008】上記の構成において、熱源14により容器
11の内部を所望温度まで加熱し、容器11内部の気体
12と液体13とが所望温度に上昇した後、熱源14を
熱遮蔽板15により遮断する。その後、容器11の側壁
11aの加熱箇所を赤外線カメラ16で撮像して放熱状
態を示す熱画像を画像処理装置17に入力する。この画
像処理装置17は、上記赤外線カメラ16で撮像された
熱画像を記憶し、気体12と液体13と両者の境界領域
とにおけるそれぞれ温度分布を熱画像から目視により判
別して容器11内の気体12と液体13の液面レベルを
判定する。
In the above configuration, after the interior of the container 11 is heated to a desired temperature by the heat source 14 and the gas 12 and the liquid 13 in the container 11 rise to the desired temperature, the heat source 14 is shut off by the heat shield plate 15. . After that, the infrared camera 16 captures an image of the heated portion of the side wall 11a of the container 11 and inputs a thermal image indicating a heat radiation state to the image processing device 17. The image processing device 17 stores the thermal image captured by the infrared camera 16, visually determines the temperature distribution in the gas 12, the liquid 13, and the boundary region between the two, from the thermal image and determines the temperature distribution in the container 11. The liquid levels of the liquid 12 and the liquid 13 are determined.

【0009】上記のようにして容器11内部の液体13
の残量を非接触で判定することができると共に、窓11
bが汚れている場合であってもそのままの状態で液面レ
ベルを判定することができる。
As described above, the liquid 13 in the container 11 is
Of the window 11 can be determined in a non-contact manner.
Even if b is dirty, the liquid level can be determined as it is.

【0010】[0010]

【発明が解決しようとする課題】上記実開平4−109
329号に開示された容器内液面位置検知装置は、赤外
ヒータ等で強制的に容器1を加熱して熱容量の違いによ
り温度上昇の差を測定しているので、容器内液面位置を
容易に計測することが可能であるが、ヒータの熱が直接
容器1に当り、容器1の表面で反射されてホットスポッ
トとして映ったり、ヒータ加熱むらが赤外線カメラ3に
映ってしまうという問題がある。
SUMMARY OF THE INVENTION
The liquid level detecting device in the container disclosed in No. 329 forcibly heats the container 1 with an infrared heater or the like and measures a difference in temperature rise due to a difference in heat capacity. Although it is possible to easily measure, there is a problem that the heat of the heater directly hits the container 1 and is reflected on the surface of the container 1 to be reflected as a hot spot, or uneven heating of the heater is reflected to the infrared camera 3. .

【0011】また、特開平9−33320号に開示され
た容器内の液面探査装置は、容器11内部の液体13の
残量を非接触で判定することができると共に、窓11b
が汚れている場合であってもそのままの状態で液面レベ
ルを判定することができるが、熱源14により容器11
の内部を所望温度まで加熱し、容器11内部の気体12
と液体13とが所望温度に上昇した後、熱源14を熱遮
蔽板15により遮断しなければならない。
Further, the liquid level detecting device in the container disclosed in Japanese Patent Application Laid-Open No. 9-33320 can determine the remaining amount of the liquid 13 in the container 11 in a non-contact manner, and can also determine the remaining amount of the liquid 13 in the container 11.
The liquid level can be determined as it is even if the container 11 is dirty.
Is heated to a desired temperature, and the gas 12 inside the container 11 is heated.
After the temperature of the liquid and the liquid 13 have risen to the desired temperature, the heat source 14 must be shut off by the heat shield plate 15.

【0012】飲料充填機械において、飲料の充填高さを
検出することは、飲料製品の出荷検査上重要である。ま
た、近年、リターナブル化が容易なガラスビンが見直さ
れてきている。しかし、ガラスビンは、容器成形精度が
良くないために定量充填を採用することができないとい
う問題がある。通常の赤外線カメラと画像処理装置を用
いた容器内液体充填高さ計測装置は、ガラスビンとPE
Tボトルに適用されているが、ガラスビンでは印刷され
た文字、また、PETボトルではラベルと強度を強化す
るために入っている絞り縞により誤検知する場合があ
る。更に、内部不可視の缶では、X線や放射線が用いら
れているが、据付け時に線源の強度調整が大変で、被曝
の危険性もある。また、缶内液揺れに対しては透過線量
で計測するため計測誤差が大きくなる。
[0012] In a beverage filling machine, detecting the filling height of the beverage is important in shipping inspection of the beverage product. In recent years, glass bottles that can be easily returned have been reviewed. However, the glass bottle has a problem that it is not possible to employ the fixed filling because the molding accuracy of the container is not good. The liquid filling height measuring device in the container using a normal infrared camera and image processing device is a glass bottle and PE
Although applied to T bottles, erroneous detection may occur due to printed characters in glass bottles, and aperture stripes in PET bottles to enhance label and strength. Further, X-rays and radiation are used in cans that are invisible inside, but the intensity of the radiation source is hardly adjusted during installation, and there is a risk of exposure. In addition, since the fluctuation of the liquid in the can is measured by the transmitted dose, the measurement error increases.

【0013】本発明は上記の課題を解決するためになさ
れたもので、内部を目視可能なガラスビン、PETボト
ル等の容器だけでなく、内部不可視の缶、紙パック、ア
ルミパック等の容器に対しても迅速かつ確実に液面高さ
を計測し得る容器内液体充填高さ計測装置、及び上記容
器に液体を正確に充填し得る流量制御式充填方法を提供
することを目的とする。
The present invention has been made to solve the above-mentioned problems, and is applicable not only to containers such as glass bottles and PET bottles whose inside can be visually observed, but also to containers such as cans, paper packs, and aluminum packs whose inside is invisible. It is an object of the present invention to provide an in-vessel liquid filling height measuring device capable of quickly and reliably measuring the liquid level, and a flow control type filling method capable of accurately filling the container with liquid.

【0014】[0014]

【課題を解決するための手段】第1の発明に係る容器内
液体充填高さ計測装置は、液体が充填された容器を搬送
する搬送手段と、この搬送手段により搬送される容器に
風を吹き付け、該容器内の気液界面に対する容器外側の
表面温度差を強調する送風機と、前記容器表面から放射
される赤外線放射エネルギを撮影する赤外線カメラと、
この赤外線カメラにより撮影された画像を処理し濃淡変
化の著しい部分を気液界面として検出する画像処理手段
とを具備したことを特徴とする。
According to a first aspect of the present invention, there is provided an apparatus for measuring the filling height of a liquid in a container, comprising: conveying means for conveying a container filled with liquid; and blowing air to the container conveyed by the conveying means. A blower that emphasizes a surface temperature difference outside the container with respect to a gas-liquid interface in the container, and an infrared camera that captures infrared radiation energy radiated from the container surface,
Image processing means for processing an image photographed by the infrared camera and detecting a portion having a remarkable change in shading as a gas-liquid interface.

【0015】第2の発明に係る容器内液体充填高さ計測
装置は、前記送風機及び赤外線カメラを計測箱内に設け
て計測することを特徴とする。
A second aspect of the present invention is a liquid filling height measuring device for a container, wherein the blower and the infrared camera are provided in a measuring box for measurement.

【0016】第3の発明に係る容器内液体充填高さ計測
装置は、前記送風機の吹出し口に整流格子やパンチング
メタルによる整流装置を設けたり、容器形状に合せた送
風を行なうことにより、容器に当たる面的な風速むらを
無くし、容器外部の熱伝達条件を均一にして計測するこ
とを特徴とする。
In the liquid filling height measuring apparatus according to a third aspect of the present invention, a rectifying device such as a rectifying grid or a punching metal is provided at an outlet of the blower, or air is blown in accordance with the shape of the container to hit the container. The method is characterized in that the measurement is performed while eliminating the unevenness of the surface wind speed and making the heat transfer conditions outside the container uniform.

【0017】第4の発明に係る容器内液体充填高さ計測
装置は、前記搬送手段により搬送される容器の両側に配
置される第1のミラーと、この第1のミラーにより反射
される前記容器表面からの赤外線放射エネルギを前記赤
外線カメラに導く第2のミラーとを設け、容器の全外周
に亘って気液界面を計測することを特徴とする。
According to a fourth aspect of the present invention, there is provided an apparatus for measuring a liquid filling height in a container, comprising: first mirrors disposed on both sides of the container conveyed by the conveying means; and the container reflected by the first mirror. A second mirror for guiding infrared radiation energy from the surface to the infrared camera is provided, and a gas-liquid interface is measured over the entire outer periphery of the container.

【0018】第5の発明に係る流量制御式充填方法は、
複数の定量充填部に設置した検出器部に、流量計測手段
と、液体が充填された容器を搬送する搬送手段と、この
搬送手段により搬送される容器に風を吹き付け、該容器
内の気液界面に対する容器外側の表面温度差を強調する
送風機と、前記容器表面から放射される赤外線放射エネ
ルギを撮影する赤外線カメラと、前記搬送手段により搬
送される容器表面からの赤外線放射エネルギを前記赤外
線カメラにより撮影された画像を処理し濃淡変化の著し
い部分を気液界面として検出する画像処理手段とからな
る容器内液体充填高さ計測装置を設け、前記容器内液体
充填高さ計測装置の計測結果に基づいて前記各定量充填
部に取付けてある流量計の設定値を変更することを特徴
とする。
A flow control type filling method according to a fifth aspect of the present invention
Flow rate measuring means, transport means for transporting a container filled with liquid, and air blown to the container transported by the transport means, and gas-liquid A blower that emphasizes the surface temperature difference outside the container with respect to the interface, an infrared camera that captures infrared radiant energy emitted from the container surface, and an infrared camera that uses the infrared camera to transfer infrared radiation energy from the container surface transported by the transport unit An image processing means for processing a photographed image and detecting a portion having a remarkable change in density as a gas-liquid interface is provided with a liquid filling height measuring device in a container, and based on a measurement result of the liquid filling height measuring device in the container. And changing the set values of the flow meters attached to the respective fixed quantity filling sections.

【0019】[0019]

【発明の実施の形態】以下、図面を参照して本発明の一
実施形態を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0020】図1は、本発明に係る液面高さ計測装置の
全体構成を示すシステム構成図である。図1において、
20は内部が断熱された計測箱で、この計測箱20内を
液体例えば飲料が既に充填された容器22がコンベア2
1により順次搬送される。上記計測箱20を通過した容
器22は、主搬送コンベア23により次工程へ搬送され
るが、不良品についてはリジェクタ24によりリジェク
トされ、不良品ゾーン25へ送られる。
FIG. 1 is a system configuration diagram showing the overall configuration of a liquid level measuring device according to the present invention. In FIG.
Reference numeral 20 denotes a measurement box whose inside is insulated, and a container 22 already filled with a liquid, for example, a beverage is placed in the measurement box 20 on the conveyor 2.
1 sequentially transported. The container 22 that has passed through the measurement box 20 is transported to the next process by the main transport conveyor 23, but defective products are rejected by the rejector 24 and sent to the defective product zone 25.

【0021】また、上記計測箱20内には、コンベア2
1上の容器22に風を送る送風機26が設けられると共
に、上記容器22を撮影する赤外線カメラ27が設けら
れる。この赤外線カメラ27により撮影された画像は、
画像処理装置28へ送られる。上記赤外線カメラ27に
より容器22を撮影する際、計測箱20の内面板が背景
板20aとして利用される。また、この背景板20a
は、計測箱20の内面板を利用せずに独立して設けても
よい。また、上記計測箱20は、例えば太陽光や照明光
等の外乱となる熱の侵入を除去する役割も有している。
In the measuring box 20, a conveyor 2 is provided.
A blower 26 for sending air to the upper container 22 is provided, and an infrared camera 27 for photographing the container 22 is provided. The image taken by the infrared camera 27 is
It is sent to the image processing device 28. When the container 22 is photographed by the infrared camera 27, the inner surface plate of the measurement box 20 is used as a background plate 20a. Also, the background plate 20a
May be provided independently without using the inner surface plate of the measurement box 20. In addition, the measurement box 20 also has a role of removing intrusion of heat which becomes disturbance such as sunlight or illumination light.

【0022】上記画像処理装置28は、制御コンピュー
タ29により制御されるもので、処理画像を表示装置3
0に出力して表示すると共に、制御コンピュータ29へ
出力する。この制御コンピュータ29は、画像処理装置
28の処理結果から容器22へ飲料が正常に充填されて
いるか否かを判断し、その判定結果に応じてリジェクタ
24に制御指令を出力する。すなわち、制御コンピュー
タ29は、計測箱20から送り出された容器22が正常
品、すなわち容器22に液体が正常に充填されている場
合であればリジェクタ24を作動させず、容器22を主
搬送コンベア23により次工程へ搬送させ、計測箱20
から送り出された容器22が異常、すなわち、容器22
への液体充填量が異常であった場合には、リジェクタ2
4を作動させて容器22を別のコンベアラインにより不
良品ゾーン25へ退避させる。
The image processing device 28 is controlled by a control computer 29, and displays a processed image on the display device 3.
Output to 0 and display, and output to control computer 29. The control computer 29 determines whether or not the beverage is normally filled in the container 22 based on the processing result of the image processing device 28, and outputs a control command to the rejector 24 according to the determination result. That is, if the container 22 sent out from the measurement box 20 is a normal product, that is, if the container 22 is normally filled with the liquid, the control computer 29 does not operate the rejector 24 and moves the container 22 to the main conveyor 23. To the next process,
Is abnormal, that is, the container 22
If the liquid filling amount is abnormal, the rejector 2
4 is operated to evacuate the container 22 to the defective zone 25 by another conveyor line.

【0023】次に上記実施形態の動作を説明する。計測
箱20内に搬入される容器22には、前工程で既に飲料
が充填されており、図2に示すように下部側に液体32
が入り、その上部が気体33となっている。なお、図2
は、赤外線カメラ27から出力される赤外線強度画像3
1を上記画像処理装置28に取り込んだ画像、すなわち
赤外線強度を例えば「0−255」で正規化した濃淡画
像を示したものである。
Next, the operation of the above embodiment will be described. The container 22 carried into the measuring box 20 is already filled with the beverage in the previous process, and as shown in FIG.
, And the upper part is gas 33. Note that FIG.
Is an infrared intensity image 3 output from the infrared camera 27.
1 is an image taken into the image processing device 28, that is, a grayscale image in which the infrared intensity is normalized by, for example, “0-255”.

【0024】そして、上記飲料が充填された容器22が
計測箱20内に搬入されると、送風機26により風が当
てられ、次に赤外線カメラ27により撮影される。
Then, when the container 22 filled with the beverage is carried into the measuring box 20, the air is blown by the blower 26 and then photographed by the infrared camera 27.

【0025】飲料充填された直後の容器22では、液体
32側と気体33側とで大きな温度差があるが、容器2
2がコンベア21等で移動中に容器22の熱の分布が緩
和され、気液界面の温度分布が緩やかになる。そこで、
飲料充填された容器22に外部から強制的に風を送るこ
とにより、容器表面の熱伝達を向上させ、容器22表面
の温度を急速に変化させることができる。この場合、容
器上部の気体33部分は、気体33の持つ熱量が小さ
く、また、容器22内側の熱伝達率は無風であるので非
常に小さい。このため容器22の液体32部分は、気体
33に比較して熱量が大きく、また、容器22との熱伝
達率も大きい。このため風を与えることにより、容器2
2内部の液体32の温度が風温に近づく速度は、上部の
気体33部分に比べて遅い。
In the container 22 immediately after the beverage is filled, there is a large temperature difference between the liquid 32 side and the gas 33 side.
While the container 2 is moving on the conveyor 21 or the like, the distribution of heat in the container 22 is relaxed, and the temperature distribution at the gas-liquid interface becomes gentle. Therefore,
By forcibly sending air from the outside to the beverage-filled container 22, heat transfer on the container surface can be improved, and the temperature on the container 22 surface can be rapidly changed. In this case, the gas 33 in the upper part of the container has a small amount of heat of the gas 33, and the heat transfer coefficient inside the container 22 is very small because there is no wind. Therefore, the liquid 32 portion of the container 22 has a larger calorific value than the gas 33 and also has a higher heat transfer coefficient with the container 22. For this reason, the container 2
The speed at which the temperature of the liquid 32 inside 2 approaches the wind temperature is lower than that of the upper gas 33 portion.

【0026】これにより気液界面の容器外側の表面温度
を強調することができるので、容器22の表面から放射
される赤外線放射強度を赤外線カメラ27で計測する。
この計測した赤外線の強度に容器表面の放射率を掛け合
わせたものが容器表面温度を表しているので、その赤外
線強度をある任意の範囲で正規化し、そのスケールを例
えば「0−255」にすることにより、温度の低い所を
「0」、温度の高い所を「255」で表現することがで
きる。このスケールは、通常カメラで使用する濃淡画像
処理装置に対し濃淡(グレースケール)画像として入力
することができる。この濃淡変化の著しい部分を画像処
理装置28で画像処理して抽出する。上記濃淡変化の著
しい部分は、温度変化の著しい部分であるので、容器2
2表面の温度変化の著しい部分、すなわち気液界面を検
出することができる画像処理装置28は、上記抽出した
気液界面の画像上での位置を計測し、液面位置として判
定し、液位不良の容器22があれば制御コンピュータ2
9を介してリジェクタ24にリジェクト指令を送り、そ
の容器22を不良品ゾーン25へ導く。
Thus, the surface temperature of the gas-liquid interface outside the container can be emphasized, so that the infrared radiation intensity radiated from the surface of the container 22 is measured by the infrared camera 27.
Since the measured infrared intensity multiplied by the emissivity of the container surface represents the container surface temperature, the infrared intensity is normalized in an arbitrary range, and the scale is set to, for example, "0-255". Thus, a low temperature location can be represented by “0” and a high temperature location can be represented by “255”. This scale can be input as a grayscale image to a grayscale image processing device normally used in a camera. The image processing unit 28 performs image processing on the portion where the shading change is remarkable and extracts it. Since the above-mentioned portion where the change in density is remarkable is a portion where the change in temperature is remarkable, the container 2
The image processing device 28, which can detect the portion of the surface where the temperature change is remarkable, that is, the gas-liquid interface, measures the position of the extracted gas-liquid interface on the image, determines the position as the liquid surface position, and determines the liquid level. If there is a defective container 22, control computer 2
A reject command is sent to a rejector 24 via 9 and the container 22 is guided to a defective zone 25.

【0027】次に具体的な例として、5℃の炭酸飲料が
充填されたアルミニウム製缶を容器22として用いた場
合について説明する。
Next, as a specific example, a case where an aluminum can filled with a carbonated beverage at 5 ° C. is used as the container 22 will be described.

【0028】5℃の炭酸飲料が充填されたアルミニウム
でできた缶の容器22内は、コンベア21により搬送さ
せる間に気体温度も飲料温度に近づき、表面温度も全体
的5℃に近づく。この容器22に周囲温度と同じ温度の
空気を送風機26にて吹き付ける。このとき送風機26
からの空気はやや広がり、送風機26の正面に位置する
容器22の数本分に吹き付ける。この吹き付ける範囲
は、コンベア速度と容器材質と厚み、容器22内の液体
32の温度、周囲温度に依存するので、条件によって可
変設定する。この空気を吹き付けられた容器22の外表
面から熱輻射された赤外線放射エネルギを赤外線カメラ
27で計測する。この赤外線カメラ27により撮影され
た画像は、最低温度0℃〜最高温度50℃で正規化され
た濃淡画像(画像中の各画素毎に赤外線強度を「0−2
55」で数値化した画像)であるので、この画像を画像
処理装置28で濃淡画像処理を行なう。液面は、赤外線
強度画像31に対して水平方向にあるので、縦方向に微
分を取る。通常、赤外線強度画像31には、細かなノイ
ズが含まれているので、通常行なわれている3画素間の
差分処理よりも5画素間や7画素間の差分処理を行なっ
た方がノイズに強くなる。また、事前に数画素(3〜
7)で平滑化処理を行なった後、実施しても対ノイズ性
を向上することができる。
In a can 22 made of aluminum filled with a carbonated beverage at 5 ° C., the gas temperature approaches the beverage temperature and the overall surface temperature approaches 5 ° C. while being transported by the conveyor 21. Air having the same temperature as the ambient temperature is blown to the container 22 by a blower 26. At this time, the blower 26
From the air blows slightly and blows on several containers 22 located in front of the blower 26. The spraying range depends on the conveyor speed, the material and thickness of the container, the temperature of the liquid 32 in the container 22, and the ambient temperature. The infrared radiation energy thermally radiated from the outer surface of the container 22 to which the air is blown is measured by the infrared camera 27. The image captured by the infrared camera 27 is a grayscale image normalized at a minimum temperature of 0 ° C. to a maximum temperature of 50 ° C. (infrared intensity of each pixel in the image is “0-2”).
55), the image is subjected to gray image processing by the image processing device 28. Since the liquid surface is in the horizontal direction with respect to the infrared intensity image 31, the liquid surface is differentiated in the vertical direction. Normally, since the infrared intensity image 31 contains fine noise, performing differential processing between five or seven pixels is more resistant to noise than differential processing between three pixels which is normally performed. Become. In addition, several pixels (3 to
Even after the smoothing process is performed in 7), the noise immunity can be improved.

【0029】上記微分処理で強調された温度勾配の大き
な部分(ピーク)を抽出するか、ある閾値で2値化、す
なわち閾値以下の時は「0」、閾値以上の時は「25
5」化する。そして、2値化画像を横方向にヒストグラ
ム処理を行ない、最も頻度の高い部分が温度勾配の高い
部分、つまり気液界面となる。また、高速化が必要な場
合は、1画素の縦方向に移動平均を取りながら、その差
分演算をする濃度変化点検出を行ない、気液界面を抽出
する。
A large portion (peak) of the temperature gradient emphasized in the above-described differential processing is extracted or binarized at a certain threshold value, that is, “0” when the temperature is below the threshold, and “25” when the value is above the threshold.
5 ". Then, the binarized image is subjected to histogram processing in the horizontal direction, and the most frequent portion is a portion with a high temperature gradient, that is, a gas-liquid interface. Further, when speeding up is necessary, while taking a moving average in the vertical direction of one pixel, a density change point detection for calculating the difference is performed to extract a gas-liquid interface.

【0030】赤外線カメラ27は固定されているので、
抽出した気液界面の画像中の位置はそのまま実際の容器
内の液面高さとなる。従って、この抽出した位置で判定
値以上若しくは判定範囲内かどうかを判定し、表示装置
30には計測した赤外線強度画像31とその判定結果を
表示する。この判定の結果、良品であれば、容器22は
リジェクタ24を素通りし、そのまま主搬送コンベア2
3により次工程へ搬送される。また、上記判定の結果、
不良品であれば、リジェクタ24により不良品ゾーン2
5へ移動させられる。
Since the infrared camera 27 is fixed,
The position in the image of the extracted gas-liquid interface becomes the actual liquid level in the container. Therefore, it is determined whether or not the extracted position is equal to or greater than the determination value or within the determination range, and the display device 30 displays the measured infrared intensity image 31 and the determination result. As a result of this determination, if the product is non-defective, the container 22 passes through the rejector 24 and is
It is transported to the next process by 3. Also, as a result of the above determination,
If the product is defective, the rejector 24 uses the defective zone 2
Moved to 5.

【0031】上記のように計測箱20内に送風機26を
設けて容器22に送風することにより、容器22の表面
の熱伝達が促進され、容器外部に内部温度情報が伝達さ
れる。この結果、容器上部の気体33部分は、送風され
た空気温度に近づき、容器下部の液体32部分は、液体
32の温度に近くなる。また、送風機26により温度強
調することにより、容器自身が熱外乱とならず、容器外
部との温度強調が可能になる。このため非常に高い応答
性(例えば25Hz(1500can/min)以上)
が得られると共に、±0.3mm程度の高い計測精度が
得られる。また、上記実施形態において、計測環境にあ
るものは、送風機26、赤外線カメラ27及び背景板2
0a(若しくは計測箱20の内面板)である。上記送風
機26による送風温度はほぼ周囲温度であり、赤外線カ
メラ27及び背景板20aも周囲温度と等しい温度とな
っている。このため容器22表面の赤外線放射を計測す
る際に誤差要因を与えることなく、容器22の表面温度
を正しく計測することができる。
By providing the blower 26 in the measurement box 20 and blowing air to the container 22 as described above, heat transfer on the surface of the container 22 is promoted, and the internal temperature information is transmitted to the outside of the container. As a result, the temperature of the gas 33 at the upper portion of the container approaches the temperature of the blown air, and the temperature of the liquid 32 at the lower portion of the container approaches the temperature of the liquid 32. In addition, since the temperature is enhanced by the blower 26, the container itself does not become a thermal disturbance, and the temperature can be enhanced with the outside of the container. For this reason, very high response (for example, 25 Hz (1500 can / min) or more)
And a high measurement accuracy of about ± 0.3 mm can be obtained. In the above embodiment, what is in the measurement environment includes the blower 26, the infrared camera 27, and the background plate 2.
0a (or the inner surface plate of the measurement box 20). The temperature of the air blown by the blower 26 is substantially the ambient temperature, and the infrared camera 27 and the background plate 20a are also at the same temperature as the ambient temperature. Therefore, the surface temperature of the container 22 can be correctly measured without giving an error factor when measuring the infrared radiation on the surface of the container 22.

【0032】また、検査効率を上げる目的で、検査装置
前段で温風や冷風、冷水、温水で容器22全体の温度を
変化させた後、図1に示した検査装置で検査しても良
い。更に、安定性と効果を上げる目的で、計測箱20内
の温度を調節したり、設定温度を上げ下げしても良い。
この場合、予め設定した温度で送風するように構成して
も、同様の効果を得ることができる。
Further, in order to increase the inspection efficiency, the temperature of the entire container 22 may be changed with hot air, cold air, cold water, or hot water in the preceding stage of the inspection device, and then the inspection may be performed by the inspection device shown in FIG. Further, for the purpose of improving the stability and the effect, the temperature in the measuring box 20 may be adjusted or the set temperature may be raised or lowered.
In this case, the same effect can be obtained even if the air is blown at a preset temperature.

【0033】また、送風機26を複数台使用し、各送風
口に整流装置を設けることにより、送風ムラを低減して
容器22外部の熱伝達を促進させることができる。例え
ば前記送風機の吹出し口に整流格子やパンチングメタル
による整流装置を設けたり、容器形状に合せた送風を行
なうことにより、容器に当たる面的な風速むらを無く
し、容器外部の熱伝達条件を均一にして計測することが
できる。
Further, by using a plurality of blowers 26 and providing a rectifying device at each blower outlet, it is possible to reduce blow-off unevenness and to promote heat transfer outside the container 22. For example, by providing a rectifying device with a rectifying grid or punching metal at the outlet of the blower, or by performing blowing in accordance with the shape of the container, the unevenness of the surface wind velocity hitting the container is eliminated, and the heat transfer conditions outside the container are made uniform. Can be measured.

【0034】(第2実施形態)次に本発明の第2実施形
態について説明する。図3は本発明の第2実施形態に係
る容器内液体充填高さ計測装置の概略構成図である。こ
の第2実施形態は、容器22内に充填した液体32が搬
送途中で揺れている場合であっても、その液面高さを正
確に計測できるようにしたものである。この第2実施形
態では、計測箱20に搬入された容器22に対し、その
上部にミラー41を斜めに配置すると共に、例えば搬送
される容器22の両側に位置するようにミラー42a、
42bを斜めに配置している。そして、上記ミラー41
の側方に位置するように赤外線カメラ27を配置してい
る。すなわち、容器22の周面から輻射される赤外線放
射エネルギをミラー42a、42bで上方に反射させ、
この反射赤外線を更にミラー41で反射させて赤外線カ
メラ27に入射するようにしている。上記図3は、ミラ
ー41、42a、42b及び赤外線カメラ27の配置関
係を示したもので、図1に示したコンベア21、送風機
26等については省略している。
(Second Embodiment) Next, a second embodiment of the present invention will be described. FIG. 3 is a schematic configuration diagram of a liquid filling height measuring device in a container according to a second embodiment of the present invention. In the second embodiment, even when the liquid 32 filled in the container 22 fluctuates during transportation, the liquid level can be accurately measured. In the second embodiment, the mirror 41 is disposed obliquely on the upper part of the container 22 carried into the measurement box 20 and, for example, the mirrors 42a are positioned on both sides of the container 22 to be conveyed.
42b is arranged obliquely. And the mirror 41
The infrared camera 27 is arranged so as to be located on the side of the camera. That is, the infrared radiation radiated from the peripheral surface of the container 22 is reflected upward by the mirrors 42a and 42b,
The reflected infrared rays are further reflected by the mirror 41 and enter the infrared camera 27. FIG. 3 shows the arrangement relationship of the mirrors 41, 42a, 42b and the infrared camera 27, and omits the conveyor 21, the blower 26 and the like shown in FIG.

【0035】上記のようにミラー41、42a、42b
を配置して容器22の全周を計測することにより、容器
22内に充填した液体32が搬送途中で揺れている場合
であっても、その液面高さを正確に計測することができ
る。また、その他、第1実施形態と同様の効果を得るこ
とができる。
As described above, the mirrors 41, 42a, 42b
Is arranged and the entire circumference of the container 22 is measured, so that even when the liquid 32 filled in the container 22 fluctuates during transportation, the liquid level can be accurately measured. In addition, the same effects as in the first embodiment can be obtained.

【0036】なお、上記実施形態では、飲料を容器22
に充填する場合について示したが、本発明は飲料に限ら
ず、その他の液体を容器22に充填する場合に実施し得
るものである。
In the above embodiment, the beverage is stored in the container 22.
Although the case of filling into the container 22 has been described, the present invention is not limited to beverages and can be implemented when filling the container 22 with other liquids.

【0037】(第3実施形態)次に本発明の第3実施形
態について図4を参照して説明する。この第3実施形態
は、ロータリ式充填機における流量制御式充填方法につ
いて示したものである。図4はロータリ式充填機50の
一部を示したもので、このロータリ式充填機50には、
容器22に液体を充填する充填バルブ52、この各充填
バルブ52により充填される液体の流量を計測する電磁
流量計(図示せず)等が設けられている。ロータリ式充
填機50は、充填に際してロータリ回転台51により容
器22を取り込み、CO2 で容器内をガス置換したあ
と、充填バルブ52を開いて充填を開始する。
(Third Embodiment) Next, a third embodiment of the present invention will be described with reference to FIG. This third embodiment shows a flow control type filling method in a rotary filling machine. FIG. 4 shows a part of a rotary filling machine 50.
A filling valve 52 for filling the container 22 with liquid, an electromagnetic flow meter (not shown) for measuring a flow rate of the liquid filled by each filling valve 52, and the like are provided. At the time of filling, the rotary filling machine 50 takes in the container 22 by the rotary turntable 51, and after replacing the gas in the container with CO 2 , opens the filling valve 52 to start filling.

【0038】上記充填中、電磁流量計から出力される流
量パルスをある設定になるまでカウントした後、充填バ
ルブ52を閉じる。次いで、送風機26により容器表面
温度差を強調した後、赤外線カメラ27にて容器22の
表面から放射される赤外線放射エネルギを計測する。容
器表面からの赤外線放射エネルギに放射率をかけたもの
が容器表面温度となるので、上記実施形態で示したよう
に常に同じ材質の容器22を計測する場合、赤外線放射
エネルギ画像でそのまま処理する事が可能である。この
画像を画像処理装置28に入力し、液面の抽出処理を行
なった後、液面を計測する。上記画像処理装置28の処
理結果は表示装置30に表示されると共に制御コンピュ
ータ29へ送られる。なお、上記赤外線カメラ27等に
よる液面計測部には、ロータリ回転台51により搬送さ
れる容器22の背面側に断熱板53が設けられている。
During the above filling, after counting the number of flow pulses output from the electromagnetic flow meter until it reaches a certain setting, the filling valve 52 is closed. Next, after the container surface temperature difference is emphasized by the blower 26, the infrared radiation energy radiated from the surface of the container 22 is measured by the infrared camera 27. Since the surface temperature is obtained by multiplying the infrared radiant energy from the container surface by the emissivity, when the container 22 of the same material is always measured as shown in the above-described embodiment, it is necessary to directly process the infrared radiant energy image. Is possible. This image is input to the image processing device 28, and after the liquid level is extracted, the liquid level is measured. The processing result of the image processing device 28 is displayed on the display device 30 and sent to the control computer 29. In the liquid level measurement unit using the infrared camera 27 or the like, a heat insulating plate 53 is provided on the back side of the container 22 transported by the rotary turntable 51.

【0039】上記制御コンピュータ29は、画像処理装
置28により求め液面高さデータに基づいて、次の容器
22に対する液体の充填量を調整する。一般にアルミ缶
やPETボトルの様な容器の成形精度の高いものは一定
の高さが充填されればほぼ一定の容量の液が充填された
事と等しくなる。このため画像処理装置28は、上記液
面高さデータがある基準の高さより高ければ、容器22
の内容積に応じた分の電磁流量計からの出力パルスのカ
ウント数を減らし、また、反対に少なければ、電磁流量
計からの出力パルスのカウント数を増やすように制御指
令を出力する。実際にはこのカウント数制御には数ボト
ル程度の平均値を用いて、設定の時定数を下げ、精度を
向上させる。上記ロータリ式充填機50の場合、ロータ
リ回転台51により搬送される容器22は、充填を完了
した後、次の工程に送られるまでの周期が長く、その
間、液面の揺れが少なく、安定した状態に保たれるの
で、液面の計測を確実に行なうことができる。
The control computer 29 adjusts the filling amount of the liquid in the next container 22 based on the liquid level data obtained by the image processing device 28. In general, a container such as an aluminum can or a PET bottle having a high molding accuracy is equivalent to filling a liquid having a substantially constant volume if a predetermined height is filled. Therefore, if the liquid level data is higher than a certain reference height, the image processing device 28
A control command is output so as to reduce the number of output pulses from the electromagnetic flow meter by the amount corresponding to the internal volume, and to increase the count of output pulses from the electromagnetic flow meter if the number is small. In practice, an average value of about several bottles is used for this count number control, and the time constant of the setting is reduced to improve the accuracy. In the case of the above-mentioned rotary filling machine 50, the container 22 conveyed by the rotary turntable 51 has a long cycle from completion of filling to sending to the next step, during which time the liquid surface has little fluctuation and is stable. Since the state is maintained, the liquid level can be measured reliably.

【0040】[0040]

【発明の効果】以上詳記したように本発明によれば、液
体が充填された容器に空気を吹き付け、容器表面から放
射される赤外線放射エネルギを計測し、その赤外線放射
エネルギの大きさにより容器内の液体充填高さを計測す
るようにしたので、容器における気液界面の温度強調が
可能になり、内部を目視できるガラスビン、PETボト
ル等の容器だけでなく、内部不可視の缶、紙パック、ア
ルミパック等に対しても迅速かつ確実に液面高さを計測
することができる。また、送風機の吹出し口に整流格子
やパンチングメタルによる整流装置を設けたり、容器形
状に合せた送風を行なうことにより、容器に当たる面的
な風速むらを無くし、容器外部の熱伝達条件を均一にし
て計測することができる。また、容器の外周に沿って複
数のミラーを配置し、その反射を利用して容器全周の液
面高さを計測できるようにしたので、容器内に充填した
液体が搬送途中で揺れている場合であっても、その液面
高さを正確に計測することができる。
As described above in detail, according to the present invention, air is sprayed on a container filled with liquid, infrared radiation energy radiated from the surface of the container is measured, and the amount of infrared radiation energy is measured based on the magnitude of the infrared radiation energy. Since the liquid filling height in the container is measured, the temperature of the gas-liquid interface in the container can be emphasized, and not only containers such as glass bottles and PET bottles that allow the inside to be seen, but also cans, paper packs, The liquid level can be measured quickly and reliably even for aluminum packs and the like. In addition, by providing a rectifying device with a rectifying grid or punching metal at the outlet of the blower, or by blowing air in accordance with the shape of the container, the uneven wind speed that hits the container is eliminated, and the heat transfer conditions outside the container are made uniform. Can be measured. In addition, since a plurality of mirrors are arranged along the outer periphery of the container and the reflection can be used to measure the liquid level of the entire periphery of the container, the liquid filled in the container shakes during the transfer. Even in this case, the liquid level can be accurately measured.

【0041】更に、各充填バルブ毎に対応させたこの計
測装置で計測した液面高さデータを基に充填バルブに取
付けてある流量計からのパルス数で、充填バルブを閉止
するための積算パルス数の設定値を自動修正することも
可能である。
Further, based on the liquid level height data measured by this measuring device corresponding to each filling valve, the integrated pulse for closing the filling valve is determined by the number of pulses from the flow meter attached to the filling valve. It is also possible to automatically correct the set value of the number.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る容器内液体充填高
さ計測装置のシステム構成図。
FIG. 1 is a system configuration diagram of a liquid filling height measuring device in a container according to a first embodiment of the present invention.

【図2】同実施形態における赤外線強度画像例を示す
図。
FIG. 2 is a view showing an example of an infrared intensity image in the embodiment.

【図3】本発明の第2実施形態に係る容器内液体充填高
さ計測装置の要部を示す構成図。
FIG. 3 is a configuration diagram showing a main part of a liquid filling height measuring device in a container according to a second embodiment of the present invention.

【図4】本発明の第3実施形態に係る流量制御式充填方
法の要部を示す構成図。
FIG. 4 is a configuration diagram showing a main part of a flow control type filling method according to a third embodiment of the present invention.

【図5】従来における容器内液面位置検知装置の要部を
示す構成図。
FIG. 5 is a configuration diagram showing a main part of a conventional liquid level detecting device in a container.

【図6】従来における容器内液面探査装置の構成図。FIG. 6 is a configuration diagram of a conventional liquid level detecting device in a container.

【符号の説明】[Explanation of symbols]

20 計測箱 21 コンベア 22 容器 23 主搬送コンベア 24 リジェクタ 25 不良品ゾーン 26 送風機 27 赤外線カメラ 28 画像処理装置 29 制御コンピュータ 30 表示装置 31 赤外線強度画像 32 液体 33 気体 41、41a、41b ミラー 50 ロータリ式充填機 51 ロータリ回転台 52 充填バルブ Reference Signs List 20 Measurement box 21 Conveyor 22 Container 23 Main transport conveyor 24 Rejector 25 Defective zone 26 Blower 27 Infrared camera 28 Image processing device 29 Control computer 30 Display device 31 Infrared intensity image 32 Liquid 33 Gas 41, 41a, 41b Mirror 50 Rotary filling Machine 51 Rotary turntable 52 Filling valve

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F014 CA10 3E018 AA02 AB06 BA07 BB02 DA02 DA05 EA02 3E079 AB01 AB02 FF01 FG07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F014 CA10 3E018 AA02 AB06 BA07 BB02 DA02 DA05 EA02 3E079 AB01 AB02 FF01 FG07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 液体が充填された容器を搬送する搬送手
段と、この搬送手段により搬送される容器に風を吹き付
け、該容器内の気液界面に対する容器外側の表面温度差
を強調する送風機と、前記容器表面から放射される赤外
線放射エネルギを撮影する赤外線カメラと、この赤外線
カメラにより撮影された画像を処理し濃淡変化の著しい
部分を気液界面として検出する画像処理手段とを具備し
たことを特徴とする容器内液体充填高さ計測装置。
1. A conveying means for conveying a container filled with a liquid, and a blower for blowing air to the container conveyed by the conveying means to emphasize a surface temperature difference between the gas-liquid interface inside the container and the outside of the container. An infrared camera that captures infrared radiant energy emitted from the surface of the container, and image processing means that processes an image captured by the infrared camera and detects a portion having a remarkable change in density as a gas-liquid interface. Characteristic liquid filling height measuring device in a container.
【請求項2】 前記送風機及び赤外線カメラを計測箱内
に設けて計測することを特徴とする請求項1記載の容器
内液体充填高さ計測装置。
2. The liquid filling height measuring apparatus according to claim 1, wherein the blower and the infrared camera are provided in a measuring box for measurement.
【請求項3】 前記送風機に整流手段を設けて計測する
ことを特徴とする請求項1記載の容器内液体充填高さ計
測装置。
3. An apparatus for measuring the filling height of liquid in a container according to claim 1, wherein the blower is provided with a rectifying means for measurement.
【請求項4】 液体が充填された容器を搬送する搬送手
段と、この搬送手段により搬送される容器に風を吹き付
け、該容器内の気液界面に対する容器外側の表面温度差
を強調する送風機と、前記容器表面から放射される赤外
線放射エネルギを撮影する赤外線カメラと、前記搬送手
段により搬送される容器の両側に配置される第1のミラ
ーと、この第1のミラーにより反射される前記容器表面
からの赤外線放射エネルギを前記赤外線カメラに導く第
2のミラーと、前記赤外線カメラにより撮影された画像
を処理し濃淡変化の著しい部分を気液界面として検出す
る画像処理手段とを具備したことを特徴とする容器内液
体充填高さ計測装置。
4. A conveying means for conveying a container filled with a liquid, and a blower for blowing air to the container conveyed by the conveying means to emphasize a surface temperature difference between the gas-liquid interface in the container and the outside of the container. An infrared camera for photographing infrared radiant energy radiated from the container surface, first mirrors disposed on both sides of the container conveyed by the conveying means, and the container surface reflected by the first mirror A second mirror for guiding infrared radiant energy from the infrared camera to the infrared camera, and image processing means for processing an image taken by the infrared camera and detecting a portion having a remarkable change in density as a gas-liquid interface. A liquid filling height measuring device in a container.
【請求項5】 複数の定量充填部に設置した検出器部
に、流量計測手段と、液体が充填された容器を搬送する
搬送手段と、この搬送手段により搬送される容器に風を
吹き付け、該容器内の気液界面に対する容器外側の表面
温度差を強調する送風機と、前記容器表面から放射され
る赤外線放射エネルギを撮影する赤外線カメラと、前記
搬送手段により搬送される容器表面からの赤外線放射エ
ネルギを前記赤外線カメラにより撮影された画像を処理
し濃淡変化の著しい部分を気液界面として検出する画像
処理手段とからなる容器内液体充填高さ計測装置を設
け、前記容器内液体充填高さ計測装置の計測結果に基づ
いて前記各定量充填部に取付けてある流量計の設定値を
変更することを特徴とする流量制御式充填方法。
5. A flow rate measuring means, a transport means for transporting a container filled with a liquid, and air blown to the container transported by the transport means on a detector section provided in the plurality of fixed quantity filling sections, A blower that emphasizes a surface temperature difference outside the container with respect to a gas-liquid interface in the container, an infrared camera that captures infrared radiation energy emitted from the container surface, and infrared radiation energy from the container surface transported by the transporting means An image processing means for processing an image photographed by the infrared camera and detecting a portion having a remarkable change in shading as a gas-liquid interface, wherein a liquid filling height measuring device in the container is provided, and the liquid filling height measuring device in the container is provided. Characterized in that the set value of a flow meter attached to each of the fixed quantity filling sections is changed based on the measurement result of (1).
JP29664699A 1999-10-19 1999-10-19 Liquid filling height measuring device and flow control type filling method in container Expired - Fee Related JP3881813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29664699A JP3881813B2 (en) 1999-10-19 1999-10-19 Liquid filling height measuring device and flow control type filling method in container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29664699A JP3881813B2 (en) 1999-10-19 1999-10-19 Liquid filling height measuring device and flow control type filling method in container

Publications (2)

Publication Number Publication Date
JP2001116611A true JP2001116611A (en) 2001-04-27
JP3881813B2 JP3881813B2 (en) 2007-02-14

Family

ID=17836244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29664699A Expired - Fee Related JP3881813B2 (en) 1999-10-19 1999-10-19 Liquid filling height measuring device and flow control type filling method in container

Country Status (1)

Country Link
JP (1) JP3881813B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017245A (en) * 2003-06-30 2005-01-20 Srl Inc Apparatus and system for detecting liquid level position of sample in test tube
EP1541474A1 (en) * 2002-09-10 2005-06-15 Dai Nippon Printing Co., Ltd. Method of sterilization and apparatus therefor
JP2006240659A (en) * 2005-03-02 2006-09-14 Mitsubishi Heavy Industries Food & Packaging Machinery Co Ltd Rotary filling apparatus and liquid level detecting device
JP2007238153A (en) * 2006-03-10 2007-09-20 Mitsubishi Heavy Ind Ltd Liquid filling device
ES2322419A1 (en) * 2006-11-29 2009-06-19 Martin Alejandr Iñesta Process of control for the supply of fluids in deposits (Machine-translation by Google Translate, not legally binding)
JP2010038568A (en) * 2008-07-31 2010-02-18 Shinko Inspection & Service Co Ltd Method and device for detecting interface level
JP2011102652A (en) * 2009-11-10 2011-05-26 Mitsubishi Electric Corp Refrigerant condition determining device, refrigerant condition determining system, and method of detecting refrigerant liquid-level position
JP2012026835A (en) * 2010-07-22 2012-02-09 Energy Support Corp Method for determining existence of water immersion into electric power distribution apparatus
CN106441493A (en) * 2016-09-28 2017-02-22 山西彤康食品有限公司 Device and method for online detecting liquid level of transparent bottle
CN108888119A (en) * 2018-09-10 2018-11-27 青岛海尔智能技术研发有限公司 A kind of automatic water filling device and water filling control method
JP2020507527A (en) * 2017-02-15 2020-03-12 ジー.デー ソチエタ ペル アツィオニG.D Societa Per Azioni Method and apparatus for filling a cartridge with a liquid for an aerosol generator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541474A1 (en) * 2002-09-10 2005-06-15 Dai Nippon Printing Co., Ltd. Method of sterilization and apparatus therefor
EP1541474A4 (en) * 2002-09-10 2006-05-17 Dainippon Printing Co Ltd Method of sterilization and apparatus therefor
US7160509B2 (en) 2002-09-10 2007-01-09 Dai Nippon Printing Co., Ltd. Method of sterilization and apparatus therefor
JP2005017245A (en) * 2003-06-30 2005-01-20 Srl Inc Apparatus and system for detecting liquid level position of sample in test tube
JP2006240659A (en) * 2005-03-02 2006-09-14 Mitsubishi Heavy Industries Food & Packaging Machinery Co Ltd Rotary filling apparatus and liquid level detecting device
JP2007238153A (en) * 2006-03-10 2007-09-20 Mitsubishi Heavy Ind Ltd Liquid filling device
ES2322419A1 (en) * 2006-11-29 2009-06-19 Martin Alejandr Iñesta Process of control for the supply of fluids in deposits (Machine-translation by Google Translate, not legally binding)
JP2010038568A (en) * 2008-07-31 2010-02-18 Shinko Inspection & Service Co Ltd Method and device for detecting interface level
JP2011102652A (en) * 2009-11-10 2011-05-26 Mitsubishi Electric Corp Refrigerant condition determining device, refrigerant condition determining system, and method of detecting refrigerant liquid-level position
JP2012026835A (en) * 2010-07-22 2012-02-09 Energy Support Corp Method for determining existence of water immersion into electric power distribution apparatus
CN106441493A (en) * 2016-09-28 2017-02-22 山西彤康食品有限公司 Device and method for online detecting liquid level of transparent bottle
JP2020507527A (en) * 2017-02-15 2020-03-12 ジー.デー ソチエタ ペル アツィオニG.D Societa Per Azioni Method and apparatus for filling a cartridge with a liquid for an aerosol generator
CN108888119A (en) * 2018-09-10 2018-11-27 青岛海尔智能技术研发有限公司 A kind of automatic water filling device and water filling control method

Also Published As

Publication number Publication date
JP3881813B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
US10984378B1 (en) Profiling pallets and goods in a warehouse environment
JP3881813B2 (en) Liquid filling height measuring device and flow control type filling method in container
US10074169B2 (en) Method and apparatus for detecting bubbles and/or creases on labeled containers
JPH07198617A (en) Inspection of dynamic liquid level and foam for quality control and process control
US20080253648A1 (en) Food product checking system and method for identifying and grading food products
CN111842183B (en) Bottle body detection device and bottle body detection method
JP5591849B2 (en) Foreign matter inspection device, foreign matter inspection program, foreign matter inspection method
JP2006143579A (en) Method and device for controlling treatment process at the time of manufacturing safe glass
US20230010402A1 (en) Cased goods inspection system and method
TW201736831A (en) System and method for inspecting containers using multile images of the containers
JP2006505787A (en) Device for inspecting filled containers with X-rays and devices using the same
KR20170127565A (en) Inspection device
CN111175248B (en) Intelligent meat quality online detection method and detection system
JP2000088781A (en) Inspection apparatus for heat-sealed package
JP2002310946A (en) Radiation inspection system
JP4664778B2 (en) Chestnut quality inspection method
JP2015137858A (en) Inspection device
JP2001272357A (en) X-ray foreign matter inspection apparatus
CN115265927B (en) Container sealing detection method and detection device
JP2002508070A (en) Method and apparatus for detecting the filling level of a product in a container
JP4291123B2 (en) Radiation foreign matter inspection apparatus and radiation foreign matter inspection method
JPH09113631A (en) Foreign matter detector using x ray
JPH09145343A (en) Radiation inspection apparatus
JP2004317184A (en) X-ray foreign matter inspection device
US11138716B2 (en) Inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060313

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees