JP2001114834A - Phosphate group-containing polymer and polymeric solid electrolyte containing the same - Google Patents
Phosphate group-containing polymer and polymeric solid electrolyte containing the sameInfo
- Publication number
- JP2001114834A JP2001114834A JP37144299A JP37144299A JP2001114834A JP 2001114834 A JP2001114834 A JP 2001114834A JP 37144299 A JP37144299 A JP 37144299A JP 37144299 A JP37144299 A JP 37144299A JP 2001114834 A JP2001114834 A JP 2001114834A
- Authority
- JP
- Japan
- Prior art keywords
- phosphate group
- containing polymer
- polymer
- solid electrolyte
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Secondary Cells (AREA)
- Fuel Cell (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Conductive Materials (AREA)
- Primary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、一次電池用電解
質、二次電池用電解質、燃料電池用電解質、表示素子、
各種センサー、信号伝達媒体、固体コンデンサー、イオ
ン交換膜などに好適に利用できるリン酸基含有重合体及
びそれを含有するプロトン伝導性高分子固体電解質に関
する。さらに詳しくは、耐熱性に優れ、広い温度範囲及
び湿度範囲にわたり高いプロトン伝導性を示すリン酸基
含有重合体及びそれを含有するプロトン伝導性高分子固
体電解質に関する。The present invention relates to an electrolyte for a primary battery, an electrolyte for a secondary battery, an electrolyte for a fuel cell, a display element,
The present invention relates to a phosphate group-containing polymer that can be suitably used for various sensors, signal transmission media, solid capacitors, ion exchange membranes, and the like, and a proton conductive polymer solid electrolyte containing the same. More specifically, the present invention relates to a phosphate group-containing polymer having excellent heat resistance and exhibiting high proton conductivity over a wide range of temperature and humidity, and a proton-conductive polymer solid electrolyte containing the same.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】従来、
電解質材料は、水または有機溶媒に電解質を溶解して溶
液状にして用いていたため、漏液の問題があった。この
耐漏液性を改良し、高信頼性の固体電解質電池等を得る
べく、高いイオン伝導率を有し、機械的強度に優れ、耐
熱性の良好な固体電解質の開発研究が盛んに行なわれて
いる。このような固体電解質としては、無機系材料と有
機系材料の両方が知られている。2. Description of the Related Art
Since the electrolyte material is used by dissolving the electrolyte in water or an organic solvent and using it as a solution, there is a problem of liquid leakage. In order to improve the leakage resistance and obtain a highly reliable solid electrolyte battery, etc., the development of solid electrolytes with high ionic conductivity, excellent mechanical strength, and good heat resistance has been actively conducted. I have. As such a solid electrolyte, both an inorganic material and an organic material are known.
【0003】有機系材料としては、いわゆる陽イオン交
換樹脂に属するポリマー、例えばポリスチレンスルホン
酸、ポリビニルスルホン酸、パーフルオロスルホン酸ポ
リマー、パーフルオロカルボン酸ポリマー [Polymer pr
eprints, Japan Vol.42, No.7, p2490〜2492(1993), Po
lymer preprints,Japan Vol.43, No.3, p735〜p736(199
4), Polymer preprints, Japan Vol.42, No.3, p730(19
93)] などの有機系材料が報告されている。[0003] Organic materials include polymers belonging to the so-called cation exchange resin, for example, polystyrenesulfonic acid, polyvinylsulfonic acid, perfluorosulfonic acid polymer, perfluorocarboxylic acid polymer [Polymer pr.
eprints, Japan Vol.42, No.7, p2490〜2492 (1993), Po
lymer preprints, Japan Vol. 43, No. 3, p735 to p736 (199
4), Polymer preprints, Japan Vol.42, No.3, p730 (19
93)] and other organic materials have been reported.
【0004】有機系材料は、ポリマー溶液をキャスティ
ングすることにより、基板あるいは電極上に容易にフィ
ルムを形成できるという利点があり、高出力、高エネル
ギー密度の固体電解質として、ロケットの燃料電池等に
既に実用化されている(Nafion等)。しかし、有機系材
料は室温下、含水状態においては高いプロトン伝導性を
示すものの、100 ℃以上の高温では導電率が低下すると
いう問題を有する。An organic material has an advantage that a film can be easily formed on a substrate or an electrode by casting a polymer solution. As a solid electrolyte having a high output and a high energy density, an organic material has already been used in rocket fuel cells and the like. Has been put to practical use (Nafion, etc.). However, organic materials exhibit high proton conductivity at room temperature and in a water-containing state, but have the problem that their electrical conductivity decreases at high temperatures of 100 ° C. or higher.
【0005】これに対し、高温下においても長期間にわ
たり高いイオン伝導性を有するポリマーとして、ポリベ
ンズイミダゾール等の耐熱性樹脂にアルキルスルホン酸
基またはアルキルリン酸基を導入した高分子固体電解質
が報告されている(特開平9-87510 号、特開平9-110982
号)。当該高分子固体電解質は、含水状態において100
℃の高温下でも高いイオン伝導性(10-4〜10-2Scm-1 )
を示すとともに、優れた耐熱性(重量減少開始温度250
℃以上)を有するが、無水状態では導電性を示さないう
え、キャストフィルムを作成する際にジメチルアセトア
ミド等の有害な溶媒を使用しなければならない。また、
ポリベンズイミダゾール等の耐熱性樹脂が非常に高価で
あるため、コストパフォーマンス等の点から自動車用燃
料電池等の汎用材料としては問題が多い。On the other hand, as a polymer having high ionic conductivity for a long period of time even at high temperature, a polymer solid electrolyte in which an alkylsulfonic acid group or an alkylphosphate group is introduced into a heat-resistant resin such as polybenzimidazole has been reported. (JP-A-9-87510, JP-A-9-110982)
issue). The polymer solid electrolyte is 100
High ionic conductivity even at high temperature of ℃ (10 -4 to 10 -2 Scm -1 )
And excellent heat resistance (weight loss onset temperature 250
° C or higher), but does not exhibit conductivity in an anhydrous state, and a harmful solvent such as dimethylacetamide must be used when forming a cast film. Also,
Since heat-resistant resins such as polybenzimidazole are very expensive, there are many problems as general-purpose materials for fuel cells for automobiles and the like from the viewpoint of cost performance and the like.
【0006】したがって本発明の目的は、比較的低コス
トで、幅広い温度領域及び湿度領域において高いプロト
ン伝導性を有し、実用上差し支えない耐熱性を有する高
分子材料及びそれを用いた高分子固体電解質を提供する
ことである。Accordingly, an object of the present invention is to provide a polymer material having a relatively low cost, a high proton conductivity in a wide temperature range and a wide range of humidity, and having a heat resistance which does not hinder practical use, and a polymer solid using the same. It is to provide an electrolyte.
【0007】[0007]
【課題を解決するための手段】上記目的に鑑み鋭意研究
の結果、本発明者等は、側鎖末端にリン酸基を有する
(メタ)アクリル酸エステル類の単量体に注目し、これ
らの単独重合体またはこれらと他のビニル基含有単量体
との共重合体が幅広い温度領域及び湿度領域にわたって
高いプロトン伝導性を有し、優れた耐熱性を有すること
を発見し、本発明に想到した。Means for Solving the Problems As a result of intensive studies in view of the above objects, the present inventors have paid attention to monomers of (meth) acrylates having a phosphoric acid group at a terminal of a side chain. Homopolymers or copolymers of these and other vinyl group-containing monomers have high proton conductivity over a wide temperature range and humidity range, and have been found to have excellent heat resistance, and have reached the present invention. did.
【0008】本発明のプロトン伝導性高分子固体電解質
は、含水状態においては少なくとも20〜160 ℃の温度範
囲において高いイオン伝導性を発揮し、さらに無水状態
においてもイオン伝導性を示す点で、画期的なプロトン
伝導性高分子固体電解質である。The proton-conductive polymer solid electrolyte of the present invention exhibits high ionic conductivity at least in the temperature range of 20 to 160 ° C. in a water-containing state, and exhibits ionic conductivity even in an anhydrous state. It is an advanced proton conductive polymer solid electrolyte.
【0009】さらに、本発明のプロトン伝導性高分子固
体電解質は、優れた耐熱性を有することを特徴とする。Furthermore, the proton conductive polymer solid electrolyte of the present invention is characterized by having excellent heat resistance.
【0010】また従来はリン酸基を有するポリマーは、
重合段階でゲル化が起こりやすく、様々な溶媒に不溶と
なるためキャスト製膜できないという技術的問題があっ
たが、本発明の好ましい態様によれば、リン酸基含有重
合体を適当な溶剤に溶解することができるため、ポリマ
ー溶液からキャストフィルムを作成することにより燃料
電池等の高分子固体電解質として好適に使用することが
できる。Conventionally, polymers having a phosphate group are:
Although there was a technical problem that gelation easily occurs in the polymerization stage and it becomes insoluble in various solvents and thus cannot be cast into a film, according to a preferred embodiment of the present invention, a phosphate group-containing polymer is converted into an appropriate solvent. Since it can be dissolved, it can be suitably used as a polymer solid electrolyte such as a fuel cell by forming a cast film from a polymer solution.
【0011】[0011]
【発明の実施の形態】以下、本発明のリン酸基含有重合
体及びプロトン伝導性高分子固体電解質について詳細に
説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the phosphate group-containing polymer and the proton conductive polymer solid electrolyte of the present invention will be described in detail.
【0012】[1] リン酸基含有重合体 (1) 単量体成分 本発明のリン酸基含有重合体は、下記一般式(A) :[1] Phosphate Group-Containing Polymer (1) Monomer Component The phosphate group-containing polymer of the present invention has the following general formula (A):
【化2】 により表される単量体を必須成分として重合したもので
ある。Embedded image Is obtained by polymerizing a monomer represented by the following formula as an essential component.
【0013】本発明のリン酸基含有重合体は、(i)
一般式(A) で表される単量体の単独重合体、(ii) 一
般式(A) で表される単量体を2種以上用いた共重合体、
或いは(iii) 少なくとも1種類の一般式(A) で表され
る単量体と他のビニル単量体との共重合体のいずれかで
ある。The phosphate group-containing polymer of the present invention comprises (i)
A homopolymer of the monomer represented by the general formula (A), (ii) a copolymer using two or more monomers represented by the general formula (A),
Or (iii) a copolymer of at least one monomer represented by the general formula (A) and another vinyl monomer.
【0014】一般式(A) で表される化合物のうち、本発
明に好適に使用できる化合物の構造式を表1に示す。ま
たこれらの化合物の物性を表2に示す。これらの化合物
は、ユニケミカル (株) から商品名PhosmerTM として販
売されているものであり適宜購入することができる。た
だし、本発明に使用できる化合物はこれらに限定される
ものではない。Table 1 shows the structural formulas of the compounds represented by formula (A) which can be suitably used in the present invention. Table 2 shows the physical properties of these compounds. These compounds are sold under the trade name Phosmer ™ by Unichemical Co., Ltd., and can be purchased as appropriate. However, compounds that can be used in the present invention are not limited to these.
【0015】[0015]
【化3】 Embedded image
【0016】 表 2 グレード(PhosmerTM) M CL A PE PP 分子量(g)/リン酸当量(g) 210 258.5 196 333 440 比重(20℃/ 4 ℃の水) 1.392 1.453 1.468 1.248 1.157 屈折率(nd at 20 ℃) 1.4562 1.4785 1.4664 1.4696 1.4577 粘度B型(ローターNo) 80(No.1) 700(No.2) 320(No.2) 25(No.1) 55(No.2) ( poise at 20 ℃) 酸化 理論値 533.3 433.27 571.4 ― ― 実測値 500以上 410 以上 − 320 255 水溶性(wt%at 20 ℃) 4.1 1.3 9.4 ― ― (wt%at 25 ℃) ― ― ― 4.0 3.2 単量体の可溶な溶媒 有機酸 同左 同左 同左 ベンゼン ケトン トルエン アルコール キシレンTable 2 Grade (Phosmer ™ ) M CL A PE PP molecular weight (g) / phosphoric acid equivalent (g) 210 258.5 196 333 440 Specific gravity (20 ° C./4° C. water) 1.392 1.453 1.468 1.248 1.157 Refractive index (nd) at 20 ° C) 1.4562 1.4785 1.4664 1.4696 1.4577 Viscosity type B (Rotor No.) 80 (No.1) 700 (No.2) 320 (No.2) 25 (No.1) 55 (No.2) (poise at 20 ° C) Oxidation Theoretical value 533.3 433.27 571.4 ― ― Actual value 500 or more 410 or more ― 320 255 Water solubility (wt% at 20 ℃) 4.1 1.3 9.4 ― ― (wt% at 25 ℃) ― ― ― 4.0 3.2 Possible monomer Soluble solvent Organic acid Same as left Same as left Same as left Benzene Ketone Toluene Alcohol Xylene
【0017】キャスト膜の強度・耐熱性を向上するとと
もに、過度の吸水による膨潤を防止する目的で、上記化
合物を他のビニル単量体との共重合体とすることができ
る。特に、PhosmerTM M 、CL、A 及びPEは、単独重合す
ると溶媒に不溶となるため、他のビニル単量体との共重
合体にすることが好ましい。For the purpose of improving the strength and heat resistance of the cast film and preventing swelling due to excessive water absorption, the above compound can be used as a copolymer with another vinyl monomer. In particular, since Phosmer ™ M, CL, A, and PE become insoluble in a solvent when homopolymerized, they are preferably formed into a copolymer with another vinyl monomer.
【0018】本発明の固体電解質に用いることのできる
他のビニル単量体としては、一般式(A) で表される化合
物と共重合できるものであれば特に限定されず公知のも
のを使用できる。このようなビニル単量体として、例え
ば、アクリル酸、アクリル酸エステル類、メタクリル
酸、メタクリル酸エステル類、アクリロニトリル、メタ
クリロニトリル、スチレン、核置換スチレン類、アルキ
ルビニルエーテル類、アルキルビニルエステル類、パー
フルオロ・アルキルビニルエーテル類、パーフルオロ・
アルキルビニルエステル類、マレイン酸、無水マレイン
酸、フマル酸、イタコン酸、マレイミドまたはフェニル
マレイミド等が挙げられる。これらのビニル単量体の中
で、特に好ましく用いることができるものは、メタクリ
ル酸エステル類、アクリロニトリル、スチレン類、マレ
イミド、フェニルマレイミドである。他のビニル単量体
は、5 〜90 mol%(単量体成分の合計を100mol%とし
て)、好ましくは20〜50mol %の範囲で使用する。5mo
l %未満では、他の単量体成分を用いた効果が得られ
ず、90mol %以上ではプロトン伝導性が低下するので好
ましくない。The other vinyl monomer which can be used in the solid electrolyte of the present invention is not particularly limited as long as it can be copolymerized with the compound represented by the general formula (A), and known ones can be used. . Such vinyl monomers include, for example, acrylic acid, acrylic esters, methacrylic acid, methacrylic esters, acrylonitrile, methacrylonitrile, styrene, nuclear-substituted styrenes, alkyl vinyl ethers, alkyl vinyl esters, Fluoroalkyl vinyl ethers, perfluoro
Examples thereof include alkyl vinyl esters, maleic acid, maleic anhydride, fumaric acid, itaconic acid, maleimide and phenylmaleimide. Among these vinyl monomers, particularly preferred ones are methacrylic acid esters, acrylonitrile, styrenes, maleimide and phenylmaleimide. The other vinyl monomer is used in the range of 5 to 90 mol% (assuming the total of the monomer components is 100 mol%), preferably 20 to 50 mol%. 5mo
If it is less than 1%, the effect of using other monomer components cannot be obtained, and if it is more than 90% by mole, the proton conductivity is undesirably reduced.
【0019】(2) 重合反応 重合反応は、原料となる単量体成分及び生成する重合体
の双方が溶解する共通溶媒中で、2,2-アゾビスイソブチ
ロニトリル、2,2-アゾビス(2,4-ジメチルバレロニトリ
ル)、ジメチル2,2-アゾビス(2-メチルプロピオネー
ト)、ジメチル2,2-アゾビスイソブチレートなどのアゾ
系開始剤、ラウリルパーオキシド、ベンゾイルパーオキ
シド、tert- ブチルパーオクトエートなどの過酸化物系
開始剤等の重合開始剤を用いて行う。他のビニルモノマ
ーと共重合する場合には、コモノマー同士の組合せによ
り適宜溶媒を選択する。必要に応じて2種以上の混合溶
媒を使用してもよい。(2) Polymerization reaction The polymerization reaction is carried out in a common solvent in which both a monomer component as a raw material and a polymer to be dissolved are dissolved in 2,2-azobisisobutyronitrile, 2,2-azobis Azo initiators such as (2,4-dimethylvaleronitrile), dimethyl 2,2-azobis (2-methylpropionate), dimethyl 2,2-azobisisobutyrate, lauryl peroxide, benzoyl peroxide, The polymerization is performed using a polymerization initiator such as a peroxide initiator such as tert-butyl peroctoate. When copolymerizing with another vinyl monomer, a solvent is appropriately selected depending on the combination of comonomers. If necessary, two or more kinds of mixed solvents may be used.
【0020】重合反応は、〔単量体成分+重合開始剤+
溶媒〕の混合溶液を溶媒に滴下しながら重合温度50〜10
0 ℃で行い、滴下終了後も一夜、重合温度或いはそれ以
上の温度に維持し、攪拌を継続して重合を完結させる。The polymerization reaction is carried out by the following procedure: [monomer component + polymerization initiator +
(Solvent) is added dropwise to the solvent while the polymerization temperature is 50 to 10
The reaction is carried out at 0 ° C., and after the completion of the dropwise addition, the temperature is maintained at or above the polymerization temperature overnight, and stirring is continued to complete the polymerization.
【0021】溶媒は単量体成分を1とした場合、重量比
で1.0 〜3.0 程度用いるのが好ましく、重合開始剤は重
量比で0.005 〜0.05 程度用いるのが好ましい。より好
ましい重量比は溶媒が1.5 〜2.5 、重合開始剤が0.01前
後である。溶媒、重合開始剤の使用量が上記の好ましい
範囲にないと、重合体がゲル化して様々な溶媒に不溶と
なり、キャスト製膜できなくなる等の問題が起こるので
好ましくない。The solvent is preferably used in a weight ratio of about 1.0 to 3.0 when the monomer component is 1, and the polymerization initiator is preferably used in a weight ratio of about 0.005 to 0.05. More preferred weight ratios are 1.5 to 2.5 for the solvent and about 0.01 for the polymerization initiator. If the amounts of the solvent and the polymerization initiator are not in the above-mentioned preferred ranges, the polymer gels and becomes insoluble in various solvents, which causes problems such as the inability to form a cast film.
【0022】かくして得られるリン酸基含有重合体はMn
= 2,000 〜40,000 であることが好ましく、より好まし
くはMn = 5,000 〜30,000 である。The phosphate group-containing polymer thus obtained is Mn
= 2,000 to 40,000, more preferably Mn = 5,000 to 30,000.
【0023】[2] プロトン伝導性高分子固体電解質 本発明のプロトン伝導性高分子固体電解質は、前記リン
酸基含有重合体を可溶な溶媒に溶解したのち、キャスト
することによりフィルム状に成形したり、圧力をかけて
成形する等、公知の方法により作成することができる
が、基盤等との密着性の観点からキャスト製膜する方法
がもっとも好ましい。[2] Proton-Conducting Polymer Solid Electrolyte The proton-conducting polymer solid electrolyte of the present invention is formed into a film by dissolving the phosphoric acid group-containing polymer in a soluble solvent and then casting. It can be prepared by a known method, such as forming by applying pressure or molding, but the method of forming a cast film from the viewpoint of adhesion to a substrate or the like is most preferable.
【0024】キャスト製膜は、本発明のリン酸基含有重
合体を可溶な溶剤に溶解し、これをテフロンシート上に
流延して、減圧乾燥することにより作成できる。フィル
ムの機械的強度を上げるため、適当な架橋剤を用いて架
橋体フィルムにしても良い。また必要に応じて、他のプ
ロトン伝導性高分子、吸水性高分子、ゴム等をブレンド
してもよい。他のプロトン伝導性高分子としては、例え
ばポリ-(ベンズイミダゾール)-アルキルスルホン酸、ナ
フィオン、フレミオン、ポリスチレンスルホン酸等を挙
げることができる。The cast film can be prepared by dissolving the phosphate group-containing polymer of the present invention in a soluble solvent, casting this on a Teflon sheet and drying under reduced pressure. In order to increase the mechanical strength of the film, a crosslinked film may be formed using an appropriate crosslinking agent. If necessary, other proton conductive polymers, water absorbing polymers, rubbers, etc. may be blended. Examples of other proton conductive polymers include poly- (benzimidazole) -alkylsulfonic acid, Nafion, Flemion, polystyrenesulfonic acid, and the like.
【0025】[0025]
【実施例】以下、本発明を実施例によりさらに詳細に説
明するが、本発明はそれらに限定されるものではない。EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.
【0026】実施例1 本実施例により、下記式: Example 1 According to this example, the following formula:
【化4】 により表されるプロトン伝導性高分子Poly(PHP)を合成
した。Embedded image Has been synthesized.
【0027】まず、攪拌機、還流冷却機、滴下ロート及
び温度計を備えた50mL内容積の丸底フラスコを窒素置換
し、溶媒としてメチルエチルケトン(以下、MEK )を12
g 仕込み、オイルバスに漬けて80℃に加熱し還流を開始
した。この時から重合の全過程を通じて微量の窒素ガス
を流し続けた。First, a 50 mL round bottom flask equipped with a stirrer, a reflux condenser, a dropping funnel, and a thermometer was purged with nitrogen, and methyl ethyl ketone (hereinafter referred to as MEK) was used as a solvent.
g Prepared, immersed in an oil bath, heated to 80 ° C and started refluxing. From this time, a slight amount of nitrogen gas was continuously flowed throughout the polymerization.
【0028】アシッド・ホスホオキシ・ポリプロピレン
グリコール・メタクリレート(PhosmerTM PP 、以下PHP
)8.5g 、MEK 5g及びAIBN 100mgの混合溶液を調整し、
滴下ロートから数分間かけて等速で滴下した。滴下終了
後も80℃を維持し、一夜攪拌を続けて、帯黄色の粘調な
液状の重合体溶液を得た。Acid, phosphooxy, polypropylene glycol, methacrylate (Phosmer ™ PP, hereinafter PHP)
Prepare a mixed solution of 8.5g, MEK 5g and AIBN 100mg,
The solution was dropped at a constant speed from the dropping funnel over several minutes. After the completion of the dropwise addition, the temperature was maintained at 80 ° C., and stirring was continued overnight to obtain a yellowish viscous liquid polymer solution.
【0029】重合体溶液を約10倍量の1,2-ジクロロエタ
ン中へ注入し、上澄液をデカンテーションにて除去して
沈殿物を回収することにより重合体を単離した。回収し
た重合体は当該重合体の良溶媒であるテトラヒドロフラ
ン(以下、THF )に溶解し約10倍量の1,2-ジクロロエタ
ン中に再沈殿させる操作を3回繰り返して行って精製し
た。The polymer solution was poured into about 10 times the volume of 1,2-dichloroethane, the supernatant was removed by decantation, and the precipitate was recovered to isolate the polymer. The recovered polymer was purified by repeating the procedure of dissolving it in tetrahydrofuran (hereinafter referred to as THF), which is a good solvent for the polymer, and reprecipitating it in about 10 times the amount of 1,2-dichloroethane three times.
【0030】精製したPoly(PHP)をゲル・パーミエーシ
ョン・クロマトグラフ(GPC) で、溶媒としてTHF を用い
重合体濃度1wt%で分子量を測定したところ、分子量約
10,000であった(ポリスチレン換算)。The molecular weight of the purified Poly (PHP) was measured by gel permeation chromatography (GPC) at a polymer concentration of 1 wt% using THF as a solvent.
It was 10,000 (polystyrene conversion).
【0031】精製したPoly(PHP)をTHF に5wt%濃度で
溶解し、テフロンシート上に流延して、常温で24時間減
圧乾燥することにより厚さ0.1mm のキャストフィルムを
調整した。The purified Poly (PHP) was dissolved in THF at a concentration of 5% by weight, cast on a Teflon sheet, and dried under reduced pressure at room temperature for 24 hours to prepare a cast film having a thickness of 0.1 mm.
【0032】実施例2〜4 実施例2〜4により、PHP とN-フェニル・マレイミド
(以下 NPM)との共重合によりプロトン伝導性高分子
(以下、Poly(PHP-co-NPM))を合成した。Examples 2 to 4 According to Examples 2 to 4, a proton conductive polymer (hereinafter, Poly (PHP-co-NPM)) was synthesized by copolymerizing PHP with N-phenylmaleimide (hereinafter, NPM). did.
【化5】 Embedded image
【0033】滴下する単量体成分の組成比を表3のとお
りにした以外は実施例1と同様にしてPoly(PHP-co-NPM)
を合成した。Poly (PHP-co-NPM) was prepared in the same manner as in Example 1 except that the composition ratio of the monomer component to be dropped was as shown in Table 3.
Was synthesized.
【0034】 表3 単量体成分の組成比 単量体成分 PHP(g) NPM(g) PHP/NPM(mol 比) 共重合体の性状 実施例2 7.16 1.35 2/1 薄橙色粘性溶液 実施例3 6.79 1.71 1.5/1 薄橙色粘性溶液 実施例4 6.16 2.32 1/1 薄橙色溶液Table 3 Composition ratio of monomer components Properties of monomer component PHP (g) NPM (g ) PHP / NPM (mol ratio ) copolymer Example 2 7.16 1.35 2/1 Light orange viscous solution Example 3 6.79 1.71 1.5 / 1 Light orange viscous solution Example 4 6.16 2.32 1/1 Light orange viscous solution
【0035】得られたPoly(PHP-co-NPM)を実施例1と同
様にして精製した。精製後の収率は、いずれも60% 以上
であった。The obtained Poly (PHP-co-NPM) was purified in the same manner as in Example 1. The yields after purification were all 60% or more.
【0036】精製したPoly(PHP-co-NPM)について、FT-I
R 測定を行った。結果を図1に示す。図1に示したスペ
クトルにはNPM由来のピーク(図の中に矢印で示したピ
ーク)が確認できた。また、元素分析の結果から、Poly
(PHP-co-NPM)はランダム共重合が起こっていることが推
認できた。For the purified Poly (PHP-co-NPM), FT-I
R measurements were made. The results are shown in FIG. In the spectrum shown in FIG. 1, peaks derived from NPM (peaks indicated by arrows in the figure) were confirmed. In addition, from the results of elemental analysis,
(PHP-co-NPM) could be inferred that random copolymerization occurred.
【0037】また、Poly(PHP-co-NPM)をゲル・パーミエ
ーション・クロマトグラフ(GPC) で、溶媒としてDMF を
用い濃度1wt%で分子量を測定したところ、分子量約2
0,000であった(ポリスチレン換算)。The molecular weight of Poly (PHP-co-NPM) was measured by gel permeation chromatography (GPC) at a concentration of 1 wt% using DMF as a solvent.
It was 0,000 (polystyrene conversion).
【0038】Poly(PHP-co-NPM)をメタノールに5wt%濃
度で溶解し、グラスフィルターで濾過した後、舟型のテ
フロンシート上に流延してデシケーター内に静置し、48
時間窒素を流した後、60℃にて減圧乾燥して、厚さ約0.
1mm の薄橙色のキャスト膜を調整した。なお、PHP 含有
量が多いほど膜の柔軟性が高かった。Poly (PHP-co-NPM) was dissolved in methanol at a concentration of 5 wt%, filtered with a glass filter, cast on a boat-shaped Teflon sheet, and allowed to stand in a desiccator.
After flowing nitrogen for hours, dried under reduced pressure at 60 ° C to a thickness of about 0.
A 1 mm light orange cast film was prepared. The higher the PHP content, the higher the flexibility of the film.
【0039】実施例5〜7 実施例5〜7ではPHPとアクリロニトリル(以下AN)の
共重合によるプロトン伝導性高分子(以下、Poly(PHP-c
o-AN))を合成した。 Examples 5 to 7 In Examples 5 to 7, a proton conductive polymer (hereinafter referred to as Poly (PHP-c) obtained by copolymerizing PHP and acrylonitrile (hereinafter AN) was used.
o-AN)).
【化6】 Embedded image
【0040】滴下する単量体成分の組成比を表4のとお
りにした以外は、実施例1と同様にして共重合体を合成
した。A copolymer was synthesized in the same manner as in Example 1 except that the composition ratio of the monomer components to be dropped was as shown in Table 4.
【0041】 表4 単量体成分の組成比 単量体成分 PHP(g) AN(g) PHP/AN(mol 比) 共重合体の性状 実施例5 5.50 3.00 1/5 薄黄色溶液 実施例6 6.97 1.53 1/2 薄黄色溶液 実施例7 7.66 0.84 1/1 薄黄色溶液Table 4 Composition ratio of monomer components Properties of monomer component PHP (g) AN (g) PHP / AN (mol ratio ) copolymer Example 5 5.50 3.00 1/5 pale yellow solution Example 6 6.97 1.53 1/2 light yellow solution Example 7 7.66 0.84 1/1 light yellow solution
【0042】得られたPoly(PHP-co-AN)を実施例1と同
様にして精製した。The obtained Poly (PHP-co-AN) was purified in the same manner as in Example 1.
【0043】精製したPoly(PHP-co-AN)について、FT-IR
の測定を行った。結果を図1に示す。図1に示したスペ
クトルにはAN由来のピーク(図の中に矢印で示したピー
ク)が確認できた。For the purified Poly (PHP-co-AN), FT-IR
Was measured. The results are shown in FIG. In the spectrum shown in FIG. 1, peaks derived from AN (peaks indicated by arrows in the figure) could be confirmed.
【0044】実施例5〜7のPoly(PHP-co-AN)をメタノ
ールに20wt%に溶解し、ガラスフィルターで濾過した
後、舟型のテフロンシート上に流延してデシケーター内
に静置し、48時間窒素を流した後、60℃にて減圧乾燥し
て、厚さ0.3mmの淡黄色のキャスト膜を調製した。共重
合体中のAN含量が多いほど、強靭な膜が得られた。Poly (PHP-co-AN) of Examples 5 to 7 was dissolved in methanol at 20 wt%, filtered through a glass filter, cast on a boat-shaped Teflon sheet, and allowed to stand in a desiccator. After flowing nitrogen for 48 hours, the mixture was dried under reduced pressure at 60 ° C. to prepare a 0.3 mm-thick pale yellow cast film. The higher the AN content in the copolymer, the more a tough film was obtained.
【0045】実施例8 本実施例により、下記式: Example 8 According to this example, the following formula:
【化7】 により表されるプロトン伝導性高分子Poly(PHM)を合成
した。Embedded image Has been synthesized.
【0046】PHPの代わりに、アシッド・ホスホオキシ
・エチルメタクリレート(PhosmerTMM 、以下PHM )8.5g
を用いた以外は、実施例1と同様にしてPoly(PHM)を合
成した。Instead of PHP, 8.5 g of acid phosphooxyethyl methacrylate (Phosmer ™ M, hereinafter PHM)
Poly (PHM) was synthesized in the same manner as in Example 1 except that
【0047】Poly(PHM)は溶媒に不溶であったため、加
熱・加圧成型により、厚さ0.1mm のPoly(PHM)フィルム
を調整した。Since Poly (PHM) was insoluble in the solvent, a 0.1 mm thick Poly (PHM) film was prepared by heating and pressing.
【0048】実施例9,10 本実施例により、下記式: Embodiments 9 and 10 According to this embodiment, the following formula is used:
【化8】 により表されるプロトン伝導性高分子Poly(PHM-co-NPM)
を合成した。Embedded image Proton conductive polymer Poly (PHM-co-NPM)
Was synthesized.
【0049】表5に記載の単量体成分及びAIBN100mgの
ジメチルスルホキシド(DMSO)4g溶液を、80℃に保ったD
MSO6gにゆっくり滴下し、窒素雰囲気下24時間攪拌し
た。得られた赤褐色粘性液体をDMSO(良溶媒)、メタノ
ール(貧溶媒)で2回再沈殿操作を行って精製した。こ
れにより、メタノール、DMF、DMAc、DMSO等の溶媒に可
溶な薄茶色粉末を得た。A solution of the monomer components described in Table 5 and 100 mg of AIBN in 4 g of dimethyl sulfoxide (DMSO) was added to D at 80 ° C.
The solution was slowly dropped into 6 g of MSO, and stirred for 24 hours under a nitrogen atmosphere. The obtained reddish brown viscous liquid was purified by reprecipitation twice with DMSO (good solvent) and methanol (poor solvent). As a result, a light brown powder soluble in a solvent such as methanol, DMF, DMAc, and DMSO was obtained.
【0050】 表5 単量体成分の組成比 単量体成分 PHM(g) NPM(g) PHM/NPM(mol 比) 共重合体の性状 実施例9 1.92 2.33 0.68/1 赤褐色粘性液体 実施例10 3.15 1.3 2/1 赤褐色粘性液体Table 5 Composition ratio of monomer components Properties of monomer component PHM (g) NPM (g) PHM / NPM (mol ratio ) copolymer Example 9 1.92 2.33 0.68 / 1 Red-brown viscous liquid Example 10 3.15 1.3 2/1 reddish brown viscous liquid
【0051】精製したPoly(PHM-co-NPM)について、FT-I
Rの測定を行った。結果を図2に示す。図2に示したス
ペクトルにはNPM由来のピーク(図の中に矢印で示した
ピーク)が確認できた。For the purified Poly (PHM-co-NPM), FT-I
R was measured. The results are shown in FIG. In the spectrum shown in FIG. 2, peaks derived from NPM (peaks indicated by arrows in the figure) could be confirmed.
【0052】比較例1 下記式: Comparative Example 1 The following formula:
【化9】 により表されるポリベンズイミダゾールのプロパンスル
ホン酸(PBI-PS)を比較例として用いた。Embedded image The polybenzimidazole propanesulfonic acid (PBI-PS) represented by the following formula was used as a comparative example.
【0053】PBI-PSは、まずポリベンズイミダゾールの
N,N'- ジメチルアセトアミド溶液に水素化リチウムを加
え、85℃、窒素雰囲気下で3時間攪拌後、3-プロパンサ
ルトンを開環付加することにより合成した。PBI-PSのス
ルホン化率は75%であった(元素分析)。[0053] PBI-PS is first prepared from polybenzimidazole.
Lithium hydride was added to the N, N'-dimethylacetamide solution, and the mixture was stirred at 85 ° C under a nitrogen atmosphere for 3 hours, and then synthesized by ring-opening addition of 3-propanesultone. The sulfonation ratio of PBI-PS was 75% (elemental analysis).
【0054】PBI-PSの5wt%ジメチルスルホキシド溶液
をテフロンシート上に注ぎ、50℃で4日間、真空下で2
日間乾燥することで厚さ0.1mm のキャストフィルムを調
整した。A solution of 5% by weight of PBI-PS in dimethyl sulfoxide was poured on a Teflon sheet, and the solution was dried at 50 ° C. for 4 days under vacuum.
By drying for days, a cast film having a thickness of 0.1 mm was prepared.
【0055】このようにして得られたプロトン伝導性重
合体の耐熱性及び吸水性を評価するとともに、プロトン
伝導性の評価を行った。The proton conductivity of the thus obtained proton conductive polymer was evaluated for heat resistance and water absorption, and the proton conductivity was evaluated.
【0056】耐熱性の評価 プロトン伝導性重合体粉末約10mgをアルミニウム製のパ
ンの上に秤取し、セイコーインスツルメンツ(株)製の
熱重量分析計 SEIKO TG/DTA 200 を用いて、測定温度範
囲:室温〜500 ℃、昇温速度:5℃/min、窒素還流雰囲
気下流量200mL/min の条件で、熱重量減少を測定した。
レファレンスには同型の空のアルミニウム製パンを用い
た。結果を図3に示す。 Evaluation of Heat Resistance About 10 mg of the proton conductive polymer powder was weighed on an aluminum pan, and the measurement temperature range was measured using a thermogravimetric analyzer SEIKO TG / DTA 200 manufactured by Seiko Instruments Inc. The thermogravimetric loss was measured under the conditions of room temperature to 500 ° C., a heating rate of 5 ° C./min, and a flow rate of 200 mL / min under a nitrogen reflux atmosphere.
An empty aluminum pan of the same type was used for the reference. The results are shown in FIG.
【0057】図3から、Poly(PHP)は200 ℃付近で重量
減少が開始し、Poly(PHM)およびPoly(PHP-co-NPM)は240
℃付近で重量減少が開始し、Poly(PHP-co-AN)は270 ℃
付近で重量減少が開始することがわかる。Poly(PHP-co-
NPM)及びPoly(PHP-co-AN)は、Poly(PHP) と比べて、熱
重量減少開始温度が高温側にシフトしており、共重合体
にしたことによって、耐熱性が改善されたことが判る。
熱重量分析後のサンプルのFT-IR 測定により、リン酸基
に由来する1000〜1200cm-1付近の吸収がシフトしてい
ることから、重量減少の一部はリン酸基間の縮合による
水の脱離によるものであることが推察された。250 ℃以
上の温度での重量減少は分子自体の分解に由来すると考
えられる。From FIG. 3, it is found that the weight of Poly (PHP) starts to decrease at around 200 ° C., and that of Poly (PHM) and Poly (PHP-co-NPM)
Weight loss starts around ℃, Poly (PHP-co-AN) 270 ℃
It can be seen that the weight loss starts near. Poly (PHP-co-
For NPM) and Poly (PHP-co-AN), the thermogravimetric reduction onset temperature shifted to higher temperatures compared to Poly (PHP), and the heat resistance was improved by using a copolymer. I understand.
FT-IR measurement of the sample after thermogravimetric analysis shows that the absorption around 1000 to 1200 cm -1 derived from the phosphate group has been shifted. It was speculated that this was due to desorption. It is believed that the weight loss at temperatures above 250 ° C is due to the decomposition of the molecule itself.
【0058】吸水性の評価 実施例のプロトン伝導性重合体キャストフィルムから13
mmφの円形サンプルを切り出し、所望の相対湿度を与え
るデシケーター空間内にて3日間放置して、その重量変
化の割合から次式によって含水率を算出した。結果を図
4に示す。 A ={(WA −WB)/WB}× 100 A :含水率 WA :吸水後のサンプルの重量(g) WB :吸水前のサンプルの重量(g) Evaluation of Water Absorption The proton conductive polymer cast film of the Example
A circular sample of mmφ was cut out, left in a desiccator space giving a desired relative humidity for 3 days, and the water content was calculated from the weight change ratio by the following formula. FIG. 4 shows the results. A = {(W A −W B ) / W B } × 100 A: Water content W A : Weight of sample after water absorption (g) W B : Weight of sample before water absorption (g)
【0059】図4から、Poly(PHP)、Poly(PHM)に比べ
て、Poly(PHP-co-NPM)(実施例3)やPoly(PHP-co-AN)
(実施例5)はリン酸基含有単量体であるPHP(PHM)単位
が少ない故でもあるが、それぞれの相対湿度水準で、吸
水率が低く、従って、膨潤し難いという特長がある。FIG. 4 shows that Poly (PHP-co-NPM) (Example 3) and Poly (PHP-co-AN) are different from Poly (PHP) and Poly (PHM).
(Example 5) has a feature that the water absorption rate is low at each relative humidity level, and therefore it is difficult to swell, even though the number of PHP (PHM) units which are phosphate group-containing monomers is small.
【0060】プロトン伝導性の評価 プロトン伝導性は複素インピーダンス法を用いて測定し
た。上述の方法により含水させた実施例1、2、5、8
及び比較例1のキャストフィルムから切り出した13mmφ
の円形サンプルを2枚の白金電極に挟み、図5に示す
(株)日本ヒューレット・パッカード社製のインピーダ
ンス・アナライザー HP4192Aのセルに充填した。測定周
波数範囲:0.05〜13kHz 、印加電圧:12mV、測定温度範
囲:室温〜160 ℃で、セルのインピーダンスを測定し
た。得られたデータを平面複素インピーダンス解析し、
その結果をcole-cole プロット図形処理をしてサンプル
の抵抗値を求め導電率を下記式により計算した。結果を
図6〜図8に示す。 σ = (d/R) × A σ:導電率(Scm-1) d :膜厚(cm) R :抵抗 (□) A :断面積(cm2) Evaluation of proton conductivity Proton conductivity was measured using a complex impedance method. Examples 1, 2, 5, and 8 hydrated by the above method
And 13 mmφ cut from the cast film of Comparative Example 1.
Was sandwiched between two platinum electrodes, and was filled in a cell of an impedance analyzer HP4192A manufactured by Hewlett-Packard Japan, Inc. shown in FIG. The cell impedance was measured at a measurement frequency range of 0.05 to 13 kHz, an applied voltage of 12 mV, and a measurement temperature range of room temperature to 160 ° C. Plane complex impedance analysis of the obtained data,
The results were subjected to a colle-cole plot graphic processing to determine the resistance of the sample, and the conductivity was calculated by the following equation. The results are shown in FIGS. σ = (d / R) × A σ: conductivity (Scm -1 ) d: film thickness (cm) R: resistance (□) A: cross-sectional area (cm 2 )
【0061】実施例1、2、5及び8は、無水状態でも
最高約10-3Scm-1のプロトン伝導性を示した。無水状態
の場合、温度上昇につれて導電率が上昇しており、温度
依存性が大きい。無水状態でもプロトン伝導性を示すこ
とから、リン酸基がプロトンを発生し、輸送を司ってい
るということが分かる。Examples 1, 2, 5, and 8 exhibited a proton conductivity of up to about 10 -3 Scm -1 even under anhydrous conditions. In the case of the anhydrous state, the conductivity increases as the temperature increases, and the temperature dependency is large. It shows proton conductivity even in an anhydrous state, indicating that the phosphate group generates a proton and controls the transport.
【0062】また、湿潤状態においては含水率が高いも
のほどプロトン伝導性が高く、広い温度範囲で安定した
導電性を維持した。またPHP (PHM)単位の含有割合の高
いほど、プロトン伝導性が向上することが判った。In the wet state, the higher the water content, the higher the proton conductivity, and the stable conductivity was maintained over a wide temperature range. It was also found that the higher the content of the PHP (PHM) unit, the higher the proton conductivity.
【0063】一方、比較例1は、含水状態では高いプロ
トン伝導性を示すものの、含水率が低くなるにつれてプ
ロトン伝導性は著しく落ち込み、無水状態ではプロトン
伝導性を全く示さなかった。本発明のプロトン伝導性高
分子固体電解質は、無水状態でもプロトン伝導性を示す
点で画期的な導電性材料であることが分かる。On the other hand, in Comparative Example 1, although the proton conductivity was high in the water-containing state, the proton conductivity was remarkably reduced as the water content was lowered, and did not show any proton conductivity in the anhydrous state. It can be seen that the proton conductive solid polymer electrolyte of the present invention is a groundbreaking conductive material in that it exhibits proton conductivity even in an anhydrous state.
【0064】フィルム強度の評価 実施例2及び実施例5のキャストフィルムについて、各
相対湿度において、引っ張り強度(MPa)(●)と破断伸
び(%)(□)を測定した。結果を図9に示す。PHP含量
が減少するほど、膜強度は向上するが、無水状態では脆
くなる傾向があった。 Evaluation of Film Strength For the cast films of Examples 2 and 5, the tensile strength (MPa) (●) and elongation at break (%) (□) were measured at each relative humidity. FIG. 9 shows the results. As the PHP content decreased, the film strength increased, but tended to be brittle under anhydrous conditions.
【0065】[0065]
【発明の効果】以上詳述した通り、本発明のリン酸基含
有重合体は、優れた耐熱性を有し、溶媒に可溶であるた
めキャスト製膜が可能である。また、当該リン酸基含有
重合体を用いた本発明の高分子固体電解質は、含水状態
で広い温度領域にわたり優れたプロトン伝導性を有する
のみならず無水状態においてもプロトン伝導性を示す画
期的なプロトン伝導性高分子固体電解質であり、一次電
池用電解質、二次電池用電解質、燃料電池用電解質、表
示素子、各種センサー、信号伝達媒体、固体コンデンサ
ー、イオン交換膜などに好適に利用できる。As described in detail above, the phosphate group-containing polymer of the present invention has excellent heat resistance and is soluble in a solvent, so that a cast film can be formed. In addition, the solid polymer electrolyte of the present invention using the phosphoric acid group-containing polymer has not only excellent proton conductivity over a wide temperature range in a water-containing state but also has an innovative proton conductivity in an anhydrous state. It is a proton-conducting polymer solid electrolyte, and can be suitably used for electrolytes for primary batteries, electrolytes for secondary batteries, electrolytes for fuel cells, display elements, various sensors, signal transmission media, solid capacitors, ion exchange membranes, and the like.
【図1】 PHP 単独重合体(実施例1)、PHP-NPM 共重
合体(実施例3)及びPHP-AN共重合体(実施例5)のFT
-IR の測定結果を示すグラフである。Fig. 1 FT of PHP homopolymer (Example 1), PHP-NPM copolymer (Example 3) and PHP-AN copolymer (Example 5)
4 is a graph showing measurement results of -IR.
【図2】 PHM 単独重合体(実施例8)及びPHM-NPM共
重合体(実施例9)のFT-IR の測定結果を示すグラフで
ある。FIG. 2 is a graph showing FT-IR measurement results of a PHM homopolymer (Example 8) and a PHM-NPM copolymer (Example 9).
【図3】 温度T(℃)とリン酸基含有重合体の熱重量
減少TG(%)の関係を示すグラフである。FIG. 3 is a graph showing a relationship between a temperature T (° C.) and a thermogravimetric reduction TG (%) of a phosphate group-containing polymer.
【図4】 相対湿度(%RH)と含水率 (wt%)の関係を示
すグラフである。FIG. 4 is a graph showing the relationship between relative humidity (% RH) and water content (wt%).
【図5】 プロトン伝導性の測定に使用したインピーダ
ンス・アナライザーの斜視図及び断面図を示す図であ
る。FIG. 5 shows a perspective view and a cross-sectional view of an impedance analyzer used for measuring proton conductivity.
【図6】 各含水率における温度T(℃)と導電率log
(σ/Scm-1) の関係を示すグラフである。FIG. 6: Temperature T (° C.) and conductivity log at each moisture content
6 is a graph showing a relationship (σ / Scm −1 ).
【図7】 各含水率における温度T(℃)と導電率log
(σ/Scm-1) の関係を示すグラフである。FIG. 7: Temperature T (° C.) and conductivity log at each moisture content
6 is a graph showing a relationship (σ / Scm −1 ).
【図8】 各含水率における温度T(℃)と導電率log
(σ/Scm-1) の関係を示すグラフである。FIG. 8: Temperature T (° C.) and conductivity log at each moisture content
6 is a graph showing a relationship (σ / Scm −1 ).
【図9】 各相対湿度(%RH)における引っ張り強度(M
Pa)と破断伸び(%)を示すグラフである。FIG. 9 shows tensile strength (M) at each relative humidity (% RH).
3 is a graph showing Pa) and elongation at break (%).
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H01M 6/18 G01N 27/58 Z 5H029 10/40 H01G 9/02 331G Fターム(参考) 2G004 ZA01 4J100 AB02Q AB04Q AE02Q AE39Q AG02Q AG33Q AJ02Q AJ08Q AJ09Q AK32Q AL02Q AL08P AM02Q AM43Q AM48Q BA08P BA64P CA04 JA43 5G301 CA30 CD01 CE01 5H024 FF21 5H026 AA06 CX04 EE18 5H029 AJ02 AM16 EJ14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // H01M 6/18 G01N 27/58 Z 5H029 10/40 H01G 9/02 331G F-term (Reference) 2G004 ZA01 4J100 AB02Q AB04Q AE02Q AE39Q AG02Q AG33Q AJ02Q AJ08Q AJ09Q AK32Q AL02Q AL08P AM02Q AM43Q AM48Q BA08P BA64P CA04 JA43 5G301 CA30 CD01 CE01 5H024 FF21 5H026 AA06 CX04 EE18 5H029 A18
Claims (7)
アクリル酸エステル類を重合したことを特徴とするリン
酸基含有重合体。1. A (meth) -containing phosphate group at a side chain terminal
A phosphoric acid group-containing polymer obtained by polymerizing acrylic esters.
アクリル酸エステル類と他のビニル単量体とを共重合し
たことを特徴とするリン酸基含有重合体。2. (Meth) having a phosphate group at a side chain terminal
A phosphoric acid group-containing polymer obtained by copolymerizing an acrylic acid ester with another vinyl monomer.
重合体において、前記側鎖末端にリン酸基を含有する
(メタ) アクリル酸エステル類は、下記一般式(A): 【化1】 により表される化合物であることを特徴とするリン酸基
含有重合体。3. The phosphate group-containing polymer according to claim 1, wherein the side chain terminal contains a phosphate group.
(Meth) acrylic acid esters are represented by the following general formula (A): A phosphate group-containing polymer, which is a compound represented by the formula:
おいて、前記他のビニル単量体が、アクリル酸、アクリ
ル酸エステル類、メタクリル酸、メタクリル酸エステル
類、アクリロニトリル、メタクリロニトリル、スチレ
ン、核置換スチレン類、アルキルビニルエーテル類、ア
ルキルビニルエステル類、パーフルオロ・アルキルビニ
ルエーテル類、パーフルオロ・アルキルビニルエステル
類、マレイン酸、無水マレイン酸、フマル酸、イタコン
酸、マレイミドまたはフェニルマレイミドであることを
特徴とするリン酸基含有重合体。4. The phosphoric acid group-containing polymer according to claim 2, wherein the other vinyl monomer is acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester, acrylonitrile, methacrylonitrile, Styrene, nuclear-substituted styrenes, alkyl vinyl ethers, alkyl vinyl esters, perfluoroalkyl vinyl ethers, perfluoroalkyl vinyl esters, maleic acid, maleic anhydride, fumaric acid, itaconic acid, maleimide or phenylmaleimide A phosphoric acid group-containing polymer, characterized in that:
基含有重合体を含むことを特徴とする高分子固体電解
質。5. A polymer solid electrolyte comprising the phosphate group-containing polymer according to any one of claims 1 to 4.
固体電解質において、前記リン酸基含有重合体を可溶な
溶剤に溶解してキャスト製膜したことを特徴とする高分
子固体電解質。6. The solid polymer electrolyte according to claim 5, wherein said phosphate group-containing polymer is dissolved in a soluble solvent to form a cast film.
解質を用いたことを特徴とする燃料電池。7. A fuel cell using the polymer solid electrolyte according to claim 5 or 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37144299A JP4144830B2 (en) | 1999-04-27 | 1999-12-27 | Solid polymer electrolyte membrane for fuel cells |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11963799 | 1999-04-27 | ||
JP11-228686 | 1999-08-12 | ||
JP11-119637 | 1999-08-12 | ||
JP22868699 | 1999-08-12 | ||
JP37144299A JP4144830B2 (en) | 1999-04-27 | 1999-12-27 | Solid polymer electrolyte membrane for fuel cells |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001114834A true JP2001114834A (en) | 2001-04-24 |
JP4144830B2 JP4144830B2 (en) | 2008-09-03 |
Family
ID=27313874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP37144299A Expired - Lifetime JP4144830B2 (en) | 1999-04-27 | 1999-12-27 | Solid polymer electrolyte membrane for fuel cells |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4144830B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002033709A1 (en) * | 2000-10-19 | 2002-04-25 | Canon Kabushiki Kaisha | (composite) membranes of solid polyelectrolytes bearing phosphoric acid groups and processes for their production |
WO2004017334A1 (en) * | 2002-08-12 | 2004-02-26 | Toyota Jidosha Kabushiki Kaisha | Solid polyelectrolyte with high durability and solid polyelectrolyte (composite) film comprising the same |
KR100463189B1 (en) * | 2002-07-15 | 2004-12-23 | 삼성에스디아이 주식회사 | A lithium secondary battery and a method for preparing the same |
JP2005162829A (en) * | 2003-12-01 | 2005-06-23 | Uni-Chemical Co Ltd | Solid polymer electrolyte containing phosphoric acid group/fluorine group/sulfonic acid group and its use |
JP2005322491A (en) * | 2004-05-07 | 2005-11-17 | Uni-Chemical Co Ltd | Solid polyelectrolyte membrane having phosphate group and conjugated diene based liquid oligomer part, and its use |
KR100624470B1 (en) * | 2005-06-14 | 2006-09-15 | 삼성에스디아이 주식회사 | Polymer electrolyte membrane for fuel cell and method of producing the same |
JP2006260972A (en) * | 2005-03-17 | 2006-09-28 | Ricoh Co Ltd | High ion-conductive resin material and its manufacturing method, and fuel cell using ion conductor film made of the material, power supply system and electronic device |
JP2007063515A (en) * | 2005-09-02 | 2007-03-15 | Ricoh Co Ltd | Resin material, method for producing the same, ion conducting film, fuel cell, power source, and electronic equipment |
WO2007119344A1 (en) * | 2006-03-14 | 2007-10-25 | Tokuyama Corporation | Separation membrane for direct liquid fuel cell |
WO2008026778A1 (en) | 2006-08-31 | 2008-03-06 | Canon Kabushiki Kaisha | Composite material and production process of dispersant |
US7452487B2 (en) * | 2004-02-24 | 2008-11-18 | Uni-Chemical Co., Ltd. | Phosphorus-acid-group-containing (meth) acrylamide, its polymer and use thereof, and their production methods |
CN100444437C (en) * | 2004-11-16 | 2008-12-17 | 三星Sdi株式会社 | Metal catalyst and fuel cell with electrode including the same |
CN100462390C (en) * | 2005-05-27 | 2009-02-18 | 三星Sdi株式会社 | Portion conductive electrolyte, method of preparing the same, electrode for fuel cell, method of manufacturing the electrode, and fuel cell including the same |
US7642295B2 (en) | 2003-06-10 | 2010-01-05 | Canon Kabushiki Kaisha | Electrolyte membrane of siloxane-based polymer and solid polymer fuel cell utilizing the same |
US7807301B2 (en) * | 2008-06-17 | 2010-10-05 | Industrial Technology Research Institute | Lithium battery |
JP2012107185A (en) * | 2010-10-19 | 2012-06-07 | Toyota Motor Corp | Phosphonic acid polymer, method for producing the same, and electrolyte film for fuel cell |
WO2012105921A2 (en) * | 2011-02-01 | 2012-08-09 | Hidra Enerji Ve Kimya Sanayi Ticaret Limited Sirketi | Cation exchange polymer electrolyte membrane with flexible structure and low loss of moisture |
WO2015198587A1 (en) * | 2014-06-26 | 2015-12-30 | パナソニック株式会社 | Electrolytic capacitor |
CN111354979A (en) * | 2020-03-09 | 2020-06-30 | 桑顿新能源科技有限公司 | Application of phosphate type metal salt compound, electrolyte additive, electrolyte and battery |
CN114188595A (en) * | 2020-09-15 | 2022-03-15 | 珠海冠宇电池股份有限公司 | Solid polymer electrolyte and lithium ion battery comprising same |
-
1999
- 1999-12-27 JP JP37144299A patent/JP4144830B2/en not_active Expired - Lifetime
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7160968B2 (en) | 2000-10-19 | 2007-01-09 | Canon Kabushiki Kaisha | Phosphoric acid group-containing polymer electrolyte (composite) membrane and its production method |
WO2002033709A1 (en) * | 2000-10-19 | 2002-04-25 | Canon Kabushiki Kaisha | (composite) membranes of solid polyelectrolytes bearing phosphoric acid groups and processes for their production |
KR100463189B1 (en) * | 2002-07-15 | 2004-12-23 | 삼성에스디아이 주식회사 | A lithium secondary battery and a method for preparing the same |
WO2004017334A1 (en) * | 2002-08-12 | 2004-02-26 | Toyota Jidosha Kabushiki Kaisha | Solid polyelectrolyte with high durability and solid polyelectrolyte (composite) film comprising the same |
JP2004079252A (en) * | 2002-08-12 | 2004-03-11 | Toyota Motor Corp | High ruggedness solid polyelectrolyte and solid polyelectrolyte (composite) membrane using it |
US7642295B2 (en) | 2003-06-10 | 2010-01-05 | Canon Kabushiki Kaisha | Electrolyte membrane of siloxane-based polymer and solid polymer fuel cell utilizing the same |
JP2005162829A (en) * | 2003-12-01 | 2005-06-23 | Uni-Chemical Co Ltd | Solid polymer electrolyte containing phosphoric acid group/fluorine group/sulfonic acid group and its use |
US7452487B2 (en) * | 2004-02-24 | 2008-11-18 | Uni-Chemical Co., Ltd. | Phosphorus-acid-group-containing (meth) acrylamide, its polymer and use thereof, and their production methods |
JP2005322491A (en) * | 2004-05-07 | 2005-11-17 | Uni-Chemical Co Ltd | Solid polyelectrolyte membrane having phosphate group and conjugated diene based liquid oligomer part, and its use |
JP4583807B2 (en) * | 2004-05-07 | 2010-11-17 | ユニケミカル株式会社 | Solid polymer electrolyte membrane having phosphoric acid group and conjugated diene-based liquid oligomer part and use thereof |
CN100444437C (en) * | 2004-11-16 | 2008-12-17 | 三星Sdi株式会社 | Metal catalyst and fuel cell with electrode including the same |
JP2006260972A (en) * | 2005-03-17 | 2006-09-28 | Ricoh Co Ltd | High ion-conductive resin material and its manufacturing method, and fuel cell using ion conductor film made of the material, power supply system and electronic device |
CN100462390C (en) * | 2005-05-27 | 2009-02-18 | 三星Sdi株式会社 | Portion conductive electrolyte, method of preparing the same, electrode for fuel cell, method of manufacturing the electrode, and fuel cell including the same |
KR100624470B1 (en) * | 2005-06-14 | 2006-09-15 | 삼성에스디아이 주식회사 | Polymer electrolyte membrane for fuel cell and method of producing the same |
JP2007063515A (en) * | 2005-09-02 | 2007-03-15 | Ricoh Co Ltd | Resin material, method for producing the same, ion conducting film, fuel cell, power source, and electronic equipment |
JP4486013B2 (en) * | 2005-09-02 | 2010-06-23 | 株式会社リコー | Resin material and manufacturing method thereof, ion conductive membrane, fuel cell, power source and electronic device |
WO2007119344A1 (en) * | 2006-03-14 | 2007-10-25 | Tokuyama Corporation | Separation membrane for direct liquid fuel cell |
JP4719796B2 (en) * | 2006-03-14 | 2011-07-06 | 株式会社トクヤマ | Diaphragm for direct liquid fuel cell |
WO2008026778A1 (en) | 2006-08-31 | 2008-03-06 | Canon Kabushiki Kaisha | Composite material and production process of dispersant |
US7807301B2 (en) * | 2008-06-17 | 2010-10-05 | Industrial Technology Research Institute | Lithium battery |
JP2012107185A (en) * | 2010-10-19 | 2012-06-07 | Toyota Motor Corp | Phosphonic acid polymer, method for producing the same, and electrolyte film for fuel cell |
WO2012105921A2 (en) * | 2011-02-01 | 2012-08-09 | Hidra Enerji Ve Kimya Sanayi Ticaret Limited Sirketi | Cation exchange polymer electrolyte membrane with flexible structure and low loss of moisture |
WO2012105921A3 (en) * | 2011-02-01 | 2012-11-15 | Hidra Enerji Ve Kimya Sanayi Ticaret Limited Sirketi | Cation exchange polymer electrolyte membrane with flexible structure and low loss of moisture |
WO2015198587A1 (en) * | 2014-06-26 | 2015-12-30 | パナソニック株式会社 | Electrolytic capacitor |
JPWO2015198587A1 (en) * | 2014-06-26 | 2017-04-27 | パナソニック株式会社 | Electrolytic capacitor |
CN106663540A (en) * | 2014-06-26 | 2017-05-10 | 松下电器产业株式会社 | Electrolytic capacitor |
CN106663540B (en) * | 2014-06-26 | 2018-08-28 | 松下电器产业株式会社 | Electrolytic capacitor |
CN111354979A (en) * | 2020-03-09 | 2020-06-30 | 桑顿新能源科技有限公司 | Application of phosphate type metal salt compound, electrolyte additive, electrolyte and battery |
CN114188595A (en) * | 2020-09-15 | 2022-03-15 | 珠海冠宇电池股份有限公司 | Solid polymer electrolyte and lithium ion battery comprising same |
WO2022057665A1 (en) * | 2020-09-15 | 2022-03-24 | 珠海冠宇电池股份有限公司 | Solid-state polymer electrolyte and lithium ion battery |
CN114188595B (en) * | 2020-09-15 | 2024-06-25 | 珠海冠宇电池股份有限公司 | Solid polymer electrolyte and lithium ion battery comprising same |
Also Published As
Publication number | Publication date |
---|---|
JP4144830B2 (en) | 2008-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4144830B2 (en) | Solid polymer electrolyte membrane for fuel cells | |
Li et al. | Synthesis and characterization of controlled molecular weight disulfonated poly (arylene ether sulfone) copolymers and their applications to proton exchange membranes | |
Zhang et al. | Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery | |
Yang et al. | New anhydrous proton exchange membranes based on fluoropolymers blend imidazolium poly (aromatic ether ketone) s for high temperature polymer electrolyte fuel cells | |
Bai et al. | Proton conductivity and properties of sulfonated polyarylenethioether sulfones as proton exchange membranes in fuel cells | |
Gao et al. | Sulfonated copoly (phthalazinone ether ketone nitrile) s as proton exchange membrane materials | |
JP4661083B2 (en) | Polymer compound and production method thereof | |
Yang et al. | Formation and investigation of dual cross-linked high temperature proton exchange membranes based on vinylimidazolium-functionalized poly (2, 6-dimethyl-1, 4-phenylene oxide) and polystyrene | |
Mohanty et al. | Synthesis and characterization of novel fluorinated poly (arylene ether sulfone) s containing pendant sulfonic acid groups for proton exchange membrane materials | |
Wang et al. | Multiblock copolymers of poly (2, 5‐benzophenone) and disulfonated poly (arylene ether sulfone) for proton‐exchange membranes. I. Synthesis and characterization | |
Huang et al. | Imidazolium-functionalized anion exchange membranes using poly (ether sulfone) s as macrocrosslinkers for fuel cells | |
Chen et al. | Quinoxaline-based crosslinked membranes of sulfonated poly (arylene ether sulfone) s for fuel cell applications | |
Chen et al. | Cross-linked norbornene sulfonated poly (ether ketone) s for proton exchange membrane | |
Lu et al. | The structure–property–performance relationship of disulfonated naphthyl pendants bearing poly (aryl ether) s for polymer electrolyte membrane applications | |
KR101517011B1 (en) | Tetrasulfonated poly(arylene biphenyl sulfone) copolymers, Manufacturing Method thereof and Proton Exchange Membrane for Fuel Cells comprising thereof | |
Li et al. | Multi-block copolymers with fluorene-containing hydrophilic segments densely functionalized by side-chain quaternary ammonium groups as anion exchange membranes | |
WO2011145748A1 (en) | Polyarylene block copolymer, process for production thereof, and polymeric electrolyte | |
Oh et al. | Synthesis of fluorinated amphiphilic triblock copolymer and its application in high temperature PEM fuel cells | |
Gourdoupi et al. | New high temperature polymer electrolyte membranes. Influence of the chemical structure on their properties | |
JP2010015980A (en) | Polymer electrolyte, crosslinked polymer electrolyte, polymer electrolyte membrane, and use of the same | |
Dong et al. | Synthesis and properties of sulfonated poly (phosphazene)‐graft‐poly (styrene‐co‐N‐benzylmaleimide) copolymers via atom transfer radical polymerization for proton exchange membrane | |
CN108832161B (en) | Cross-linked composite organic phosphonic acid high-temperature proton exchange membrane and preparation method thereof | |
Nam et al. | Synthesis and properties of bonding layer containing flexible and fluorinated moieties for hydrocarbon-based membrane electrode assemblies | |
Cho et al. | Preparation of Poly (phenylene oxide-gstyrenesulfonic acid) and their Characterization for DMFC Membrane | |
Lee et al. | Highly sulfonated poly (arylene biphenylsulfone ketone) block copolymers prepared via post-sulfonation for proton conducting electrolyte membranes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080305 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080507 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080611 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080616 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4144830 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140627 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |