JP2001110349A - Remote operating system for electron microscope - Google Patents

Remote operating system for electron microscope

Info

Publication number
JP2001110349A
JP2001110349A JP29179799A JP29179799A JP2001110349A JP 2001110349 A JP2001110349 A JP 2001110349A JP 29179799 A JP29179799 A JP 29179799A JP 29179799 A JP29179799 A JP 29179799A JP 2001110349 A JP2001110349 A JP 2001110349A
Authority
JP
Japan
Prior art keywords
signal
processing
remote
computer
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29179799A
Other languages
Japanese (ja)
Inventor
Soichiro Hayashi
聰一郎 林
Kenichi Myochin
健一 明珍
Hiroaki Shigegaki
宏明 茂垣
Mitsuhiro Numata
光浩 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Science Systems Ltd
Original Assignee
Hitachi Ltd
Hitachi Science Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Science Systems Ltd filed Critical Hitachi Ltd
Priority to JP29179799A priority Critical patent/JP2001110349A/en
Publication of JP2001110349A publication Critical patent/JP2001110349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Small-Scale Networks (AREA)
  • Selective Calling Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique that prevents the operating signal from recorded in a queue of signal processing by a computer or the like caused by its real-time processing being unavailable because of processing time, signal queue, etc., generated in such units of passing through as a communication circuit and a connected computer, and from execution of processing at a timing unexpected by the microscope operator, to offer a good operability from a remote spot. SOLUTION: Problems are solved by executing signal processing of ignoring signals among received ones that can not be processed in real time by using a computer, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超高圧電子顕微鏡の
ような高価格または希少価値の装置を遠隔地から操作可
能することで装置の付加価値が増大する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for increasing the added value of a high-priced or scarce-value apparatus such as an ultra-high voltage electron microscope by operating the apparatus from a remote place.

【0002】[0002]

【従来の技術】従来の遠隔装置はパソコン画面でマウス
操作を主体としたシステムなので、観察する試料の視野
を見失う程の高速操作はできなかった。しかし本格的な
操作卓を有する遠隔操作装置では本体装置と同様な操作
が要求される。特に、試料送りの操作においては高速送
りを実行するための操作信号にロータリーエンコーダ等
を使用し高速操作を可能にしていた。ところが単位時間
当たりの操作信号量が膨大になり、その結果通信回線等
の電送路におけるコンピュータ等でリアルタイム処理が
不可能となって、未処理の信号はコンピュータ内部の待
ち行列に記憶され、移動操作を停止させ後にも観察像に
予測外の試料送りが発生し操作性の低下が顕著になっ
た。
2. Description of the Related Art Since a conventional remote device is a system mainly based on a mouse operation on a personal computer screen, it has not been possible to operate the remote device at such a high speed as to lose the field of view of a sample to be observed. However, a remote operation device having a full-scale operation console requires the same operation as the main device. In particular, in a sample feeding operation, a high-speed operation has been enabled by using a rotary encoder or the like as an operation signal for executing the high-speed feeding. However, the amount of operation signals per unit time becomes enormous, and as a result, real-time processing cannot be performed by a computer or the like in a transmission line such as a communication line, and unprocessed signals are stored in a queue inside the computer, and a moving operation is performed. After stopping the test, unexpected sample feeding occurred in the observed image, and the operability was significantly reduced.

【0003】[0003]

【発明が解決しようとする課題】通常遠隔装置からの操
作信号はその発生毎に本体装置に向けて電送路を経由し
て送信する。ところが電送路に接続するコンピュータの
応答速度や通信回線等の待ち時間で多量の操作信号をリ
アルタイム処理が不可能であったする。この時一般的な
コンピュータ等の処理では、未処理の信号をストックし
処理可能な条件が整った時点で送信する。しかしながら
ストックした未処理信号は電子顕微鏡等の装置では不要
な信号であり、一瞬と言えども操作終了後に処理され送
信されると観察している像が移動してしまい、操作性を
著しく害することになる。
Normally, every time an operation signal from a remote device is generated, it is transmitted to a main unit via a power transmission line. However, it is impossible to process a large amount of operation signals in real time due to the response speed of a computer connected to the transmission line or the waiting time of a communication line. At this time, in the processing of a general computer or the like, the unprocessed signal is stocked and transmitted when the condition for processing is satisfied. However, the stored unprocessed signals are unnecessary signals for devices such as electron microscopes, and even if they are processed and transmitted for a moment after the operation is completed, the observed image will move, greatly impairing operability. Become.

【0004】[0004]

【課題を解決するための手段】操作信号と映像信号の通
信回線等による信号の遅延時間が一定ならば、オペレー
タが観察像を見ながら操作する電子顕微鏡のような装置
では、操作信号の欠落や遅延時間の問題は多少の操作練
習で防止することができる。従って、上記したコンピュ
ータ等での処理待ちになった信号は未処理状態のまま無
効にすることが、最適な遠隔操作システムを提供するこ
とになる。
In a device such as an electron microscope operated by an operator while observing an observation image, if the delay time of a signal through a communication line or the like between the operation signal and the video signal is constant, the operation signal may be lost. The problem of delay time can be prevented with some operation practice. Therefore, it is possible to provide an optimal remote control system by invalidating the signals waiting to be processed by the computer or the like in an unprocessed state.

【0005】[0005]

【発明の実施の形態】電子顕微鏡の構成例として、図4
に透過形電子顕微鏡の原理図を示した。電子銃51から
出た電子ビーム42は、高電圧電源66の電圧を印可し
た加速管43で加速しコンデンサレンズ54で適正な明
るさとスポット径にし、試料ステージ56に載せた試料
55に照射する。試料55を透過した電子ビーム52は
試料55の情報を含み第1中間レンズ58、第2中間レ
ンズ59、投影レンズ60で拡大され蛍光板61に投影
され、蛍光体の発光で電子顕微鏡の像として観察でき
る。この像は通常観察窓64を通して図中A位置から観
察し、例えば、対物レンズ57で焦点合わせができ、ま
た倍率調整や焦点調整等も本体操作卓11で総合制御装
置12を通して実行できる。
FIG. 4 shows an example of the configuration of an electron microscope.
Fig. 1 shows the principle diagram of the transmission electron microscope. The electron beam 42 emitted from the electron gun 51 is accelerated by the accelerating tube 43 to which the voltage of the high-voltage power supply 66 is applied, is adjusted to an appropriate brightness and spot diameter by the condenser lens 54, and is irradiated to the sample 55 placed on the sample stage 56. The electron beam 52 transmitted through the sample 55 contains the information of the sample 55 and is enlarged by the first intermediate lens 58, the second intermediate lens 59, and the projection lens 60 and projected on the fluorescent plate 61, and is observed as an electron microscope image by the emission of the fluorescent material. it can. This image is usually observed from the position A in the figure through the observation window 64, and can be focused by, for example, the objective lens 57, and magnification adjustment, focus adjustment, and the like can be executed by the main console 11 through the general control device 12.

【0006】また、電子顕微鏡像の写真撮影は、蛍光板
61(図示していないが)を光軸から外し、電子ビーム
52をフィルム露光室62の中央に設定したフィルム6
3に照射し露光する。フィルム63の設定操作はフィル
ム制御装置65で制御するが、通常本体操作卓11にフ
ィルムフィードと露光スイッチが配置してあり操作でき
る。
For photographing an electron microscope image, a fluorescent plate 61 (not shown) is removed from the optical axis, and an electron beam 52 is set at the center of a film exposure chamber 62.
Irradiate 3 and expose. The setting operation of the film 63 is controlled by the film control device 65. Usually, a film feed and an exposure switch are arranged on the console 11 of the main body, and the operation can be performed.

【0007】さらにTVカメラで像観察するには、蛍光
板61で発光し透過した像をTVカメラ16で撮影し映
像モニタ17に表示する。もちろんこの時フィルム63
が電子ビーム52の通路に存在しないことは言うまでも
ない。
Further, in order to observe an image with a TV camera, an image emitted and transmitted by the fluorescent screen 61 is photographed by the TV camera 16 and displayed on the video monitor 17. Of course at this time film 63
Need not be present in the path of the electron beam 52.

【0008】電子顕微鏡の観察中には試料55を移動す
ることは非常に多い。移動の種類は観察する試料55の
最適なターゲット位置を探すための視野選択移動と、試
料55のターゲット部の詳細観察する微動移動の2種類
がある。前者の移動操作は試料55を最高速で移動し観
察に最適なターゲット部の選択に、後者は当該ターゲッ
ト部の詳細を観察するために極めて低速度で移動操作す
る。試料55の移動動作は図5に示したように試料ステ
ージ56の駆動によるが、本体操作卓11の操作スイッ
チで総合制御装置12からX軸モータドライバ67−1
とY軸モータドライバ67−2を含むステージドライバ
67を通し、X軸駆動モータ69−1やY軸駆動モータ
69−2を連続にそして微動し試料ステージ66を移動
操作する。この操作は図6に示した本体操作卓11(遠
隔操作卓14も同様)に配置したX軸送りツマミ71と
Y軸送りツマミ72で移動操作できる。このツマミには
通常ロータリーエンコーダが機械的に接続され、ツマミ
操作毎に総合制御装置12(遠隔操作の場合は遠隔操作
制御装置15)からステージドライバ67を経由し、上
記したように試料ステージ56を移動し、試料の各部を
観察することができる。
During the observation with an electron microscope, the sample 55 is very often moved. There are two types of movement, a field-of-view selection movement for searching for the optimal target position of the sample 55 to be observed, and a fine movement for detailed observation of the target portion of the sample 55. The former moving operation moves the sample 55 at the highest speed to select an optimal target portion for observation, and the latter moves the sample 55 at an extremely low speed to observe the details of the target portion. Although the movement of the sample 55 is performed by driving the sample stage 56 as shown in FIG. 5, the X-axis motor driver 67-1 is operated by the operation switch of the console 11.
Then, the sample stage 66 is moved by finely moving the X-axis drive motor 69-1 and the Y-axis drive motor 69-2 continuously and through the stage driver 67 including the Y-axis motor driver 67-2. This operation can be moved by an X-axis feed knob 71 and a Y-axis feed knob 72 arranged on the main console 11 (also the remote console 14) shown in FIG. Usually, a rotary encoder is mechanically connected to this knob, and the sample stage 56 is moved from the general control device 12 (remote control device 15 in the case of remote operation) to the sample stage 56 as described above every time the knob is operated. It can move and observe each part of the sample.

【0009】図6は本体操作卓11の構成例であるが、
本発明は試料ステージに係わる発明であるためXY2軸
の送りツマミのみを示したが、実際には焦点合わせ用ツ
マミや倍率設定ツマミ等多数のツマミやスイッチから構
成される。遠隔操作卓14は図示しないが本体操作卓1
1と同様な構成であることは言うまでもない。
FIG. 6 shows an example of the configuration of the main console 11.
Since the present invention relates to the sample stage, only the XY two-axis feed knob is shown. However, the present invention is actually constituted by a number of knobs and switches such as a focus knob and a magnification setting knob. The remote console 14 is not shown, but the console 1
Needless to say, the configuration is the same as that of the first embodiment.

【0010】図3は遠隔操作装置のシステム構成例であ
る。図中本体装置13で示す部位は図4の電子銃51か
らフィルム露光室62までのカラム各構造部から、高電
圧電源66やフィルム制御装置65等の各制御構成部の
全てを含み、本体操作卓11の操作でも映像モニタ17
で電子顕微鏡の像を観察できる。また遠隔操作において
は、遠隔操作卓14を操作したその操作信号が本体総合
制御装置12に送信され、本体操作卓11同様に操作可
能であることを示している。遠隔操作信号の流れは、遠
隔操作卓14から遠隔操作制御装置15、遠隔操作パソ
コン22を経由し遠隔装置に付随する通信信号処理装置
31から通信端末装置32、そして通信回線33を経て
本体装置に含む通信端末装置34、通信信号処理装置3
5で受信し、本体パソコン21から総合制御装置12に
送られ本体装置13を制御する。また、電子顕微鏡の像
はTVカメラ16で常時撮影しており、操作信号とは逆
ルートで遠隔映像モニタ27に表示される。
FIG. 3 shows an example of a system configuration of a remote control device. In the figure, the parts indicated by the main unit 13 include all the structural components from the electron gun 51 to the film exposure chamber 62 in FIG. The video monitor 17 can also be operated by the desk 11
To observe the image of the electron microscope. In the remote operation, an operation signal of operating the remote console 14 is transmitted to the main controller 12 to indicate that the operation can be performed similarly to the main console 11. The flow of the remote operation signal is transmitted from the remote operation console 14 to the remote operation control device 15, from the communication signal processing device 31 attached to the remote device via the remote operation personal computer 22 to the communication terminal device 32, and to the main unit via the communication line 33. Communication terminal device 34, communication signal processing device 3 including
5 and is sent from the personal computer 21 to the general control device 12 to control the main device 13. Further, the image of the electron microscope is constantly photographed by the TV camera 16 and is displayed on the remote video monitor 27 through a route reverse to the operation signal.

【0011】ここで遠隔操作信号(本説明では試料送り
に限定しているが他の操作信号も同様)の発生から電子
顕微鏡像の送り終了時の像観察までの時間、すなわちこ
の遠隔操作システム系における総合遅延時間が電子顕微
鏡のレスポンスに係わり操作性の良否を決定する要因で
ある。しかしながら試料送り操作から電子顕微鏡の像の
変化が観察されるまでの感覚時間は常に一定であり、試
料送り操作が早い時も遅い時でも観察操作するオペレー
タは自ずからが信号遅延を認識しているために、多少の
操作練習でその遅れ時間に違和感を感じない操作が可能
になる。ところが操作信号の送信量がコンピュータ間や
通信回線の能力を越えると、一般的にはコンピュータ内
の待ち行列に記録される。すなわち待ち行列に記録され
た操作信号は送り操作中にも操作終了後にも、当該記録
信号が全て送信終了するまで通信を継続する。この記録
信号の送信はオペレータの認識外の信号であり、この信
号で試料が移動されると著しく操作性を損ない違和感を
感じる。
Here, the time from the generation of a remote operation signal (this example is limited to the sample feed, but other operation signals are the same) until the image observation at the end of the transmission of the electron microscope image, that is, this remote operation system system The total delay time is related to the response of the electron microscope and is a factor for determining the operability. However, the sensory time from the sample feeding operation until the change in the image of the electron microscope is observed is always constant, and the operator who performs the observation operation even when the sample feeding operation is early or late recognizes the signal delay by itself. In addition, an operation that does not give a sense of incongruity to the delay time can be performed with some operation practice. However, when the transmission amount of the operation signal exceeds the capacity of the computer or the communication line, it is generally recorded in a queue in the computer. In other words, the operation signal recorded in the queue continues communication both during and after the sending operation until the transmission of all the recorded signals is completed. The transmission of the recording signal is a signal that is not recognized by the operator, and when the sample is moved by this signal, the operability is significantly impaired and the user feels uncomfortable.

【0012】図1、2は本発明の実施例であり、上記し
た記録信号の転送を無くすことで操作性を向上させるこ
とができる方式を示した。図1は遠隔装置側の遠隔操作
卓制御装置15から本体装置側の本体パソコン21(ま
たは総合制御装置12)間の電送路に接続する複数コン
ピュータにおいて、送受信する2つのコンピュータ間の
送受信信号に係わる信号処理である。(a)は受信送信
信号の処理タイミングチャートで、受信側コンピュータ
の応答処理時間(Ti)を知り、その時間内で処理可能
な信号量のみを送信側コンピュータが送信する。例え送
信側コンピュータが受信した操作信号でも受信側のコン
ピュータが処理できない時の信号は送信側で送信をせ
ず、処理できない信号を受信コンピュータの待ち行列に
記録させない方法である。すなわち、送信側コンピュー
タではP11から時間Ti内に受信した操作信号P12
とP13は無効にし、P21(P11と同一信号)とP
22(P14と同一信号)のみを送信する。このような
受信送信制御を遠隔操作システム系に接続する全てのコ
ンピュータ間に、また通信回線に適用することで、遠隔
操作システム系の中で待ち行列に記録される操作信号は
なくなり操作性の向上が図れる。(b)はこの処理を実
行するための制御シーケンスである。STEP1は送信
側コンピュータの受信待ちで、STEP2では受信信号
の処理をし、STEP3は受信側コンピュータの応答時
間Tiと受信した信号のP11からの時間Tnとの比較
し、TnがTiより大きい時はその受信した信号を受信
側コンピュータに送信し、TnがTiより小さい時はそ
の受信した信号を送信しない判断処理である。この場合
P11とP14が適合する信号なのでP21とP22と
して、STEP4で次の受信側コンピュータに送信処理
する。
FIGS. 1 and 2 show an embodiment of the present invention, which shows a system capable of improving the operability by eliminating the transfer of the recording signal. FIG. 1 relates to transmission / reception signals between two computers transmitting and receiving in a plurality of computers connected to a transmission path between the remote console control device 15 on the remote device side and the main computer 21 (or the general control device 12) on the main device side. Signal processing. (A) is a processing timing chart of the received transmission signal, in which the response processing time (Ti) of the receiving computer is known, and only the signal amount that can be processed within that time is transmitted by the transmitting computer. For example, even if the operation signal received by the transmitting computer is not processed by the receiving computer, the transmitting computer does not transmit the signal and the unprocessable signal is not recorded in a queue of the receiving computer. That is, the transmitting computer receives the operation signal P12 received within the time Ti from P11.
And P13 are invalidated, and P21 (the same signal as P11) and P13
22 (same signal as P14) is transmitted. By applying such reception and transmission control to all the computers connected to the remote operation system and to the communication line, there is no operation signal recorded in the queue in the remote operation system and the operability is improved. Can be achieved. (B) is a control sequence for executing this processing. STEP 1 waits for reception by the transmitting computer, and STEP 2 processes the received signal. STEP 3 compares the response time Ti of the receiving computer with the time Tn from P11 of the received signal. If Tn is greater than Ti, The received signal is transmitted to the receiving computer, and when Tn is smaller than Ti, the received signal is not transmitted. In this case, since the signals P11 and P14 match, the transmission processing is performed to the next receiving side computer in STEP4 as P21 and P22.

【0013】本信号処理と同様に、遠隔操作システム系
の中で最も応答処理の遅いコンピュータの処理時間Ti
に対し、上記した信号処理と同様に最初に送信するコン
ピュータ、例えば、遠隔操作パソコン22で操作信号の
送信制御を実行することでも可能であり、同等の効果が
得られることは言うまでもない。
Similarly to the signal processing, the processing time Ti of the computer having the slowest response processing in the remote control system is
On the other hand, similarly to the above-described signal processing, it is also possible to execute the transmission control of the operation signal by the computer which transmits first, for example, the remote operation personal computer 22, and it is needless to say that the same effect can be obtained.

【0014】上記した信号処理では電送路の各コンピュ
ータの応答時間Tiを知らなければならないが、図2に
示す発明は応答時間に無関係な処理方式である。例え
ば、遠隔操作でも操作信号の最終受信処理部、例えば図
5の本体装置側の総合処理装置12やステージドライバ
67の信号処理のみで実行可能な方式である。図2や図
5にその具体的な回路やその処理内容を説明していない
が、ステージドライバ67には通常処理コンピュータを
内蔵し、そのプログラム処理で試料の送り操作を実行し
ている。(a)はステージドライバ67が操作信号を受
信し信号処理を実行するタイミングチャートである。受
信信号がP11から順次P15・・・と受信されるが、
信号処理できない時間帯に受信した信号はプログラムで
無視することでその問題点を解決できる。具体例とし
て、受信信号がコンピュータの割込み信号で処理するプ
ログラムシステムとすれば、受信信号の試料送り駆動中
には重畳して受信信号を処理できない時間帯であり、そ
の受信信号はプログラムで無視することで図1の信号処
理と同様に処理できる。(b)に受信信号制御シーケン
スを示した。STEP1では操作信号を受信し、STE
P2では受信信号の処理判断を実行する。すなわち現受
信信号の割り込み処理の可否を判断する処理である。も
し可能ならば現受信信号の試料送りを実行し、割り込み
処理が不可能(前の受信信号の試料送り実行中)なら
ば、当該受信信号は無視(通常処理ならば受信信号を待
ち行列に記録されてしまう)し、STEP1の次受信待
ちの処理に移る。その間に割り込み処理が可能な状態
(実行中の試料送りが終了)になれば、次受信信号は試
料送りが可能になる。その時に受信信号が検出できれば
STEP4の試料送り処理が可能になる。この割り込み
処理の禁止と許可はシーケンスで示したように、試料送
り駆動の実行前にSTEP3で禁止にし、試料送り駆動
実行後のSTEP4で許可状態にすることが一般的な処
理である。
In the above-described signal processing, the response time Ti of each computer on the transmission path must be known, but the invention shown in FIG. 2 is a processing method irrelevant to the response time. For example, this method can be executed even by remote control only by the signal processing of the final reception processing unit of the operation signal, for example, the general processing device 12 and the stage driver 67 of the main unit in FIG. Although the specific circuit and the processing contents are not described in FIGS. 2 and 5, a normal processing computer is incorporated in the stage driver 67, and the sample feeding operation is executed by the program processing. (A) is a timing chart in which the stage driver 67 receives an operation signal and executes signal processing. The received signals are sequentially received from P11 to P15.
The problem can be solved by ignoring the signal received during the time period when the signal cannot be processed by the program. As a specific example, if the received signal is processed by a computer interrupt signal, a program system in which the received signal is superimposed and cannot be processed during the sample feeding drive, and the received signal is ignored by the program. Thus, processing can be performed in the same manner as the signal processing in FIG. (B) shows the received signal control sequence. In STEP1, the operation signal is received and the STE
At P2, the processing of the received signal is determined. That is, this is a process of determining whether or not the interruption process of the current reception signal is possible. If possible, execute sample feeding of the current received signal. If interrupt processing is not possible (during sample feeding of the previous received signal), ignore the received signal (if normal processing, record the received signal in the queue). Then, the process proceeds to the next reception waiting process in STEP1. In the meantime, if it becomes possible to execute the interrupt processing (the sample feeding being executed is completed), the next reception signal becomes possible for the sample feeding. If the received signal can be detected at that time, the sample feeding process in STEP 4 becomes possible. As shown in the sequence, the prohibition and the permission of the interrupt processing are generally prohibited in STEP 3 before the execution of the sample feeding drive and enabled in STEP 4 after the execution of the sample feeding drive.

【0015】図1、2に本発明の処理例を説明したが、
信号処理の待ち行列への記録や割り込み処理の可否とし
て説明したが、具体的には本説明例に従うこと無く、と
にかく試料送り信号が処理できずに積算される状態を無
くし、操作性の向上を達成することが目的であり具体的
な手段を問うものではない。
FIGS. 1 and 2 show an example of processing according to the present invention.
Although the description has been made as to whether or not the signal processing can be recorded in the queue and the interrupt processing can be performed, specifically, without following this description example, it is possible to eliminate the state in which the sample feed signal cannot be processed and integrated, thereby improving operability. The goal is to achieve it, not to ask for specific means.

【0016】[0016]

【発明の効果】本発明によって電子顕微鏡等の映像を観
察し良好なる遠隔操作が可能な装置を提供できる。
According to the present invention, it is possible to provide an apparatus capable of observing an image of an electron microscope or the like and performing excellent remote control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】通信電送路における各コンヒ゜ュータ間の受信
信号と送信信号との信号処理タイミングチャートとその
制御シーケンスの例を示す図。
FIG. 1 is a diagram showing a signal processing timing chart of a reception signal and a transmission signal between respective computers in a communication power transmission line and an example of a control sequence thereof.

【図2】受信信号と駆動信号処理とで不要信号の処理を
実行する処理タイミングチャートとその制御シーケンス
の例を示す図。
FIG. 2 is a diagram showing a processing timing chart for executing processing of an unnecessary signal by a reception signal and drive signal processing, and an example of a control sequence thereof.

【図3】遠隔操作システムの構成例を示す図。FIG. 3 is a diagram showing a configuration example of a remote operation system.

【図4】透過形電子顕微鏡の基本構成例を示す図。FIG. 4 is a diagram showing a basic configuration example of a transmission electron microscope.

【図5】電子顕微鏡に搭載する試料ステージの基本構成
例と制御ブロックを示す図。
FIG. 5 is a diagram showing a basic configuration example and a control block of a sample stage mounted on an electron microscope.

【図6】本体(遠隔)操作卓の内試料送り操作ツマミの
例を示す図。
FIG. 6 is a diagram showing an example of a sample feeding operation knob in a main body (remote) console.

【符号の説明】[Explanation of symbols]

11…本体操作卓、12…総合制御装置、13…本体装
置、14…遠隔操作卓、15…遠隔操作卓制御装置、1
6…TVカメラ、17…映像モニタ、21…本体パソコ
ン、22…遠隔操作パソコン、27…遠隔映像モニタ、
31…通信信号処理装置、32…通信端末装置、33…
通信回線、34…通信端末装置、35…通信信号処理装
置、51…電子銃、52…電子ビーム、53…加速管、
54…コンデンサレンス゛、55…試料、56…試料ス
テージ、57…対物レンズ、58…第1中間レンズ、5
9…第2中間レンズ、60…投影レンズ、61…蛍光
板、62…フィルム露光室、63…フィルム、64…観
察窓、65…フィルム制御装置、66…高電圧電源、6
7…ステージドライバ、67−1…X軸モータドライ
バ、67−2…Y軸モータドライバ、68…レンズ電
源、69−1…X軸駆動モータ、69−2…Y軸駆動モ
ータ、71…X軸送りツマミ、72…Y軸送りツマミ。
11: Main console, 12: General control device, 13: Main device, 14: Remote console, 15: Remote console control device, 1
6 TV camera, 17 Video monitor, 21 Personal computer, 22 Remote control personal computer, 27 Remote video monitor,
31 ... communication signal processing device, 32 ... communication terminal device, 33 ...
Communication line, 34 communication terminal device, 35 communication signal processing device, 51 electron gun, 52 electron beam, 53 accelerating tube,
54: capacitance コ ン デ ン サ, 55: sample, 56: sample stage, 57: objective lens, 58: first intermediate lens, 5
Reference numeral 9: second intermediate lens, 60: projection lens, 61: fluorescent plate, 62: film exposure chamber, 63: film, 64: observation window, 65: film controller, 66: high voltage power supply, 6
7 ... Stage driver, 67-1 ... X-axis motor driver, 67-2 ... Y-axis motor driver, 68 ... Lens power supply, 69-1 ... X-axis drive motor, 69-2 ... Y-axis drive motor, 71 ... X-axis Feed knob, 72 ... Y-axis feed knob.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 明珍 健一 茨城県ひたちなか市大字市毛882番地 株 式会社日立製作所計測器グループ内 (72)発明者 茂垣 宏明 茨城県ひたちなか市大字市毛1040番地 株 式会社日立サイエンスシステムズ内 (72)発明者 沼田 光浩 茨城県ひたちなか市大字市毛1040番地 株 式会社日立サイエンスシステムズ内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kenichi Mechinin 882, Momo, Oaza-shi, Hitachinaka-shi, Ibaraki Prefecture Within the Hitachi Measuring Instruments Group, Ltd. Hitachi Science Systems Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 通信回線等を利用し本体装置と物理的に
離れた場所に設置した遠隔操作装置との間で映像信号や
制御信号を送受信可能とした本体電子顕微鏡および遠隔
操作装置において、遠隔操作装置から送信される操作信
号で本体電子顕微鏡を遠隔動作させ、同時に当該電子顕
微鏡の像、例えばTV映像等を常時遠隔操作装置に送信
してモニタ可能とする遠隔操作装置で、観察する試料の
送り操作信号を発生する量だけ無制限に本体装置側に向
けて送信し、途中電送路に接続するコンピュータや通信
回線等の能力を越えた操作信号量を送受信コンピュータ
の処理プログラム等で、円滑な試料送りの遠隔操作を可
能としたことを特徴とする電子顕微鏡遠隔操作装置。
An electronic microscope and a remote control device capable of transmitting and receiving a video signal and a control signal between a main control device and a remote control device which is physically separated from the main control device using a communication line or the like. A remote operation device that remotely operates the main body electron microscope with an operation signal transmitted from the operation device and simultaneously transmits an image of the electron microscope, for example, a TV image, etc. to the remote operation device and enables monitoring of the sample to be observed. Transmit the operation signal to the main unit indefinitely by the amount that generates the feed operation signal, and process the operation signal amount that exceeds the capacity of the computer or communication line connected to the power transmission line in the middle with the processing program of the transmission and reception computer, etc. An electron microscope remote control device, wherein remote control of feeding is enabled.
JP29179799A 1999-10-14 1999-10-14 Remote operating system for electron microscope Pending JP2001110349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29179799A JP2001110349A (en) 1999-10-14 1999-10-14 Remote operating system for electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29179799A JP2001110349A (en) 1999-10-14 1999-10-14 Remote operating system for electron microscope

Publications (1)

Publication Number Publication Date
JP2001110349A true JP2001110349A (en) 2001-04-20

Family

ID=17773566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29179799A Pending JP2001110349A (en) 1999-10-14 1999-10-14 Remote operating system for electron microscope

Country Status (1)

Country Link
JP (1) JP2001110349A (en)

Similar Documents

Publication Publication Date Title
US8390682B2 (en) Microscope system and its control method
Fan et al. Telemicroscopy
JP2001110349A (en) Remote operating system for electron microscope
CN105517481A (en) Aid for providing imaging support to operator during surgical intervention
JP3112527B2 (en) electronic microscope
JP4144768B2 (en) Microscope remote operation method and apparatus
JP2000340157A (en) Remote operating device for electron microscope
JP2001176438A (en) Electron microscope and remote operation system thereof
JP2647141B2 (en) Endoscope device
JP2000340156A (en) Remote operating device for electron microscope
JPH0243092Y2 (en)
JPH04366539A (en) Electron microscope objective diaphragm drive device
JPH1188728A (en) Information display device for television camera
JPH08212960A (en) Electron microscope
JPS5853468B2 (en) scanning electron microscope
JP3987636B2 (en) electronic microscope
JP3376823B2 (en) Scanning electron microscope and similar devices
JPH0683661B2 (en) Sample processing apparatus and its operating method
JP3041353B2 (en) Charged particle beam scanning type image display
JPH0227492Y2 (en)
JP2000340155A (en) Transmission type electron microscope
JPH11299727A (en) Endoscope device
JP2000029601A (en) Computer system
JPH10302704A (en) Charged particle beam device
JPH1013726A (en) Image pickup device