JP2001110927A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2001110927A
JP2001110927A JP28323799A JP28323799A JP2001110927A JP 2001110927 A JP2001110927 A JP 2001110927A JP 28323799 A JP28323799 A JP 28323799A JP 28323799 A JP28323799 A JP 28323799A JP 2001110927 A JP2001110927 A JP 2001110927A
Authority
JP
Japan
Prior art keywords
stub
semiconductor element
wiring
bga
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28323799A
Other languages
Japanese (ja)
Inventor
Takayuki Yoshida
隆幸 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP28323799A priority Critical patent/JP2001110927A/en
Publication of JP2001110927A publication Critical patent/JP2001110927A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

PROBLEM TO BE SOLVED: To solve a problem where a semiconductor element mounted on the conventional semiconductor devices, such as BGA and CSP, is liable to malfunction due to the fact that wiring plates stub resides in the semiconductor device to behave like an open stub at high frequencies and gets short-circuited at certain frequency whose effective wavelength becomes four times as long as the length of the open stub, and when rectangular wave signals which contain many higher harmonics are transmitted through a wiring, a specific frequency component of signals is totally reflected in opposite phase at the stub part, a reflected signal component is superposed on the rectangular wave signals to disturb them, and this disturbance of the rectangular waves induces the semiconductor element to malfunction. SOLUTION: The length of the plates stub 6 of a line formed on a BGA or a CPS is set smaller than 1/4 as long as the wavelength of the upper limit of a required frequency band, by which signals transmitted through a signal line 4 are lease deformed, and a semiconductor element mounted on a BGA or a CPS can be prevented from malfunctioning.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高速伝送を必要と
する電子部品を実装してパッケージ化された半導体装置
に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor device packaged by mounting electronic components requiring high-speed transmission.

【0002】[0002]

【従来の技術】近年、電子機器は益々小型、高機能化、
動作速度の高速化が図られモジュール化が進行し、これ
らに対応するパッケージとしてBGA(Ball Gr
idArray Package)やCSP(Chip
Scale Package)等が開発されている。
2. Description of the Related Art In recent years, electronic devices have become increasingly smaller and more sophisticated.
The operation speed has been increased and modularization has been promoted. BGA (Ball Gr)
idArray Package) and CSP (Chip)
Scale Package) has been developed.

【0003】以下図面を参照しながら、従来の半導体装
置の一例として高速伝送に対応したBGAについて説明
する。
Hereinafter, a BGA compatible with high-speed transmission will be described as an example of a conventional semiconductor device with reference to the drawings.

【0004】図6は従来の高速伝送に対応したBGAの
断面構成の一例を示すものである。図6において、41
は複数の電極パッドを有する半導体素子、42はワイ
ヤ、43はモールド樹脂、44はソルダレジスト、45
は表層配線、46は接地層(以下、GND層と呼ぶ)、
47は電源層、48は裏面配線、49はビア、50は半
田ボールを示す。全体でBGA51を構成している。ま
た、52は、配線を形成するための電解めっき工程に使
用されためっきスタブを示す。
FIG. 6 shows an example of a sectional configuration of a conventional BGA compatible with high-speed transmission. In FIG. 6, 41
Is a semiconductor element having a plurality of electrode pads, 42 is a wire, 43 is a mold resin, 44 is a solder resist, 45
Is a surface wiring, 46 is a ground layer (hereinafter referred to as a GND layer),
47 is a power supply layer, 48 is a back wiring, 49 is a via, and 50 is a solder ball. The BGA 51 is constituted as a whole. Reference numeral 52 denotes a plating stub used in an electrolytic plating step for forming a wiring.

【0005】BGA51は、半導体素子41を配線基板
である基材上に搭載し、基材に形成されている表層配線
45にワイヤ42で半導体素子41の電極パッドを接続
している。これにより半導体素子41の電極パッドは、
ワイヤ42,表層配線45,ビア49および裏面配線4
8を介して半田ボール50と電気的に接続される。さら
に半田ボール50を介して外部と電気的に接続すること
により、半導体素子41の電極パッドからの信号を外部
へ出力し、また外部からの信号を半導体素子41の電極
パッドへ入力することができる。また、半導体素子41
を搭載する基材は、複数の誘電体層(BTレジン等)が
積層されるとともに表層配線45,GND層46,電源
層47,裏面配線48等の配線が形成された配線基板で
あり、ビア49により上下の配線を電気的に接続して所
望の配線経路を形成している。また、表層配線45と裏
面配線48は、それぞれGND層46と電源層47に対
してマイクロストリップ線路を構成しており、それぞれ
所望の特性インピーダンスZ0 となる構造をなしてい
る。
In the BGA 51, the semiconductor element 41 is mounted on a base material, which is a wiring board, and the electrode pads of the semiconductor element 41 are connected to the surface wiring 45 formed on the base material by wires 42. Thereby, the electrode pad of the semiconductor element 41 is
Wire 42, surface wiring 45, via 49, and back wiring 4
8 and is electrically connected to the solder ball 50. Further, by electrically connecting to the outside via the solder ball 50, a signal from the electrode pad of the semiconductor element 41 can be output to the outside, and a signal from the outside can be input to the electrode pad of the semiconductor element 41. . Also, the semiconductor element 41
Is a wiring board on which a plurality of dielectric layers (such as BT resin) are stacked and wiring such as a surface wiring 45, a GND layer 46, a power supply layer 47, and a back wiring 48 is formed. The upper and lower wirings are electrically connected by 49 to form a desired wiring path. The surface wiring 45 and the back wiring 48 constitute a microstrip line with respect to the GND layer 46 and the power supply layer 47, respectively, and have a structure having a desired characteristic impedance Z 0 , respectively.

【0006】また、図7は従来の高速伝送に対応したB
GAの表層配線パターンの一例を示したものである。
FIG. 7 is a block diagram of a conventional B corresponding to high-speed transmission.
1 shows an example of a surface wiring pattern of a GA.

【0007】通常、BGAのキャリア(CSP用も同
様)は、個片で作製されるものではなく、いくつかをま
とめたシート状、または連状で作製された後、個片に切
り出される。このとき各個片には配線パターンが電解め
っき法により形成されており、電流を通すため各個片の
配線パターンは導電線路によって結ばれている。BGA
用のキャリアを個片に切り出したときに残る導電線路が
めっきスタブである。したがって、めっきスタブは、ボ
ンドフィンガー(ワイヤ用パッドやフリップチップ用接
続パッド)からボールパッドまでの1本の線路以外に付
いている導体配線であり、ボールパッドやビアの付近に
形成されている。めっきスタブは各層に形成されている
が、図6のめっきスタブ52は、表層配線45部分につ
いて示されたものであり、ビア49より外側の配線部分
である。
Normally, a BGA carrier (also for a CSP) is not manufactured in individual pieces, but is manufactured in a sheet or continuous shape in which some are combined and then cut out into individual pieces. At this time, a wiring pattern is formed on each of the individual pieces by an electrolytic plating method, and the wiring patterns of each of the individual pieces are connected by a conductive line to pass a current. BGA
The conductive line that remains when the carrier for a semiconductor device is cut into individual pieces is a plating stub. Therefore, the plating stub is a conductor wiring attached to a part other than one line from the bond finger (wire pad or flip chip connection pad) to the ball pad, and is formed near the ball pad and the via. The plating stub is formed in each layer, but the plating stub 52 in FIG. 6 is shown for the surface wiring 45 and is a wiring portion outside the via 49.

【0008】また、図8は従来の高速伝送に対応したC
SPの断面構成の一例を示すものである。図8におい
て、61は半導体素子、62はバンプ、63はアンダー
フィル樹脂、64は表層配線、65は接地層(以下、G
ND層と呼ぶ)、66は電源層、67は裏面配線、68
はビア、69は外部パッドを示す。全体でCSP70を
構成している。
[0008] FIG. 8 is a diagram showing a conventional C compatible with high-speed transmission.
3 shows an example of a cross-sectional configuration of an SP. 8, reference numeral 61 denotes a semiconductor element, 62 denotes a bump, 63 denotes an underfill resin, 64 denotes a surface wiring, and 65 denotes a ground layer (hereinafter referred to as G).
ND layer), 66 is a power supply layer, 67 is a back wiring, 68
Indicates a via, and 69 indicates an external pad. The CSP 70 is constituted as a whole.

【0009】CSP70は、半導体素子61を配線基板
である基材上に搭載し、基材に形成されている表層配線
64にバンプ62で半導体素子61の電極パッドを接続
している。これにより半導体素子61の電極パッドは、
バンプ62,表層配線64,ビア68および裏面配線6
7を介して外部パッド69と電気的に接続される。さら
に外部パッド69を介して外部と電気的に接続すること
により、半導体素子61の電極パッドへ入力することが
できる。また、半導体素子61を搭載する基材は、複数
の誘電体層(アルミナ等)が積層されるとともに表層配
線64,GND層65,電源層66,裏面配線67等の
配線が形成された配線基板であり、ビア68により上下
の配線を電気的に接続して所望の配線経路を形成してい
る。また、表層配線64と裏面配線67は、それぞれG
ND層65と電源層66に対してマイクロストリップ線
路を構成しており、それぞれの配線自体は所望の特性イ
ンピーダンスZ0 となるように設計されている。
The CSP 70 has a semiconductor element 61 mounted on a base material, which is a wiring board, and connects an electrode pad of the semiconductor element 61 with a bump 62 to a surface wiring 64 formed on the base material. Thereby, the electrode pad of the semiconductor element 61 is
Bump 62, surface wiring 64, via 68, and back wiring 6
7, and is electrically connected to the external pad 69. Further, by electrically connecting to the outside via the external pad 69, it is possible to input to the electrode pad of the semiconductor element 61. The substrate on which the semiconductor element 61 is mounted is a wiring board on which a plurality of dielectric layers (alumina or the like) are laminated and wirings such as a surface wiring 64, a GND layer 65, a power supply layer 66, and a back wiring 67 are formed. The upper and lower wirings are electrically connected by the vias 68 to form a desired wiring path. The surface wiring 64 and the back wiring 67 are respectively G
ND layer 65 and constitute a microstrip line to the power supply layer 66, each of the wiring itself is designed to have a desired characteristic impedance Z 0.

【0010】また、71は配線を形成するための電解め
っき工程に使用されためっきスタブを示す。CSPのめ
っきスタブも、BGAの場合と同様、CSP上の配線を
複数個一度に電解めっきにより形成する工程において、
各CSP間の配線を電気的に接続するために使用され、
各CSPを個片にする場合に切り離されオープンスタブ
の状態で取り残されたものである。このため、めっきス
タブは、各層に形成されている。
Reference numeral 71 denotes a plating stub used in an electrolytic plating step for forming a wiring. As in the case of the BGA, the plating stub of the CSP is also formed in a step of forming a plurality of wirings on the CSP by electrolytic plating at one time.
Used to electrically connect the wiring between each CSP,
Each CSP is separated and left in an open stub state when it is divided into individual pieces. For this reason, the plating stub is formed in each layer.

【0011】以上のようなBGA、またはCSP上の信
号線の半導体素子の電極パッドからボール、または外部
パッドまでの長さが使用周波数帯域に対し十分短い場合
は信号線路の特性インピーダンスは不問とすることが可
能である。
When the length from the electrode pad of the semiconductor element of the signal line on the BGA or CSP to the ball or the external pad is sufficiently short with respect to the used frequency band, the characteristic impedance of the signal line is not considered. It is possible.

【0012】[0012]

【発明が解決しようとする課題】高速伝送時、例えばク
ロック周波数1GHzの場合、矩形波の高調波成分とし
て10倍波程度、またはそれ以上が必要とされる場面も
少なくない。この場合、要求される周波数帯域は10G
Hz以上となる。10GHzの正弦波の波長は空気中で
30mm、例えばBGAの材料であるBTレジン(比誘
電率、約4)上のマイクロストリップ線路上での実効波
長λg は約15mmとなる。
At the time of high-speed transmission, for example, in the case of a clock frequency of 1 GHz, there are many cases where a harmonic component of a rectangular wave needs to be about ten times higher or higher. In this case, the required frequency band is 10G
Hz or more. The wavelength of the sine wave of 10 GHz is 30 mm in the air, and the effective wavelength λ g on the microstrip line on BT resin (relative permittivity, about 4), which is a material of BGA, is about 15 mm.

【0013】従来のBGAやCSP構成では、前述のよ
うにめっきスタブが存在する。このめっきスタブは高周
波的にはオープンスタブとして振る舞い、パッケージ上
の線路は図9に示すような形と仮定でき、オープンスタ
ブ長Lが実効波長λg の4分の1と等しくなる周波数
(図10のfs )において短絡状態となる。このため、
線路の減衰量と周波数の関係は、図10のように表わさ
れ、高調波成分を多数含む矩形波信号を通過させようと
考えた場合、特定周波数fs の成分がめっきスタブ部分
において逆位相で全反射されることとなり、矩形波に反
射成分が重ねられ矩形波が大きく乱れ、搭載された半導
体素子の誤動作を誘発するという問題を有していた。
In a conventional BGA or CSP configuration, a plating stub exists as described above. The plating stub in the high-frequency behavior as an open stub line on the package can be assumed to form, as shown in FIG. 9, the frequency (10 to open stub length L is equal to one quarter of an effective wavelength lambda g At f s ). For this reason,
Relationship attenuation and the frequency of the line is expressed as in FIG. 10, when considering an attempt to pass the rectangular wave signal containing a large number of harmonic components, antiphase in component plating stub portion of the specific frequency f s Therefore, there is a problem that the reflected component is superimposed on the rectangular wave and the rectangular wave is largely disturbed, thereby causing a malfunction of the mounted semiconductor element.

【0014】本発明の目的は、上記問題点に鑑み、半導
体素子を搭載したBGAやCSPの半導体装置におい
て、導体配線における信号の歪みをできるだけ小さく
し、半導体素子の誤動作を防止することができる半導体
装置を提供することである。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a BGA or CSP semiconductor device on which a semiconductor element is mounted, in which signal distortion in conductor wiring is reduced as much as possible and a semiconductor element can be prevented from malfunctioning. It is to provide a device.

【0015】[0015]

【課題を解決するための手段】本発明の半導体装置は、
半導体素子の電極パッドに接続された導体配線のめっき
スタブの長さを所望周波数帯域の上限の波長の4分の1
未満にしたことを特徴とし、これにより、導体配線にお
ける信号の歪みをできるだけ小さくし、半導体素子の誤
動作を防止することができる。
According to the present invention, there is provided a semiconductor device comprising:
The length of the plating stub of the conductor wiring connected to the electrode pad of the semiconductor element is set to 4 of the upper limit wavelength of the desired frequency band.
This makes it possible to minimize signal distortion in the conductor wiring and prevent malfunction of the semiconductor element.

【0016】[0016]

【発明の実施の形態】以下本発明の実施の形態につい
て、図面を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明の実施の形態における半導体
装置の平面図であり、ここでは一例として高速伝送対応
BGAの最表面の配線パターンを真上から眺めた場合を
模式的に示した図であり、図2は同様な半導体装置の最
表面の配線パターンの拡大図である。図1,図2におい
て、1は半導体素子搭載部、2はワイヤ接続用ボンドフ
ィンガー、3は複数の誘電体層(BTレジン等)が積層
されるとともに配線(信号線4を含む)やビア5が形成
された配線基板である基材、4は信号線、5はビア、6
はめっきスタブを示す。
FIG. 1 is a plan view of a semiconductor device according to an embodiment of the present invention. Here, as an example, a diagram schematically showing a case where a wiring pattern on the outermost surface of a BGA for high-speed transmission is viewed from directly above. FIG. 2 is an enlarged view of a wiring pattern on the outermost surface of a similar semiconductor device. 1 and 2, 1 is a semiconductor element mounting portion, 2 is a bond finger for wire connection, 3 is a stack of a plurality of dielectric layers (such as BT resin), and wiring (including signal lines 4) and vias 5 are provided. Is a wiring substrate on which is formed, 4 is a signal line, 5 is a via, 6
Indicates a plating stub.

【0018】本実施の形態におけるBGAは、導体配線
のめっきスタブの長さを所望周波数帯域の上限の波長の
4分の1未満にしたことを特徴とする。このBGAの模
式的な断面構成は従来例で示した図6と同様であり、図
6の表層配線45が信号線4の図示された部分(最表面
の配線)に対応している。なお、CSPの場合も上記の
特徴とする構成を同様に適用できる。
The BGA according to the present embodiment is characterized in that the length of the plating stub of the conductor wiring is less than a quarter of the upper limit wavelength of the desired frequency band. The schematic cross-sectional configuration of this BGA is the same as that of the conventional example shown in FIG. 6, and the surface wiring 45 in FIG. 6 corresponds to the illustrated portion of the signal line 4 (the outermost wiring). Note that the configuration having the above characteristics can be similarly applied to a CSP.

【0019】ここで、高周波的にオープンスタブとして
振る舞うめっきスタブ6が短絡状態となるめっきスタブ
長LS は、次式で求められる。
Here, the plating stub length L S at which the plating stub 6 that behaves as an open stub in a high frequency state is in a short-circuit state is obtained by the following equation.

【0020】LS =λg /4 ここで、λg は信号線4を通る信号の実効波長であり、
次式で求められる。
L S = λ g / 4 where λ g is the effective wavelength of the signal passing through the signal line 4;
It is obtained by the following equation.

【0021】λg =λ0 /√εe ここで、λ0 は真空中での波長、εe は信号線4が形成
されている基材3の誘電体層の実効比誘電率である。マ
イクロストリップ線路の場合は、実効比誘電率εe は、
おおよそ比誘電率の平方根に等しいとおける。また、実
効波長λg と周波数fの関係は次式で与えられる。
Λ g = λ 0 / √ε e Here, λ 0 is the wavelength in vacuum, and ε e is the effective relative permittivity of the dielectric layer of the base material 3 on which the signal line 4 is formed. In the case of a microstrip line, the effective relative permittivity ε e is
It can be approximately equal to the square root of the dielectric constant. The relationship between effective wavelength lambda g and the frequency f is given by the following equation.

【0022】f・λg =C0 (C0 :光速) 高速伝送時、例えばクロック周波数1GHzの場合、矩
形波の高調波成分として10倍波程度、要求される周波
数帯域は10GHz以上となる場合も少なくないが、こ
こでは10GHz正弦波のマイクロストリップ線路上の
実効波長λg は、例えば、基材3の誘電体層としてBT
レジン(比誘電率、4.6)を用いた場合、BTレジン
上の実効波長λg は約14mmで、短絡状態となるめっ
きスタブ長LS (=λg /4)は約3.5mmとなる。
この状態になるのを回避するため、本実施の形態では、
めっきスタブ長、即ちオープンスタブ長を、λg /4未
満としており、ここの例ではめっきスタブ6は3.5m
m未満の長さとする必要がある。
F · λ g = C 0 (C 0 : speed of light) At the time of high-speed transmission, for example, when the clock frequency is 1 GHz, the harmonic component of a rectangular wave is about 10th harmonic, and the required frequency band is 10 GHz or more. Here, the effective wavelength λ g on the 10 GHz sine wave microstrip line is, for example, BT as the dielectric layer of the base material 3.
When a resin (dielectric constant: 4.6) is used, the effective wavelength λ g on the BT resin is about 14 mm, and the plating stub length L S (= λ g / 4) in a short-circuit state is about 3.5 mm. Become.
In order to avoid this state, in the present embodiment,
The plating stub length, that is, the open stub length is less than λ g / 4, and in this example, the plating stub 6 is 3.5 m
The length must be less than m.

【0023】このように、半導体素子を搭載するBGA
やCSPに形成される線路のめっきスタブ6の長さを所
望周波数帯域の上限の波長の4分の1未満とすることに
より、信号線4における信号の歪みをできるだけ小さく
することができ、搭載された半導体素子の誤動作を防止
できる。なお、上記では、最表面の配線に形成されため
っきスタブ6について説明したが、めっきスタブは前述
のように各層に形成されており、各層のめっきスタブの
長さを所望周波数帯域の上限の波長の4分の1未満とす
ることにより、信号線4における信号の歪みをより小さ
くすることができる。
As described above, a BGA mounting a semiconductor element
And the length of the plating stub 6 of the line formed on the CSP is less than one-fourth of the upper limit wavelength of the desired frequency band, so that the signal distortion in the signal line 4 can be reduced as much as possible. Malfunction of the semiconductor element can be prevented. In the above description, the plating stub 6 formed on the outermost wiring has been described. However, the plating stub is formed on each layer as described above, and the length of the plating stub of each layer is set to the upper limit wavelength of the desired frequency band. By setting the ratio to less than one-fourth, signal distortion in the signal line 4 can be further reduced.

【0024】なお、矩形波は、基本周波数をもつ正弦波
とその高調波成分集合であると考えられる。例えば、図
3に示すように、矩形波は多数の高調波の重ね合わされ
たもので、どの範囲の高調波成分まで要求されるかはシ
ステムによって異なる。通常、10倍波程度の高調波成
分を考慮する必要がある。各高調波成分が波長を持ち、
そのうち一番短い波長である所望周波数帯域の上限の波
長に対し、めっきスタブの長さを4分の1未満とするこ
とにより、めっきスタブの長さは全ての高調波成分の波
長に対し4分の1未満となる。
The rectangular wave is considered to be a sine wave having a fundamental frequency and a set of harmonic components thereof. For example, as shown in FIG. 3, a rectangular wave is a superposition of a large number of harmonics, and the required range of harmonic components differs depending on the system. Usually, it is necessary to consider a harmonic component of about tenth harmonic. Each harmonic component has a wavelength,
By making the length of the plating stub less than 1/4 with respect to the upper limit wavelength of the desired frequency band which is the shortest wavelength, the length of the plating stub is 4 minutes with respect to the wavelength of all harmonic components. Less than 1.

【0025】また、図4に示すように、伝送線路上では
電圧振幅が常に零のところと最大になるところが存在
し、その点は、負荷端から伝送線路の4分の1波長の整
数倍の距離にあり、負荷端が短絡の場合と開放の場合で
は逆転する。負荷端に任意の負荷を接続した場合にも振
幅は同様に最大と零の部分が発生する(負荷を調整して
振幅を全て一定にすることも可能:整合状態)。このよ
うに、信号の要求される最大高調波成分に対して伝送路
の長さが4分の1波長以上の場合は分布定数回路として
取り扱うことが必要である。開放端の場合、図4に示す
ように、4分の1波長の部分で節ができ、2分の1波長
の部分で最大値を生じる。したがって、めっきスタブの
長さが4分の1波長をこえると進行波に対し逆位相の波
が反射する。特に4分の1波長の場合は全反射がおこ
る。このため、4分の1波長以上のめっきスタブがある
と、図5に示すようなリンギング波形を生じるため、シ
ステムに誤動作を生じる可能性が生じ、4分の1波長未
満では相対的に反射が少ないものとなる。
As shown in FIG. 4, there are always a point where the voltage amplitude is always zero and a point where the voltage amplitude is maximum on the transmission line, and that point is an integer multiple of a quarter wavelength of the transmission line from the load end. It is at a distance, and reverses when the load end is short-circuited or open. Similarly, when an arbitrary load is connected to the load end, the amplitude also has a maximum and a zero portion (the load can be adjusted to make all the amplitudes constant: a matching state). As described above, when the length of the transmission path is equal to or longer than a quarter wavelength with respect to the required maximum harmonic component of the signal, it is necessary to treat the transmission path as a distributed constant circuit. In the case of the open end, as shown in FIG. 4, a node is formed at a quarter wavelength portion, and a maximum value occurs at a half wavelength portion. Therefore, when the length of the plating stub exceeds a quarter wavelength, a wave having an opposite phase to the traveling wave is reflected. In particular, in the case of a quarter wavelength, total reflection occurs. For this reason, if there is a plating stub having a quarter wavelength or more, a ringing waveform as shown in FIG. 5 is generated, which may cause a malfunction in the system. Less.

【0026】したがって、各層のめっきスタブの長さを
所望周波数帯域の上限の波長の4分の1未満とする、言
い換えれば、全ての高調波成分の波長に対し4分の1未
満とすることにより、信号線4における信号の歪みを小
さくすることができ、誤動作を防止することができる。
また、信号線路は、高速伝送線路ではある特性インピー
ダンスで安定するように設計、作製されているため、イ
ンピーダンスを乱すめっきスタブは無いのが理想形(め
っきスタブの長さが零)であるが、製作工程上無くすの
は現在困難である。
Therefore, by setting the length of the plating stub of each layer to less than one-fourth of the upper limit wavelength of the desired frequency band, in other words, by making the length of the plating stub less than one-fourth for the wavelengths of all harmonic components. In addition, the signal distortion in the signal line 4 can be reduced, and malfunction can be prevented.
In addition, since the signal line is designed and manufactured to be stable at a certain characteristic impedance in a high-speed transmission line, the ideal type (the length of the plating stub is zero) is that there is no plating stub that disturbs the impedance, It is currently difficult to eliminate it in the manufacturing process.

【0027】[0027]

【発明の効果】以上のように本発明によれば、半導体素
子を搭載するBGAやCSPに形成されるめっきスタブ
の長さを所望周波数帯域の上限の波長の4分の1未満に
したことにより、導体配線(信号線)における信号の歪
みをできるだけ小さくし、半導体素子の誤動作を防止す
ることが可能となる。
As described above, according to the present invention, the length of the plating stub formed on the BGA or CSP on which a semiconductor element is mounted is reduced to less than a quarter of the upper limit wavelength of the desired frequency band. In addition, it is possible to minimize signal distortion in the conductor wiring (signal line) and prevent malfunction of the semiconductor element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における高速伝送に対応し
たBGAの最表面の配線パターンの平面図。
FIG. 1 is a plan view of a wiring pattern on the outermost surface of a BGA corresponding to high-speed transmission according to an embodiment of the present invention.

【図2】本発明の実施の形態における高速伝送に対応し
たBGAの最表面の配線パターンの拡大平面図。
FIG. 2 is an enlarged plan view of a wiring pattern on the outermost surface of a BGA corresponding to high-speed transmission according to the embodiment of the present invention.

【図3】矩形波の形成家庭を模式的に表した図。FIG. 3 is a diagram schematically illustrating a home where rectangular waves are formed.

【図4】本実施の形態においてめっきスタブの長さを所
望周波数帯域の上限の波長の4分の1未満にしたことを
説明するための図。
FIG. 4 is a view for explaining that the length of a plating stub is set to less than one-fourth of an upper limit wavelength of a desired frequency band in the present embodiment.

【図5】本実施の形態においてめっきスタブの長さを所
望周波数帯域の上限の波長の4分の1未満にしたことを
説明するための図。
FIG. 5 is a diagram for explaining that the length of the plating stub is set to be less than 分 の of the upper limit wavelength of the desired frequency band in the present embodiment.

【図6】従来例における高速伝送に対応したBGAの断
面構成図。
FIG. 6 is a sectional configuration diagram of a BGA corresponding to high-speed transmission in a conventional example.

【図7】従来例における高速伝送に対応したBGAの表
層配線パターンの平面図。
FIG. 7 is a plan view of a surface wiring pattern of a BGA corresponding to high-speed transmission in a conventional example.

【図8】従来例における高速伝送に対応したCSPの断
面構成図。
FIG. 8 is a sectional configuration diagram of a CSP corresponding to high-speed transmission in a conventional example.

【図9】めっきスタブを含む信号線路等価回路図。FIG. 9 is a signal line equivalent circuit diagram including a plating stub.

【図10】オープンスタブを含む線路の減衰量と周波数
の関係図。
FIG. 10 is a diagram illustrating a relationship between attenuation and frequency of a line including an open stub.

【符号の説明】[Explanation of symbols]

1 半導体素子搭載部 2 ワイヤ接続用ボンドフィンガー 3 基材 4 信号線 5 ビア 6 めっきスタブ DESCRIPTION OF SYMBOLS 1 Semiconductor element mounting part 2 Bond finger for wire connection 3 Base material 4 Signal line 5 Via 6 Plating stub

【手続補正書】[Procedure amendment]

【提出日】平成12年12月28日(2000.12.
28)
[Submission date] December 28, 2000 (200.12.
28)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】[0015]

【課題を解決するための手段】本発明の半導体装置は、
半導体素子の電極パッドに接続された導体配線のめっき
スタブの長さを、半導体素子に通過させる矩形波信号の
高周波成分の周波数の上限の波長(所望周波数帯域の上
限の波長の4分の1未満にしたことを特徴とし、これ
により、導体配線における信号の歪みをできるだけ小さ
くし、半導体素子の誤動作を防止することができる。
According to the present invention, there is provided a semiconductor device comprising:
The length of the plating stub of the conductor wiring connected to the electrode pad of the semiconductor element is determined by the rectangular wave signal passed through the semiconductor element.
The frequency of the high frequency component is set to less than one-fourth of the upper limit wavelength (the upper limit wavelength of the desired frequency band ) , thereby minimizing signal distortion in the conductor wiring and preventing malfunction of the semiconductor element. can do.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の電極パッドを有する半導体素子
と、前記半導体素子を搭載するとともに前記半導体素子
の電極パッドを外部と電気的に接続するための導体配線
を有する基材と、前記導体配線のめっきスタブとを備え
た半導体装置であって、 前記導体配線のめっきスタブの長さを所望周波数帯域の
上限の波長の4分の1未満にしたことを特徴とする半導
体装置。
1. A semiconductor element having a plurality of electrode pads, a base material having a conductor wiring for mounting the semiconductor element and electrically connecting an electrode pad of the semiconductor element to the outside, A semiconductor device comprising a plating stub, wherein a length of the plating stub of the conductor wiring is set to less than a quarter of an upper limit wavelength of a desired frequency band.
JP28323799A 1999-10-04 1999-10-04 Semiconductor device Pending JP2001110927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28323799A JP2001110927A (en) 1999-10-04 1999-10-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28323799A JP2001110927A (en) 1999-10-04 1999-10-04 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2001110927A true JP2001110927A (en) 2001-04-20

Family

ID=17662876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28323799A Pending JP2001110927A (en) 1999-10-04 1999-10-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2001110927A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7349224B2 (en) 2004-04-16 2008-03-25 Canon Kabushiki Kaisha Semiconductor device and printed circuit board
JP2011040420A (en) * 2009-07-17 2011-02-24 Nitto Denko Corp Printed circuit board and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7349224B2 (en) 2004-04-16 2008-03-25 Canon Kabushiki Kaisha Semiconductor device and printed circuit board
US7495928B2 (en) 2004-04-16 2009-02-24 Canon Kabushiki Kaisha Semiconductor device and printed circuit board
US7839652B2 (en) 2004-04-16 2010-11-23 Canon Kabushiki Kaisha Semiconductor device and printed circuit board
JP2011040420A (en) * 2009-07-17 2011-02-24 Nitto Denko Corp Printed circuit board and method of manufacturing the same
US8853546B2 (en) 2009-07-17 2014-10-07 Nitto Denko Corporation Printed circuit board and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4163421B2 (en) Semiconductor chip package
JP3732927B2 (en) Multilayer wiring board
US6479758B1 (en) Wiring board, semiconductor package and semiconductor device
US7378743B2 (en) Circuit board and electronic assembly
US6967398B2 (en) Module power distribution network
KR20040030604A (en) High performance, low cost microelectronic circuit package with interposer
US6747356B2 (en) Semiconductor device
JP3443408B2 (en) Wiring board and semiconductor device using the same
JP2001110942A (en) Constant impedance line of high-performance integrated circuit package
JP4190111B2 (en) High frequency module
US6717255B2 (en) Chip carrier for a high-frequency electronic package
KR100560571B1 (en) Interconnect
JP2001203300A (en) Board for wiring, semiconductor device and producing method for board for wiring
JP2001110927A (en) Semiconductor device
JP2001339170A (en) Multilayer wiring board
JP2001352000A (en) High-frequency semiconductor device using interposer
JP3798978B2 (en) Multilayer wiring board
JP2002026177A (en) Semiconductor device
JP3796104B2 (en) Multilayer wiring board
US20030148077A1 (en) High-performance laminate for integrated circuit interconnection
JP2001168236A (en) Semiconductor device
JP4816896B2 (en) Electronic components and semiconductor devices
JPH05211279A (en) Hybrid integrated circuit
JP3784244B2 (en) Multilayer wiring board
JPH0334911Y2 (en)