JP2001115241A - Steel for silicon steel wire excellent in wire drawability and producing method therefor - Google Patents

Steel for silicon steel wire excellent in wire drawability and producing method therefor

Info

Publication number
JP2001115241A
JP2001115241A JP29255199A JP29255199A JP2001115241A JP 2001115241 A JP2001115241 A JP 2001115241A JP 29255199 A JP29255199 A JP 29255199A JP 29255199 A JP29255199 A JP 29255199A JP 2001115241 A JP2001115241 A JP 2001115241A
Authority
JP
Japan
Prior art keywords
wire
steel
drawability
grain size
steel wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29255199A
Other languages
Japanese (ja)
Inventor
Toshiyuki Hoshino
俊幸 星野
Kenichi Amano
虔一 天野
Atsuto Honda
厚人 本田
Nobuyuki Morito
延行 森戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29255199A priority Critical patent/JP2001115241A/en
Publication of JP2001115241A publication Critical patent/JP2001115241A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a stock for a silicon steel wire excellent in wire drawability, particularly cold wire drawability to an extra fine wire at a hot- rolled state and to provide a method for producing the same. SOLUTION: Steel having a composition containing 0.1 to 8.0% Si, in which the contents of C, N, O and S lie in the ranges limited by C+N+O+S<0.015%, and the balance Fe with inevitable impurities is heated at 850 to 1,300 deg.C and is subjected to hot rolling in which finish rolling temperature is <1,000 deg.C to control the ferrite grain size to <=50 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波用鉄心やリ
アクトル等に用いられる電磁鋼線用の鋼材に関するもの
で、特に冷間における極細線への伸線性が優れた電磁鋼
線用の鋼材およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material for an electromagnetic steel wire used for a high-frequency iron core or a reactor, and more particularly to a steel material for an electromagnetic steel wire having excellent drawability to a very fine wire in a cold state. It relates to the manufacturing method.

【0002】[0002]

【従来の技術】トランスやリアクトルなどは、一般に、
高Siの電磁鋼板を所定の形状に冷間打ち抜きし、これら
を積層することにより製造される。これらトランスやリ
アクトルなどには、より高効率化を図るために渦電流損
の低減や銅線の使用量の低減が求められるとともに、最
近では、より小型化を図るために任意の形状に設計する
ことが可能な電磁鋼材が要請されるようになってきた。
このような要請に応えるために、発明者らは、特願平10
−142777号、特願平11−135966号において、電磁鋼材を
直径0.1 〜0.5 mm程度まで極細線化した電磁鋼線を提
案している。この提案によれば、磁気特性を飛躍的に上
昇させ、しかもトランスやリアクトル等の設計の自由度
を確保できるのである。
2. Description of the Related Art Transformers and reactors are generally
It is manufactured by cold stamping a high Si electromagnetic steel sheet into a predetermined shape and laminating them. These transformers and reactors are required to reduce eddy current loss and reduce the amount of copper wire used in order to achieve higher efficiency. Recently, they have been designed to have an arbitrary shape in order to achieve further miniaturization. There has been a demand for electromagnetic steel materials capable of doing this.
In order to respond to such a request, the inventors have filed Japanese Patent Application No.
Japanese Patent Application No. -142777 and Japanese Patent Application No. 11-135966 propose an electromagnetic steel wire in which an electromagnetic steel material is ultra-fine to a diameter of about 0.1 to 0.5 mm. According to this proposal, the magnetic characteristics can be dramatically improved, and the degree of freedom in designing transformers and reactors can be ensured.

【0003】かかる極細電磁鋼線を工業的規模で製造す
るには、鋼線素材としての線材や棒鋼等の鋼材の伸線加
工性が良好であることが必要となるが、これら電磁鋼用
の鋼材は、一般に、Siなどを多量に含むため伸線加工性
が悪く、極細線化への加工が極めて困難である。ところ
で、電磁鋼線の製造技術に関しては、特開平3−75311
号公報に、軟質磁性体用線材の製造方法が開示されてい
る。
[0003] In order to manufacture such ultra-fine electromagnetic steel wires on an industrial scale, it is necessary that the wire material as a steel wire material or a steel material such as a steel bar has good wire drawing workability. Steel materials generally contain a large amount of Si or the like, and thus have poor wire drawing workability, and it is extremely difficult to work to ultrafine wires. Incidentally, with respect to the technology for manufacturing electromagnetic steel wires, see Japanese Patent Laid-Open No.
Discloses a method for manufacturing a wire for a soft magnetic material.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、発明者
らが検討したところ、上記公報に開示の従来技術を駆使
しても、伸線(冷間伸線)工程での断線が頻発し、0.1
〜0.5 mmφの極細線まで伸線加工することは困難であ
ることがわかった。しかも、この開示技術では満足しう
る磁気特性とくに鉄損特性も得られなかった。
However, as a result of examination by the inventors, even if the prior art disclosed in the above-mentioned publication is used, disconnection frequently occurs in the wire drawing (cold wire drawing) process, and 0.1%
It was found that it was difficult to wire-draw to an ultra-fine wire of ~ 0.5 mmφ. In addition, satisfactory magnetic properties, especially iron loss properties, could not be obtained with this disclosed technique.

【0005】そこで、本発明は、従来技術が抱えている
上記問題を有利に解決し、磁気特性が良好な極細電磁鋼
線用の鋼材に関する提案であり、伸線加工性とくに冷間
での極細線への伸線加工性に優れる、電磁鋼線用鋼材と
その製造方法を提供することを目的とする。また、本発
明は、製造コストの観点から有利な、熱間圧延のまま
(焼鈍を施さない熱間圧延状態のもの)で伸線加工性を
具えた電磁鋼線用鋼材とその製造方法を提供することを
目的とする。
Accordingly, the present invention is to solve the above-mentioned problems of the prior art, and to propose a steel material for an ultra-fine electromagnetic steel wire having good magnetic properties. An object of the present invention is to provide a steel material for an electromagnetic steel wire excellent in wire drawing workability to a wire and a method for manufacturing the same. Further, the present invention provides a steel material for an electromagnetic steel wire, which is advantageous in terms of manufacturing cost and which is hot-rolled (in a hot-rolled state without annealing) and has drawability, and a method for manufacturing the same. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】発明者らは、上記目的の
実現に向けて、高Si含有の電磁鋼線用鋼材の難加工性の
原因を追求した結果、以下の知見を得た。すなわち、Si
を添加した鋼材では、すべり変形が困難で、伸線加工時
に双晶変形が生じやすくなり、この双晶を起点として脆
性破壊が発生し、伸線加工時に断線してしまう。このよ
うな機構でもたらされる脆性破壊による断線を抑制する
には、伸線加工時の材料温度を260 ℃以上確保すること
が有効であるが、このような高い温度での伸線は工業的
には困難である。そこで、発明者らは、さらに、フェラ
イト鋼の脆性破壊は結晶粒径に影響されることに着目し
て、熱間圧延条件を種々変化させることによりフェライ
ト結晶粒径を調整し、フェライト結晶粒径と伸線加工性
との関係を詳細に調査検討した。その結果、フェライト
結晶粒径を特定の値以下(具体的には50μm以下)の細
粒にすれば、伸線加工性は大幅に向上することを見いだ
した。また、この伸線加工性に対して、鋼中の不純物
(C、N、OおよびS)も大きな影響を及ぼすこともわ
かった。
Means for Solving the Problems To achieve the above object, the present inventors pursued the causes of the difficult workability of a steel material for a magnetic steel wire having a high Si content and obtained the following knowledge. That is, Si
In a steel material to which is added, slip deformation is difficult, twin deformation is likely to occur at the time of wire drawing, brittle fracture occurs starting from the twin, and the wire breaks at the time of wire drawing. In order to suppress breakage due to brittle fracture caused by such a mechanism, it is effective to secure a material temperature of 260 ° C or more during wire drawing. However, wire drawing at such a high temperature is industrially required. It is difficult. Therefore, the inventors further focused on the fact that the brittle fracture of ferritic steel is affected by the crystal grain size, and adjusted the ferrite crystal grain size by changing the hot rolling conditions in various ways, and The relationship between the wire drawing property and the wire drawing workability was investigated in detail. As a result, it has been found that when the ferrite crystal grain size is reduced to a specific value or less (specifically, 50 μm or less), the wire drawing workability is greatly improved. It was also found that impurities (C, N, O and S) in the steel had a large effect on the drawability.

【0007】本発明は、このような知見に基づいて完成
したものでり、その要旨構成は次のとおりである。 (1)Si:0.1 〜8.0 %を含むとともに、C、N、Oおよ
びSの含有量がC+N+O+S<0.015 %で制限される
範囲にあり、残部はFeおよび不可避的不純物からなる鋼
組成であって、フェライト結晶粒径が50μm以下である
ことを特徴とする伸線加工性に優れた電磁鋼線用鋼材。
The present invention has been completed based on such findings, and the gist configuration thereof is as follows. (1) Si: 0.1 to 8.0%, the content of C, N, O and S is in a range limited by C + N + O + S <0.015%, and the balance is a steel composition comprising Fe and unavoidable impurities. And a ferrite crystal grain size of 50 μm or less.

【0008】(2)上記 (1)において、鋼組成がさらに、C
rを0.1 〜15.0%を含む組成になることを特徴とする伸
線加工性に優れた電磁鋼線用鋼材。
(2) In the above (1), the steel composition further comprises C
A steel material for an electromagnetic steel wire having excellent drawability, characterized by having a composition containing 0.1 to 15.0% of r.

【0009】(3)Si:0.1 〜8.0 %を含むとともに、
C、N、OおよびSの含有量がC+N+O+S<0.015
%で制限される範囲にあり、残部はFeおよび不可避的不
純物からなる鋼を、850 〜1300℃に加熱し、仕上げ圧延
温度を1000℃未満として熱間圧延することを特徴とする
伸線加工性に優れた電磁鋼線用鋼材の製造方法。
(3) Si: 0.1-8.0%
Content of C, N, O and S is C + N + O + S <0.015
%, With the balance consisting of Fe and unavoidable impurities heated to 850-1300 ° C and hot rolled at a finish rolling temperature of less than 1000 ° C. Method for producing steel for electromagnetic steel wire with excellent characteristics.

【0010】(4)上記 (3)において、鋼の組成がさら
に、Crを0.1 〜15.0%を含むことを特徴とする伸線加工
性に優れた電磁鋼線用鋼材の製造方法。
(4) The method for producing a steel material for an electromagnetic steel wire excellent in wire drawability according to the above (3), wherein the steel composition further contains 0.1 to 15.0% of Cr.

【0011】[0011]

【発明の実施の形態】以下、本発明において、鋼の成分
組成を上記範囲に限定した理由について説明する。 Si: 0.1〜8.0 % Siは、鉄損特性を向上させる成分として電磁鋼線に必要
な元素であるが、0.1%未満の添加では良好な電磁特性
が得られない。一方8.0 %を超えると、冷間での伸線は
もとより、熱間での加工も困難となるので、 0.1〜8.0
%の範囲で添加する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the reason why the composition of steel in the present invention is limited to the above range will be described. Si: 0.1 to 8.0% Si is an element necessary for an electromagnetic steel wire as a component for improving iron loss characteristics. However, if added less than 0.1%, good electromagnetic characteristics cannot be obtained. On the other hand, if it exceeds 8.0%, not only wire drawing in the cold, but also hot working becomes difficult.
%.

【0012】C+N+O+S<0.015 % C、N、OおよびSは、磁気特性を低下させるほか、伸
線加工性を低下させる有害な元素であるので極力低減す
る必要がある。これら成分の合計含有量C+N+O+S
が0.015 %以上になると、前記の悪影響が顕著に現れる
ので、これら成分は合計量で0.015 %未満とする。
C + N + O + S <0.015% C, N, O and S are harmful elements that lower the magnetic properties and the wire drawing workability, and therefore need to be reduced as much as possible. Total content of these components C + N + O + S
When the content is 0.015% or more, the above-mentioned adverse effects are remarkably exhibited. Therefore, the total amount of these components is less than 0.015%.

【0013】Cr:0.1 〜15.0% Crは、磁気特性を向上させるとともに、フェライト中の
C固溶量を減少させ、伸線加工性を改善する元素である
ので、磁気特性や伸線加工性の一層の向上を必要とする
場合に添加する。このような効果は0.1 %未満では小さ
く、一方15.0%を超えて含有しても飽和して更なる効果
が得られない。よって、Crを添加する場合は0.1 〜15.0
%の範囲で行う。
Cr: 0.1 to 15.0% Cr is an element that improves magnetic properties, reduces the amount of C solid solution in ferrite, and improves drawability. It is added when further improvement is required. Such an effect is small when it is less than 0.1%, while if it exceeds 15.0%, it is saturated and no further effect is obtained. Therefore, when Cr is added, 0.1 to 15.0
Perform in the range of%.

【0014】フェライト結晶粒径 フェライト結晶粒径が大きいと、前述したように、脆性
破壊による断線が発生しやすく、常温での極細線への伸
線加工が困難になる。このような傾向は、結晶粒径が50
μmを超えると急激に増大するので、本発明ではフェラ
イト結晶粒径を50μm以下に制限する。なお、熱間圧延
のままの伸線用鋼材におけるフェライト結晶粒の形状・
粒径の分布は、表面から1/4直径までの領域では、ほ
ぼ同じ結晶粒径となっているが、中心部ではそれよりも
大きい値となっている。この分布を考慮して、本発明で
定める結晶粒径は、熱間圧延のままの長手断面における
表面より1/4直径部位置について測定した平均値をさ
すものとする。
Ferrite Crystal Particle Size If the ferrite crystal particle size is large, as described above, breakage due to brittle fracture is likely to occur, and it becomes difficult to draw a fine wire at room temperature. This tendency is observed when the crystal grain size is 50
If it exceeds μm, it rapidly increases, so in the present invention, the ferrite crystal grain size is limited to 50 μm or less. The shape and shape of ferrite grains in the hot-rolled steel for drawing
The distribution of the particle diameters is almost the same in the region from the surface to the 1/4 diameter, but is larger in the central part. In consideration of this distribution, the crystal grain size defined in the present invention refers to an average value measured at a 直径 diameter portion from the surface in the longitudinal section as it is hot rolled.

【0015】本発明の電磁鋼線用鋼材は、上記成分組成
に調整した溶鋼を、連続鋳造又は造塊/分魂法により、
ブルームとした後、鋼片圧延でビレットとし、さらにこ
のビレットを加熱後、鋼線材または棒鋼まで熱間圧延す
ることにより製造される。熱間圧延により得られる電磁
鋼線用鋼材の断面寸法は、通常、4.0 〜6.0 mmφの範
囲にあるものとすれば、後工程の冷間伸線量低減の点で
好ましいものとなる。以上の電磁鋼線用鋼材の製造工程
において、フェライトの結晶粒を本発明で定める粒径に
制御するためには、特に加熱温度と仕上げ圧延温度を次
に示す範囲で設定する必要がある。
The steel material for an electromagnetic steel wire according to the present invention is obtained by continuously casting or ingot / sparging the molten steel adjusted to the above-mentioned composition.
After the bloom is formed, the billet is formed by billet rolling, and the billet is heated and then hot-rolled to a steel wire or a bar. If the cross-sectional dimension of the steel material for an electromagnetic steel wire obtained by hot rolling is usually in the range of 4.0 to 6.0 mmφ, it is preferable from the viewpoint of reducing the cold drawing amount in the subsequent step. In the above-described process of manufacturing the steel material for an electromagnetic steel wire, in order to control the ferrite crystal grains to the grain size specified in the present invention, it is particularly necessary to set the heating temperature and the finish rolling temperature in the following ranges.

【0016】加熱温度: 850〜1300℃ 極細線用の鋼材(鋼線材または棒鋼)まで圧延するため
の加熱温度は、 850〜1300℃の範囲とする。というの
は、 850℃に満たない温度では変形抵抗が高く、熱間圧
延が困難になり、一方、1300℃を超える温度では初期の
粒径が粗大となり、最終的に50μm以下のフェライト結
晶粒径を得ることができなくなるからである。
Heating temperature: 850 to 1300 ° C. The heating temperature for rolling to a steel material for ultra-fine wire (steel wire or steel bar) is in the range of 850 to 1300 ° C. At temperatures below 850 ° C, deformation resistance is high and hot rolling becomes difficult, while at temperatures above 1300 ° C, the initial grain size becomes coarse, and finally the ferrite grain size of 50μm or less Is no longer possible.

【0017】仕上げ圧延温度:1000℃未満 熱間圧延の仕上げ圧延温度も本発明の重要な要件であ
る。1000℃以上の仕上げ圧延温度では50μm以下のフェ
ライト結晶粒径を確保することが困難になるので、1000
℃未満の仕上げ圧延温度で熱間圧延する。ただし、熱間
圧延の仕上げを余りに低くすると、変形抵抗を増加さ
せ、圧延材の寸法精度の低下を招くので、その下限は7
00℃とするのが望ましい。
Finish rolling temperature: less than 1000 ° C. The finish rolling temperature of hot rolling is also an important requirement of the present invention. At a finish rolling temperature of 1000 ° C or more, it becomes difficult to secure a ferrite crystal grain size of 50 μm or less.
Hot rolling at a finish rolling temperature of less than ° C. However, if the finish of the hot rolling is too low, the deformation resistance is increased and the dimensional accuracy of the rolled material is reduced.
Preferably, the temperature is set to 00 ° C.

【0018】上述した条件の下で圧延すれば、熱間圧延
のままでのフェライト結晶粒径が50μm以下である電磁
鋼線用鋼材を製造できるが、より安定した製造を行うに
は、巻取温度や巻取り後の冷却速度などに配慮すること
が望ましい。すなわち、巻取温度組織形成に大きな影響
を及ぼすので700〜950℃の範囲とするのが、また
冷却速度は速すぎると熱応力により材料の割れを生じる
ので、10℃/sec以下の範囲とするのが望ましい。
By rolling under the above-mentioned conditions, a steel material for an electromagnetic steel wire having a ferrite crystal grain size of 50 μm or less as hot rolled can be manufactured. It is desirable to consider the temperature and the cooling rate after winding. In other words, the temperature range is set to 700 to 950 ° C. because it greatly affects the formation of the winding temperature structure. If the cooling rate is too high, the material is cracked by thermal stress, so the range is 10 ° C./sec or less. It is desirable.

【0019】[0019]

【実施例】以下、実施例に基づいて具体的に説明する。
表1に示す化学成分と残部実質的にFeからなる鋼を転炉
にて溶製し、連続鋳造および鋼片圧延を経て、 170mm
φのビレットに圧延した。このビレットを表2に示す条
件で、加熱、熱間圧延することにより 5.5mmφの鋼線
材とした。こうして得た 5.5mmφの電磁鋼線用鋼材に
ついて、フェライト結晶粒径、伸線加工性を試験すると
ともに、伸線加工後の極細線を用いて成形したコイルに
ついて鉄損を測定した。それぞれの試験方法を以下に述
べる。
The present invention will be specifically described below with reference to examples.
Steel consisting of the chemical components shown in Table 1 and the balance substantially consisting of Fe was smelted in a converter, passed through continuous casting and billet rolling,
It was rolled into a billet of φ. This billet was heated and hot rolled under the conditions shown in Table 2 to obtain a 5.5 mmφ steel wire. The thus obtained steel material for an electromagnetic steel wire having a diameter of 5.5 mm was tested for ferrite crystal grain size and drawability, and iron loss was measured for a coil formed by using an ultrafine wire after drawing. Each test method is described below.

【0020】[0020]

【表1】 [Table 1]

【0021】・フェライト結晶粒径 鋼線材から光学顕微鏡用サンプルを採取し、その長手断
面の表面から1/4直径位置についてJIS G 05
52による切断法にしたがい測定した。 ・伸線加工性 鋼線材に酸洗潤滑処理および潤滑処理を施したのち、連
続伸線機により以下の(1) 〜 (3)に示す順に冷間伸線し
た。 (1)超硬ダイスを用いて 1.0mmφまで伸線(潤滑剤は
粉末状の金属石鹸、1パス当たりの伸線減面率は15〜25
%/パス、最終伸線速度は300 m/min ) (2)さらに潤滑処理を施し、ダイヤモンドダイスを用い
て0.56mmφまで湿式の連続伸線(1パス当たりの伸線
減面率は15〜20%/パス、最終伸線速度は100 m/min
) (3)再度潤滑処理を行い、ダイヤモンドダイスを用いて
0.10mmφまで湿式の連続伸線(1パス当たりの伸線減
面率は15〜20%/パス、最終伸線速度は100 m/min ) 以上の伸線の過程において断線発生の有無を調べるとと
もに、伸線歪み量εにより伸線限界を求めた。ここに、
ε=2ln(D/D)で求められるものである。ただ
し、Dは断線発生時の線材の直径、Dは線材の初期径
(5.5 mmφ)である。 ・鉄損 0.10mmφまで伸線できた極細線を、700 ℃×5min の
焼鈍を行ったのち、絶縁被膜を施し、0.10mmφ×1m
長さの極細線を直径20mmのコイルに成形した。このコ
イルについて、JIS C 2552に準拠する方法に
より周波数10 kHz、最大磁束密度 0.1T時の鉄損を測定
した。
Ferrite crystal grain size A sample for an optical microscope is collected from a steel wire rod, and a 直径 G05 position is measured at a quarter diameter position from the surface of the longitudinal section.
The measurement was performed according to the cutting method according to No. 52. -Wire drawing workability After a pickling lubrication treatment and a lubrication treatment were applied to a steel wire rod, cold drawing was performed in the following order (1) to (3) using a continuous drawing machine. (1) Wire drawing to 1.0mmφ using a carbide die (lubricant is powdered metal soap, wire drawing reduction rate per pass is 15 to 25)
% / Pass, final drawing speed is 300 m / min) (2) Further lubrication treatment is applied, and wet continuous drawing is performed to 0.56 mmφ using a diamond die (drawing reduction rate per pass is 15 to 20). % / Pass, final drawing speed 100 m / min
(3) Perform lubrication again and use diamond dies.
Wet wire continuous drawing up to 0.10mmφ (drawing reduction rate per pass is 15-20% / pass, final drawing speed is 100m / min). The drawing limit was determined from the drawing strain ε. here,
ε = 2ln (D 0 / D). However, D is the diameter of the wire at the time of break occurrence, D 0 is the initial diameter of the wire (5.5 mm [phi]).・ The ultra-fine wire that could be drawn to a core loss of 0.10mmφ was annealed at 700 ° C × 5min, then an insulating coating was applied, and 0.10mmφ × 1m
An ultrafine wire having a length was formed into a coil having a diameter of 20 mm. This coil was measured for iron loss at a frequency of 10 kHz and a maximum magnetic flux density of 0.1 T by a method based on JIS C 2552.

【0022】得られた結果を表2にまとめて示す。表2
から、成分組成が発明範囲にあり、適正条件で熱間圧延
してフェライト結晶粒径が50μm以下が得られた、発明
例の鋼線材では、すべて0.10mmφまで問題なく伸線す
ることができた。しかも、伸線後に成形したコイルの鉄
損も低く良好な成績を示した。なお、Cr、Siの添加量が
高い鋼B,CがAよりも鉄損が良好であることもわか
る。これに対し、成分組成が発明範囲にあっても、熱間
圧延の条件が適正でなくフェライト結晶粒径が発明範囲
を外れた比較例では、4.60〜5.20mmφで断線した。成
分組成が発明範囲外の鋼D,Eでは、フェライト結晶粒
径が50μm以下であっても断線し伸線加工性に劣るもの
があり、0.10mmφまで伸線できたものも、コイルでの
鉄損が高く不良であった。
The results obtained are summarized in Table 2. Table 2
From, the component composition is in the range of the invention, and the ferrite crystal grain size obtained by hot rolling under appropriate conditions was 50 μm or less, all of the steel wire rods of the invention example could be drawn to 0.10 mmφ without any problem . In addition, the core formed after drawing had low iron loss and showed good results. It can also be seen that steels B and C, which have high amounts of Cr and Si added, have better iron loss than A. On the other hand, even in the case where the component composition was within the range of the invention, in Comparative Examples in which the conditions of hot rolling were not appropriate and the ferrite crystal grain size was outside the range of the invention, the wire was broken at 4.60 to 5.20 mmφ. In steels D and E whose component compositions are out of the range of the invention, even if the ferrite crystal grain size is 50 μm or less, wire breakage occurs and wire drawing workability is poor. The loss was high and defective.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
冷間における伸線加工性、とくに0.1〜0.5 mmφとい
った極細線まで冷間で容易に伸線加工できる電磁鋼線用
鋼材を提供可能となり、しかも、この鋼材からは良好な
磁気特性を有する極細線が製造できる。また、本発明に
よれば、このような優れた伸線加工性を熱間圧延のまま
で有しているので、伸線加工前の焼鈍処理を施す必要が
なく、生産効率の向上、生産コストの低減に大きく寄与
する。したがって、本発明によれば、トランスやリアク
トルなどの特に小型の鉄心用に適した新しい電磁鋼線を
安価に提供することが可能となる。
As described above, according to the present invention,
It is possible to provide a steel material for an electromagnetic steel wire that can be easily drawn in the cold state to a wire drawing workability in the cold state, particularly to an ultra-fine wire of 0.1 to 0.5 mmφ. Can be manufactured. Further, according to the present invention, since such excellent wire drawing property is maintained as it is during hot rolling, it is not necessary to perform annealing before wire drawing, thereby improving production efficiency and production cost. Greatly contributes to the reduction of Therefore, according to the present invention, it is possible to provide a new electromagnetic steel wire suitable for a particularly small iron core such as a transformer or a reactor at low cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本田 厚人 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 森戸 延行 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 5E041 AA02 AA19 CA02 HB07 NN01 NN06 NN18  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Atsuto Honda 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. 1-chome (without address) Mizushima Works, Kawasaki Steel Corporation F-term (reference) 5E041 AA02 AA19 CA02 HB07 NN01 NN06 NN18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Si:0.1 〜8.0 %を含むとともに、C、
S、OおよびNの含有量がC+N+O+S<0.015 %で
制限される範囲にあり、残部はFeおよび不可避的不純物
からなる鋼組成であって、フェライト結晶粒径が50μm
以下であることを特徴とする伸線加工性に優れた電磁鋼
線用鋼材。
(1) Si: containing 0.1 to 8.0%;
The content of S, O and N is in a range limited by C + N + O + S <0.015%, and the balance is a steel composition comprising Fe and unavoidable impurities, and a ferrite crystal grain size of 50 μm.
A steel material for an electromagnetic steel wire excellent in wire drawing work, characterized by the following.
【請求項2】 請求項1において、鋼組成がさらに、Cr
を0.1 〜15.0%を含む組成になることを特徴とする伸線
加工性に優れた電磁鋼線用鋼材。
2. The steel according to claim 1, wherein the steel composition further comprises Cr
Characterized by having a composition containing 0.1 to 15.0%.
【請求項3】 Si:0.1 〜8.0 %を含むとともに、C、
S、OおよびNの含有量がC+N+O+S<0.015 %で
制限される範囲にあり、残部はFeおよび不可避的不純物
からなる鋼を、850 〜1300℃に加熱し、仕上げ圧延温度
を1000℃未満として熱間圧延することを特徴とする伸線
加工性に優れた電磁鋼線用鋼材の製造方法。
3. Si: 0.1 to 8.0%, and C,
The contents of S, O and N are limited by C + N + O + S <0.015%, and the balance is made of steel consisting of Fe and unavoidable impurities. A method for producing a steel material for an electromagnetic steel wire having excellent drawability, characterized by cold rolling.
【請求項4】 請求項3において、鋼の組成がさらに、
Crを0.1 〜15.0%を含むことを特徴とする伸線加工性に
優れた電磁鋼線用鋼材の製造方法。
4. The method according to claim 3, wherein the steel composition further comprises:
A method for producing a steel material for an electromagnetic steel wire having excellent drawability, characterized by containing 0.1 to 15.0% of Cr.
JP29255199A 1999-10-14 1999-10-14 Steel for silicon steel wire excellent in wire drawability and producing method therefor Pending JP2001115241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29255199A JP2001115241A (en) 1999-10-14 1999-10-14 Steel for silicon steel wire excellent in wire drawability and producing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29255199A JP2001115241A (en) 1999-10-14 1999-10-14 Steel for silicon steel wire excellent in wire drawability and producing method therefor

Publications (1)

Publication Number Publication Date
JP2001115241A true JP2001115241A (en) 2001-04-24

Family

ID=17783241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29255199A Pending JP2001115241A (en) 1999-10-14 1999-10-14 Steel for silicon steel wire excellent in wire drawability and producing method therefor

Country Status (1)

Country Link
JP (1) JP2001115241A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012064104A1 (en) 2010-11-10 2012-05-18 주식회사 포스코 Wire rod and steel wire having superior magnetic characteristics, and method for manufacturing same
JP2015092562A (en) * 2013-09-30 2015-05-14 大同特殊鋼株式会社 Soft magnetic thin wire and manufacturing method thereof, mesh sheet for ac use, sintered sheet for ac use, rubber sheet for ac use, and laminate sheet for ac use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012064104A1 (en) 2010-11-10 2012-05-18 주식회사 포스코 Wire rod and steel wire having superior magnetic characteristics, and method for manufacturing same
JP2013544320A (en) * 2010-11-10 2013-12-12 ポスコ Wire rods, steel wires having excellent magnetic properties, and methods for producing them
US9728332B2 (en) 2010-11-10 2017-08-08 Posco Wire rod and steel wire having superior magnetic characteristics, and method for manufacturing same
JP2015092562A (en) * 2013-09-30 2015-05-14 大同特殊鋼株式会社 Soft magnetic thin wire and manufacturing method thereof, mesh sheet for ac use, sintered sheet for ac use, rubber sheet for ac use, and laminate sheet for ac use

Similar Documents

Publication Publication Date Title
JP5930120B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6499159B2 (en) Copper alloy wire and method for producing the same
WO2013069754A1 (en) Anisotropic electromagnetic steel sheet and method for producing same
JPWO2015034071A1 (en) Copper alloy wire and method for producing the same
JPH09310157A (en) Austenitic stainless hot rolled steel sheet excellent in deep drawability and its production
JP2009280860A (en) Cu-Ag ALLOY WIRE AND METHOD FOR PRODUCING THE SAME
JP6763148B2 (en) Non-oriented electrical steel sheet
KR20200124295A (en) Method of manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
EP0377734A1 (en) PRODUCTION OF NON-ORIENTED HIGH-Si STEEL SHEET
TWI427162B (en) Cold rolled steel sheet having excellent formability and shape fixability and method for manufacturing the same
JPH11310857A (en) Nonoriented silicon steel sheet and its manufacture
Yang et al. Hot drawn Fe–6.5 wt.% Si wires with good ductility
JP2001115241A (en) Steel for silicon steel wire excellent in wire drawability and producing method therefor
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JPH04293721A (en) Production of soft steel wire rod excellent in mechanical descaling property
JP2002356741A (en) Wire rod for steel code and method for producing steel code
JP4258854B2 (en) Manufacturing method of electrical steel sheet
JP2017095771A (en) Oriented electromagnetic steel sheet and manufacturing method therefor, hot rolled sheet for oriented electromagnetic steel sheet and manufacturing method therefor
JP4569281B2 (en) Annealing separator for grain-oriented electrical steel sheet, method for annealing grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
JP5130993B2 (en) High frequency electrical steel sheet
JP2009144230A (en) Steel wire rod, bolt, and method for manufacturing steel wire rod
JP2579707B2 (en) Manufacturing method of wire rod for coated arc welding rod core wire with excellent mechanical descaling property
KR20000031083A (en) Process for producing low carbon wire rod for cold rolling which has excellent scale property
JP2020007599A (en) Ferritic stainless steel sheet, clad material, and manufacturing method of ferritic stainless steel sheet
JP5050459B2 (en) Cold rolled steel sheet for wound cores for automotive alternators with excellent magnetic properties and burr resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111