JP2001115257A - Manufacturing method for sputtering target material - Google Patents

Manufacturing method for sputtering target material

Info

Publication number
JP2001115257A
JP2001115257A JP29357399A JP29357399A JP2001115257A JP 2001115257 A JP2001115257 A JP 2001115257A JP 29357399 A JP29357399 A JP 29357399A JP 29357399 A JP29357399 A JP 29357399A JP 2001115257 A JP2001115257 A JP 2001115257A
Authority
JP
Japan
Prior art keywords
titanium
plastic working
target material
present
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29357399A
Other languages
Japanese (ja)
Inventor
Rikigun Yo
力軍 姚
Tadao Ueda
忠雄 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell Electronics Japan Co Ltd
Original Assignee
Honeywell Electronics Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell Electronics Japan Co Ltd filed Critical Honeywell Electronics Japan Co Ltd
Priority to JP29357399A priority Critical patent/JP2001115257A/en
Priority to US09/627,496 priority patent/US6423161B1/en
Priority to CN00816972A priority patent/CN1409773A/en
Priority to EP00970908A priority patent/EP1230418A1/en
Priority to PCT/US2000/028454 priority patent/WO2001029279A1/en
Priority to AU80224/00A priority patent/AU8022400A/en
Priority to KR1020027004788A priority patent/KR20020040869A/en
Priority to US09/833,504 priority patent/US6416595B2/en
Priority to US09/832,448 priority patent/US6428638B2/en
Publication of JP2001115257A publication Critical patent/JP2001115257A/en
Priority to US10/165,569 priority patent/US6746553B2/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an industrially advantageous method of manufacturing for a titanium target material minimal in the occurrence of particles at film deposition. SOLUTION: Titanium is used as a stock, and plastic working is applied to the titanium under the conditions of >=5% draft and >=100%/s working rate. The average size of titanium crystal grains in the resultant sputtering target is <=4 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スパッタリングタ
ーゲット材の製造方法に関するものであり、詳しくは、
チタンから成るスパッタリングターゲット材の製造方法
に関するものである。以下、本明細書において、スパッ
タリングターゲット材を単にターゲット材と略記する。
The present invention relates to a method for manufacturing a sputtering target material, and more particularly, to a method for manufacturing a sputtering target material.
The present invention relates to a method for manufacturing a sputtering target material made of titanium. Hereinafter, in this specification, a sputtering target material is simply referred to as a target material.

【0002】[0002]

【従来の技術】スパッタリングにより、基板上に形成さ
れる薄膜の品質は、スパッタリング時点のターゲット材
表面の粗さにより影響される。そして、ある程度以上の
大きさの突起部が表面に突出している場合は、当該突起
部においてマイクロアーキングと呼ばれる異常放電が起
り易くなる。異状放電が起った場合は、ターゲット材の
表面から巨大粒子が飛散して基板上に付着し、薄膜の厚
さ斑、半導体の薄膜回路の短絡などのトラブルの原因と
なる。斯かる巨大粒子は、通常、パーティクル又はスプ
ラッツ(以下、まとめてパーティクルと言う)と呼ばれ
る。
2. Description of the Related Art The quality of a thin film formed on a substrate by sputtering is affected by the roughness of the target material surface at the time of sputtering. When a protrusion having a certain size or more protrudes from the surface, abnormal discharge called micro arcing is likely to occur at the protrusion. When abnormal discharge occurs, giant particles scatter from the surface of the target material and adhere to the substrate, causing troubles such as uneven thickness of a thin film and short circuit of a semiconductor thin film circuit. Such giant particles are usually called particles or splats (hereinafter collectively referred to as particles).

【0003】上記のターゲット材表面の粗さは、ターゲ
ット材の結晶粒径の大きさと相関があり、結晶粒径を微
細化することにより小さくすることが出来る。従って、
ターゲット材の内部の結晶粒径を微細化することによ
り、パーティクルの生成を防止し品質の良好な薄膜を形
成することが出来る。
The surface roughness of the target material has a correlation with the crystal grain size of the target material, and can be reduced by reducing the crystal grain size. Therefore,
By reducing the crystal grain size inside the target material, generation of particles can be prevented and a high-quality thin film can be formed.

【0004】特開平11−50244号公報には、チタ
ンから構成され且つその結晶粒の平均粒径が0.1〜5
μmであるターゲット材が本出願人により提案されてい
る。このターゲット材は、チタンを水素化した後、β相
または(α+β)相結晶構造の状態で塑性加工を行な
い、その後、脱水素および熱処理を行うことにより製造
される。水素化および脱水素処理を伴う製造方法は、必
ずしも、工業的に有利とは言えない。従って、工業的に
有利な製造方法が望まれる。
[0004] Japanese Patent Application Laid-Open No. 11-50244 discloses that titanium is composed of titanium and has an average crystal grain size of 0.1-5.
A target material of μm has been proposed by the present applicant. This target material is manufactured by hydrogenating titanium, performing plastic working in a β-phase or (α + β) -phase crystal structure, and then performing dehydrogenation and heat treatment. Production methods involving hydrogenation and dehydrogenation are not necessarily industrially advantageous. Therefore, an industrially advantageous production method is desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記実情に
鑑みなされたものであり、その目的は、製膜時にパーテ
ィクルの発生が少ないチタンターゲット材の工業的有利
な製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an industrially advantageous method for producing a titanium target material with less generation of particles during film formation. is there.

【0006】[0006]

【課題を解決するための手段】本発明者は、鋭意検討を
重ねた結果、ターゲット材の製造で採用される塑性加工
の条件、具体的には、加工速度を選択するだけで結晶粒
を微細化でき、上記の目的を容易に達成し得るとの知見
を得た。
Means for Solving the Problems As a result of intensive studies, the present inventor has found that the conditions of plastic working employed in the production of a target material, specifically, the crystal grains can be reduced by simply selecting the working speed. And found that the above object can be easily achieved.

【0007】本発明は、上記の知見に基づき完成された
ものであり、その要旨は、チタンを素材とし、加工率5
%以上、加工速度100%/秒以上の条件下にチタンの
塑性加工を行うことを特徴とするスパッタリングターゲ
ット材の製造方法に存する。
The present invention has been completed on the basis of the above-mentioned findings, and the gist of the present invention is that titanium
% And a processing speed of 100% / second or more.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明においてはチタンを素材する。チタンは、通常、
真空冶金などの方法によってスポンジ状チタンを溶融し
た後に鋳造して得られるチタンインゴットが使用され
る。本発明においては、純度が99.99〜99.99
99重量%(4N〜6N)の高純度チタンが好適に使用
される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present invention, titanium is used as a material. Titanium is usually
A titanium ingot obtained by melting and casting a sponge-like titanium by a method such as vacuum metallurgy is used. In the present invention, the purity is from 99.99 to 99.99.
High purity titanium of 99% by weight (4N to 6N) is preferably used.

【0009】本発明においては、公知の製造方法と同様
に、結晶方位含有比の調整のため、加工率5%以上の塑
性加工を行う。塑性加工は、圧延などの変形を素材に施
す加工を言い、その際の素材の変形率(厚さの低下率)
は加工率と称される。本発明において、加工率の上限は
通常90%とされる。
In the present invention, similarly to the known manufacturing method, plastic working is performed at a working ratio of 5% or more to adjust the crystal orientation content ratio. Plastic working refers to processing in which deformation such as rolling is applied to a material, and the deformation rate of the material at that time (rate of decrease in thickness)
Is called the processing rate. In the present invention, the upper limit of the working ratio is usually 90%.

【0010】本発明の最大の特徴は、加工速度100%
/秒以上の条件下にチタンの塑性加工を行う点にある。
すなわち、塑性加工によってターゲット材を製造する際
に使用される加工速度は、通常100%/秒未満、例え
ば、20%/秒程度であり、本発明の最大特徴は、従来
法に比し、高められた加工速度を採用した点にある。そ
して、斯かる加工速度の採用により、塑性加工の後に通
常設けられる熱処理を省略し、塑性加工自体によって結
晶粒の調整(微細化)を図ることが出来る。
The most important feature of the present invention is that the processing speed is 100%.
/ S / sec or more.
That is, the processing speed used when manufacturing the target material by plastic working is usually less than 100% / second, for example, about 20% / second, and the greatest feature of the present invention is higher than the conventional method. The point is that the adopted processing speed is adopted. By adopting such a processing speed, the heat treatment usually provided after the plastic working can be omitted, and the crystal grain can be adjusted (miniaturized) by the plastic working itself.

【0011】すなわち、本発明の製造方法で得られるタ
ーゲット材は、後記の実施例に示す様に、チタン結晶粒
の平均粒径が4μm以下であり、スパッタリングによっ
て形成されるチタン薄膜に発生するパーティクルが少な
い特徴を有する。上記の加工速度は、好ましくは500
%/秒以上、更に好ましくは1,000%/秒以上であ
り、その上限は通常10,000%/秒である。
That is, the target material obtained by the manufacturing method of the present invention has an average particle size of titanium crystal grains of 4 μm or less and particles generated in a titanium thin film formed by sputtering, as shown in Examples described later. Has few features. The above processing speed is preferably 500
% / Sec or more, more preferably 1,000% / sec or more, and the upper limit is usually 10,000% / sec.

【0012】上記の高速塑性加工は複数回行うことが好
ましい。すなわち、異なる方向(例えばX軸とY軸方
向)からの加圧による塑性加工を間に入れて上記の高速
加工を2回以上行うことが好ましい。例えば、丸棒状の
素材を使用した場合は、円周方向からの加圧による伸す
ための低速塑性加工(スエージ加工的な塑性加工)を間
に入れて広げるための高速塑性加工(例えば鍛造)を2
回以上行う。なお、一般的に、スエージ加工的な塑性加
工は、高速で行うことは困難であり、通常、上記の様に
低速で行われる。
Preferably, the high-speed plastic working is performed a plurality of times. That is, it is preferable to perform the high-speed processing two or more times with intervening plastic working by pressurization from different directions (for example, the X-axis and Y-axis directions). For example, when a round bar-shaped material is used, high-speed plastic working (eg, forging) for widening with a low-speed plastic working (swing working plastic working) for stretching by pressing in the circumferential direction is applied. 2
Do more than once. In general, it is difficult to perform swaging-like plastic working at a high speed, and usually, it is performed at a low speed as described above.

【0013】通常、上記の低速塑性加工は油圧プレス、
上記の高速塑性加工はハンマープレスにより行われる。
ハンマープレスの場合、鉄鎚の落下高さの変更により加
工速度を容易に調整することが出来る。高速塑性加工の
最大回数は特に制限されないが、通常3〜5回である。
Usually, the low-speed plastic working is performed by a hydraulic press,
The high-speed plastic working is performed by a hammer press.
In the case of a hammer press, the processing speed can be easily adjusted by changing the falling height of the iron hammer. The maximum number of high-speed plastic working is not particularly limited, but is usually 3 to 5 times.

【0014】本発明においては、上記の様な高速塑性加
工により、ターゲット材としての必要な性能を素材に与
える。従って、前記した加工率(5%以上)は、高速塑
性加工の際に必要であり、低速塑性加工の際の加工率は
任意に選択し得る。
In the present invention, the necessary performance as a target material is given to the material by the high-speed plastic working as described above. Therefore, the above-mentioned working rate (5% or more) is necessary for high-speed plastic working, and the working rate for low-speed plastic working can be arbitrarily selected.

【0015】高速塑性加工においては自発熱により素材
の温度が高められるが、塑性加工中における素材(チタ
ン)の温度は400℃以下に維持するのが好ましい。素
材温度が400℃を超える場合は、急速な結晶成長が起
こり、微細粒を得ることが困難となる。
In high-speed plastic working, the temperature of the raw material is increased by self-heating, but the temperature of the raw material (titanium) during the plastic working is preferably maintained at 400 ° C. or lower. When the raw material temperature exceeds 400 ° C., rapid crystal growth occurs, and it is difficult to obtain fine grains.

【0016】本発明の製造方法で得られるターゲット材
の結晶粒の平均粒径は、通常4μm以下、好ましくは2
μm以下であり、そり下限は、通常0.1μmである。
The average grain size of the crystal grains of the target material obtained by the production method of the present invention is usually 4 μm or less, preferably 2 μm or less.
μm or less, and the lower limit of warpage is usually 0.1 μm.

【0017】[0017]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明は、その要旨を超えない限り、以下の実
施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention.

【0018】実施例1〜6及び比較例1〜5 素材として、直径150mm、長さ150mm、純度9
9.995重量%の丸棒状チタンインゴットを使用し
た。そして、先ず、次の表に示す(a)〜(d)の塑性
加工を1セットとして連続して3回行った。次いで、上
記の塑性加工に引き続き、20%/秒の加工速度で「広
げる」ための塑性加工(鍛造)を行って形状を整え、φ
410×20のターゲット材を得た。
Examples 1 to 6 and Comparative Examples 1 to 5 As materials, diameter 150 mm, length 150 mm, purity 9
A round rod-shaped titanium ingot of 9.995% by weight was used. Then, first, the plastic working of (a) to (d) shown in the following table was performed as a set three times continuously. Next, following the above-described plastic working, plastic working (forging) for “spreading” is performed at a processing speed of 20% / sec to adjust the shape.
A 410 × 20 target material was obtained.

【0019】[0019]

【表1】 [Table 1]

【0020】上記の「伸す」ための低速塑性加工には油
圧プレス、「広げる」ための高速塑性加工にはハンマー
プレスを使用した。また、上記の塑性加工中における素
材の温度は自発熱により約300℃であった。
A hydraulic press was used for the low-speed plastic working for "stretching", and a hammer press was used for the high-speed plastic working for "spreading". The temperature of the material during the plastic working was about 300 ° C. due to self-heating.

【0021】(1)結晶粒の平均粒径の測定:上記のタ
ーゲット材の表面をサンドペーパーで研磨した後、弗硝
酸でエッチングし、電解研磨によって鏡面とした後、更
に、弗硝酸でエッチングして粒界を現出させ、光学顕微
鏡で800倍に拡大して写真撮影した。そして、求積法
によって平均粒径を測定した。結果を表2に示す。
(1) Measurement of average grain size of crystal grains: after polishing the surface of the above-mentioned target material with sandpaper, etching with hydrofluoric nitric acid, making a mirror surface by electrolytic polishing, and further etching with hydrofluoric nitric acid. The grain boundaries were exposed and photographed at 800 times magnification with an optical microscope. Then, the average particle size was measured by the quadrature method. Table 2 shows the results.

【0022】(2)パーティクルの測定:上記のターゲ
ット材から直径250mm、厚さ12mmの円盤を切り
出し、スパッタリング装置にセットし、電力:3KW、
ガス圧:10mmTorr、ガス比率:Ar/N2=1
/1、膜厚:50nmの条件下、6インチのシリコンウ
ェーハ上にTiN膜を形成した。スパッタリング終了
後、シリコンウェーハ上に形成された薄膜中のパーティ
クルの個数を測定した。パーティクルの個数の測定に
は、レーザー式パーティクルカウンター(TENCOR
INSTRUMENTS社製商品「SF−642
0」)を使用し、直径0.3μm以上のパーティクルの
個数を測定した。12枚のシリコンウェーハのパーティ
クルの1枚当たりの平均個数をパーティクル数とした。
(2) Measurement of particles: A disk having a diameter of 250 mm and a thickness of 12 mm was cut out from the above-mentioned target material and set in a sputtering apparatus.
Gas pressure: 10 mmTorr, gas ratio: Ar / N2 = 1
/ 1, thickness: 50 nm, a TiN film was formed on a 6-inch silicon wafer. After the completion of the sputtering, the number of particles in the thin film formed on the silicon wafer was measured. To measure the number of particles, use a laser type particle counter (TENCOR)
Product "SF-642" manufactured by INSTRUMENTS
0 "), the number of particles having a diameter of 0.3 μm or more was measured. The average number of particles of 12 silicon wafers per particle was defined as the number of particles.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】以上説明した本発明によれば、製膜時に
パーティクルの発生が少ないチタンターゲット材の工業
的有利な製造方法が提供され、本発明の工業的価値は顕
著である。
According to the present invention described above, an industrially advantageous method for producing a titanium target material with less generation of particles during film formation is provided, and the industrial value of the present invention is remarkable.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 チタンを素材とし、加工率5%以上、加
工速度100%/秒以上の条件下にチタンの塑性加工を
行うことを特徴とするスパッタリングターゲット材の製
造方法。
1. A method for producing a sputtering target material, wherein titanium is used as a raw material and plastic working of titanium is performed under conditions of a processing rate of 5% or more and a processing speed of 100% / sec or more.
【請求項2】 塑性加工を複数回行う請求項1に記載の
製造方法。
2. The method according to claim 1, wherein the plastic working is performed a plurality of times.
【請求項3】 塑性加工中のチタンの温度を400℃以
下に維持する請求項1又は2に記載の製造方法。
3. The production method according to claim 1, wherein the temperature of the titanium during the plastic working is maintained at 400 ° C. or less.
【請求項4】 得られたスパッタリングターゲットチタ
ン結晶粒の平均粒径が4μm以下である請求項1〜3の
何れかに記載の製造方法。
4. The method according to claim 1, wherein an average particle size of the obtained titanium crystal grains of the sputtering target is 4 μm or less.
JP29357399A 1999-10-15 1999-10-15 Manufacturing method for sputtering target material Withdrawn JP2001115257A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP29357399A JP2001115257A (en) 1999-10-15 1999-10-15 Manufacturing method for sputtering target material
US09/627,496 US6423161B1 (en) 1999-10-15 2000-07-28 High purity aluminum materials
AU80224/00A AU8022400A (en) 1999-10-15 2000-10-12 Process for producing sputtering target materials
EP00970908A EP1230418A1 (en) 1999-10-15 2000-10-12 Process for producing sputtering target materials
PCT/US2000/028454 WO2001029279A1 (en) 1999-10-15 2000-10-12 Process for producing sputtering target materials
CN00816972A CN1409773A (en) 1999-10-15 2000-10-12 process for producing sputtering target materials
KR1020027004788A KR20020040869A (en) 1999-10-15 2000-10-12 Process for producing sputtering target materials
US09/833,504 US6416595B2 (en) 1999-10-15 2001-04-09 Material comprising titanium
US09/832,448 US6428638B2 (en) 1999-10-15 2001-04-10 Process for producing sputtering target materials
US10/165,569 US6746553B2 (en) 1999-10-15 2002-06-07 Process for producing sputtering target materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29357399A JP2001115257A (en) 1999-10-15 1999-10-15 Manufacturing method for sputtering target material

Publications (1)

Publication Number Publication Date
JP2001115257A true JP2001115257A (en) 2001-04-24

Family

ID=17796493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29357399A Withdrawn JP2001115257A (en) 1999-10-15 1999-10-15 Manufacturing method for sputtering target material

Country Status (1)

Country Link
JP (1) JP2001115257A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327118A (en) * 2006-06-09 2007-12-20 Univ Of Electro-Communications Metallic material, sputtering target material using the metallic material, grain refining method for metallic material and apparatus therefor
KR20150119284A (en) 2013-03-06 2015-10-23 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Titanium target for sputtering and manufacturing method thereof
CN106282945A (en) * 2016-09-26 2017-01-04 中铝瑞闽股份有限公司 A kind of preparation method of ultra-pure aluminum target

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327118A (en) * 2006-06-09 2007-12-20 Univ Of Electro-Communications Metallic material, sputtering target material using the metallic material, grain refining method for metallic material and apparatus therefor
KR20150119284A (en) 2013-03-06 2015-10-23 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Titanium target for sputtering and manufacturing method thereof
US10431438B2 (en) 2013-03-06 2019-10-01 Jx Nippon Mining & Metals Corporation Titanium target for sputtering and manufacturing method thereof
CN106282945A (en) * 2016-09-26 2017-01-04 中铝瑞闽股份有限公司 A kind of preparation method of ultra-pure aluminum target

Similar Documents

Publication Publication Date Title
US6416595B2 (en) Material comprising titanium
JP4883546B2 (en) Method for manufacturing tantalum sputtering target
JP5675577B2 (en) Tungsten sputtering target and manufacturing method thereof
JP4593475B2 (en) Tantalum sputtering target
WO2014136702A1 (en) Titanium target for sputtering and manufacturing method thereof
WO2004090193A1 (en) Tantalum spattering target and method of manufacturing the same
JPWO2007040014A1 (en) Sputtering target
JP2004162117A (en) Ta SPUTTERING TARGET AND ITS PRODUCTION METHOD
JP2022048244A (en) FORMATION METHOD OF Au FILM
JP3974945B2 (en) Titanium sputtering target
JPH08311643A (en) Titanium sputtering target and its manufacture
JP2001115257A (en) Manufacturing method for sputtering target material
JP2001316803A (en) Method of manufacturing sputtering target material
JP2007521140A (en) High integrity sputtering target material and method for producing it in large quantities
TWI798304B (en) Gold sputtering target material and manufacturing method thereof
JP2004527650A (en) Manufacturing method of sputtering target material
JP5038553B2 (en) Manufacturing method of sputtering target
WO2024048664A1 (en) Molybdenum sputtering target, method for producing same, and method for producing sputtering film using molybdenum sputtering target
WO2023058698A1 (en) Sputtering target, method for producing same, and method for producing sputtering film using sputtering target
TW202035727A (en) Niobium sputtering target
JP2019163544A (en) Sputtering target, titanium nitride film, wiring layer, and semiconductor device
TW202035745A (en) Sputtering target and method for producing sputtering target capable of effectively reducing generation of particles in sputtering

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109