JP2001115243A - Steel sheet excellent in magnetic property and producing method therefor - Google Patents
Steel sheet excellent in magnetic property and producing method thereforInfo
- Publication number
- JP2001115243A JP2001115243A JP29575999A JP29575999A JP2001115243A JP 2001115243 A JP2001115243 A JP 2001115243A JP 29575999 A JP29575999 A JP 29575999A JP 29575999 A JP29575999 A JP 29575999A JP 2001115243 A JP2001115243 A JP 2001115243A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- magnetic properties
- excellent magnetic
- chemical composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、板面と平行な{10
0 }面が高密度に集積した磁気特性の優れた鋼板および
その製造方法に関するものである。BACKGROUND OF THE INVENTION The present invention relates to a method for adjusting a size
More particularly, the present invention relates to a steel sheet having a high density of high density and excellent magnetic properties and a method of manufacturing the same.
【0002】[0002]
【従来の技術】回転機、変圧器等の磁心に用いられる鋼
板には、鉄損が小さい、磁束密度が高いという2つの特
性が求められる。これを実現するためには、磁化容易方
向である<100> 方向を磁界の方向に集積させることが肝
要である。鋼板板面の法線方向が<hkl> 、圧延方向が<u
vw> であるとき鋼板の結晶方位は、{hkl }<uvw> と表
すことができる。板面内の一方向にのみ磁界がかかるよ
うな場合には、{110 }<001> の結晶方位を有する一方
向性電磁鋼板が用いられるが、板面内の2つ以上の方向
に磁界が加わる場合には、{100 }<uvw> とすることが
望まれる。たとえば{100 }<011> を有する鋼板は好適
な材料である。2. Description of the Related Art A steel sheet used for a magnetic core of a rotating machine, a transformer or the like is required to have two characteristics of a small iron loss and a high magnetic flux density. To achieve this, it is important to integrate the <100> direction, which is the direction of easy magnetization, in the direction of the magnetic field. The normal direction of the steel plate surface is <hkl> and the rolling direction is <u
When vw>, the crystal orientation of the steel sheet can be expressed as {hkl} <uvw>. When a magnetic field is applied only in one direction in the plane of the sheet, a grain-oriented electrical steel sheet with a crystal orientation of {110} <001> is used, but the magnetic field is applied in two or more directions in the plane of the sheet. If it is added, it is desirable to set {100} <uvw>. For example, a steel sheet having {100} <011> is a suitable material.
【0003】従来より{100 }<uvw> の結晶方位を有す
る鋼板を得るための技術については種々の提案がなされ
ている。例えば、特開平1−108345号公報、特開
平1−252727号公報、特開平1−319632号
公報および特開平5−320768号公報にはいずれも
変態を活用して{100 }集合組織を得る技術が開示され
ている。これらは、比較的高いCを含有する鋼板に脱炭
焼鈍を行い、表面に脱炭層を形成せしめ、引き続く2回
目の脱炭焼鈍で脱炭層に形成された{100 }集合組織を
有する結晶粒を板厚中心層に成長させることが技術の根
幹となっている。この技術によって得られる{100 }の
集積度は非常に高いものである。しかしながら、これら
の方法では、第一回および第2回の焼鈍時間の合計が2
5分〜48時間を要し、極めて生産性に劣る非現実的な
プロセスにならざるを得ない。一方、特開昭53−31
515号公報および特開昭53−31518号公報には
γ域での加熱時間が比較的短かくても{100 }<uvw> 集
合組織を発達させることが可能であることが開示されて
いる。しかしながら、この技術によって得られる{100
}の強度は最高でも3程度であって、磁気特性を飛躍
的に向上させる技術とは言えない。Conventionally, various proposals have been made for techniques for obtaining a steel sheet having a crystal orientation of {100} <uvw>. For example, JP-A-1-108345, JP-A-1-252727, JP-A-1-319632, and JP-A-5-320768 all disclose techniques for obtaining {100} texture by utilizing transformation. Is disclosed. These steels are subjected to decarburizing annealing on a steel sheet containing relatively high C to form a decarburized layer on the surface, and the crystal grains having {100} texture formed in the decarburized layer in the subsequent second decarburizing annealing are formed. The growth of the thickness center layer is the basis of the technology. The {100} integration achieved by this technology is very high. However, in these methods, the total of the first and second annealing times is 2
It takes 5 minutes to 48 hours, resulting in an unrealistic process with extremely low productivity. On the other hand, JP-A-53-31
JP-A-515 and JP-A-53-31518 disclose that a {100} <uvw> texture can be developed even if the heating time in the γ region is relatively short. However, the $ 100 gained by this technology
The strength of} is about 3 at the maximum, and cannot be said to be a technology for dramatically improving magnetic properties.
【0004】[0004]
【発明が解決しようとする課題】上述の通り、従来の
{100 }<uvw> の集合組織を有する鋼板を得るための技
術は、複雑な焼鈍工程を要したり、或いは製造工程は単
純な反面、得られる{100}の強度が不十分であるとい
う問題がある。本発明者らは上述の技術について鋭意検
討した結果、化学成分を厳密に調整することによって極
めて単純な製造工程によって強い{100 }集合組織、さ
らには{100 }<011> 集合組織を有する鋼板を得ること
ができることを新たに解明した。本発明は、従来技術の
問題点を抜本的に解消し、磁気特性に優れた鋼板および
これを製造する方法を提供することを目的とする。As described above, the conventional technique for obtaining a steel sheet having a texture of {100} <uvw> requires a complicated annealing process, or the manufacturing process is simple. However, there is a problem that the obtained {100} strength is insufficient. The present inventors have conducted intensive studies on the above-described technology, and found that a steel plate having a strong {100} texture, and even a {100} <011> texture by an extremely simple manufacturing process by strictly adjusting the chemical components. We have newly clarified what can be obtained. An object of the present invention is to drastically solve the problems of the prior art, and to provide a steel sheet having excellent magnetic properties and a method for manufacturing the same.
【0005】[0005]
【課題を解決するための手段】本発明者らは、{100 }
に集積した鋼板を得るために、α+γ域またはγ単相域
で焼鈍した際の、すなわちα→(α+γ)→α変態後、
またはα→γ→α変態後の集合組織形成におよぼす化学
成分の影響について鋭意検討を行った。その結果、特定
の化学成分に限定することによって非常に強い{100 }
集合組織を有する鋼板を比較的容易に得ることが可能で
あることが明らかになった。Means for Solving the Problems The present inventors have proposed {100}
In order to obtain a steel sheet accumulated in a steel plate, when annealing in the α + γ region or γ single phase region, that is, after α → (α + γ) → α transformation,
Or, the influence of chemical components on texture formation after α → γ → α transformation was studied diligently. As a result, very strong {100} by limiting to specific chemical components
It has been clarified that a steel sheet having a texture can be obtained relatively easily.
【0006】本発明は、このような新知見に基づいて構
築された、従来にはない全く新しい磁気特性に優れた鋼
板およびその製造方法であり、その要旨とするところは
以下のとおりである。 (1)重量%で、C=0.0008〜0.0040% 未満、Si=3.5% 以
下、Mn=3.0% 以下、P=0.15% 以下、S=0.015%未満、Al=
0.005〜1.8%、N=0.0040% 未満、O=0.0005〜0.02% 未満
かつX=4×Si(%) +5 ×Mn(%) +80×P(%)+2×Al(%) の
とき4 ≦X≦15を満たし、さらにY=0.5×Si(%)+Al(%)-
0.3 ×Mn(%)+0.4 ×P(%)とするときY ≦0.9 を満たすよ
うにSi,Al,Mn,Pを含有し、残部Feおよび不可避的不純
物からなる化学組成を有し、少なくとも鋼板の板厚最表
面にX線を照射して測定したときの板面と平行な{100
}面のX線ランダム強度比が4.0超、板厚が0.7mm
以下であることを特徴とする磁気特性に優れた鋼板。The present invention is a steel plate which has been constructed based on such new knowledge and has a completely new and excellent magnetic property and a method of manufacturing the same. The gist of the present invention is as follows. (1) By weight%, C = 0.0008 to less than 0.0040%, Si = 3.5% or less, Mn = 3.0% or less, P = 0.15% or less, S = 0.015%, Al =
0.005 to 1.8%, N = 0.0040%, O = 0.0005 to 0.02% and X = 4 × Si (%) + 5 × Mn (%) + 80 × P (%) + 2 × Al (%) 4 ≤ Satisfies X ≦ 15, and Y = 0.5 × Si (%) + Al (%) −
0.3 × Mn (%) + 0.4 × P (%) When it contains Si, Al, Mn, P to satisfy Y ≤ 0.9, has a chemical composition consisting of the balance Fe and unavoidable impurities, at least steel plate {100 parallel to the plate surface measured by irradiating the outermost surface of the plate with X-rays
} Surface X-ray random intensity ratio exceeds 4.0, plate thickness 0.7 mm
A steel sheet having excellent magnetic properties, characterized in that:
【0007】(2)重量%で、C=0.0008〜0.0040% 未
満、Si=3.5% 以下、Mn=3.0% 以下、P=0.15% 以下、S=0.
015%以下、Al=0.005〜1.8%、N=0.0040% 未満、O=0.0005
〜0.02% 未満、Nb:0.002〜0.10% を含有し、さらにY=
0.5×Si(%)+Al(%)-0.3 ×Mn(%)+0.4 ×P(%)とするときY
≦0.9 を満たすようにSi,Al,Mn,Pを含有し、残部Fe
および不可避的不純物からなる化学組成を有し、少なく
とも鋼板の板厚最表面にX線を照射して測定したときの
に板面と平行な{100 }面のX線ランダム強度比が4.
0超、板厚が0.7mm 以下であることを特徴とする磁気特
性に優れた鋼板。(2) By weight%, C = 0.0008 to less than 0.0040%, Si = 3.5% or less, Mn = 3.0% or less, P = 0.15% or less, S = 0.
015% or less, Al = 0.005 to 1.8%, N = less than 0.0040%, O = 0.0005
~ 0.02%, Nb: 0.002-0.10%, and Y =
0.5 × Si (%) + Al (%)-0.3 × Mn (%) + 0.4 × P (%) Y
≦ 0.9, Si, Al, Mn, P are contained, and the balance Fe
And an X-ray random intensity ratio of {100} plane parallel to the plate surface when measured by irradiating at least the outermost surface of the plate with X-rays.
A steel sheet having excellent magnetic properties, characterized by having a thickness of more than 0 and a thickness of 0.7 mm or less.
【0008】(3)重量%で、C=0.0008〜0.0040% 未
満、Si=3.5% 以下、Mn=3.0% 以下、P=0.15% 以下、S=0.
015%以下、Al=0.005〜1.8%、N=0.0040% 未満、O=0.0005
〜0.02% 未満、TiをTi:0.001〜0.008%またはTi:0.04 〜
0.3%となるように含有し、さらにY=0.5×Si(%)+Al(%)-
0.3 ×Mn(%) +0.4×P(%)とするときY ≦0.9 を満たすよ
うにSi,Al,Mn,Pを含有し、残部Feおよび不可避的不純
物からなる化学組成を有し、少なくとも鋼板の板厚最表
面にX線を照射して測定したときの板面と平行な{100
}面のX線ランダム強度比が4.0超、板厚が0.7mm
以下であることを特徴とする磁気特性に優れた鋼板。(3) By weight%, C = 0.0008 to less than 0.0040%, Si = 3.5% or less, Mn = 3.0% or less, P = 0.15% or less, S = 0.
015% or less, Al = 0.005 to 1.8%, N = less than 0.0040%, O = 0.0005
~ 0.02% or less, Ti: 0.001 ~ 0.008% or Ti: 0.04 ~
0.3%, Y = 0.5 × Si (%) + Al (%)-
0.3 × Mn (%) + 0.4 × P (%) contains Si, Al, Mn, P to satisfy Y ≤ 0.9, has a chemical composition consisting of the balance Fe and unavoidable impurities, at least steel plate {100 parallel to the plate surface measured by irradiating the outermost surface of the plate with X-rays
} Surface X-ray random intensity ratio exceeds 4.0, plate thickness 0.7 mm
A steel sheet having excellent magnetic properties, characterized in that:
【0009】(4)重量%で、C=0.0008〜0.0040% 未
満、Si=3.5% 以下、Mn=3.0% 以下、P=0.15% 以下、S=0.
015%以下、Al=0.005〜1.8%、N=0.0040% 未満、O=0.0005
〜0.02% 未満、Nb=0.002〜0.06% 、TiをTi=0.001〜0.00
8%またはTi=0.04 〜0.2%となるように含有し、さらにY
=0.5×Si(%)+Al(%)-0.3 ×Mn(%) +0.4×P(%)とするとき
Y ≦0.9 を満たすようにSi,Al,Mn,Pを含有し、残部Fe
および不可避的不純物からなる化学組成を有し、少なく
とも鋼板の板厚最表面にX線を照射して測定したときの
板面と平行な{100 }面のX線ランダム強度比が4.0
超、板厚が0.7mm以下であることを特徴とする磁気特性
に優れた鋼板。(4) C = 0.0008 to less than 0.0040%, Si = 3.5% or less, Mn = 3.0% or less, P = 0.15% or less, S = 0.
015% or less, Al = 0.005 to 1.8%, N = less than 0.0040%, O = 0.0005
~ 0.02%, Nb = 0.002-0.06%, Ti is Ti = 0.001-0.00
8% or Ti = 0.04 to 0.2%
= 0.5 × Si (%) + Al (%)-0.3 × Mn (%) + 0.4 × P (%)
Si, Al, Mn, P are contained so as to satisfy Y ≤ 0.9, and the balance Fe
And an X-ray random intensity ratio of {100} plane parallel to the plate surface measured by irradiating at least the outermost surface of the plate with X-rays and having a chemical composition of unavoidable impurities.
Ultra-thin steel sheet with excellent magnetic properties characterized by a sheet thickness of 0.7 mm or less.
【0010】(5)重量%で、B=0.0002〜0.0040% 、V=
0.002 〜0.1%、W=0.002 〜0.1%、Mo=0.003〜0.4%、Sn=
0.002〜0.3%、Cu=0.005〜0.3%未満、Cr=0.005〜0.4%お
よびNi=0.005〜0.3%の1種又は2種以上を含有すること
を特徴とする請求項1から4のいずれか1項に記載の磁
気特性に優れた鋼板。(6)上記(1)〜(5)のいず
れか1項に記載の化学組成を有するスラブを熱間圧延
し、((Ac1 +Ac3)/2) ℃以上の温度で10分間未満保持す
ることを特徴とする磁気特性に優れた鋼板の製造方法。(5) By weight%, B = 0.0002-0.0040%, V =
0.002 to 0.1%, W = 0.002 to 0.1%, Mo = 0.003 to 0.4%, Sn =
5. One or two or more of 0.002 to 0.3%, Cu = 0.005 to less than 0.3%, Cr = 0.005 to 0.4% and Ni = 0.005 to 0.3%. A steel sheet having excellent magnetic properties as described in the item. (6) A slab having the chemical composition according to any one of the above (1) to (5) is hot-rolled and kept at a temperature of ((Ac 1 + Ac 3 ) / 2) ° C. or more for less than 10 minutes. A method for producing a steel sheet having excellent magnetic properties.
【0011】(7)上記(1)〜(5)のいずれか1項
に記載の化学組成を有するスラブを熱間圧延し、99% 以
下の圧下率で冷間圧延を施し、((Ac1 +Ac3)/2) ℃以上
の温度で10分間未満加熱することを特徴とする磁気特性
に優れた鋼板の製造方法。 (8)上記(1)〜(5)のいずれか1項に記載の化学
組成を有するスラブを熱間圧延し、α単相域で5秒以上
10分以下保持後、((Ac1 +Ac3)/2) ℃以上の温度まで
加熱し、さらに10分間未満保持することを特徴とする磁
気特性に優れた鋼板の製造方法。(7) A slab having the chemical composition according to any one of the above (1) to (5) is hot-rolled, cold-rolled at a rolling reduction of 99% or less, and ((Ac 1 + Ac 3 ) / 2) A method for producing a steel sheet having excellent magnetic properties, characterized by heating at a temperature of not less than 10 ° C. for less than 10 minutes. (8) A slab having the chemical composition according to any one of the above (1) to (5) is hot-rolled and held in an α single phase region for 5 seconds to 10 minutes, and then ((Ac 1 + Ac 3) ) / 2) A method for producing a steel sheet having excellent magnetic properties, wherein the steel sheet is heated to a temperature of not less than ° C and held for less than 10 minutes.
【0012】(9)上記(1)〜(5)のいずれか1項
に記載の化学組成を有するスラブを熱間圧延し、99% 以
下の圧下率で冷間圧延を施し、α単相域で5秒以上10
分以下保持後、((Ac1 +Ac3)/2) ℃以上の温度まで加熱
し、さらに10分間未満保持することを特徴とする磁気特
性に優れた鋼板の製造方法。(9) A slab having the chemical composition described in any one of (1) to (5) above is hot-rolled, cold-rolled at a rolling reduction of 99% or less, and subjected to an α single phase region. 10 seconds for more than 5 seconds
A method for producing a steel sheet having excellent magnetic properties, wherein the steel sheet is heated to a temperature of ((Ac 1 + Ac 3 ) / 2) ° C. or more after holding for not more than 10 minutes and held for less than 10 minutes.
【0013】[0013]
【発明の実施の形態】以下本発明について詳細に説明す
る。Cは本発明において重要な元素である。すなわち、
C量を制御することによって初めて強い{100 }集合組
織を形成させることが可能となる。その範囲は0.0008〜
0.0040% 未満である。この理由は必ずしも明らかではな
いが、焼鈍中に鋼板表面に偏析した微量のCが鋼板表面
の{100 }集合組織形成を促すものと思われる。C量が
少なすぎると{100 }集合組織の発達が十分でなく、一
方、Cが多すぎると焼鈍工程で表面に偏析するCが多過
ぎてむしろ{100 }の強度が低下してしまう。従って、
0.0008% 〜0.0040% 未満とする。さらに本発明において
は、Cはα+γ域またはγ単相域における焼鈍工程以前
に0.0008〜0.0040% 未満でなければならない。Cが焼鈍
工程以前に0.0040% を超えていると、例え焼鈍後にCが
0.0040% 未満であっても良好な集合組織は得られない。
Cの含有量は好ましくは0.0010% 超〜0.0030% 未満であ
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. C is an important element in the present invention. That is,
Only by controlling the C content can a strong {100} texture be formed. The range is 0.0008 ~
Less than 0.0040%. The reason for this is not necessarily clear, but it is believed that a small amount of C segregated on the steel sheet surface during annealing promotes the formation of {100} texture on the steel sheet surface. If the amount of C is too small, the {100} texture will not be sufficiently developed. On the other hand, if the amount of C is too large, the amount of C segregated on the surface during the annealing step will be too large, and the strength of {100} will be rather lowered. Therefore,
0.0008% to less than 0.0040%. Further, in the present invention, C must be less than 0.0008-0.0040% before the annealing step in the α + γ region or the γ single phase region. If C exceeds 0.0040% before the annealing step, even if C
Even if less than 0.0040%, good texture cannot be obtained.
The content of C is preferably more than 0.0010% to less than 0.0030%.
【0014】Siは不純物として含有されるが、磁気特
性を向上させ、また安価に機械的強度を増加させるので
必要に応じて添加する。ただし、Siは多過ぎると脆化
の原因となり、また、α→γ変態点が高くなり過ぎた
り、α+γ域やγ域が消失したりするので3.5%を上限と
する。Siの含有量は好ましくは2.0%未満である。Mn
は不純物として含有されるが、機械的強度を増加させる
のに有効な固溶体強化元素である他、渦電流損失を低下
させたり、α→γ変態点を低下させる効果を有するので
必要に応じて添加する。ただし、Mnを多量に添加し過
ぎるとγ→α変態を介して組織がベイニティックとなり
強度が高くなり過ぎたり、{100 }集合組織の発達が妨
げられたりするので、上限を3.0%とする。Mnの含有量
は2.0%未満がさらに好ましい範囲である。Although Si is contained as an impurity, it is added as necessary, because it improves magnetic properties and increases mechanical strength at low cost. However, if Si is too much, it causes embrittlement, and the α → γ transformation point becomes too high, and the α + γ region and the γ region disappear, so the upper limit is 3.5%. The content of Si is preferably less than 2.0%. Mn
Although it is contained as an impurity, it is a solid solution strengthening element effective for increasing mechanical strength, and has the effect of reducing eddy current loss and lowering the α → γ transformation point. I do. However, if too much Mn is added, the structure becomes bainitic via γ → α transformation and the strength becomes too high, or the development of {100} texture is prevented, so the upper limit is set to 3.0%. . The Mn content is more preferably less than 2.0%.
【0015】Pは不純物として含有されるが、その添加
量が0.15% を超えると、熱間圧延や冷間圧延時に割れが
生ずる場合がある。またα→γ変態点が高くなってしま
う。またPが多過ぎると表面偏析のためか、所望の集合
組織が得られない。従って、Pの含有量の上限値を0.15
% とする。Sは不純物であり、0.015%超では、熱間割れ
の原因となったり、加工性を劣化させるので0.015%を上
限とする。[0015] P is contained as an impurity, but if the added amount exceeds 0.15%, cracks may occur during hot rolling or cold rolling. In addition, the α → γ transformation point increases. If the content of P is too large, a desired texture cannot be obtained, probably because of surface segregation. Therefore, the upper limit of the P content is set to 0.15
%. S is an impurity, and if it exceeds 0.015%, it causes hot cracking or deteriorates workability, so the upper limit is 0.015%.
【0016】Alは脱酸調製に用いる他、磁気特性も向
上させるので0.005%以上添加する。ただし、添加量が1.
8%を超えると、α→γ変態点が著しく上昇したり、α+
γ域やγ域が消滅したりするので1.8%を上限とする。A
lの含有量は0.01以上1.0%未満がさらに好ましい範囲で
ある。Nは不純物であり、多すぎると焼鈍過程で表面に
偏析し、{100 }集合組織の形成を妨げるたり、AlやTi
などと窒化物を形成し磁気特性を劣化させるので0.0040
% 未満とする。Nの含有量は好ましくは0.0025% 未満と
する。N含有量の下限は特に設けないが、製鋼の負荷を
考慮すれば0.0010% が実質的な下限である。Al is used not only for the preparation of deoxidation but also for improving the magnetic properties. However, the addition amount is 1.
If it exceeds 8%, the α → γ transformation point rises significantly, or α +
The upper limit is 1.8% because the γ region or the γ region disappears. A
The content of 1 is more preferably 0.01 to less than 1.0%. N is an impurity, and if it is too much, it segregates on the surface during the annealing process and prevents the formation of {100} texture, or Al or Ti
0.0040 because it forms nitrides and deteriorates magnetic properties
%. The N content is preferably less than 0.0025%. Although there is no particular lower limit for the N content, 0.0010% is a practical lower limit in consideration of steelmaking load.
【0017】OはCと同様に本発明において重要な元素
である。すなわち、Oが多過ぎると焼鈍中に鋼板表面に
偏析したり、酸化物を形成したりして表面の{100 }集
合組織の形成を妨げるので0.02% 未満とする。一方、O
は微量存在することで{100}集合組織の発達を促す作
用を有するので下限を0.0005% とする。Oの含有量は好
ましくは、0.0010〜0.01% 未満、より好ましくは、0.00
10〜0.0030未満である。O, like C, is an important element in the present invention. That is, if O is too much, it segregates on the steel sheet surface during annealing or forms an oxide to prevent the formation of {100} texture on the surface, so that the content is less than 0.02%. On the other hand, O
Has an effect of promoting the development of {100} texture when present in a trace amount, so the lower limit is made 0.0005%. The O content is preferably 0.0010 to less than 0.01%, more preferably 0.000 to less than 0.01%.
10 to less than 0.0030.
【0018】さらに本発明においては、TiやNbを含有し
ない場合には、Si, Mn, P およびAlをX=4×Si(%) +5
×Mn(%) +80×P(%)+2×Al(%) で表されるXが、4 ≦X
≦15となるように含有することが必要である。Tiまたは
/およびNbを含有する場合にはXに関する限定は必要な
い。Xに関する前記の限定は、Ti,Nb を含有しない鋼
板、ならびにTi,Nb を含有する鋼板においてSi,Mn,P お
よびAlの添加量を系統的に変化させて、化学成分と鋼板
表面の{100 }X線強度との関係について調査した結果
に基づくものである。すなわち、Xを所定の範囲内に制
御することによって初めて、鋼板の表層における{100
}集合組織の形成が顕著に促進される。Xに適正範囲
が存在することの理由は必ずしも明らかではないが、S
i,Mn,P およびAlが表面エネルギーの結晶方位依存性に
対して何らかの影響を及ぼすものと推察される。Xのよ
り好ましい範囲は、5 ≦X≦12である。また、Si,Al,M
n,Pは、Y=0.5 ×Si(%) +Al(%)-0.3 ×Mn(%)+0.4 ×P
(%)とするときY ≦0.9 を満たすように含有することが
必要である。Y が0.9 を超えると変態点が著しく上昇す
るため、本発明の根幹をなすところのα→γ→α変態を
活用することが難しくなる。また理由は判然としない
が、Y が0.9 を超えると、例えα→γ→α変態しても
{100 }集合組織が発達しなくなる。Further, in the present invention, when Ti or Nb is not contained, Si, Mn, P and Al are converted to X = 4 × Si (%) + 5
X expressed by × Mn (%) + 80 × P (%) + 2 × Al (%) is 4 ≦ X
It is necessary that it be contained so as to satisfy ≦ 15. When Ti and / or Nb is contained, there is no need to limit X. The above-mentioned limitation on X is based on the fact that the addition amount of Si, Mn, P and Al is systematically changed in a steel sheet containing no Ti and Nb and a steel sheet containing Ti and Nb, so that the chemical composition and the steel sheet surface are reduced by 100%.基 づ く Based on the result of investigation on the relationship with X-ray intensity. That is, by controlling X within a predetermined range, it is only possible to reduce the {100}
} The formation of texture is remarkably promoted. It is not always clear why there is a proper range for X, but S
It is presumed that i, Mn, P and Al have some influence on the crystal orientation dependence of surface energy. A more preferable range of X is 5 ≦ X ≦ 12. Also, Si, Al, M
n and P are Y = 0.5 x Si (%) + Al (%)-0.3 x Mn (%) + 0.4 x P
(%), It is necessary to contain Y so as to satisfy Y ≦ 0.9. If Y exceeds 0.9, the transformation point rises significantly, making it difficult to utilize the α → γ → α transformation which forms the basis of the present invention. Although the reason is not clear, if Y exceeds 0.9, the {100} texture will not develop even if α → γ → α transformation is performed.
【0019】Nbは本発明において重要な元素であり、必
要に応じてNbを適量添加することによって、少なくとも
板厚表層部における{100 }集合組織が顕著に発達する
ことが明らかとなった。この効果を発現せしめるために
は、Nbを0.002%以上添加せねばならない。また、0.10%
を超えて添加すると{100 }強度がむしろ低下してしま
うのでこれを上限とする。Nの含有量は好ましくは、0.
01〜0.06% である。Nb is an important element in the present invention, and it has been clarified that, by adding an appropriate amount of Nb as needed, a {100} texture at least in the surface layer portion of the sheet thickness is remarkably developed. In order to exhibit this effect, Nb must be added in an amount of 0.002% or more. Also, 0.10%
If added in excess of {100}, the {100} strength will rather decrease, so this is the upper limit. The N content is preferably 0.
01 to 0.06%.
【0020】TiもNbと類似した効果を有する。Tiの添加
量は0.001%〜0.008%または0.04〜0.3%とする。Tiが0.00
8 超0.04% 未満ではTiN が微細に析出するため、磁気特
性が劣化する。Tiが0.001%未満では添加の効果が顕著で
なく、また0.3%を超えて添加すると、{100 }集合組織
の発達が抑制される。TiとNbを複合で添加する場合に
は、Tiを0.001 〜0.008%または0.04〜0.2%およびNbを0.
002 〜0.06% の範囲で添加する。TiとNbの含有量の限定
理由はそれぞれ単独添加と同じである。TiとNb量が多過
ぎると{100 }集合組織の発達を妨げるので、Ti+Nb を
0.1%未満とすることが好ましい。Ti also has a similar effect to Nb. The addition amount of Ti is set to 0.001% to 0.008% or 0.04 to 0.3%. Ti is 0.00
If it is more than 8 and less than 0.04%, TiN precipitates finely, and the magnetic properties deteriorate. If Ti is less than 0.001%, the effect of the addition is not remarkable, and if it exceeds 0.3%, the development of {100} texture is suppressed. When Ti and Nb are added as a composite, 0.001 to 0.008% or 0.04 to 0.2% of Ti and 0.
Add in the range of 002 to 0.06%. The reasons for limiting the contents of Ti and Nb are the same as in the case of single addition. If Ti and Nb contents are too large, the development of {100} texture will be hindered.
Preferably, it is less than 0.1%.
【0021】これらを主成分とする鋼にB,V,W,Mo,Sn,C
u,Cr,NiをB=0.0002 〜0.0040% 、V=0.002 〜0.1%、W=
0.002 〜0.1%、Mo=0.003〜0.4%、Sn=0.002〜0.3%、Cu=
0.005〜0.3%未満、Cr=0.005〜0.4%、Ni=0.005〜0.3%の
範囲で含有しても構わない。これらの元素を上記の範囲
内で添加しても磁気特性を特段に劣化させることはない
ためである。B, V, W, Mo, Sn, C
u, Cr, Ni are B = 0.0002 to 0.0040%, V = 0.002 to 0.1%, W =
0.002-0.1%, Mo = 0.003-0.4%, Sn = 0.002-0.3%, Cu =
It may be contained in the range of 0.005 to less than 0.3%, Cr = 0.005 to 0.4%, and Ni = 0.005 to 0.3%. This is because even if these elements are added within the above range, the magnetic properties are not particularly deteriorated.
【0022】本発明の鋼板は、少なくとも鋼板最表面の
板面と平行な{100 }面のX線ランダム強度比が4.0 超
である。その板厚は0.7mm 以下である。板厚が0.7mm 超
では、板厚の中心部で{100 }以外の結晶方位が生成し
やすくなって磁気特性が劣化する。板厚は好ましくは0.
6mm 以下である。板厚の下限は特に定める必要はない
が、良好な集合組織を得るためには、0.15mm以上とする
ことが好ましい。In the steel sheet of the present invention, the X-ray random intensity ratio of at least the {100} plane parallel to the sheet surface on the outermost surface of the steel sheet is more than 4.0. Its thickness is 0.7mm or less. If the plate thickness exceeds 0.7 mm, a crystal orientation other than {100} is likely to be generated at the center of the plate thickness, and the magnetic properties deteriorate. The plate thickness is preferably 0.
6 mm or less. The lower limit of the sheet thickness is not particularly required, but is preferably 0.15 mm or more in order to obtain a good texture.
【0023】X線による面強度の測定は、たとえば新版
カリティX線回折要論(1986年発行、松村源太郎訳、株
式会社アグネ)290-292 頁に記載の方法に従って行えば
よい。X線測定用の試料調整は以下のようにして行う。
鋼板最表面における{100 }X線強度を測定する場合
は、本発明によって得られる鋼板の表面はスケールや錆
のないことが前提であるので、試料に特段の処理を行わ
ないが、油等の汚れや表面被覆などを施してある場合に
は適当な方法によってこれらを除去してから測定する。
なお、粗度や偏析などの観点で鋼板最表面の{100 }強
度を測定するのが困難な場合には、鋼板表面から板厚の
1/4以内の厚み分を減厚して測定しても良い。減厚は
次のようにして行う。機械研磨や化学研磨などによって
研削し、バフ研磨によって鏡面に仕上げた後、電解研磨
や化学研磨によって歪みを除去すると同時に、研削面が
所定の測定面となるように調整する。The measurement of the surface intensity by X-rays may be carried out according to the method described in, for example, the New Version of Curity X-Ray Diffraction Theory (published in 1986, translated by Gentaro Matsumura, Agne Co., Ltd.), pp. 290-292. The sample adjustment for X-ray measurement is performed as follows.
When measuring the {100} X-ray intensity at the outermost surface of the steel sheet, it is assumed that the surface of the steel sheet obtained by the present invention is free of scale and rust. In the case where dirt or surface coating has been applied, measurement is performed after removing these by an appropriate method.
If it is difficult to measure the {100} strength of the outermost surface of the steel sheet from the viewpoint of roughness or segregation, reduce the thickness by less than 1/4 of the sheet thickness from the steel sheet surface. Is also good. The thickness reduction is performed as follows. After grinding by mechanical polishing or chemical polishing, etc. and finishing to a mirror surface by buffing, distortion is removed by electrolytic polishing or chemical polishing, and at the same time, adjustment is made so that the ground surface becomes a predetermined measurement surface.
【0024】次に、製造条件の限定理由について述べ
る。熱間圧延に供するスラブは特に限定するものではな
い。すなわち、連続鋳造スラブや薄スラブキャスター
(薄スラブCC)などで製造したものであればよい。ま
た、鋳造後に直ちに熱間圧延を行う連続鋳造−直接圧延
(CC−DR)のようなプロセスにも適合する。熱間圧
延における粗圧延後は、シートバーを接合して連続的に
熱間仕上げ圧延を行っても良い。薄スラブCCで鋳片を
得る場合には、これを熱間圧延に供することなく直接冷
間圧延や焼鈍を行っても良い。Next, the reasons for limiting the manufacturing conditions will be described. The slab to be subjected to hot rolling is not particularly limited. That is, it may be any one manufactured with a continuous cast slab or a thin slab caster (thin slab CC). It is also suitable for processes such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting. After the rough rolling in the hot rolling, the sheet bars may be joined and the hot finish rolling may be continuously performed. When a cast slab is obtained from the thin slab CC, it may be directly subjected to cold rolling or annealing without subjecting it to hot rolling.
【0025】熱延の加熱温度は特に限定するものではな
いが、熱延時の変形抵抗を小さくするために900 ℃以上
とし、一方、表面スケールの過度の生成を抑制するため
に1350℃以下とすることが好ましい。熱延の仕上げ温度
も特に限定するものではない。すなわち、通常のAr3
変態温度以上のγ相単相域で行ってもよいし、Ar3 点
未満のα+γ2相域またはα単相域で行っても良い。い
ずれの場合にも潤滑を施しても構わない。The heating temperature of the hot rolling is not particularly limited, but is set to 900 ° C. or more to reduce the deformation resistance during hot rolling, and 1350 ° C. or less to suppress excessive generation of surface scale. Is preferred. The finishing temperature of hot rolling is not particularly limited. That is, ordinary Ar 3
It may be carried out in a γ-phase single-phase region at or above the transformation temperature, or in an α + γ2-phase region or an α-single-phase region below Ar 3 points. In any case, lubrication may be performed.
【0026】冷間圧延は、行っても行わなくても良い。
ただし、現実には熱間圧延や薄スラブCCによって板厚
を0.7mm 以下としたり、好ましい表面性状を得るのは困
難であるので、圧下率30% 以上の冷間圧延を施すことが
好ましい。圧下率が99% を超えると圧延荷重が高くなり
すぎて中間焼鈍などを施す必要があり生産性を低下させ
るのでこれを上限とする。[0026] Cold rolling may or may not be performed.
However, in reality, it is difficult to reduce the sheet thickness to 0.7 mm or less by hot rolling or thin slab CC, or to obtain preferable surface properties. Therefore, it is preferable to perform cold rolling at a rolling reduction of 30% or more. If the rolling reduction exceeds 99%, the rolling load becomes too high, and it is necessary to perform intermediate annealing or the like, which lowers the productivity. Therefore, the upper limit is set.
【0027】焼鈍条件は、本発明において重要である。
すなわち、本発明の特徴である鮮鋭な{100 }集合組織
は、焼鈍時の加熱中に起こるα→γ(又はα+γ)変態
および冷却中に起こるγ(又はα+γ)→α変態を介し
て形成するものであるから、焼鈍温度を((Ac1+Ac3 )/
2)℃以上としなければならない。((Ac1+Ac3 )/2)℃
未満の温度ではα→γ変態率が十分でなく表層の{100
}集合組織の発達が不十分となる。{100 }集合組織
を更に発達させるためには、焼鈍温度をAc3 変態温度以
上とすることが好ましい。また、このような温度で焼鈍
することによって、磁気特性を劣化させる炭化物の量を
低減させることができる。すなわち、鋼板にTiやNbなど
の炭化物形成元素を含有する場合、焼鈍の前あるいは焼
鈍の加熱中に形成しやすいが、これらの炭化物はα+γ
域やγ域で分解する効果がある。焼鈍温度の上限は特に
限定するものではないが、焼鈍温度が高過ぎると焼鈍ラ
イン内で板破断などが発生したり、製品の表面性状が劣
悪となるので1200℃以下とすることが好ましい。焼鈍時
間は、生産性の観点から10分未満、好ましくは5分未
満、さらに好ましくは2分未満である。焼鈍時間の下限
は特に限定するものではないが、所望のαとγの組織分
率を安定して得るためには、1秒以上保持することが好
ましい。また、((Ac1+Ac3 )/2)℃以上の温度での焼鈍
の前にα単相域で5秒〜10分の加熱保持を行うとさら
に{100 }集合組織を発達させることができる。5秒未
満ではこの効果が十分でなく、10分超行っても特段の
効果は得られず、生産性が低下する。10秒から2分未満
がより好ましい範囲である。The annealing conditions are important in the present invention.
That is, the sharp {100} texture that is a feature of the present invention is formed through the α → γ (or α + γ) transformation that occurs during heating during annealing and the γ (or α + γ) → α transformation that occurs during cooling. Therefore, the annealing temperature is set to ((Ac 1 + Ac 3 ) /
2) Must be at least ° C. ((Ac 1 + Ac 3 ) / 2) ℃
If the temperature is lower than α → γ transformation rate is not enough,
} The texture development is insufficient. In order to further develop the {100} texture, it is preferable that the annealing temperature be equal to or higher than the Ac 3 transformation temperature. Also, by annealing at such a temperature, the amount of carbides that degrade the magnetic properties can be reduced. That is, when a steel sheet contains carbide-forming elements such as Ti and Nb, it is easy to form before or during annealing, but these carbides are α + γ
There is an effect of decomposing in the region or γ region. The upper limit of the annealing temperature is not particularly limited. However, if the annealing temperature is too high, the sheet may break in the annealing line or the surface properties of the product may be deteriorated. The annealing time is less than 10 minutes, preferably less than 5 minutes, and more preferably less than 2 minutes from the viewpoint of productivity. Although the lower limit of the annealing time is not particularly limited, it is preferable that the annealing time is maintained for 1 second or more in order to stably obtain the desired α and γ tissue fractions. In addition, before annealing at a temperature of ((Ac 1 + Ac 3 ) / 2) ° C. or more, if heating and holding are performed in an α single phase region for 5 seconds to 10 minutes, {100} texture can be further developed. it can. If the time is less than 5 seconds, this effect is not sufficient, and if the time exceeds 10 minutes, no particular effect is obtained, and the productivity is reduced. 10 seconds to less than 2 minutes is a more preferred range.
【0028】焼鈍の雰囲気は特に限定するものではない
が、表面に鉄酸化物を形成させないために窒素、水素、
あるいは窒素と水素の混合ガスなどが好適である。露点
は10℃以下とすることが好ましい。焼鈍後の冷却条件
は特に限定しないが、{100 }集合組織を高めるために
は、10〜40℃/sが好ましい範囲である。冷却速度が40℃
/sを超えるとγ→α変態の駆動力が大きくなる結果、γ
→α変態中に鋼板表面に{100 }以外の方位を持つα粒
が多数核生成し{100 }の集積度が低下すると思われ
る。一方で冷却速度が10℃/s未満となると鋼板の内部
(最表面以外の場所)で形成した{100 }以外の結晶方
位を有する結晶粒が成長する結果{100 }の集積度が弱
くなる傾向にあるだけでなく、TiやNbを含有する場合に
TiC やNbC が冷却中に析出し磁気特性が劣悪になる。The atmosphere of the annealing is not particularly limited, but nitrogen, hydrogen,
Alternatively, a mixed gas of nitrogen and hydrogen is suitable. The dew point is preferably set to 10 ° C. or less. The cooling condition after annealing is not particularly limited, but is preferably in the range of 10 to 40 ° C./s in order to increase the {100} texture. Cooling rate is 40 ℃
/ s, the driving force of the γ → α transformation increases, resulting in γ
→ It is considered that many α grains with orientations other than {100} nucleate on the steel sheet surface during α transformation and the degree of accumulation of {100} decreases. On the other hand, when the cooling rate is less than 10 ° C / s, crystal grains having a crystal orientation other than {100} formed inside the steel sheet (other than the outermost surface) grow, resulting in a weaker degree of integration of {100} In addition to those containing Ti and Nb
TiC and NbC precipitate during cooling, resulting in poor magnetic properties.
【0029】焼鈍後は形状矯正などのためにスキンパス
圧延やレベリングに供してもよい。表面には絶縁被覆を
コーティングすることが好ましい。次に本発明を実施例
にて説明する。After annealing, it may be subjected to skin pass rolling or leveling for shape correction or the like. The surface is preferably coated with an insulating coating. Next, the present invention will be described with reference to examples.
【0030】[0030]
【実施例】(実施例1)表1に示す組成を有する鋼を溶
製し、熱間圧延を施し3.0mm 厚の鋼帯とした。酸洗後、
約83% の圧下率の冷間圧延を施し0.5mm 厚の冷延板と
し、ついで平均加熱速度30℃/sで加熱し、表2に示すγ
単相域にて100 秒間の焼鈍後、焼鈍温度から300 ℃まで
を平均冷却速度20℃/sで冷却した。得られた鋼板からリ
ング状試料(内径33mm、外径45mm)を採取し磁
気特性を評価した。磁気特性は、5000A/m の外部磁界を
かけた場合の磁束密度(B50)および50Hzの交流磁界中
で1.5Tまで磁化したときの鉄損(W15/50)によって評価
した。さらに鋼板表面、板厚中心および鋼板最表面から
板厚の1/4を減厚した面における{100 }面のX線ラ
ンダム強度比を測定した。EXAMPLES (Example 1) Steel having the composition shown in Table 1 was melted and hot-rolled to form a steel strip having a thickness of 3.0 mm. After pickling,
Cold-rolled at a rolling reduction of about 83% to give a cold-rolled sheet having a thickness of 0.5 mm, and then heated at an average heating rate of 30 ° C./s.
After annealing in the single phase region for 100 seconds, the sample was cooled from the annealing temperature to 300 ° C at an average cooling rate of 20 ° C / s. A ring-shaped sample (inner diameter 33 mm, outer diameter 45 mm) was sampled from the obtained steel sheet, and the magnetic properties were evaluated. The magnetic properties were evaluated based on the magnetic flux density (B50) when an external magnetic field of 5000 A / m was applied and the iron loss (W15 / 50) when magnetized to 1.5 T in an AC magnetic field of 50 Hz. Furthermore, the X-ray random intensity ratio of the {100} plane was measured on the steel sheet surface, the center of the thickness, and the plane whose thickness was reduced by 1/4 from the outermost surface of the steel sheet.
【0031】結果を表2に示す。これから明らかなよう
に鋼中成分、X,Yの値、Ti,Nb 量などを適正化するこ
とによって磁気特性に優れた鋼板を得ることができる。The results are shown in Table 2. As is clear from this, a steel sheet having excellent magnetic properties can be obtained by optimizing the components in steel, the values of X and Y, and the amounts of Ti and Nb.
【0032】[0032]
【表1】 [Table 1]
【0033】[0033]
【表2】 [Table 2]
【0034】(実施例2)表1に示す鋼A-4,C-2 および
C-9 の冷延鋼板を用い、α単相からγ単相までの温度域
で焼鈍温度を変化させた。このときの加熱、冷却条件は
実施例1と同じである。実施例1と同様の方法でX線に
よる面強度の測定と磁気特性の評価を行った。(Example 2) Steels A-4, C-2 and
The annealing temperature was changed in the temperature range from α single phase to γ single phase using C-9 cold rolled steel sheet. The heating and cooling conditions at this time are the same as in the first embodiment. In the same manner as in Example 1, the surface strength was measured by X-rays and the magnetic properties were evaluated.
【0035】結果を表3に示す。これより明らかなよう
に、焼鈍温度が適正な範囲にない場合には、{100 }面
強度が低くなるため、磁気特性が劣悪となった。これに
対して焼鈍を適正な温度範囲で行った場合には、磁気特
性に優れた鋼板を得ることができた。Table 3 shows the results. As is clear from this, when the annealing temperature was not in the proper range, the {100} plane strength was low, and the magnetic properties were poor. On the other hand, when annealing was performed in an appropriate temperature range, a steel sheet having excellent magnetic properties could be obtained.
【0036】[0036]
【表3】 [Table 3]
【0037】(実施例3)表1に示す鋼A-4,C-2 および
C-9 の冷延鋼板を用い、α単相域での保持の効果につい
て検討した。すなわち、同鋼において一旦α単相域の85
0 ℃で60秒間保持したのち、加熱速度30℃/sでγ単相域
で100 秒間加熱した。冷却条件は実施例1と同じであ
る。実施例1と同様の方法でX線による面強度の測定と
磁気特性の評価を行った。Example 3 Steels A-4 and C-2 shown in Table 1 and
Using a C-9 cold rolled steel plate, the effect of holding in the α single phase region was investigated. In other words, once the 85
After being kept at 0 ° C. for 60 seconds, it was heated at a heating rate of 30 ° C./s in the γ single phase region for 100 seconds. The cooling conditions are the same as in the first embodiment. In the same manner as in Example 1, the surface strength was measured by X-rays and the magnetic properties were evaluated.
【0038】結果を表4に示す。これより明らかなよう
に、α単相域での保持を加えることによってさらに{10
0 }面強度を高くすることができ、その結果、磁気特性
を一層向上させることができた。The results are shown in Table 4. As is evident from this, the addition of retention in the α
The 0-plane strength could be increased, and as a result, the magnetic properties could be further improved.
【0039】[0039]
【表4】 [Table 4]
【0040】[0040]
【発明の効果】以上説明したように、本発明は磁気特性
に優れる鋼板を安価にかつ容易に得ることができるので
電動機、発電機、変圧器などに用いることによりエネル
ギーロスが低下し、地球環境保全に寄与できるものであ
る。As described above, according to the present invention, a steel sheet having excellent magnetic properties can be obtained easily and inexpensively. Therefore, when the steel sheet is used for a motor, a generator, a transformer, etc., energy loss is reduced, and the earth environment is reduced. It can contribute to conservation.
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/16 H01F 1/16 A (72)発明者 村上 健一 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 Fターム(参考) 4K033 AA02 CA01 CA02 CA05 CA06 CA07 CA10 FA04 HA03 HA04 JA07 RA04 SA03 5E041 AA11 AA19 CA02 CA04 HB05 HB07 HB11 NN06 NN11 NN17 NN18 Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court II (Reference) H01F 1/16 H01F 1/16 A (72) Inventor Kenichi Murakami 1-1 Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Japan F-term (reference) at Yawata Works 4K033 AA02 CA01 CA02 CA05 CA06 CA07 CA10 FA04 HA03 HA04 JA07 RA04 SA03 5E041 AA11 AA19 CA02 CA04 HB05 HB07 HB11 NN06 NN11 NN17 NN18
Claims (9)
=3.5% 以下、Mn=3.0% 以下、P=0.15% 以下、S=0.015%未
満、Al=0.005〜1.8%、N=0.0040% 未満、O=0.0005〜0.02
% 未満を含有し、さらにX=4×Si(%) +5 ×Mn(%) +80
×P(%)+2×Al(%) のとき4 ≦X≦15を満たし、さらにY
=0.5×Si(%)+Al(%)-0.3 ×Mn(%)+0.4×P(%)とするときY
≦0.9 を満たすようにSi,Al,Mn,Pを含有し、残部Fe
および不可避的不純物からなる化学組成を有し、少なく
とも鋼板の板厚最表面にX線を照射して測定したときの
板面と平行な{100 }面のX線ランダム強度比が4.0
超、板厚が0.7mm 以下であることを特徴とする磁気特性
に優れた鋼板。(1) C = 0.0008 to less than 0.0040% by weight,
= 3.5% or less, Mn = 3.0% or less, P = 0.15% or less, S = 0.015%, Al = 0.005-1.8%, N = 0.0040%, O = 0.0005-0.02
%, And X = 4 × Si (%) + 5 × Mn (%) + 80
When XP (%) + 2 × Al (%), 4 ≦ X ≦ 15 is satisfied, and Y
= 0.5 × Si (%) + Al (%)-0.3 × Mn (%) + 0.4 × P (%) Y
≦ 0.9, Si, Al, Mn, P are contained, and the balance Fe
And an X-ray random intensity ratio of {100} plane parallel to the plate surface measured by irradiating at least the outermost surface of the plate with X-rays and having a chemical composition of unavoidable impurities.
Ultra-thin steel sheet with excellent magnetic properties characterized by a thickness of 0.7 mm or less.
=3.5% 以下、Mn=3.0% 以下、P=0.15% 以下、S=0.015%以
下、Al=0.005〜1.8%、N=0.0040% 未満、O=0.0005〜0.02
% 未満、Nb:0.002〜0.10% を含有し、さらにY=0.5×Si
(%)+Al(%)-0.3 ×Mn(%)+0.4 ×P(%)とするときY ≦0.9
を満たすようにSi,Al,Mn,Pを含有し、残部Feおよび不
可避的不純物からなる化学組成を有し、少なくとも鋼板
の板厚最表面にX線を照射して測定したときのに板面と
平行な{100 }面のX線ランダム強度比が4.0超、板
厚が0.7mm 以下であることを特徴とする磁気特性に優れ
た鋼板。2. C = 0.0008 to less than 0.0040% by weight, Si
= 3.5% or less, Mn = 3.0% or less, P = 0.15% or less, S = 0.015% or less, Al = 0.005 to 1.8%, N = 0.0040%, O = 0.0005 to 0.02
%, Nb: 0.002 to 0.10%, and further Y = 0.5 × Si
(%) + Al (%)-0.3 × Mn (%) + 0.4 × P (%) Y ≤0.9
Contains Si, Al, Mn, and P, and has a chemical composition consisting of the balance of Fe and unavoidable impurities. A steel sheet having excellent magnetic properties, characterized by having an X-ray random intensity ratio of a {100} plane parallel to that of the steel sheet exceeding 4.0 and a sheet thickness of 0.7 mm or less.
=3.5% 以下、Mn=3.0% 以下、P=0.15% 以下、S=0.015%以
下、Al=0.005〜1.8%、N=0.0040% 未満、O=0.0005〜0.02
% 未満、TiをTi:0.001〜0.008%またはTi:0.04 〜0.3%と
なるように含有し、さらにY=0.5×Si(%)+Al(%)-0.3 ×
Mn(%) +0.4×P(%)とするときY ≦0.9を満たすようにSi,
Al,Mn,Pを含有し、残部Feおよび不可避的不純物から
なる化学組成を有し、少なくとも鋼板の板厚最表面にX
線を照射して測定したときの板面と平行な{100 }面の
X線ランダム強度比が4.0超、板厚が0.7mm 以下であ
ることを特徴とする磁気特性に優れた鋼板。3. The method according to claim 1, wherein C = 0.0008 to less than 0.0040% by weight.
= 3.5% or less, Mn = 3.0% or less, P = 0.15% or less, S = 0.015% or less, Al = 0.005 to 1.8%, N = 0.0040%, O = 0.0005 to 0.02
%, Ti: 0.001 to 0.008% or Ti: 0.04 to 0.3%, and further Y = 0.5 × Si (%) + Al (%)-0.3 ×
When Mn (%) + 0.4 × P (%), Si,
Al, Mn, P, has a chemical composition consisting of the balance Fe and unavoidable impurities, and at least X
A steel sheet having excellent magnetic properties, characterized in that the X-ray random intensity ratio of the {100} plane parallel to the sheet surface as measured by irradiation with X-rays is more than 4.0 and the sheet thickness is 0.7 mm or less.
=3.5% 以下、Mn=3.0% 以下、P=0.15% 以下、S=0.015%以
下、Al=0.005〜1.8%、N=0.0040% 未満、O=0.0005〜0.02
% 未満、Nb=0.002〜0.06% 、TiをTi=0.001〜0.008%また
はTi=0.04 〜0.2%となるように含有し、さらにY=0.5×
Si(%)+Al(%)-0.3 ×Mn(%) +0.4×P(%)とするときY ≦0.
9 を満たすようにSi,Al,Mn,Pを含有し、残部Feおよび
不可避的不純物からなる化学組成を有し、少なくとも鋼
板の板厚最表面にX線を照射して測定したときの板面と
平行な{100 }面のX線ランダム強度比が4.0超、板
厚が0.7mm 以下であることを特徴とする磁気特性に優れ
た鋼板。4. C = 0.0008 to less than 0.0040% by weight, Si
= 3.5% or less, Mn = 3.0% or less, P = 0.15% or less, S = 0.015% or less, Al = 0.005 to 1.8%, N = 0.0040%, O = 0.0005 to 0.02
%, Nb = 0.002-0.06%, Ti is contained so that Ti = 0.001-0.008% or Ti = 0.04-0.2%, and further Y = 0.5 ×
When Si (%) + Al (%)-0.3 × Mn (%) + 0.4 × P (%), Y ≤ 0.
9 contains Si, Al, Mn, and P, and has a chemical composition consisting of the balance of Fe and unavoidable impurities. A steel sheet having excellent magnetic properties, characterized by having an X-ray random intensity ratio of a {100} plane parallel to that of the steel sheet exceeding 4.0 and a sheet thickness of 0.7 mm or less.
2 〜0.1%、W=0.002〜0.1%、Mo=0.003〜0.4%、Sn=0.002
〜0.3%、Cu=0.005〜0.3%未満、Cr=0.005〜0.4%およびNi
=0.005〜0.3%の1種又は2種以上を含有することを特徴
とする請求項1から4のいずれか1項に記載の磁気特性
に優れた鋼板。5. B = 0.0002 to 0.0040%, V = 0.00% by weight
2 to 0.1%, W = 0.002 to 0.1%, Mo = 0.003 to 0.4%, Sn = 0.002
~ 0.3%, Cu = 0.005 ~ less than 0.3%, Cr = 0.005 ~ 0.4% and Ni
5. The steel sheet having excellent magnetic properties according to claim 1, comprising one or more of 0.005 to 0.3%. 6.
学組成を有するスラブを熱間圧延し、((Ac1 +Ac3)/2)
℃以上の温度で10分間未満保持することを特徴とする磁
気特性に優れた鋼板の製造方法。6. A slab having the chemical composition according to any one of claims 1 to 5, which is hot-rolled to obtain ((Ac 1 + Ac 3 ) / 2).
A method for producing a steel sheet having excellent magnetic properties, wherein the steel sheet is maintained at a temperature of not less than 10 ° C. for less than 10 minutes.
学組成を有するスラブを熱間圧延し、99% 以下の圧下率
で冷間圧延を施し、((Ac1 +Ac3)/2) ℃以上の温度で10
分間未満加熱することを特徴とする磁気特性に優れた鋼
板の製造方法。7. A slab having the chemical composition according to any one of claims 1 to 5, which is hot-rolled, cold-rolled at a rolling reduction of 99% or less, and ((Ac 1 + Ac 3 ) / 2) 10 ° C or higher
A method for producing a steel sheet having excellent magnetic properties, wherein the steel sheet is heated for less than one minute.
学組成を有するスラブを熱間圧延し、α単相域で5秒以
上10分以下保持後、((Ac1 +Ac3)/2) ℃以上の温度ま
で加熱し、さらに10分間未満保持することを特徴とする
磁気特性に優れた鋼板の製造方法。8. A slab having the chemical composition according to any one of claims 1 to 5, which is hot-rolled and held in an α single phase region for 5 seconds to 10 minutes, and then ((Ac 1 + Ac 3 ) / 2) A method for producing a steel sheet having excellent magnetic properties, wherein the steel sheet is heated to a temperature of not less than ° C and held for less than 10 minutes.
学組成を有するスラブを熱間圧延し、99% 以下の圧下率
で冷間圧延を施し、α単相域で5秒以上10分以下保持
後、((Ac1 +Ac3)/2) ℃以上の温度まで加熱し、さらに
10分間未満保持することを特徴とする磁気特性に優れた
鋼板の製造方法。9. A slab having the chemical composition according to any one of claims 1 to 5, which is hot-rolled, cold-rolled at a rolling reduction of 99% or less, and at least 5 seconds in the α single phase region. After holding for 10 minutes or less, heat to a temperature of ((Ac 1 + Ac 3 ) / 2) ° C. or more,
A method for producing a steel sheet having excellent magnetic properties, wherein the steel sheet is held for less than 10 minutes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29575999A JP2001115243A (en) | 1999-10-18 | 1999-10-18 | Steel sheet excellent in magnetic property and producing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29575999A JP2001115243A (en) | 1999-10-18 | 1999-10-18 | Steel sheet excellent in magnetic property and producing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001115243A true JP2001115243A (en) | 2001-04-24 |
Family
ID=17824808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29575999A Withdrawn JP2001115243A (en) | 1999-10-18 | 1999-10-18 | Steel sheet excellent in magnetic property and producing method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001115243A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004061144A1 (en) * | 2003-01-06 | 2004-07-22 | Jfe Steel Corporation | Steel sheet for high strength heat shrink band for cathode-ray tube and high strength heat shrink band |
JP2010513716A (en) * | 2006-12-22 | 2010-04-30 | キュング スング、ジン | Method for forming surface {100} plane in iron and iron-based alloy, method for producing non-oriented electrical steel sheet using the same, and non-oriented electrical steel sheet produced using the same |
JP2012126975A (en) * | 2010-12-16 | 2012-07-05 | Kobe Steel Ltd | Soft magnetic steel component superior in ac magnetic property, and manufacturing method therefor |
-
1999
- 1999-10-18 JP JP29575999A patent/JP2001115243A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004061144A1 (en) * | 2003-01-06 | 2004-07-22 | Jfe Steel Corporation | Steel sheet for high strength heat shrink band for cathode-ray tube and high strength heat shrink band |
JP2010513716A (en) * | 2006-12-22 | 2010-04-30 | キュング スング、ジン | Method for forming surface {100} plane in iron and iron-based alloy, method for producing non-oriented electrical steel sheet using the same, and non-oriented electrical steel sheet produced using the same |
EP2102375A4 (en) * | 2006-12-22 | 2017-06-21 | Jin Kyung Sung | Method of forming {100} texture on surface of iron or iron-base alloy sheet, method of manufacturing non-oriented electrical steel sheet by using the same and non-oriented electrical steel sheet manufactured by using the same |
JP2012126975A (en) * | 2010-12-16 | 2012-07-05 | Kobe Steel Ltd | Soft magnetic steel component superior in ac magnetic property, and manufacturing method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2318883C2 (en) | Non-oriented electrical steel strip continuous casting method | |
JP2700505B2 (en) | Non-oriented electrical steel sheet having excellent magnetic properties and method for producing the same | |
JP6119923B1 (en) | Steel sheet and manufacturing method thereof | |
EP2832866A1 (en) | (100 [ovw]non-oriented electrical steel sheet with excellent magnetic property and manufacturing method thereof | |
EP2711439B1 (en) | High carbon thin steel sheet and method for producing same | |
KR20190058542A (en) | Directional electric steel sheet and manufacturing method thereof | |
KR101620768B1 (en) | Electrical steel sheet | |
WO2019132363A1 (en) | Double oriented electrical steel sheet and method for manufacturing same | |
JP4218077B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP4687554B2 (en) | Steel plate for quenched member, quenched member and method for producing the same | |
JPH10176251A (en) | Nonoriented silicon steel sheet excellent in magnetic characteristic and its production | |
KR20010028570A (en) | A non-oriented steel sheet with excellent magnetic property and a method for producing it | |
JPH0742501B2 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing | |
JPWO2005100627A1 (en) | Nondirectional electromagnetic copper plate with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method | |
JP2001115243A (en) | Steel sheet excellent in magnetic property and producing method therefor | |
JP3430794B2 (en) | Non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same | |
JPH055126A (en) | Production of nonoriented silicon steel sheet | |
JP7245325B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP2001064750A (en) | High strength cold rolled steel sheet and high strength galvanized cold rolled steel sheet excellent in bendability and deep drawability and production thereof | |
KR101937925B1 (en) | Method for manufacturing grain oriented electrical steel sheet | |
KR100192841B1 (en) | Non-oriented magnetic steel plate and its production method | |
JP3533655B2 (en) | Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy | |
US6425962B1 (en) | Non-oriented electrical steel sheet excellent in permeability and method of producing the same | |
JP3252692B2 (en) | Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same | |
JP2501219B2 (en) | Non-oriented electrical steel sheet manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070109 |