JP2001111105A - Light emitting diode - Google Patents

Light emitting diode

Info

Publication number
JP2001111105A
JP2001111105A JP28841799A JP28841799A JP2001111105A JP 2001111105 A JP2001111105 A JP 2001111105A JP 28841799 A JP28841799 A JP 28841799A JP 28841799 A JP28841799 A JP 28841799A JP 2001111105 A JP2001111105 A JP 2001111105A
Authority
JP
Japan
Prior art keywords
light emitting
light
layer
emitting diode
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28841799A
Other languages
Japanese (ja)
Inventor
Naoki Kaneda
直樹 金田
Masatomo Shibata
真佐知 柴田
Taiichiro Konno
泰一郎 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP28841799A priority Critical patent/JP2001111105A/en
Publication of JP2001111105A publication Critical patent/JP2001111105A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a light emitting diode which has a high light extraction efficiency and a high emission power and is easy to manufacture at a low cost. SOLUTION: The light emitting diode 1 having an AlGaInP light emitting part 5 epitaxially grown by the metal organic compound chemical vapor deposition on an n-conductivity type GaAs substrate 2 and a window layer 7 formed on the emitting part 5 comprises a layer 4 transparent to the light emission of the light emitting part 5, and this layer 4 is 1.5 μm or thicker and located nearer to the GaAs substrate 2 than the light emitting part 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は発光効率が高い発光
ダイオードに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode having high luminous efficiency.

【0002】[0002]

【従来の技術】発光ダイオード(LED)は各種表示用
光源として広く用いられている。特に屋外ディスプレイ
や交通信号用光源は高出力、低消費電力で、しかも低価
格であることが求められている。
2. Description of the Related Art Light emitting diodes (LEDs) are widely used as light sources for various displays. In particular, outdoor displays and light sources for traffic signals are required to have high output, low power consumption, and low cost.

【0003】そのため、AlGaInP系の可視光LE
Dにおいては、ウインドウ層を十分厚くし、電流分散並
びに光取出効率を大きくして、高出力及び低消費電力を
実現している。
For this reason, visible light LE of AlGaInP type is used.
In D, the window layer is made sufficiently thick, the current dispersion and the light extraction efficiency are increased, and high output and low power consumption are realized.

【0004】このような従来のLEDの一つとして、例
えば、アプライド・フィジックス・レターズ第61巻p
p.1045−1047に開示されるように、ウインド
ウ層以外のLED構成層を有機金属化合物気相エピタキ
シャル成長法(MOVPE法)で成長し、ウインドウ層
を水素化物気相成長法(HVPE法)で成長させるよう
にしている。この場合、HVPE法の成膜速度がMOV
PE法の成膜速度よりも一桁程度高いことを利用して、
ウインドウ層厚を容易に数十マイクロメートル程度に厚
膜化することができ、これにより、容易に高出力のLE
Dを実現している。
As one of such conventional LEDs, for example, Applied Physics Letters Vol. 61, p.
p. As disclosed in Patent Documents 1045 to 1047, an LED constituent layer other than a window layer is grown by metalorganic compound vapor phase epitaxy (MOVPE), and the window layer is grown by hydride vapor phase epitaxy (HVPE). I have to. In this case, the film formation rate of the HVPE method is MOV
Utilizing that it is about one digit higher than the deposition rate of the PE method,
The thickness of the window layer can be easily increased to about several tens of micrometers, which makes it easy to obtain a high-output LE.
D is realized.

【0005】しかしながら、ウインドウ層以外のLED
構成層をMOVPE法で成長させ、ウインドウ層をHV
PE法で成長させるという、二度の成長を行う必要があ
ることから、低価格での製作が難しいという問題があ
る。
However, LEDs other than the window layer
The constituent layer is grown by MOVPE, and the window layer is
There is a problem that it is difficult to manufacture at a low price because it is necessary to perform the growth twice, that is, to grow by the PE method.

【0006】そこで、ジャーナル・オブ・クリスタル・
グロース第142巻pp.15−20に開示されている
ように、ウインドウ層を含むすべてのLED構成層をM
OVPE法で成長することで、低価格での製作が行え
る。
Therefore, the Journal of Crystal
Growth Volume 142 pp. 15-20, all LED component layers, including the window layer, are
By growing by the OVPE method, it can be manufactured at low cost.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、ウイン
ドウ層を含むすべてのLED構成層をMOVPE法で成
長する場合には、HVPE法と比べてMOVPE法の成
膜速度は一桁程度遅く、成長中の加熱時間が長くなり、
ウインドウ層の厚膜化により、p型の導電性を生じせし
めるためのクラッド層に添加する不純物(p型ドーパン
ト)が、クラッド層から発光部に対し拡散して発光出力
を低下させてしまうため、高出力化が困難であるという
問題がある。
However, when all the LED constituent layers including the window layer are grown by the MOVPE method, the film forming rate of the MOVPE method is about one digit slower than that of the HVPE method. The heating time is longer,
As the thickness of the window layer is increased, an impurity (p-type dopant) added to the clad layer for generating p-type conductivity is diffused from the clad layer to the light-emitting portion, thereby lowering the light-emission output. There is a problem that it is difficult to increase the output.

【0008】本発明の目的は、このような従来のLED
の欠点を除去し、光取出効率が高くて発光出力が大き
く、しかも製作が容易で低価格な発光ダイオードを提供
することにある。
An object of the present invention is to provide such a conventional LED.
An object of the present invention is to provide a light emitting diode which has a high light extraction efficiency and a large light emitting output, is easy to manufacture, and is inexpensive.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するために、請求項1の発明は、n型導電性のGaAs
基板上に、有機金属化合物気相成長法によりエピタキシ
ャル成長にてAlGaInPからなる発光部とその発光
部上にウインドウ層を形成して構成される発光ダイオー
ドにおいて、発光部の発光に対し透明な層を、厚さ1.
5μm以上で、かつ、発光部よりもGaAs基板側に位
置して形成する発光ダイオードである。
In order to achieve the above object, the present invention provides an n-type conductive GaAs.
On a substrate, a light emitting portion made of AlGaInP and a window layer formed on the light emitting portion by epitaxial growth by an organometallic compound vapor phase epitaxy method. Thickness 1.
The light emitting diode is formed to be 5 μm or more and located closer to the GaAs substrate than the light emitting unit.

【0010】請求項2の発明は、発光部の発光に対し透
明な層の一部または全部が、AlGaInPまたはAl
InPからなる請求項1記載の発光ダイオードである。
According to a second aspect of the present invention, a part or all of the layer transparent to light emission of the light emitting portion is made of AlGaInP or AlGaInP.
2. The light emitting diode according to claim 1, comprising InP.

【0011】請求項3の発明は、発光部の発光に対し透
明な層の一部または全部が、AlGaAsまたはAlA
sからなる請求項1または2記載の発光ダイオードであ
る。
According to a third aspect of the present invention, a part or all of the layer transparent to the light emission of the light emitting part is made of AlGaAs or AlA.
3. The light emitting diode according to claim 1, wherein the light emitting diode comprises s.

【0012】請求項4の発明は、発光部は量子井戸構造
である請求項1〜3いずれかに記載の発光ダイオードで
ある。
According to a fourth aspect of the present invention, there is provided the light emitting diode according to any one of the first to third aspects, wherein the light emitting section has a quantum well structure.

【0013】請求項5の発明は、発光部の発光に対し透
明な層とGaAs基板との間に、発光部の発光波長が最
大反射率となる分布ブラッグ反射膜を具備する請求項1
〜4いずれかに記載の発光ダイオードである。
According to a fifth aspect of the present invention, there is provided a distributed Bragg reflection film in which the emission wavelength of the light emitting portion has a maximum reflectance between the layer transparent to the light emission of the light emitting portion and the GaAs substrate.
5. The light-emitting diode according to any one of items 1 to 4.

【0014】上記構成によれば、AlGaInPの発光
部よりも基板側に位置して層厚1.5μm以上の透明な
層を形成することで、発光部から発光される光が、LE
Dチップ内で反射されて最終的に吸収されてしまう割合
が小さくなり、高出力化が図れる。
According to the above configuration, by forming a transparent layer having a layer thickness of 1.5 μm or more at a position closer to the substrate than the AlGaInP light emitting portion, light emitted from the light emitting portion can be emitted by the LE.
The ratio of reflection in the D chip and ultimate absorption is reduced, and high output can be achieved.

【0015】このため、従来ほどウインドウ層の厚膜化
を行うことなく、有機金属化合物気相成長法にてLED
を製作できるため、製作が容易でかつ低価格な発光ダイ
オードが実現できる。
[0015] Therefore, without increasing the thickness of the window layer as in the prior art, the LED is formed by the metalorganic compound vapor deposition method.
Therefore, a light emitting diode which is easy to manufacture and inexpensive can be realized.

【0016】[0016]

【発明の実施の形態】以下に、本発明の好適実施の形態
を添付図面にしたがって説明する。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0017】図1は、本発明の好適実施の形態である発
光ダイオードの拡大横断面図を示したものである。
FIG. 1 is an enlarged cross-sectional view of a light emitting diode according to a preferred embodiment of the present invention.

【0018】図1に示すように、本発明の発光ダイオー
ド1は、n型導電性のGaAs基板上2に、有機金属化
合物気相成長法(MOVPE法)により順次エピタキシ
ャル成長され、発光部5とその発光部5上にウインドウ
層7を形成して構成され、さらに、その発光部5をAl
GaInPで形成し、この発光部5の発光に対し透明な
層4を、厚さ1.5μm以上で、かつ、発光部5よりも
GaAs基板2側に位置して形成して構成される。
As shown in FIG. 1, a light emitting diode 1 of the present invention is epitaxially grown on an n-type conductive GaAs substrate 2 by a metal organic compound vapor phase epitaxy (MOVPE) method. A window layer 7 is formed on the light emitting section 5, and the light emitting section 5 is
The light emitting unit 5 is formed of GaInP, and the transparent layer 4 is formed to have a thickness of 1.5 μm or more and to be positioned closer to the GaAs substrate 2 than the light emitting unit 5.

【0019】次に、本発明の発光ダイオード1の構成を
より具体的に説明する。
Next, the structure of the light emitting diode 1 of the present invention will be described more specifically.

【0020】本発明の発光ダイオード1は、n型導電性
のGaAs基板上2に、MOVPE法により順次エピタ
キシャル成長させていく要領でLED各構成層を形成し
ていく。
In the light emitting diode 1 of the present invention, each constituent layer of the LED is formed on an n-type conductive GaAs substrate 2 in the manner of sequentially growing epitaxially by the MOVPE method.

【0021】まず、本発明の発光ダイオード1は、n型
導電性のGaAs基板上2に、Seが添加されn型の導
電性を有するSe−GaAsバッファ層3を形成し、次
に、GaAsに格子整合し、間接遷移型のバンド構造
で、Seが添加されn型の導電性を有し、厚さd4
1.5μm以上のSe−AlGaInPクラッド層4を
形成し、さらに、GaAsに格子整合し、直接遷移型の
バンド構造を有し、厚さd5 が0.4〜1.0μmのu
n−AlGaInP活性層5を形成する。
First, in the light emitting diode 1 of the present invention, a Se-GaAs buffer layer 3 having an n-type conductivity by adding Se is formed on an n-type GaAs substrate 2. A Se-AlGaInP cladding layer 4 is lattice-matched, has an indirect transition type band structure, is doped with Se, has n-type conductivity, and has a thickness d 4 of 1.5 μm or more. aligned, have a direct transition type band structure, the thickness d 5 of 0.4~1.0Myuemu u
An n-AlGaInP active layer 5 is formed.

【0022】このとき、Se−AlGaInPクラッド
層4が、発光部5となるAlGaInP活性層5からの
発光に対し透明な層4となるようにしている。
At this time, the Se—AlGaInP clad layer 4 is made to be a layer 4 that is transparent to light emitted from the AlGaInP active layer 5 serving as the light emitting section 5.

【0023】なお、発光部5の発光に対し透明な層4の
一部または全部が、AlGaInPまたはAlInPで
形成するようにしてもよいし、AlGaAsまたはAl
Asで形成するようにしてもよい。
A part or the whole of the layer 4 transparent to the light emission of the light emitting section 5 may be made of AlGaInP or AlInP, or may be made of AlGaAs or AlGaAs.
It may be formed of As.

【0024】すなわち、発光部の発光に対し透明な層4
は、発光部5から発光した光のLED外部への取り出し
効率が上がるように作用するものであれば、いかなるも
のを用いてもよい。
That is, the layer 4 that is transparent to the light emitted from the light emitting section
Any material may be used as long as it acts to increase the efficiency of extracting light emitted from the light emitting section 5 to the outside of the LED.

【0025】また、発光部5は量子井戸構造となるよう
にしている。
The light emitting section 5 has a quantum well structure.

【0026】この後、GaAsに格子整合し間接遷移型
のバンド構造で、Znが添加されp型の導電性を有する
Zn−AlGaInPクラッド層6を形成し、最後に、
Znが添加されp型の導電性を有し、厚さd7 が4〜1
0μmのZn−GaPウインドウ層7を形成して、本発
明の発光ダイオード1が構成される。
Thereafter, a Zn-AlGaInP clad layer 6 which is lattice-matched to GaAs, has an indirect transition type band structure, is doped with Zn, and has p-type conductivity is formed.
Zn is added, has p-type conductivity, and has a thickness d 7 of 4-1.
The light emitting diode 1 of the present invention is formed by forming a Zn-GaP window layer 7 of 0 μm.

【0027】なお、発光部5の発光に対し透明な層4と
GaAs基板2との間に、発光部5の発光波長が最大反
射率となる分布ブラッグ反射膜(DBR)を具備するよ
うにするとなおよい。
It is to be noted that a distributed Bragg reflection film (DBR) in which the light emission wavelength of the light emitting portion 5 has a maximum reflectance is provided between the GaAs substrate 2 and the transparent layer 4 for light emission of the light emitting portion 5. Better.

【0028】以上説明してきたように、本発明の発光ダ
イオード1は、上記のようにして得られるLEDエピタ
キシャルウエハであり、このLEDエピタキシャルウエ
ハからLEDチップを作製する。
As described above, the light emitting diode 1 of the present invention is an LED epitaxial wafer obtained as described above, and an LED chip is manufactured from this LED epitaxial wafer.

【0029】チップの大きさは300μm角で、エピタ
キシャルウエハ基板側にあたるチップ下面全体に、Au
−Ge−Ni合金からなる電極を、Zn−GaPウイン
ドウ層7側にはAu−Zn−Ni合金からなる直径15
0μmの円形の電極を形成し、このLEDチップをステ
ム上に組み込んで用いる。
The size of the chip is 300 μm square, and the entire lower surface of the chip corresponding to the epitaxial wafer substrate side is covered with Au.
An electrode made of a Ge—Ni alloy, and a diameter of 15 mm made of an Au—Zn—Ni alloy on the Zn—GaP window layer 7 side.
A circular electrode of 0 μm is formed, and this LED chip is incorporated on a stem for use.

【0030】直流電源により本発明の発光ダイオード1
の発光特性を調べた結果、20mA通電時の発光出力は
0.8〜1.1mW、順方向電圧は1.9Vであった。
The light emitting diode 1 of the present invention is operated by a DC power supply.
As a result of examining the light emission characteristics, the light emission output at the time of applying 20 mA current was 0.8 to 1.1 mW, and the forward voltage was 1.9 V.

【0031】次に、本発明の発光ダイオード1の作用を
説明する。
Next, the operation of the light emitting diode 1 of the present invention will be described.

【0032】図2は、本発明の発光ダイオード1の発光
部5に対し透明な層4の厚さd4 〔μm〕を横軸にと
り、発光ダイオード1の発光出力〔a.u.〕を縦軸に
とった発光出力測定図を示したものである。
FIG. 2 shows the light emitting output [a. Of the light emitting diode 1 of the light emitting diode 1 of the present invention with the thickness d 4 [μm] of the transparent layer 4 taken along the horizontal axis. u. ] On the vertical axis.

【0033】図2に示されているように、発光部5に対
し透明な層4の厚さd4 が厚くなるのに応じて、発光ダ
イオード1の発光出力は増加する。特に、1.5μm以
上の厚さになると、急激に発光出力が増加する。
As shown in FIG. 2, as the thickness d 4 of the transparent layer 4 with respect to the light emitting section 5 increases, the light emitting output of the light emitting diode 1 increases. In particular, when the thickness becomes 1.5 μm or more, the light emission output sharply increases.

【0034】半導体結晶中の不純物は結晶の温度が高い
ほど拡散しやすく、AlGaInP中のSeと比較して
Znの拡散速度は数倍〜数十倍程度速く、また拡散量は
加熱時間に概ね比例する。このため、Se、Znを添加
した層を含むLEDでは、発光部近傍へのZnの拡散に
より発光出力が低下してしまう原因となっている。
Impurities in a semiconductor crystal are more likely to diffuse as the temperature of the crystal is higher, the diffusion rate of Zn is several times to several tens times faster than Se in AlGaInP, and the amount of diffusion is generally proportional to the heating time. I do. For this reason, in an LED including a layer to which Se and Zn are added, the diffusion of Zn in the vicinity of the light emitting portion causes a decrease in the light emission output.

【0035】本発明においては、Seが添加された層
は、Znを含む層よりも先にエピタキシャル成長される
ため長時間成長を行っても発光出力の低下をもたらすこ
とはない。
In the present invention, since the layer to which Se is added is epitaxially grown before the layer containing Zn, even if the layer is grown for a long time, the light emission output does not decrease.

【0036】したがってSe−AlGaInPクラッド
層4を1.5μm以上厚く成長させることにより、従
来、Zn−GaPウインドウ層7を厚膜化することで光
取り出し効率を向上させた代わりに、光取り出し効率を
向上させ、しかもZnの拡散による発光出力の低下を抑
えることができる。
Therefore, by increasing the thickness of the Se—AlGaInP cladding layer 4 by 1.5 μm or more, the light extraction efficiency is improved instead of increasing the thickness of the Zn—GaP window layer 7 conventionally. It is possible to improve the light emission output due to the diffusion of Zn.

【0037】つまり、本発明による発光ダイオード1
は、n型導電性のGaAs基板2上に順次エピタキシャ
ル成長され、発光部5がAlGaInPからなり、発光
部5よりも基板側に位置し、しかも発光部5の発光に対
し透明な層4の層厚を1.5μm以上としていること
で、発光部5から発光される光が、LEDチップ内で反
射されて最終的に吸収されてしまう割合が小さくなる。
That is, the light emitting diode 1 according to the present invention
Is a layer thickness of the layer 4 that is sequentially epitaxially grown on an n-type conductive GaAs substrate 2, the light emitting portion 5 is made of AlGaInP, and is located closer to the substrate than the light emitting portion 5, and is transparent to light emission of the light emitting portion 5. Is set to 1.5 μm or more, the ratio of light emitted from the light emitting unit 5 reflected in the LED chip and finally absorbed is reduced.

【0038】このため、従来ほどウインドウ層7の厚膜
化を行うことなく、光の取り出し効率を上げることがで
き、結果的に、発光出力が高く、しかも、1回のMOV
PE成長で、製作が容易で低価格な発光ダイオードが実
現できる。
As a result, the light extraction efficiency can be increased without increasing the thickness of the window layer 7 as compared with the related art, and as a result, the light emission output is high and the MOV can be performed once.
By PE growth, a light emitting diode which is easy to manufacture and inexpensive can be realized.

【0039】発光部5の発光に対し透明な層4は、発光
部5を量子井戸構造としているために、発光部5に注入
された電子及び正孔が発光部5と透明な層4間のエネル
ギー障壁を超えて漏洩しないように、またトンネル電流
により漏洩しないようにするために、通常0.3〜1.
0μm程度の膜厚とされているが、透明な層4の膜厚が
1.5μm以上になると光取出効率の増加割合が大きく
なる。
The layer 4 which is transparent to the light emitted from the light emitting section 5 has a quantum well structure, so that the electrons and holes injected into the light emitting section 5 are filled between the light emitting section 5 and the transparent layer 4. In order not to leak beyond the energy barrier and not to leak due to tunneling current, usually 0.3-1.
Although the thickness is about 0 μm, when the thickness of the transparent layer 4 is 1.5 μm or more, the rate of increase in light extraction efficiency increases.

【0040】[0040]

【発明の効果】以上説明したことから明らかなように、
本発明によれば次のごとき優れた効果を発揮する。
As is apparent from the above description,
According to the present invention, the following excellent effects are exhibited.

【0041】(1)光取出効率が高い。(1) Light extraction efficiency is high.

【0042】(2)発光出力が大きい。(2) The light emission output is large.

【0043】(3)1回のMOVPE成長で、容易に作
製することができる。
(3) It can be easily manufactured by one MOVPE growth.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の好適実施の形態を示す拡大横断面図で
ある。
FIG. 1 is an enlarged cross-sectional view showing a preferred embodiment of the present invention.

【図2】図1に示した発光ダイオードの発光部に対し透
明な層の厚さに応じた発光出力測定図である。
FIG. 2 is a view showing a light emission output measurement according to a thickness of a layer transparent to a light emitting portion of the light emitting diode shown in FIG.

【符号の説明】[Explanation of symbols]

1 発光ダイオード 2 n−GaAs基板 3 Se−GaAsバッファ層 4 Se−AlGaInPクラッド層 5 un−AlGaInP活性層 6 Zn−AlGaInPクラッド層 7 Zn−GaPウインドウ層 Reference Signs List 1 light emitting diode 2 n-GaAs substrate 3 Se-GaAs buffer layer 4 Se-AlGaInP cladding layer 5 un-AlGaInP active layer 6 Zn-AlGaInP cladding layer 7 Zn-GaP window layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今野 泰一郎 茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内 Fターム(参考) 5F041 AA04 AA41 CA05 CA34 CA65 CA85 FF01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Taiichiro Konno 3550 Kida Yomachi, Tsuchiura-shi, Ibaraki F-term in Advanced Research Center, Hitachi Cable, Ltd. F-reference (reference) 5F041 AA04 AA41 CA05 CA34 CA65 CA85 FF01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 n型導電性のGaAs基板上に、有機金
属化合物気相成長法によりエピタキシャル成長にてAl
GaInPからなる発光部とその発光部上にウインドウ
層を形成して構成される発光ダイオードにおいて、発光
部の発光に対し透明な層を、厚さ1.5μm以上で、か
つ、発光部よりもGaAs基板側に位置して形成するこ
とを特徴とする発光ダイオード。
1. An Al-based GaAs substrate having an n-type conductivity is epitaxially grown on a GaAs substrate by a metalorganic compound vapor deposition method.
In a light emitting diode formed by forming a light emitting portion made of GaInP and a window layer on the light emitting portion, a layer transparent to light emission of the light emitting portion is formed to have a thickness of 1.5 μm or more and to be GaAs than light emitting portion. A light-emitting diode formed on the substrate side.
【請求項2】 発光部の発光に対し透明な層の一部また
は全部が、AlGaInPまたはAlInPからなる請
求項1記載の発光ダイオード。
2. The light emitting diode according to claim 1, wherein a part or all of a layer transparent to light emission of the light emitting unit is made of AlGaInP or AlInP.
【請求項3】 発光部の発光に対し透明な層の一部また
は全部が、AlGaAsまたはAlAsからなる請求項
1または2記載の発光ダイオード。
3. The light emitting diode according to claim 1, wherein a part or all of a layer transparent to light emission of the light emitting unit is made of AlGaAs or AlAs.
【請求項4】 発光部は量子井戸構造である請求項1〜
3いずれかに記載の発光ダイオード。
4. The light emitting section has a quantum well structure.
3. The light-emitting diode according to any one of 3.
【請求項5】 発光部の発光に対し透明な層とGaAs
基板との間に、発光部の発光波長が最大反射率となる分
布ブラッグ反射膜を具備する請求項1〜4いずれかに記
載の発光ダイオード。
5. A light-emitting portion comprising a transparent layer and GaAs.
The light emitting diode according to any one of claims 1 to 4, further comprising a distributed Bragg reflection film having a light emission wavelength of a light emitting portion having a maximum reflectance between the substrate and the substrate.
JP28841799A 1999-10-08 1999-10-08 Light emitting diode Pending JP2001111105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28841799A JP2001111105A (en) 1999-10-08 1999-10-08 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28841799A JP2001111105A (en) 1999-10-08 1999-10-08 Light emitting diode

Publications (1)

Publication Number Publication Date
JP2001111105A true JP2001111105A (en) 2001-04-20

Family

ID=17729955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28841799A Pending JP2001111105A (en) 1999-10-08 1999-10-08 Light emitting diode

Country Status (1)

Country Link
JP (1) JP2001111105A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150664A (en) * 2003-11-19 2005-06-09 Shin Etsu Handotai Co Ltd Light-emitting element and its manufacturing method
JP2005150645A (en) * 2003-11-19 2005-06-09 Shin Etsu Handotai Co Ltd Light-emitting element
JP2008227539A (en) * 2002-07-31 2008-09-25 Shin Etsu Handotai Co Ltd Method of manufacturing light emitting element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227539A (en) * 2002-07-31 2008-09-25 Shin Etsu Handotai Co Ltd Method of manufacturing light emitting element
JP2005150664A (en) * 2003-11-19 2005-06-09 Shin Etsu Handotai Co Ltd Light-emitting element and its manufacturing method
JP2005150645A (en) * 2003-11-19 2005-06-09 Shin Etsu Handotai Co Ltd Light-emitting element
JP4569858B2 (en) * 2003-11-19 2010-10-27 信越半導体株式会社 Method for manufacturing light emitting device
JP4569859B2 (en) * 2003-11-19 2010-10-27 信越半導体株式会社 Method for manufacturing light emitting device

Similar Documents

Publication Publication Date Title
JP3084364B2 (en) Light emitting diode
US5789768A (en) Light emitting diode having transparent conductive oxide formed on the contact layer
JP3643665B2 (en) Semiconductor light emitting device
US20220181513A1 (en) Hybrid growth method for iii-nitride tunnel junction devices
Wirth et al. High-efficiency resonant-cavity LEDs emitting at 650 nm
JP2002111053A (en) Semiconductor light emitting element
JP2002280610A (en) Ultraviolet light emitting diode
KR20110137772A (en) Plasmonic light emitting diode
JPH07107949B2 (en) Phased array semiconductor laser
Peters et al. Growth of beryllium doped Al x Ga1− x As/GaAs mirrors for vertical‐cavity surface‐emitting lasers
Lee et al. Improved light output of AlGaInP-based micro-light emitting diode using distributed Bragg reflector
Yen et al. On an AlGaInP-based light-emitting diode with an ITO direct ohmic contact structure
JP2006040998A (en) Semiconductor light emitting device and epitaxial wafer therefor
Zhang et al. High-power quantum-dot superluminescent LED with broadband drive current insensitive emission spectra using a tapered active region
JP2001111105A (en) Light emitting diode
JPH11284280A (en) Semiconductor laser device, its manufacture and manufacture of iii-v compound semiconductor element
US6008507A (en) Photoelectric semiconductor device having a GaAsP substrate
CN114530530A (en) Epitaxial structure of red and yellow GaAs diode and preparation method thereof
Hooper et al. InGaN laser diodes and high brightness light emitting diodes grown by molecular beam epitaxy
JP4039187B2 (en) Semiconductor light emitting device
JP3966962B2 (en) Light emitting diode and manufacturing method thereof
JP2001102627A (en) AlGaInP BASED LIGHT EMITTING DIODE AND FABRICATION THEREOF
JP2001007445A (en) AlGaInP BASED LIGHT EMITTING ELEMENT AND EPITAXIAL WAFER FOR LIGHT EMITTING ELEMENT
JP2004103710A (en) Semiconductor light emitting element
JPH09172198A (en) Light emitting diode and its manufacture