JP2001110425A - Current collector body for secondary battery, secondary battery using current collector body, and manufacturing method for the current collector body and the secondary battery - Google Patents

Current collector body for secondary battery, secondary battery using current collector body, and manufacturing method for the current collector body and the secondary battery

Info

Publication number
JP2001110425A
JP2001110425A JP28605799A JP28605799A JP2001110425A JP 2001110425 A JP2001110425 A JP 2001110425A JP 28605799 A JP28605799 A JP 28605799A JP 28605799 A JP28605799 A JP 28605799A JP 2001110425 A JP2001110425 A JP 2001110425A
Authority
JP
Japan
Prior art keywords
current collector
secondary battery
nickel
substrate
porous metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28605799A
Other languages
Japanese (ja)
Inventor
Hitoshi Omura
等 大村
Tatsuo Tomomori
龍夫 友森
Hideo Omura
英雄 大村
Satoru Matsuo
悟 松尾
Keiji Yamane
啓二 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP28605799A priority Critical patent/JP2001110425A/en
Publication of JP2001110425A publication Critical patent/JP2001110425A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple method for working a current collector body for an alkaline battery for preventing a porous metallic sintered body from peeling from a metallic core, while working the battery and for strongly bonding the porous metallic sintered body with the metallic core, and to provide a material used for the method. SOLUTION: A strongly bonded body can be obtained by pressurizing and shaping a porous metallic body, having a mean porous diameter of 50 to 200 μm for tightly bonding the same with a metallic core so that the porous metallic body would not easily peel from the metallic core, where a layer of nickel- phosphorus alloy is formed on a surface of the metallic core.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はニッケル−カドミ
ウム又はニッケル−水素電池等の二次電池用集電体及び
その集電体を使用して製造した二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current collector for a secondary battery such as a nickel-cadmium or nickel-hydrogen battery, and a secondary battery manufactured using the current collector.

【0002】[0002]

【従来の技術】ニッケル−カドミウム又はニッケル−水
素電池等の二次電池は広く電源用電池として使用されて
いるが、近年、多方面に使用される機会が多くなってき
た関係で大電流を取り出すことができるような仕様のも
のが好まれるようになってきている。この目的を達成す
るためには一般に広い表面積を有する多孔質金属焼結体
を用いた基体を使用することが有利であることが知られ
ている。このような多孔質金属焼結基板の製法として、
この製品の開発初期には60〜80μmの厚さのニッケ
ルめっきが施されたパンチング鋼板である芯体上に、ニ
ッケル粉末をプレス固着させて使用したり、ニッケル粉
末を含有するスラリーを基板に塗布付着させたりした
後、焼結して、すなわち固相拡散現象を利用した固相焼
結法で製造したものが使用されてきた。
2. Description of the Related Art Secondary batteries such as nickel-cadmium or nickel-hydrogen batteries are widely used as power supply batteries, but in recent years, large currents have been taken out due to the increasing use of batteries in various fields. Those that have specifications that can do it are starting to be preferred. In order to achieve this object, it is generally known that it is advantageous to use a substrate using a porous metal sintered body having a large surface area. As a method for producing such a porous metal sintered substrate,
In the early stage of development of this product, nickel powder was pressed and fixed on a core body, which is a punched steel plate with a thickness of 60 to 80 μm and plated with nickel, or a slurry containing nickel powder was applied to a substrate. After being adhered and then sintered, that is, one manufactured by a solid phase sintering method utilizing a solid phase diffusion phenomenon has been used.

【0003】しかし、固相拡散法のみにより多孔質金属
焼結体と金属芯体を結合させた構造は密着性が不充分で
あるとともに、焼結体自身の強度が劣るために製品電池
がショートし易いという問題点が存在することが従来か
ら指摘されていて、この点を改良すべく種々の提案がさ
れてきた。例えば、焼結体の強度を向上する対策として
は、特開昭64−24364号公報の提案のように金属
集電体の周囲に金属繊維を配置して焼結したり、特開平
5−174831号公報の提案のように集電体近傍にコ
バルト等の層を設けて焼結を促進する方法がある。
[0003] However, the structure in which the porous metal sintered body and the metal core are bonded only by the solid phase diffusion method has insufficient adhesion and the strength of the sintered body itself is inferior. It has been pointed out that there is a problem that the method is easy to perform, and various proposals have been made to improve this point. For example, as measures to improve the strength of the sintered body, metal fibers are arranged around a metal current collector and sintered as proposed in Japanese Patent Application Laid-Open No. 64-24364, There is a method of promoting sintering by providing a layer of cobalt or the like in the vicinity of the current collector as proposed in Japanese Unexamined Patent Publication (Kokai) Publication.

【0004】一方、密着性向上策としては、特開昭61
−130405号公報提案のように、集電体にTDニッ
ケル板を使用すると同時にイットリア粒子とニッケル粒
子を接触させたり、特開平4−162360号公報の提
案のように、集電体表面をエッチングすることにより、
集電体表面を粗面化するとともに接触面積を増大させる
方法がある。さらに、集電体鋼板の少なくとも片面にホ
ウ化処理層を形成させ、多数の小径孔を有するニッケル
下地めっき層を有する集電体を使用することにより、加
熱焼結時に少量の液相を出現させ密着性向上に寄与させ
るという方法もある。
On the other hand, as a measure for improving the adhesion, Japanese Patent Application Laid-Open
A TD nickel plate is used for the current collector as in the proposal of JP-A-130405, and the yttria particles and the nickel particles are brought into contact at the same time, or the surface of the current collector is etched as in the proposal of JP-A-4-162360. By doing
There is a method of roughening the surface of the current collector and increasing the contact area. Furthermore, by forming a boride treatment layer on at least one surface of the current collector steel sheet and using a current collector having a nickel base plating layer having a large number of small-diameter holes, a small amount of liquid phase appears during heat sintering. There is also a method of contributing to improvement in adhesion.

【0005】しかし、集電体近傍に金属繊維を配置した
り、他元素を添加したりする方法はいたずらに工程を複
雑化するものであり、またエッチングを利用する方法は
エッチングの方法と程度により、比表面積が変化する結
果、金属体のポアが変化するためにエッチング条件の制
御が難しいという問題点がある。さらに、めっき層を形
成させ、共晶合金の融解に基づく液相形成を利用して密
着結合させる方法は焼結温度条件のコントロールが難し
く、工程が複雑化するという問題を含んでいる。
However, the method of arranging metal fibers near the current collector or adding other elements unnecessarily complicates the process, and the method of using etching depends on the method and degree of etching. As a result of the change in the specific surface area, there is a problem that it is difficult to control the etching conditions because the pores of the metal body change. Furthermore, the method of forming a plating layer and bonding it tightly utilizing the formation of a liquid phase based on the melting of a eutectic alloy has the problem that it is difficult to control the sintering temperature conditions and the process becomes complicated.

【0006】一方、集電体に多孔質金属体をそのまま使
用しようという提案も多くあるが、多孔質金属体そのま
までは強度的に弱いために何らかの補強策を要するとい
う問題点があって、例えば特開昭62−47964号公
報、特開昭62−90865号公報の方法は低融点合金
を使用して繊維の接触点を結合させるというものであ
り、特開昭62−90865号公報の方法はめっきによ
って接触点を結合させようとするものであり、また特開
平2−274895号公報の方法はめっき後に積層しよ
うというものであり、さらに特開平3−130394号
公報、特開平3−130395号公報の方法はめっき後
に積層する場合に不織布などで複合化して補強しようと
いうものであり、特開平8−49026号公報の方法は
金属溶射による補強である。また、別の提案としては特
開平8−222229号公報のように、ウレタンフォー
ムに無電解めっきをして金属を付着させた後、熱処理し
て得た多孔質金属体の単位面積当たりの空孔数を一定範
囲に限定するというものがある。
[0006] On the other hand, there have been many proposals to use a porous metal body as it is as a current collector, but there is a problem in that the porous metal body itself is weak in strength and requires some reinforcement measures. The methods disclosed in JP-A-62-47964 and JP-A-62-90865 are to bond the contact points of the fibers by using a low melting point alloy. The method disclosed in Japanese Patent Application Laid-Open No. Hei 2-274895 is intended to laminate after plating, and the method disclosed in Japanese Patent Application Laid-Open No. 3-130394 and Japanese Patent Application Laid-Open No. The method is to composite and reinforce with a nonwoven fabric when laminating after plating, and the method of JP-A-8-49026 is to reinforce by metal spraying. A. Further, as another proposal, as disclosed in Japanese Patent Application Laid-Open No. 8-222229, after a metal is adhered by electroless plating on urethane foam, pores per unit area of a porous metal body obtained by heat treatment are provided. There is one that limits the number to a certain range.

【0007】[0007]

【発明が解決しようとする課題】しかし、電池のように
大量の製品を一定の規格で製造する場合には、製造工程
の複雑化は製品単価を不必要に押し上げることとなり好
ましくない。従って、製造工程を複雑化することなく、
より簡単な方法で芯体の強度を向上させるとともに、密
着性を良好にする方法が必要となる。かかる問題点を解
決する方法としては別途作製した多孔質金属シートを基
板体に密着させることができれば、前記問題点を解決す
ることができることになる。
However, when a large number of products such as batteries are manufactured according to a certain standard, the complexity of the manufacturing process undesirably increases the unit price of the product, which is not preferable. Therefore, without complicating the manufacturing process,
A method for improving the strength of the core body by a simpler method and improving the adhesion is required. As a method for solving such a problem, if a separately produced porous metal sheet can be brought into close contact with the substrate, the above problem can be solved.

【0008】[0008]

【発明を解決するための手段】基板と多孔質材の密着性
を向上させるための従来の提案の一つは、基板表面に何
らかの加工を施す方法であった。しかし基板表面に加工
を施すと、密着性は良好になるものの基板の強度が劣化
するという問題点があり、一方、基板の強度が劣化しな
いような特殊な加工方法を採用した場合には加工のため
の費用が増大するという問題点があった。従って、これ
らの問題点を両方同時に解決するためには、基板の表面
に加工処理を施すのではなく、多孔質材の方の基板との
接触表面の状態を改善すれば良いという結論に達して本
発明を完成させた。
One of the conventional proposals for improving the adhesion between a substrate and a porous material has been a method of performing some processing on the surface of the substrate. However, when processing is performed on the surface of the substrate, there is a problem that the strength of the substrate is degraded although the adhesion is improved. On the other hand, when a special processing method is employed so that the strength of the substrate is not degraded, the processing is difficult. However, there is a problem that the cost for the operation increases. Therefore, in order to solve both of these problems at the same time, it was concluded that instead of processing the surface of the substrate, the state of the contact surface of the porous material with the substrate should be improved. The present invention has been completed.

【0009】即ち、本発明は元素周期律表第8族の金属
元素であるニッケル又は鉄を主成分とする多孔質金属体
であって、その表面に存在する平均細孔径が50〜20
0μmの範囲にあるような素材を使用することによっ
て、基板強度を何ら劣化させることなく密着性を向上さ
せることができる。
That is, the present invention relates to a porous metal body mainly composed of nickel or iron, which is a metal element belonging to Group 8 of the periodic table, and having an average pore diameter of 50 to 20 on its surface.
By using a material having a thickness in the range of 0 μm, the adhesion can be improved without any deterioration in substrate strength.

【0010】[0010]

【発明の実施の形態】本発明の電池極板は芯体表面にニ
ッケル−リン合金層を形成させた上に平均気孔径が一定
範囲にあるスポンジ金属、すなわち多孔質金属成形体を
積層し、芯体となる基板に加圧密着成形して製造するこ
とを構成上の特徴としている。以下本発明について、そ
の素材及び工程について詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The battery electrode plate of the present invention is obtained by forming a nickel-phosphorus alloy layer on the surface of a core and laminating a sponge metal having an average pore diameter within a certain range, that is, a porous metal molded body. It is characterized in that it is manufactured by pressure-contact molding on a substrate serving as a core. Hereinafter, the present invention will be described in detail with respect to its materials and steps.

【0011】1.芯体 本発明に使用する集電体用基体としては普通鋼板又は穿
孔鋼板、即ちパンチング鋼板を使用する。普通鋼板及び
パンチング鋼板は厚さ25〜100μmのものを使用す
るが、ニッケルめっき鋼板を使用すれば、その後のめっ
き行程が省略できるので都合がよく好ましい。パンチン
グ鋼板の場合には、この素材鋼板に物理的、化学的加工
処理を施して直径1〜3mm程度の小孔を多数形成させ
る。加工処理方法はパンチング処理、化学的エッチング
法、電気化学的エッチング法、さらにサンドブラスト
法、エンボスロール法等の圧延処理等の方法を単独で若
しくは組み合わせて使用することができる。さらに、こ
のような鋼板上にカドミウム、コバルト、ニッケル又は
これらの金属の混合物の層を形成させたものを使用する
こともできる。
1. Core Body As the current collector base used in the present invention, a normal steel plate or a perforated steel plate, that is, a punched steel plate is used. The ordinary steel sheet and the punched steel sheet have a thickness of 25 to 100 μm. However, if a nickel-plated steel sheet is used, the subsequent plating step can be omitted, which is convenient and preferable. In the case of a punched steel plate, a large number of small holes having a diameter of about 1 to 3 mm are formed by subjecting the raw steel plate to physical and chemical processing. As a processing method, a method such as a punching treatment, a chemical etching method, an electrochemical etching method, and a rolling treatment such as a sand blast method or an embossing roll method can be used alone or in combination. Further, a steel sheet having a layer of cadmium, cobalt, nickel or a mixture of these metals formed thereon can also be used.

【0012】2.芯体上への合金層の形成 集電体となる基体芯体上にはニッケル−リン合金層を形
成する。ニッケル−リン合金層を形成させる理由はこの
合金層が比較的軟質であるために、一定の平均気孔径と
気孔率を有するスポンジ状金属材を圧接することによっ
て密着性の優れた素材を容易に得ることができるからで
ある。ニッケル−リン合金層の形成はめっき法によって
形成させることが好ましいが、他の方法、例えばCVD
法やスパッタリング法で形成させてもよい。
2. Formation of Alloy Layer on Core Body A nickel-phosphorus alloy layer is formed on a base body serving as a current collector. The reason for forming the nickel-phosphorus alloy layer is that, since this alloy layer is relatively soft, a material having excellent adhesion can be easily formed by pressing a sponge-like metal material having a constant average pore diameter and porosity. Because it can be obtained. The nickel-phosphorus alloy layer is preferably formed by a plating method.
It may be formed by a method or a sputtering method.

【0013】めっきには電気めっき法と無電解めっき法
があるが、処理時間が短く大量の製品の処理が同時にで
きる電気めっき法によることが好ましい。従って、電気
めっきは公知のワット浴、スルファミン酸浴を使用する
ことができ、光沢めっき、無光沢めっき、半光沢めっき
等を適宜選択することができる。めっき厚さは0.5〜
10μmの範囲にすることが好ましい。10μm以上の
厚さでは過剰品質になるからである。電気めっきの場合
の浴組成と電解条件の一例を示すと以下のようになる。
Although there are two types of plating, electroplating and electroless plating, it is preferable to use an electroplating method which can simultaneously process a large amount of products in a short processing time. Therefore, for the electroplating, a known Watt bath or sulfamic acid bath can be used, and bright plating, matte plating, semi-glossy plating and the like can be appropriately selected. Plating thickness 0.5 ~
It is preferable that the thickness be in the range of 10 μm. This is because a thickness of 10 μm or more results in excessive quality. An example of the bath composition and electrolysis conditions in the case of electroplating is as follows.

【0014】(浴組成配合処方の一例) 硫酸ニッケル 210〜270g/L 塩化ニッケル 35〜55g/L ホウ酸 20〜40g/L 亜リン酸 15〜25g/L 浴温 55〜65℃ pH 1.0〜1.5 電流密度 10A/dm また、ニッケル−リン合金層の基体金属面への付着を良
好にするために、ニッケル−リン合金めっきに先だっ
て、ニッケルめっきを施しておくことが好ましい場合が
ある。この場合のめっき条件も公知のワット浴、スルフ
ァミン酸浴を使用することができ、光沢めっき、無光沢
めっき、半光沢めっき等を適宜選択することができる。
めっき厚さはニッケル−リンめっき同様、0.5〜10
μmの範囲にすることが好ましい。
(Example of bath composition formulation) Nickel sulfate 210-270 g / L Nickel chloride 35-55 g / L Boric acid 20-40 g / L Phosphorous acid 15-25 g / L Bath temperature 55-65 ° C pH 1.0 1.51.5 Current density 10 A / dm 2 In order to improve the adhesion of the nickel-phosphorous alloy layer to the base metal surface, it is preferable that nickel plating be performed prior to nickel-phosphorus alloy plating. is there. The plating conditions in this case may be a well-known Watts bath or sulfamic acid bath, and bright plating, matte plating, semi-glossy plating and the like can be appropriately selected.
Plating thickness is 0.5 to 10 as with nickel-phosphorus plating.
It is preferable to set it in the range of μm.

【0015】3.多孔質金属体 多孔質金属体としてはいわゆるスポンジ金属を使用す
る。スポンジ金属の製法は、特開昭57−174484
号公報に開示されているめっき法によるものと、特公昭
38−17554号公報等に開示されている焼結法によ
るものがあり、前者ではウレタンフォーム等の発泡樹脂
の骨格表面に炭素粉末等の導電性物質を塗布して後、ニ
ッケルめっきをし、さらにその後に焼成して樹脂等の可
燃生物を除去して、多孔質金属体を得るという方法であ
る。
3. Porous metal body A so-called sponge metal is used as the porous metal body. The method for producing sponge metal is disclosed in Japanese Patent Application Laid-Open No. 57-174484.
And a sintering method disclosed in JP-B-38-17554. In the former, carbon powder or the like is applied to the surface of a skeleton of a foamed resin such as urethane foam. This is a method in which a conductive substance is applied, nickel plating is performed, and then firing is performed to remove combustible organisms such as resin to obtain a porous metal body.

【0016】また、後者の焼結法は金属粉末を種々の高
分子樹脂、溶剤とスラリー化して、ウレタンフォーム等
の発泡樹脂の骨格表面に含浸塗布し、その後、焼成する
ことにより金属粉末を焼結するとともに、有機質物を焼
却除去するもので、通常は焼成後に、焼結金属を還元雰
囲気で再加熱する方法がとられる。還元雰囲気ガスとし
ては水素、アンモニアなどが使用される。これらの方法
における金属粉末の平均粒径は1〜100μmのものが
好ましい。
In the latter sintering method, the metal powder is slurried with various polymer resins and solvents, impregnated and applied to the skeleton surface of a foamed resin such as urethane foam, and then fired to fire the metal powder. In addition to sintering, the organic matter is incinerated and removed. Usually, after firing, the sintered metal is reheated in a reducing atmosphere. Hydrogen, ammonia, or the like is used as the reducing atmosphere gas. The average particle size of the metal powder in these methods is preferably 1 to 100 μm.

【0017】含浸用の高分子材料としては例えばポリス
チレン、ポリメタクリル酸メチル、ポリ(アクリル酸2
−エチルヘキシル)、ポリ(スチレン−アクリル酸)共
重合体、ポリビニルブチラール、ポリビニルピロリドン
等が単独で又は組み合わせて使用され、この場合の溶剤
としては、例えばメチルエチルケトン、メチルイソブチ
ルケトン、イソプロピルアルコール、酢酸ブチル、酢酸
エチル又は水等が単独で又は組み合わせて使用される。
金属粉、高分子樹脂、溶剤の混合はホモジナイザー、ボ
ールミルあるいはその他の混合機を使用して行うことが
できる。混合時間は使用する溶剤とその他の添加剤及び
金属粉の種類、粒径等を考慮して定めることができる。
Examples of the polymer material for impregnation include polystyrene, polymethyl methacrylate, and poly (acrylic acid 2).
-Ethylhexyl), a poly (styrene-acrylic acid) copolymer, polyvinyl butyral, polyvinyl pyrrolidone, or the like is used alone or in combination. As a solvent in this case, for example, methyl ethyl ketone, methyl isobutyl ketone, isopropyl alcohol, butyl acetate, Ethyl acetate or water or the like is used alone or in combination.
The mixing of the metal powder, the polymer resin, and the solvent can be performed using a homogenizer, a ball mill, or another mixer. The mixing time can be determined in consideration of the type and particle size of the solvent used, other additives and metal powder.

【0018】多孔質樹脂はウレタンフォームに限定され
ることはなく、ポリエチレン樹脂、ポリプロピレン樹
脂、ポリスチレン樹脂、ポリ酢酸ビニル・ポリ塩化ビニ
ル共重合樹脂あるいはこれらの架橋樹脂、さらにこれら
の樹脂に加えて不職布、ラス状又はパンチ状の樹脂製
網、ガラス繊維網、炭素繊維網、金属繊維網等を単独又
は複合して使用することができる。金属繊維を多孔質樹
脂を上記の金属粉スラリーともに含浸塗布する場合に
は、使用する金属繊維種はスラリー中に含まれる金属粉
末と同一種類の金属が好ましい。焼結によって強靱な多
孔質体が形成できるからである。なお、焼成条件の選択
によって種々の細孔径を有する多孔質金属体を得ること
もできる。
The porous resin is not limited to urethane foam, but may be polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl acetate / polyvinyl chloride copolymer resin or a cross-linked resin thereof, and in addition to these resins, non-porous resin may be used. A work cloth, a lath-like or punch-like resin net, a glass fiber net, a carbon fiber net, a metal fiber net, or the like can be used alone or in combination. When the metal fibers are applied by impregnating the porous resin with the above-mentioned metal powder slurry, the type of metal fiber used is preferably the same type of metal as the metal powder contained in the slurry. This is because a strong porous body can be formed by sintering. Note that a porous metal body having various pore diameters can be obtained by selecting the firing conditions.

【0019】一方、別の方法としては金属繊維を原料と
してブロック化したものがある。この場合の原料となる
金属繊維は金属ブロックから振動切削法で採取、金属箔
を回転刃で切削、金属酸化物ペーストの押出し成形、線
材からの切削等の方法等で作製した金属繊維であって、
その長さが10〜50mmのものを選別して湿式又は乾
式法でフェルト状にする。あるいは前記の方法で作製し
た直径5〜100μmの金属繊維、例えば鉄又はニッケ
ル繊維がマット状に分布した幅50〜300mm、長さ
100〜500mm、厚さ2〜40mmの帯状体を作製
する。これらのフェルト状又はマット状のままの状態で
は素材としての強度が弱いが、本発明の場合にはめっき
鋼板を裏当てとして使用する関係で、このまま使用する
ことができる。
On the other hand, as another method, there is a method in which a metal fiber is used as a raw material to form a block. In this case, the metal fiber used as a raw material is a metal fiber produced by a method such as sampling from a metal block by a vibration cutting method, cutting a metal foil with a rotary blade, extruding a metal oxide paste, cutting from a wire, or the like. ,
Those having a length of 10 to 50 mm are sorted and made into a felt shape by a wet or dry method. Alternatively, a band having a width of 50 to 300 mm, a length of 100 to 500 mm, and a thickness of 2 to 40 mm, in which metal fibers having a diameter of 5 to 100 μm, for example, iron or nickel fibers, are distributed in a mat shape, is produced. Although the strength as a raw material is weak in such a felt or mat state, in the case of the present invention, it can be used as it is because a plated steel sheet is used as a backing.

【0020】本発明で使用する多孔質金属体としては、
以上述べたようないずれの方法で作製したものも使用す
ることができる。これらの金属多孔質体の平均気孔径は
基板に圧縮密着させた後で、50〜200μmであるこ
とが好ましい。平均気孔径が50μm未満では反応液の
浸透が不充分となるためであり、一方、細孔径が200
μmを超えると、反応液の滞留が不十分になったり。多
孔質金属体としての強度が劣化するからである。
The porous metal body used in the present invention includes:
Those manufactured by any of the methods described above can be used. The average pore diameter of these metal porous bodies is preferably 50 to 200 μm after being pressed and adhered to the substrate. If the average pore diameter is less than 50 μm, the penetration of the reaction solution becomes insufficient.
If it exceeds μm, the retention of the reaction solution may be insufficient. This is because the strength as the porous metal body is deteriorated.

【0021】4.基体芯体と多孔質金属体との密着 基体芯体と多孔質金属体は約800℃の温度に加熱して
おいて、ロール又はプレスに加圧によって、基板に密着
させて、集電体を形成させる。
4. Adhesion between the base body and the porous metal body The base body and the porous metal body are heated to a temperature of about 800 ° C., and are pressed against a roll or a press to make close contact with the substrate to form a current collector. Let it form.

【0022】[0022]

【実施例】以下、本発明を実施例に基づいてさらに詳し
く説明する。 [実施例1〜2]基体芯体には厚さ80μmの普通鋼板
を使用して、以下の条件で2μmのニッケルめっきを行
い、次いでその上層に2μmのニッケル−リン合金めっ
きを行った。このニッケル−リン合金めっき膜は湿式分
析法で化学分析して、リン分が10wt%前後含有され
ていることを確認した。 [ニッケルめっき浴組成とめっき条件] 硫酸ニッケル 300g/L 塩化ニッケル 45g/L ホウ酸 30g/L 浴温度 50℃ pH 4.0〜4.5 電流密度 10A/dm
The present invention will be described below in more detail with reference to examples. [Examples 1 and 2] An 80 μm-thick ordinary steel plate was used for the substrate core, 2 μm nickel plating was performed under the following conditions, and then a 2 μm nickel-phosphorus alloy plating was performed on the upper layer. The nickel-phosphorus alloy plating film was chemically analyzed by a wet analysis method, and it was confirmed that a phosphorus content was about 10 wt%. [Nickel plating bath composition and plating conditions] Nickel sulfate 300 g / L Nickel chloride 45 g / L Boric acid 30 g / L Bath temperature 50 ° C. pH 4.0 to 4.5 Current density 10 A / dm 2

【0023】[ニッケル−リンめっき浴組成とめっき条
件] 硫酸ニッケル 240g/L 塩化ニッケル 45g/L ホウ酸 30g/L 亜リン酸 20g/L 浴温度 60℃ pH 1.0〜1.5 電流密度 10A/dm
[Nickel-phosphorus plating bath composition and plating conditions] Nickel sulfate 240 g / L Nickel chloride 45 g / L Boric acid 30 g / L Phosphorous acid 20 g / L Bath temperature 60 ° C. pH 1.0-1.5 Current density 10 A / Dm 2

【0024】多孔質金属体は平均粒径の異なるα酸化鉄
粉末をアクリル樹脂溶液(アクリル樹脂10重量部に対
し、金属粉50重量部及びイソプロピルアルコール20
重量部)をボールミルを使用して約3時間、回転混合し
て分散させておき、ここにウレタンフォームを浸漬した
後、引き上げて遠心分離し、大部分の遊離バインダーを
除去し、その後150〜200℃で15分間乾燥する。
これを空気中800℃前後で焼成し、さらに水素気流中
1100〜1200℃で加熱還元するとともに焼結し
て、鉄多孔質体を得た。
As the porous metal body, α-iron oxide powder having different average particle diameters is prepared by mixing an acrylic resin solution (50 parts by weight of metal powder and 20 parts by weight of
Parts by weight) using a ball mill for about 3 hours to mix and disperse the mixture. The urethane foam is immersed in the mixture, pulled up and centrifuged to remove most of the free binder. Dry at 150C for 15 minutes.
This was calcined in air at about 800 ° C., further reduced and heated at 1100 to 1200 ° C. in a hydrogen stream, and sintered to obtain a porous iron body.

【0025】その後、前記芯体となる基体の多孔質金属
体を貼付する面に、前期、基体芯体の場合と同一の条件
でニッケルめっきを約1μmの厚さでした、前記金属多
孔体を基体芯体とほぼ同一寸法に切断して、接触させた
状態で800±50℃に加熱しておいて、プレスして加
圧貼付した。加圧貼付する前の基体芯体と多孔質金属体
の積層状態の断面図を図1に、加圧貼付後の断面図を図
2に示した。このようにして得られた集電体を、1、
2、4mmの3種類の径に対して180度折り曲げ加工
して、芯体からの金属多孔体の剥離強度を以下に示す基
準で目視評価し、密着性を評価した。この評価結果を表
1、2に示した。
After that, on the surface of the base to be attached with the porous metal body, nickel plating was previously applied to a thickness of about 1 μm under the same conditions as in the case of the base body. The substrate was cut into almost the same dimensions as the core body, heated to 800 ± 50 ° C. in a state where the core body was in contact with the core body, and then pressed and adhered. FIG. 1 is a cross-sectional view of a laminated state of the base metal body and the porous metal body before pressure bonding, and FIG. 2 is a cross-sectional view after pressure bonding. The current collector thus obtained was
It was bent at 180 degrees with respect to three kinds of diameters of 2, 4 mm, and the peel strength of the porous metal body from the core was visually evaluated based on the following criteria to evaluate the adhesion. The evaluation results are shown in Tables 1 and 2.

【0026】[密着性評価基準] ◎:金属多孔体に亀裂は生じるが、剥離は認められな
い。 ○:金属多孔体に亀裂が生じ、かつ折り曲げ中心部で剥
離がわずかに認められる。 △:金属多孔体に亀裂が生じ、かつ折り曲げ部のかなり
の部分で亀裂が認められる。 ×:折り曲げ部全体で剥離が生じ、金属多孔体が芯体か
ら脱落する。 なお、平均細孔径の測定は試料を切断して顕微鏡観察で
測定した。
[Adhesion Evaluation Criteria] A: Cracks are formed in the porous metal body, but no peeling is observed. :: Cracks are generated in the porous metal body, and slight peeling is observed at the center of the bending. C: Cracks are formed in the porous metal body, and cracks are observed in a considerable portion of the bent portion. ×: Peeling occurs at the entire bent portion, and the porous metal body falls off the core body. The average pore size was measured by cutting a sample and observing with a microscope.

【0027】[実施例3〜4]基体芯体に厚さ60μm
のパンチング鋼板を使用した以外の条件は実施例1〜2
と同様である。
[Examples 3 and 4] The thickness of the substrate core was 60 μm.
The conditions other than using the punched steel sheet of Examples 1-2
Is the same as

【0028】[実施例5〜8]平均粒径の異なるニッケ
ル粉を実施例1〜4と同じアクリル樹脂溶液ボールミル
を使用して分散させておき、ここにウレタンフォームを
浸漬した後、引き上げて遠心分離し、大部分の遊離バイ
ンダーを除去し、その後150〜200℃で15分間乾
燥する。これを空気中800℃前後で焼成し、さらに水
素気流中1100〜1200℃で加熱還元するとともに
焼結して、鉄多孔質体を得た。このニッケル多孔質体を
実施例1、3と同様にして、厚さ80μmの普通鋼板又
は厚さ60μmのパンチング鋼板で作製した基体芯体に
加圧圧着して電池集電体とした。なお、実施例5と6は
基体芯体に厚さ80μmの普通鋼板を使用した場合であ
り、実施例7と8は厚さ60μmのパンチング鋼板を使
用した場合である。
[Examples 5 to 8] Nickel powders having different average particle diameters were dispersed by using the same acrylic resin solution ball mill as in Examples 1 to 4, urethane foam was immersed in the powder, pulled up and centrifuged. Separate and remove most of the free binder, then dry at 150-200 ° C. for 15 minutes. This was calcined in air at about 800 ° C., further reduced and heated at 1100 to 1200 ° C. in a hydrogen stream, and sintered to obtain a porous iron body. In the same manner as in Examples 1 and 3, this nickel porous body was pressure-bonded to a base body made of an ordinary steel plate having a thickness of 80 μm or a punched steel plate having a thickness of 60 μm to obtain a battery current collector. Examples 5 and 6 are cases where a normal steel plate having a thickness of 80 μm is used for the base body, and Examples 7 and 8 are cases where a punched steel plate having a thickness of 60 μm is used.

【0029】[実施例9〜12]平均粒径の異なるステ
ンレス(SUS304)粉末をアクリル樹脂液に分散さ
せておき、ここにウレタンフォームを浸漬した後、実施
例1〜2と同様にして集電体を得た。なお、実施例9と
10は基体芯体に厚さ80μmの普通鋼板を使用した場
合であり、実施例11と12は厚さ60μmのパンチン
グ鋼板を使用した場合である。
[Examples 9 to 12] Stainless steel (SUS304) powders having different average particle diameters were dispersed in an acrylic resin solution, and urethane foam was immersed in the powder. I got a body. Examples 9 and 10 are cases where a normal steel plate having a thickness of 80 μm is used for the base body, and Examples 11 and 12 are cases where a punched steel plate having a thickness of 60 μm is used.

【0030】[実施例13]ウレタンフォームに直径8
0μm、長さ100mmの鉄線を巻き付けたものを多孔
質金属体として使用し、実施例1と同様にしてα酸化鉄
スラリーに浸漬した後、焼成、還元雰囲気で加熱して多
孔質金属体とした場合である。
Example 13 A urethane foam having a diameter of 8
Using a porous metal body wound with an iron wire having a length of 0 μm and a length of 100 mm, immersing it in an α-iron oxide slurry in the same manner as in Example 1, heating and heating in a reducing atmosphere to obtain a porous metal body Is the case.

【0031】[実施例14]ウレタンフォームに直径8
0μm、長さ100mmのニッケル線を巻き付けたもの
を多孔質金属体として使用し、実施例9と同様にしてニ
ッケル粉スラリーに浸漬した後、焼成、還元雰囲気で加
熱して多孔質金属体とした場合である。
Example 14 A urethane foam having a diameter of 8
A wire wound with a nickel wire having a length of 0 μm and a length of 100 mm was used as a porous metal body, immersed in a nickel powder slurry in the same manner as in Example 9, and then fired and heated in a reducing atmosphere to obtain a porous metal body. Is the case.

【0032】[実施例15〜16]ポリアクリロニトリ
ル系炭素繊維シート(PAN網)に径80μm、長さ30
〜50mmのステンレス繊維をからませて得たシートを
用意し、この金属繊維含有シートを約800℃で約60
分焼成し、さらに水素ガス雰囲気下で約1時間、加熱し
て酸化された金属を還元する。その後、この焼成シート
に以下の条件でニッケルめっきを1〜6μmの厚さにな
るように行って、金属多孔体を作製した。
Examples 15 and 16 A polyacrylonitrile-based carbon fiber sheet (PAN network) having a diameter of 80 μm and a length of 30
A sheet obtained by entangling stainless steel fibers of about 50 mm is prepared.
The mixture is fired for a minute, and further heated under a hydrogen gas atmosphere for about 1 hour to reduce the oxidized metal. Thereafter, the sintered sheet was subjected to nickel plating under the following conditions so as to have a thickness of 1 to 6 μm, thereby producing a porous metal body.

【0033】[ニッケルめっき浴組成とめっき条件] 硫酸ニッケル 300g/L 塩化ニッケル 45g/L ホウ酸 30g/L 浴温度 50℃ pH 4.0〜4.5 電流密度 20A/dm [Nickel plating bath composition and plating conditions] Nickel sulfate 300 g / L Nickel chloride 45 g / L Boric acid 30 g / L Bath temperature 50 ° C. pH 4.0-4.5 Current density 20 A / dm 2

【0034】[比較例1〜4]比較例1と2は本発明の
実施例1〜2のようにして作製した基体芯体を使用しな
いで、発泡金属板だけを使用して基体芯体とした場合で
ある。比較例3、4は本発明と同様の構造であるが、加
圧密着後の多孔質金属体の平均気孔径が本発明の範囲を
逸脱している場合である。
[Comparative Examples 1 to 4] Comparative Examples 1 and 2 do not use the substrate cores produced as in Examples 1 and 2 of the present invention, but use This is the case. Comparative Examples 3 and 4 have the same structure as that of the present invention, except that the average pore diameter of the porous metal body after press-contact is out of the range of the present invention.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】ニッケル−リンめっきをした基体芯体に
加圧密着後の平均気孔径が50〜200μmとなる多孔
質金属体を、加圧密着することによって、基体芯体と多
孔質体が容易に剥離することのない強固な電池用集電体
を得ることができる。
According to the present invention, a porous metal body having an average pore diameter of 50 to 200 μm after being press-contacted to a nickel-phosphorus-plated substrate core is pressure-contacted to form a substrate core and a porous body. A strong battery current collector that does not easily peel off can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】基体と多孔質金属体を加圧密着させる前の積層
状態の断面図である。
FIG. 1 is a cross-sectional view of a laminated state before a base and a porous metal body are brought into close contact with each other under pressure.

【図2】基体と多孔質金属体を加圧密着させて得た電池
用集電体の断面図である。
FIG. 2 is a cross-sectional view of a battery current collector obtained by bringing a base and a porous metal body into close contact with each other under pressure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大村 英雄 山口県下松市東豊井1302番地 東洋鋼鈑株 式会社下松工場内 (72)発明者 松尾 悟 山口県下松市東豊井1296番地の1 東洋鋼 鈑株式会社技術研究所内 (72)発明者 山根 啓二 東京都千代田区霞が関1丁目4番3号 東 洋鋼鈑株式会社内 Fターム(参考) 5H017 AA02 BB06 BB16 CC03 CC05 CC28 DD05 EE04 EE06 HH03 5H028 AA05 BB04 BB10 CC05 EE01 HH05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideo Omura 1302 Higashitoyoi, Kudamatsu City, Yamaguchi Prefecture Toyo Kohan Co., Ltd. (72) Inventor Satoru Satoru Matsuo 1296-1, Higashitoyoi, Kudamatsu City, Yamaguchi Prefecture In-house Research Institute (72) Inventor Keiji Yamane 1-4-3 Kasumigaseki, Chiyoda-ku, Tokyo Toyo Kohan Co., Ltd. F-term (reference) 5H017 AA02 BB06 BB16 CC03 CC05 CC28 DD05 EE04 EE06 HH03 5H028 AA05 BB04 BB10 CC05 EE01 HH05

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 表面にニッケルとリンの合金層を形成し
た金属基板上に多孔質金属体を積層、密着させたことを
特徴とする二次電池用集電体。
1. A current collector for a secondary battery, wherein a porous metal body is laminated on and adhered to a metal substrate having a nickel-phosphorus alloy layer formed on a surface thereof.
【請求項2】 上記合金層がめっき法で形成されている
請求項1記載の二次電池用集電体。
2. The current collector for a secondary battery according to claim 1, wherein said alloy layer is formed by plating.
【請求項3】 多孔質金属体が鉄、ニッケル又はそれら
の合金を主成分とした金属からなることを特徴とする請
求項1又は2記載の二次電池用集電体。
3. The current collector for a secondary battery according to claim 1, wherein the porous metal body is made of a metal containing iron, nickel, or an alloy thereof as a main component.
【請求項4】 基板に圧縮密着した後の平均気孔径が5
0〜200μmである多孔質金属体を使用する請求項1
又は2記載の二次電池用集電体。
4. The method according to claim 1, wherein the average pore diameter after compression contact with the substrate is 5%.
2. A porous metal body having a thickness of 0 to 200 [mu] m.
Or the current collector for a secondary battery according to 2.
【請求項5】 表面にニッケルとリンの合金層を形成し
た金属基板上に多孔質金属体を積層、密着させたことを
特徴とする二次電池用集電体の製造方法。
5. A method for manufacturing a current collector for a secondary battery, wherein a porous metal body is laminated and adhered on a metal substrate having a nickel-phosphorus alloy layer formed on a surface thereof.
【請求項6】 上記合金層がめっき法で形成されている
請求項5記載の二次電池用集電体の製造方法。
6. The method according to claim 5, wherein the alloy layer is formed by a plating method.
【請求項7】 多項質金属体が鉄、ニッケル又はそれら
の合金を主成分とする金属からなることを特徴とする請
求項5又は6記載の二次電池用集電体の製造方法。
7. The method for producing a current collector for a secondary battery according to claim 5, wherein the polynomial metal body is made of a metal containing iron, nickel or an alloy thereof as a main component.
【請求項8】 基板に圧縮密着した後の平均気孔径が5
0〜200μmである多孔質金属体を使用する請求項5
又は6記載の二次電池用集電体の製造方法。
8. An average pore diameter after compression contact with a substrate is 5
A porous metal body having a thickness of 0 to 200 µm is used.
Or a method for producing a current collector for a secondary battery according to item 6.
【請求項9】 表面にニッケルとリンの合金層を形成し
た金属基板上に多孔質金属体を積層、密着させて得た基
板を集電体として使用した二次電池。
9. A secondary battery using, as a current collector, a substrate obtained by laminating and adhering a porous metal body on a metal substrate having a nickel-phosphorus alloy layer formed on its surface.
【請求項10】 上記合金層がめっき法で形成されてい
る基板を集電体として使用した請求項9記載の二次電
池。
10. The secondary battery according to claim 9, wherein a substrate on which the alloy layer is formed by a plating method is used as a current collector.
【請求項11】 多孔質金属体が鉄、ニッケル又はそれ
らの合金を主成分とする金属からなる多孔質金属体から
なることを特徴とする請求項9又は10記載の二次電
池。
11. The secondary battery according to claim 9, wherein the porous metal body is made of a metal having iron, nickel, or an alloy thereof as a main component.
【請求項12】 基板に圧縮密着した後の平均気孔径が
50〜200μmである多孔質金属体を使用する請求項
9又は10記載の集電体として使用した二次電池。
12. The secondary battery used as a current collector according to claim 9, wherein a porous metal body having an average pore diameter of 50 to 200 μm after being pressed and adhered to the substrate is used.
【請求項13】 表面にニッケルとリンの合金層を形成
した金属基板上に多孔質金属体を積層、密着させて得た
基板を集電体として使用した二次電池の製造方法。
13. A method for manufacturing a secondary battery, comprising using a substrate obtained by laminating and adhering a porous metal body on a metal substrate having a nickel-phosphorus alloy layer formed on a surface thereof as a current collector.
【請求項14】 上記合金層がめっき法で形成されてい
る基板を集電体として使用した請求項13記載の二次電
池の製造方法。
14. The method according to claim 13, wherein a substrate on which the alloy layer is formed by a plating method is used as a current collector.
【請求項15】 多孔質金属体が鉄、ニッケル又はそれ
らの合金を主成分とする金属からなることを特徴とする
請求項13又は14記載の二次電池の製造方法。
15. The method for manufacturing a secondary battery according to claim 13, wherein the porous metal body is made of a metal containing iron, nickel or an alloy thereof as a main component.
【請求項16】 基板に圧縮密着後の平均気孔径が50
〜200μmである多孔質金属体を使用する請求項13
又は14記載の二次電池の製造方法。
16. An average pore diameter after compression contact with a substrate is 50.
14. Use of a porous metal body having a thickness of from 200 to 200 [mu] m.
15. A method for manufacturing a secondary battery according to 14 above.
JP28605799A 1999-10-06 1999-10-06 Current collector body for secondary battery, secondary battery using current collector body, and manufacturing method for the current collector body and the secondary battery Pending JP2001110425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28605799A JP2001110425A (en) 1999-10-06 1999-10-06 Current collector body for secondary battery, secondary battery using current collector body, and manufacturing method for the current collector body and the secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28605799A JP2001110425A (en) 1999-10-06 1999-10-06 Current collector body for secondary battery, secondary battery using current collector body, and manufacturing method for the current collector body and the secondary battery

Publications (1)

Publication Number Publication Date
JP2001110425A true JP2001110425A (en) 2001-04-20

Family

ID=17699408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28605799A Pending JP2001110425A (en) 1999-10-06 1999-10-06 Current collector body for secondary battery, secondary battery using current collector body, and manufacturing method for the current collector body and the secondary battery

Country Status (1)

Country Link
JP (1) JP2001110425A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100578982B1 (en) 2004-09-07 2006-05-12 삼성에스디아이 주식회사 Secondary Battery
WO2006123050A1 (en) * 2005-05-18 2006-11-23 Centre National De La Recherche Scientifique Method for production of an anode for a lithium ion battery
JP2006344500A (en) * 2005-06-09 2006-12-21 Mitsubishi Materials Corp Manufacturing method of complex plate consisting of porous foaming metal layer and metal layer
JP2006344499A (en) * 2005-06-09 2006-12-21 Mitsubishi Materials Corp Manufacturing method of complex plate consisting of porous metal layer and metal layer
CN104037423A (en) * 2014-06-19 2014-09-10 合肥国轩高科动力能源股份公司 Preparation method of porous nickle current collector of lithium ion battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100578982B1 (en) 2004-09-07 2006-05-12 삼성에스디아이 주식회사 Secondary Battery
WO2006123050A1 (en) * 2005-05-18 2006-11-23 Centre National De La Recherche Scientifique Method for production of an anode for a lithium ion battery
FR2886060A1 (en) * 2005-05-18 2006-11-24 Centre Nat Rech Scient PROCESS FOR PREPARING ANODE FOR ION-LITHIUM BATTERY
JP2008541391A (en) * 2005-05-18 2008-11-20 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Method for manufacturing anode of lithium ion battery
US8114542B2 (en) 2005-05-18 2012-02-14 Centre National De La Recherche Scientifique Method for production of an anode for a lithium-ion battery
JP2006344500A (en) * 2005-06-09 2006-12-21 Mitsubishi Materials Corp Manufacturing method of complex plate consisting of porous foaming metal layer and metal layer
JP2006344499A (en) * 2005-06-09 2006-12-21 Mitsubishi Materials Corp Manufacturing method of complex plate consisting of porous metal layer and metal layer
CN104037423A (en) * 2014-06-19 2014-09-10 合肥国轩高科动力能源股份公司 Preparation method of porous nickle current collector of lithium ion battery

Similar Documents

Publication Publication Date Title
JP3508604B2 (en) Method for producing high-strength sponge-like fired metal composite plate
CA1303123C (en) Electrode substrate for fuel cell and process for producing the same
JP2003511828A (en) Electrochemical electrode for fuel cell
JPS6151384B2 (en)
CN1233859A (en) Process for preparing metallic porous body, electrody substrate for battery and process for preparing the same
JP2000173603A (en) Method for manufacturing electrode plate for battery, electrode plate manufactured by the method, and battery provided with the electrode plate
JP2001110425A (en) Current collector body for secondary battery, secondary battery using current collector body, and manufacturing method for the current collector body and the secondary battery
JPH0644966A (en) Manufacture of hydrogen storage electrode
JP2008300060A (en) Method of manufacturing solid polymer electrolyte membrane, solid polymer electrolyte membrane, membrane electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2007107091A (en) Porous titanium having small contact resistance and method for producing the same
EP3924536A1 (en) Method for the preparation of a gas diffusion layer and a gas diffusion layer obtained or obtainable by such method
AU707790B2 (en) A ground plate for the substrate of a secondary battery electrode, a substrate of a secondary battery electrode, a production method thereof, and an electrode and a battery produced thereof
JP3218845B2 (en) Method for manufacturing three-dimensional copper network structure
JPH09231983A (en) Electrode substrate for battery and its manufacture
JPH07320744A (en) One-stage production of gas diffusion electrode
JPH09512950A (en) Two-layer tape for molten carbonate fuel cell
JP3515652B2 (en) Method for producing porous metal body
JP4423442B2 (en) Method for producing electrode substrate for alkaline secondary battery
JP3407813B2 (en) Method for manufacturing three-dimensional network structure
JPH08193232A (en) Production of metallic porous body
CA2236421C (en) Core body for electrode base of secondary cell, process for manufacturing the core body, electrode base of secondary cell, process for manufacturing the electrode base, and electrode and battery using them
JP2798700B2 (en) Method for producing sintered substrate for alkaline storage battery
JP5125435B2 (en) Porous titanium with low contact resistance
JPH0665036B2 (en) Gas diffusion electrode and manufacturing method thereof
JP2981538B2 (en) Electrodes for alkaline batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080305