JP2001107758A - Cylinder fuel injection type spark ignition internal combustion engine - Google Patents

Cylinder fuel injection type spark ignition internal combustion engine

Info

Publication number
JP2001107758A
JP2001107758A JP29107799A JP29107799A JP2001107758A JP 2001107758 A JP2001107758 A JP 2001107758A JP 29107799 A JP29107799 A JP 29107799A JP 29107799 A JP29107799 A JP 29107799A JP 2001107758 A JP2001107758 A JP 2001107758A
Authority
JP
Japan
Prior art keywords
valve
intake
fuel
cylinder
opening timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29107799A
Other languages
Japanese (ja)
Inventor
Fumiaki Hattori
文昭 服部
Keiso Takeda
啓壮 武田
Nobuhiko Koga
伸彦 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP29107799A priority Critical patent/JP2001107758A/en
Publication of JP2001107758A publication Critical patent/JP2001107758A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To prevent the deterioration in a combustion and exhaust emission by forming a favorable homogeneous mixture in a cylinder, even in an engine cooling time, in a cylinder fuel injection type spark ignition internal combustion engine enforcing a homogeneous combustion. SOLUTION: A homogeneous combustion jetting a fuel in an intake stroke mainly is enforced and the valve opening timing of an intake valve is slower than the valve closing timing of an exhaust valve and is after an intake upper dead point (step 103) and a fuel injection is started within the term from the valve closing timing of the exhaust valve to the valve opening timing of the intake valve at the homogeneous combustion time (step 105).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、筒内噴射式火花点
火内燃機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct injection spark ignition internal combustion engine.

【0002】[0002]

【従来の技術】気筒内へ直接的に燃料を噴射するための
燃料噴射弁を具備する筒内噴射式火花点火内燃機関が公
知である。このような筒内噴射式火花点火内燃機関は、
噴射された燃料の全てが確実に気筒内へ供給されるため
に、各機関運転状態毎の燃料噴射量を必要最小限として
燃料消費率を低減することが可能となる。
2. Description of the Related Art A direct injection type spark ignition internal combustion engine having a fuel injection valve for injecting fuel directly into a cylinder is known. Such an in-cylinder injection spark ignition internal combustion engine,
Since all of the injected fuel is reliably supplied into the cylinder, the fuel injection rate for each engine operating state can be minimized and the fuel consumption rate can be reduced.

【0003】特開平9−280092号公報に開示され
た筒内噴射式火花点火内燃機関は、吸気行程で燃料を噴
射して均質燃焼を実施する場合において、吸気弁の閉弁
後に燃料が噴射されないようにして、噴射された全燃料
を、気筒内へ導入される吸気流と十分に接触させること
により、燃料の気化を促進させると共に気化燃料と吸気
との混合を促進させ、良好な均質混合気を形成すること
が意図されている。
[0003] In the cylinder injection type spark ignition internal combustion engine disclosed in Japanese Patent Application Laid-Open No. 9-280092, fuel is not injected after the intake valve is closed when fuel is injected in the intake stroke to perform homogeneous combustion. In this way, by bringing all the injected fuel into sufficient contact with the intake air flow introduced into the cylinder, the vaporization of the fuel is promoted, and the mixing of the vaporized fuel and the intake air is promoted. It is intended to form

【0004】[0004]

【発明が解決しようとする課題】前述の従来技術におい
て、特に、燃料の気化状態が悪化する機関冷間時には、
噴射された燃料を通常の吸気流と接触させるだけでは、
燃料の気化を十分に促進させることができず、意図する
ような良好な均質混合気が形成されないために、均質燃
焼及びこの時の排気エミッションが悪化する。
In the above-mentioned prior art, particularly when the engine is cold when the fuel vaporization state deteriorates,
Just bringing the injected fuel into contact with the normal intake flow
Since the vaporization of the fuel cannot be sufficiently promoted and a desired homogeneous mixture is not formed, the homogeneous combustion and the exhaust emission at this time deteriorate.

【0005】従って、本発明の目的は、均質燃焼を実施
する筒内噴射式火花点火内燃機関において、機関冷間時
であっても良好な均質混合気を気筒内に形成して、燃焼
及び排気エミッションの悪化を防止することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a cylinder injection type spark ignition internal combustion engine that performs homogeneous combustion, by forming a good homogeneous mixture in the cylinder even when the engine is cold, to perform combustion and exhaust. It is to prevent emission deterioration.

【0006】[0006]

【課題を解決するための手段】本発明による請求項1に
記載の筒内噴射式火花点火内燃機関は、燃料を主に吸気
行程で噴射する均質燃焼を実施し、吸気弁の開弁時期は
排気弁の閉弁時期より遅く吸気上死点以降とされ、前記
均質燃焼時には前記排気弁の閉弁時期から前記吸気弁の
開弁時期までの期間内に燃料噴射を開始することを特徴
とする。
According to a first aspect of the present invention, there is provided an in-cylinder injection spark ignition internal combustion engine which performs a homogeneous combustion in which fuel is mainly injected in an intake stroke, and an opening timing of an intake valve is adjusted. The fuel injection is started after the intake top dead center later than the closing timing of the exhaust valve, and during the homogeneous combustion, fuel injection is started within a period from the closing timing of the exhaust valve to the opening timing of the intake valve. .

【0007】また、本発明による請求項2に記載の筒内
噴射式火花点火内燃機関は、請求項1に記載の筒内噴射
式火花点火内燃機関において、前記均質燃焼時には前記
期間内に燃料噴射を終了することを特徴とする。
According to a second aspect of the present invention, there is provided an in-cylinder injection spark ignition internal combustion engine according to the first aspect, wherein the fuel is injected within the period during the homogeneous combustion. Is terminated.

【0008】また、本発明による請求項3に記載の筒内
噴射式火花点火内燃機関は、請求項1に記載の筒内噴射
式火花点火内燃機関において、前記筒内噴射式火花点火
内燃機関は、機関運転状態に応じて前記均質燃焼と成層
燃焼とを切り換えて実施することを特徴とする。
According to a third aspect of the present invention, there is provided a direct injection type spark ignition internal combustion engine according to the first aspect, wherein the direct injection type spark ignition internal combustion engine is provided. The present invention is characterized in that the combustion is switched between the homogeneous combustion and the stratified combustion in accordance with the operating state of the engine.

【0009】また、本発明による請求項4に記載の筒内
噴射式火花点火内燃機関は、請求項3に記載の筒内噴射
式火花点火内燃機関において、前記吸気弁の開弁時期を
可変とする可変手段を具備し、前記可変手段によって、
前記均質燃焼時には前記吸気弁の開弁時期を前記排気弁
の閉弁時期より遅く吸気上死点以降とし、前記成層燃焼
時には前記均質燃焼時に比較して前記吸気弁の開弁時期
を進角することを特徴とする。
According to a fourth aspect of the present invention, there is provided a cylinder injection type spark ignition internal combustion engine according to the third aspect, wherein the valve opening timing of the intake valve is variable. The variable means, and by the variable means,
At the time of the homogeneous combustion, the opening timing of the intake valve is later than the closing timing of the exhaust valve after the intake top dead center, and at the time of stratified combustion, the opening timing of the intake valve is advanced as compared with the time of the homogeneous combustion. It is characterized by the following.

【0010】また、本発明による請求項5に記載の筒内
噴射式火花点火内燃機関は、請求項1に記載の筒内噴射
式火花点火内燃機関において、前記吸気弁の開弁時期を
可変とする可変手段を具備し、前記均質燃焼時における
冷間時には、前記可変手段によって前記吸気弁の開弁時
期を前記排気弁の閉弁時期より遅く吸気上死点以降と
し、前記排気弁の閉弁時期から前記吸気弁の開弁時期ま
での前記期間内に燃料噴射を開始し、前記均質燃焼時に
おける温間時には前記冷間時に比較して前記吸気弁の開
弁時期を進角することを特徴とする。
According to a fifth aspect of the present invention, there is provided an in-cylinder injection spark ignition internal combustion engine according to the first aspect, wherein the valve opening timing of the intake valve is variable. A variable means for performing the opening of the intake valve by the variable means after the intake top dead center later than the closing time of the exhaust valve during a cold state during the homogeneous combustion, and closing the exhaust valve. Fuel injection is started during the period from the timing to the opening timing of the intake valve, and the opening timing of the intake valve is advanced at the time of the homogeneous combustion in a warm state compared to the cold state during the homogeneous combustion. And

【0011】また、本発明による請求項6に記載の筒内
噴射式火花点火内燃機関は、請求項1に記載の筒内噴射
式火花点火内燃機関において、互いに隣接する少なくと
も二つの前記吸気弁が設けられ、前記二つの吸気弁を介
して気筒内へ導入される吸気量を互いに異ならせること
を可能とする吸気量可変手段を具備することを特徴とす
る。
According to a sixth aspect of the present invention, there is provided a cylinder injection type spark ignition internal combustion engine according to the first aspect, wherein at least two adjacent intake valves are adjacent to each other. An intake air amount varying means is provided which is capable of making the intake air amount introduced into the cylinder through the two intake valves different from each other.

【0012】[0012]

【発明の実施の形態】図1は、本発明による筒内噴射式
火花点火内燃機関の第一実施形態を示す概略縦断面図で
ある。同図において、1は吸気ポート、2は排気ポート
である。吸気ポート1は吸気弁3を介して、排気ポート
2は排気弁4を介して、それぞれ気筒内へ通じている。
5はピストンであり、6は気筒上部略中心に配置された
点火プラグであり、7は気筒上部周囲から気筒内へ直接
的に燃料を噴射する燃料噴射弁である。燃料噴射弁7
は、燃料のベーパを防止するために、燃焼室内において
吸気流により比較的低温度となる吸気ポート1側に配置
されている。
FIG. 1 is a schematic longitudinal sectional view showing a first embodiment of a direct injection type spark ignition internal combustion engine according to the present invention. In the figure, 1 is an intake port, and 2 is an exhaust port. The intake port 1 communicates with the cylinder via an intake valve 3, and the exhaust port 2 communicates with the cylinder via an exhaust valve 4.
Reference numeral 5 denotes a piston, reference numeral 6 denotes a spark plug disposed substantially at the center of the upper portion of the cylinder, and reference numeral 7 denotes a fuel injection valve for directly injecting fuel from the periphery of the upper portion of the cylinder into the cylinder. Fuel injection valve 7
Is disposed on the intake port 1 side where the temperature becomes relatively low due to the intake air flow in the combustion chamber in order to prevent fuel vapor.

【0013】図2はピストン5の平面図である。図1及
び2に示すように、ピストン5頂面には、凹状のキャビ
ティ8が形成されている。キャビティ8は、ピストン5
頂面の燃料噴射弁7側に偏在している。燃料噴射弁7
は、スリット状の噴孔を有し、燃料を厚さの薄い扇状に
噴射するものである。成層燃焼を実施するためには、図
1及び2に示すように、圧縮行程末期において燃料をピ
ストン5頂面に形成されたキャビティ8内へ噴射する。
斜線で示す噴射直後の燃料は液状であるが、キャビティ
8の底壁8aに沿って進行してキャビティ8の燃料噴射
弁対向側壁8bによって点火プラグ6近傍に導かれるま
でに気化し、点火時点においては、ドットで示す着火性
の良好な可燃混合気となる。こうして、点火プラグ6近
傍にだけに可燃混合気を形成することにより、気筒内全
体としてはリーンな混合気を燃焼可能とする成層燃焼を
実現することができる。
FIG. 2 is a plan view of the piston 5. As shown in FIGS. 1 and 2, a concave cavity 8 is formed on the top surface of the piston 5. The cavity 8 contains the piston 5
It is unevenly distributed on the side of the fuel injection valve 7 on the top surface. Fuel injection valve 7
Has a slit-shaped injection hole, and injects fuel in a thin fan shape. In order to perform stratified combustion, fuel is injected into a cavity 8 formed on the top surface of the piston 5 at the end of the compression stroke, as shown in FIGS.
Although the fuel immediately after the injection indicated by oblique lines is in a liquid state, it proceeds along the bottom wall 8a of the cavity 8 and is vaporized before being guided to the vicinity of the ignition plug 6 by the side wall 8b of the cavity 8 opposed to the fuel injection valve. Is a flammable mixture having good ignitability indicated by dots. Thus, by forming the combustible air-fuel mixture only in the vicinity of the ignition plug 6, stratified charge combustion capable of burning a lean air-fuel mixture in the entire cylinder can be realized.

【0014】厚さの薄い扇状の燃料噴霧は、キャビティ
8の底壁8aに沿って進行する際に幅方向に拡がるため
に、キャビティ8の底壁8aの広範囲部分から良好に熱
を吸収することができる。キャビティ8の底壁8a上を
幅方向に拡がった燃料において、燃料中央部は、キャビ
ティ8の燃料噴射弁対向側壁8bによって上方向へ向か
う速度成分が付与され点火プラグ6近傍へ向かい、燃料
両側部は、ピストン平面視において円弧状とされたキャ
ビティ8の燃料噴射弁対向側壁8bに対してそれぞれ鋭
角に衝突して、上方向へ向かう速度成分が付与されると
共に中央方向へ向かう速度成分も付与され、点火プラグ
6近傍へ向かう。こうして、厚さの薄い扇状の燃料噴霧
は、従来の円錐状の燃料噴霧に比較して、点火プラグ6
近傍に気化程度の良好な可燃混合気を形成することがで
きる。成層燃焼は、気筒内全体としてリーンな混合気を
燃焼可能となるために、燃料消費率を低減することがで
きる。厚さの薄い扇状の燃料噴霧を使用することで、こ
のような成層燃焼時の燃料噴射量を増加させることが可
能となり、成層燃焼可能な運転領域を高負荷側へ拡大す
ることができる。
The fan-shaped fuel spray having a small thickness spreads in the width direction as it travels along the bottom wall 8a of the cavity 8, so that it can absorb heat well from a wide range of the bottom wall 8a of the cavity 8. Can be. In the fuel spread in the width direction on the bottom wall 8 a of the cavity 8, a velocity component which is directed upward is given to the fuel central portion by the side wall 8 b facing the fuel injection valve of the cavity 8, and moves toward the vicinity of the ignition plug 6, and the fuel has both sides. Collides with the fuel injection valve-facing side wall 8b of the cavity 8, which is formed in an arc shape in a plan view of the piston, at an acute angle, so that an upward velocity component and a central velocity component are also imparted. , Toward the spark plug 6. In this manner, the fan-shaped fuel spray having a small thickness is smaller than that of the conventional conical fuel spray.
A good combustible mixture having a degree of vaporization can be formed in the vicinity. In the stratified combustion, a lean air-fuel mixture can be burned as a whole in the cylinder, so that the fuel consumption rate can be reduced. By using the fan-shaped fuel spray having a small thickness, it is possible to increase the fuel injection amount during such stratified combustion, and it is possible to expand the operation region in which the stratified combustion can be performed to a higher load side.

【0015】しかしながら、機関高負荷時となって多量
の燃料が必要とされる時には、圧縮行程末期だけで燃料
を噴射することが難しくなり、吸気行程で燃料を噴射し
て均質燃焼が実施されるようになっている。均質燃焼
は、吸気行程で噴射された燃料を吸気流との接触によっ
て気化混合し、点火時点において気筒内に均質混合気を
形成するものである。しかしながら、機関暖機以前のよ
うに気筒内温度が低い機関冷間時には、気筒内に噴射さ
れた燃料が通常の吸気流では十分に気化せず、点火時点
において良好な均質混合気を形成することができない。
However, when a large amount of fuel is required due to a high engine load, it is difficult to inject fuel only at the end of the compression stroke, and the fuel is injected during the intake stroke to perform homogeneous combustion. It has become. In the homogeneous combustion, the fuel injected in the intake stroke is vaporized and mixed by contact with the intake air flow to form a homogeneous mixture in the cylinder at the time of ignition. However, when the engine temperature is low, such as before engine warm-up, when the temperature in the cylinder is low, the fuel injected into the cylinder does not vaporize sufficiently in a normal intake air flow, and a good homogeneous mixture is formed at the time of ignition. Can not.

【0016】この問題を解決するために、本実施形態で
は、吸気弁3及び排気弁4を駆動するために、一般的な
カムではなく、電磁式又は油圧式のアクチュエータ1
0,11が使用されている。このようなアクチュエータ
10,11は、吸気弁3及び排気弁4の開弁時期及び閉
弁時期を任意に変化させることを可能とする。
In order to solve this problem, in this embodiment, an electromagnetic or hydraulic actuator 1 is used instead of a general cam to drive the intake valve 3 and the exhaust valve 4.
0,11 are used. Such actuators 10 and 11 make it possible to arbitrarily change the valve opening timing and the valve closing timing of the intake valve 3 and the exhaust valve 4.

【0017】図3は、特に、吸気弁3のアクチュエータ
10による吸気弁3の開弁時期制御と、燃料噴射弁7に
よる燃料噴射時期制御を実施するためのフローチャート
である。先ず、ステップ101において、アクセルペダ
ルの踏み込み量等によって定まる機関負荷と、機関回転
数と、冷却水温等とによって確定される現在の機関運転
状態が、均質燃焼をすべき均質燃焼領域であるか否かが
判断される。この判断が否定される時には、成層燃焼を
すべき成層燃焼領域であり、ステップ104に進み、前
述したように、点火プラグ6近傍に可燃混合気を形成す
るために、必要量の燃料は、圧縮行程後半で噴射され
る。この時において、吸気弁3の開弁時期は、吸気上死
点前とされ、吸気上死点後の排気弁4の閉弁時期との間
で機関運転状態に適したバルブオーバーラップが実現さ
れるようになっている。
FIG. 3 is a flow chart for controlling the opening timing of the intake valve 3 by the actuator 10 of the intake valve 3 and the fuel injection timing by the fuel injection valve 7. First, in step 101, it is determined whether or not the current engine operation state determined by the engine load determined by the depression amount of the accelerator pedal and the like, the engine speed, the cooling water temperature, and the like is in a homogeneous combustion region where homogeneous combustion should be performed. Is determined. When this determination is denied, it is the stratified combustion region where stratified combustion is to be performed, and the routine proceeds to step 104, and as described above, the necessary amount of fuel is compressed to form a combustible mixture near the ignition plug 6. It is injected in the latter half of the stroke. At this time, the valve opening timing of the intake valve 3 is set before the intake top dead center, and a valve overlap suitable for the engine operating state is realized between the intake valve 3 and the exhaust valve closing timing after the intake top dead center. It has become so.

【0018】一方、ステップ101における判断が肯定
される時、すなわち、現在の機関運転状態が均質燃焼領
域である時には、ステップ102に進み、現在の冷却水
温THWが機関温間時の下限値THW’以上であるか否
かが判断される。この判断が肯定される時にはステップ
106に進み、吸気行程における吸気弁3の開弁後に必
要量の燃料が噴射される。この時において、吸気弁3の
開弁時期は、図4に示すように、吸気上死点前のITO
1とされ、吸気上死点後の排気弁4の閉弁時期ECTと
の間で機関運転状態に適したバルブオーバーラップが実
現されるようになっている。もちろん、図4に示す吸気
弁3の開弁時期ITO1及び排気弁4の閉弁時期ECT
は一例であり、最適なバルブオーバーラップが実現され
るように機関運転状態毎に変化させられる。
On the other hand, when the determination in step 101 is affirmative, that is, when the current engine operating state is in the homogeneous combustion region, the routine proceeds to step 102, where the current cooling water temperature THW is set to the lower limit value THW 'when the engine is warm. It is determined whether or not this is the case. When the determination is affirmative, the routine proceeds to step 106, where a required amount of fuel is injected after the intake valve 3 is opened in the intake stroke. At this time, as shown in FIG.
1 and a valve overlap suitable for the engine operating state is realized between the exhaust valve 4 and the valve closing timing ECT after the intake top dead center. Of course, the opening timing ITO1 of the intake valve 3 and the closing timing ECT of the exhaust valve 4 shown in FIG.
Is an example, and is changed for each engine operating state so as to realize an optimal valve overlap.

【0019】機関温間時には、気筒内温度は比較的高
く、気筒内へ噴射された燃料は気化し易い。この時に
は、吸気弁3の開弁時期が吸気上死点以前に設定されて
おり、図4に実線で示すように、吸気上死点から気筒内
へ導入される吸気の流速は、ピストンの下降に伴って徐
々に増加し、それほど速くなることはないが、機関温間
時においては、吸気弁3の開弁後に噴射された燃料を、
この吸気流によっても十分に気化混合させることがで
き、点火時点において、良好な均質混合気を形成するこ
とができる。
At the time of engine warm, the temperature in the cylinder is relatively high, and the fuel injected into the cylinder is easily vaporized. At this time, the valve opening timing of the intake valve 3 is set before the intake top dead center, and as shown by the solid line in FIG. , And does not become so fast, but during the engine warm period, the fuel injected after the intake valve 3 is opened is
This intake flow also allows sufficient vaporization and mixing, and a good homogeneous mixture can be formed at the time of ignition.

【0020】一方、ステップ102における判断が否定
される時、すなわち、機関冷間時には、ステップ103
に進み、吸気弁3の開弁時期は、吸気上死点前のITO
1から排気弁4の閉弁時期後のITO2へ遅角される。
次いでステップ105において、排気弁4の閉弁時期E
CTからこの時の吸気弁3の開弁時期ITO2までの期
間T内に燃料噴射を開始するようになっている。
On the other hand, when the determination in step 102 is negative, that is, when the engine is cold, step 103
, And the opening timing of the intake valve 3
1 is retarded to ITO2 after the closing timing of the exhaust valve 4.
Next, at step 105, the closing timing E of the exhaust valve 4
Fuel injection is started within a period T from CT to the opening timing ITO2 of the intake valve 3 at this time.

【0021】こうして、機関冷間時には、図4に点線で
示すように、吸気上死点を過ぎても気筒内へ吸気は導入
されず、一方、気筒内圧力は、排気弁4の閉弁から急激
に低下し、吸気弁3の開弁までに大きな負圧が発生す
る。この時に噴射された燃料は、この負圧によって物理
的に気化し易くなる。さらに、気筒内に発生した大きな
負圧のために、吸気弁3の開弁と同時に、気筒内には非
常に高速の吸気流が発生し、この吸気流によって噴射燃
料の気化がさらに十分に促進されると共に、気化燃料と
吸気との十分な混合が実現され、機関冷間時において良
好な均質混合気を形成することが可能となる。
In this manner, when the engine is cold, as shown by the dotted line in FIG. 4, the intake air is not introduced into the cylinder even after passing the intake top dead center, while the pressure in the cylinder increases from the closing of the exhaust valve 4. The pressure drops rapidly, and a large negative pressure is generated before the intake valve 3 opens. The fuel injected at this time is easily vaporized physically by the negative pressure. Furthermore, due to the large negative pressure generated in the cylinder, a very high-speed intake flow is generated in the cylinder at the same time as the opening of the intake valve 3, and the vaporization of the injected fuel is further sufficiently promoted by the intake flow. At the same time, sufficient mixing of the vaporized fuel and the intake air is realized, and a good homogeneous air-fuel mixture can be formed when the engine is cold.

【0022】しかしながら、こうして吸気弁3の開弁時
期を排気弁4の閉弁時期以降とすると、気筒内に負圧を
発生させる分、ポンピング損失が発生して燃料消費率を
悪化させる。それにより、本実施形態のように、成層燃
焼時及び均質燃焼時における機関温間時には、吸気弁3
の開弁時期を排気弁4の閉弁以前とすることにより、こ
の時の燃料消費率の悪化を防止することができる。
However, if the opening timing of the intake valve 3 is set to be after the closing timing of the exhaust valve 4, a pumping loss is generated due to the negative pressure generated in the cylinder, and the fuel consumption rate is deteriorated. Thus, as in the present embodiment, when the engine is warm during stratified combustion and homogeneous combustion, the intake valve 3
By setting the valve opening timing before the exhaust valve 4 closes, it is possible to prevent the fuel consumption rate from deteriorating at this time.

【0023】吸気弁3及び排気弁4が通常のカムによっ
て駆動される場合には、吸気弁3の開弁時期を排気弁4
の閉弁時期より遅く吸気上死点以降に固定して、排気弁
の閉弁から吸気弁の開弁までの期間内に燃料噴射を開始
することにより、機関冷間時の均質燃焼における排気エ
ミッションの悪化防止を優先することも可能である。こ
の場合において、機関温間時の均質燃焼においても、噴
射燃料の気化混合が促進され、さらに良好な均質混合気
を形成することができ、この時の燃焼及び排気エミッシ
ョンをさらに改善することができる。また、成層燃焼に
際しては、吸気行程において十分な吸気が気筒内へ導入
されるために、ポンピング損失による多少の燃料消費率
の悪化を除き、特に問題が発生することはない。
When the intake valve 3 and the exhaust valve 4 are driven by a normal cam, the opening timing of the intake valve 3 is determined by the exhaust valve 4.
The engine is fixed after the top dead center of the intake later than the closing timing of the engine and the fuel injection is started during the period from the closing of the exhaust valve to the opening of the intake valve, so that the exhaust emission in the homogeneous combustion when the engine is cold It is also possible to give priority to prevention of deterioration. In this case, even in homogeneous combustion at the time of engine warming, vaporization and mixing of the injected fuel is promoted, a more favorable homogeneous mixture can be formed, and the combustion and exhaust emissions at this time can be further improved. . Further, in stratified charge combustion, since sufficient intake air is introduced into the cylinder during the intake stroke, there is no particular problem except for a slight decrease in fuel consumption rate due to pumping loss.

【0024】また、吸気弁3の開弁時期が排気弁4の閉
弁時期より遅く吸気上死点以降とされる場合には、均質
燃焼時において、排気弁4の閉弁から吸気弁3の開弁ま
での期間内に必要量全ての燃料を噴射することが好まし
く、すなわち、この期間内に燃料噴射を終了することが
好ましい。しかしながら、機関運転状態に応じた必要量
の燃料が比較的多い時には、大部分の燃料がこの期間内
に噴射されれば、燃料噴射が吸気弁3の開弁後に終了し
ても十分に良好な均質混合気を気筒内に形成することが
できる。
If the opening timing of the intake valve 3 is later than the closing timing of the exhaust valve 4 and later than the intake top dead center, during homogeneous combustion, the closing of the exhaust valve 4 It is preferable to inject all the required amount of fuel within a period until the valve is opened, that is, it is preferable to end the fuel injection within this period. However, when the required amount of fuel according to the engine operating state is relatively large, if most of the fuel is injected within this period, it is sufficiently good even if the fuel injection ends after the intake valve 3 is opened. A homogeneous mixture can be formed in the cylinder.

【0025】前述の吸気弁3の開弁時期の制御におい
て、少なくとも二段階に吸気弁3の開弁時期を変化させ
ることができる可変動弁機構を使用することも可能であ
る。しかしながら、本実施形態のように無段階に吸気弁
3の開弁時期を変化させることができる場合には、成層
燃焼時及び均質燃焼時における機関温間時において、機
関運転状態に応じたバルブオーバーラップの最適化が可
能であると共に、例えば、均質燃焼時における機関冷間
時において、冷却水温が低いほど吸気弁3の開弁時期を
排気弁4の閉弁時期から大きく遅角することも可能であ
る。図4に点線で示すように、この遅角量が大きくなる
ほど、気筒内に発生する負圧は大きくなり、吸気弁3の
開弁時に発生する吸気流速が速くなる。それにより、噴
射燃料の気化状態が悪化するほど、気筒内に発生する負
圧を大きくすると共に吸気弁3の開弁時の吸気流速を速
めることにより、噴射燃料の確実な気化混合を可能と
し、また、ポンピング損失の不必要な増加を防止するこ
とも可能となる。
In the control of the opening timing of the intake valve 3, it is possible to use a variable valve mechanism capable of changing the opening timing of the intake valve 3 in at least two stages. However, when the valve opening timing of the intake valve 3 can be changed in a stepless manner as in the present embodiment, when the engine is warm during stratified charge combustion and homogeneous charge combustion, the valve overload corresponding to the engine operating state is reduced. It is possible to optimize the lap and, for example, when the engine is cold during homogeneous combustion, the opening timing of the intake valve 3 can be greatly delayed from the closing timing of the exhaust valve 4 as the cooling water temperature is lower. It is. As indicated by the dotted line in FIG. 4, as the retard amount increases, the negative pressure generated in the cylinder increases, and the intake flow velocity generated when the intake valve 3 is opened increases. As a result, as the vaporization state of the injected fuel deteriorates, the negative pressure generated in the cylinder is increased and the intake flow velocity at the time of opening the intake valve 3 is increased, so that the vaporized mixture of the injected fuel can be surely mixed. Also, it is possible to prevent an unnecessary increase in pumping loss.

【0026】また、吸気弁3の開弁時期が排気弁4の閉
弁時期より遅く吸気上死点以降とされる場合には、均質
燃焼時において、燃料噴射の終了直後に高速の吸気流に
よって噴射燃料を気化混合させる方が良好な均質混合気
の形成に有利であり、すなわち、吸気弁3の開弁直前に
燃料噴射が終了するように燃料噴射を開始することが好
ましい。このような燃料噴射期間においては気筒内の負
圧も最大となり、負圧による燃料の気化も促進される。
さらに、このような燃料噴射によれば、噴射開始時点に
おいて、ピストンが比較的下がった位置となっており、
燃料噴射弁の噴孔とピストン頂面との間の距離が比較的
大きくなるために、噴射燃料がピストン頂面に付着し難
く、それによっても燃料を気化させ易くなる。
If the opening timing of the intake valve 3 is later than the closing timing of the exhaust valve 4 and later than the intake top dead center, during homogeneous combustion, the high-speed intake flow immediately follows the end of fuel injection. It is advantageous to vaporize and mix the injected fuel to form a favorable homogeneous mixture, that is, it is preferable to start the fuel injection so that the fuel injection ends immediately before the intake valve 3 is opened. In such a fuel injection period, the negative pressure in the cylinder also becomes maximum, and the fuel vaporization by the negative pressure is promoted.
Furthermore, according to such fuel injection, at the time of injection start, the piston is in a relatively lowered position,
Since the distance between the injection hole of the fuel injection valve and the top surface of the piston is relatively large, the injected fuel is less likely to adhere to the top surface of the piston, so that the fuel is also easily vaporized.

【0027】また、シリンダヘッドの底面図である図5
に示すように、本実施形態は、吸排気二弁式であり、二
つの吸気弁3を介して二つの吸気ポート1a,1bが気
筒内へ通じている。一方の吸気ポート1bには、吸気量
制御弁20が配置されており、吸気量制御弁20の全開
時においては、二つの吸気ポート1a,1bからは、ほ
ぼ同量の吸気が気筒内へ導入されるようになっている。
FIG. 5 is a bottom view of the cylinder head.
As shown in FIG. 1, the present embodiment is of a two-intake / exhaust type, in which two intake ports 1a and 1b communicate with the inside of a cylinder via two intake valves 3. An intake amount control valve 20 is disposed in one intake port 1b. When the intake amount control valve 20 is fully opened, substantially the same amount of intake air is introduced into the cylinder from the two intake ports 1a and 1b. It is supposed to be.

【0028】機関高回転高負荷時において均質燃焼が実
施される時には、ポンピング損失を低減して体積効率を
高めるために、吸気量制御弁20は全開とされ、二つの
吸気ポート1a,1bを使用して気筒内へ多量の吸気が
導入されるようになっている。
When homogeneous combustion is performed at high engine speed and high load, the intake air quantity control valve 20 is fully opened and two intake ports 1a and 1b are used to reduce pumping loss and increase volumetric efficiency. As a result, a large amount of intake air is introduced into the cylinder.

【0029】しかしながら、均質燃焼時において、機関
低回転又は機関低負荷時には、ポンピング損失増大への
影響が少ないために、吸気量制御弁は、必要吸気量に応
じて閉弁方向に回動させられる。それにより、二つの吸
気ポート1a,1bを通過する吸気量は不均一となっ
て、二つの吸気弁3の開弁時に気筒内に導入される二つ
の吸気流速は大幅に異なるものとなる。それにより気筒
内に発生する吸気流は、スワール流となり、気筒内に強
い乱れを発生させ、均質燃焼時に気筒内に噴射される燃
料の気化混合を促進させることにより、良好な均質混合
気を形成させ易くする。
However, during homogeneous combustion, when the engine speed is low or the engine load is low, the effect on the increase in pumping loss is small. Therefore, the intake air amount control valve is rotated in the valve closing direction according to the required intake air amount. . As a result, the amount of intake air passing through the two intake ports 1a and 1b becomes uneven, and the two intake flow rates introduced into the cylinders when the two intake valves 3 open are greatly different. As a result, the intake air flow generated in the cylinder becomes a swirl flow, causing strong turbulence in the cylinder and promoting the vaporization and mixing of fuel injected into the cylinder during homogeneous combustion, thereby forming a good homogeneous mixture. Make it easier.

【0030】こうして、特に、均質燃焼時における機関
冷間時において、吸気弁の開弁時期が遅角される場合に
は、吸気弁の開弁時に、さらに強い吸気流(スワール
流)が気筒内に発生し、気筒内に形成される非常に強い
乱れによって、吸気弁の開弁以前に噴射された燃料を、
さらに十分に気化混合させ、さらに良好に均質混合気を
気筒内に形成することができる。
In this way, especially when the opening timing of the intake valve is retarded during the cold period of the engine during homogeneous combustion, a stronger intake flow (swirl flow) is generated in the cylinder when the intake valve is opened. The fuel injected before the opening of the intake valve due to the very strong turbulence generated in the cylinder
Further, the mixture can be sufficiently vaporized and mixed, so that a homogeneous mixture can be more preferably formed in the cylinder.

【0031】本実施形態は、気筒内に強い乱れを発生さ
せるために、一方の吸気ポート1bに設けられた吸気量
制御弁20を閉弁方向に回動させることによって、二つ
の吸気弁3を介して気筒内に導入される吸気量を必要吸
気量に応じて互いに異ならせるようにしたが、もちろ
ん、アクチュエータ10によって、一方の吸気弁3の開
弁リフト量を減少させるようにしても良い。
In the present embodiment, in order to generate strong turbulence in the cylinder, the two intake valves 3 are rotated by rotating the intake amount control valve 20 provided on one intake port 1b in the valve closing direction. Although the intake air amount introduced into the cylinder via the intake air is made different from each other according to the required intake air amount, the valve lift of one intake valve 3 may be reduced by the actuator 10 as a matter of course.

【0032】[0032]

【発明の効果】このように、本発明による筒内噴射式火
花点火内燃機関によれば、燃料を主に吸気行程で噴射す
る均質燃焼において、吸気弁の開弁時期は排気弁の閉弁
時期より遅く吸気上死点以降とされ、排気弁の閉弁時期
から吸気弁の開弁時期までの期間内に燃料噴射を開始す
るようになっているために、噴射燃料は、この時に気筒
内に発生する負圧によって、物理的に気化し易くなると
共に、吸気弁の開弁と同時に負圧より気筒内に形成され
る高速の吸気流によって、十分に気化混合させられ、機
関冷間時であっても良好な均質混合気を気筒内に形成す
ることができ、この時の燃焼及び排気エミッションの悪
化を防止することが可能となる。
As described above, according to the in-cylinder injection spark ignition internal combustion engine of the present invention, in homogeneous combustion in which fuel is mainly injected in the intake stroke, the opening timing of the intake valve is determined by the closing timing of the exhaust valve. Since the fuel injection is started later after the intake top dead center and the fuel injection is started during the period from the closing timing of the exhaust valve to the opening timing of the intake valve, the injected fuel is injected into the cylinder at this time. The generated negative pressure makes it easy to vaporize physically, and at the same time as the opening of the intake valve, the gas is sufficiently vaporized and mixed by the high-speed intake air flow formed in the cylinder due to the negative pressure. Even in this case, a good homogeneous air-fuel mixture can be formed in the cylinder, and the deterioration of combustion and exhaust emissions at this time can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による筒内噴射式火花点火内燃機関の実
施形態を示す概略気筒内縦断面図である。
FIG. 1 is a schematic in-cylinder longitudinal sectional view showing an embodiment of a direct injection type spark ignition internal combustion engine according to the present invention.

【図2】図1の筒内噴射式火花点火内燃機関におけるピ
ストン頂面の平面図である。
FIG. 2 is a plan view of a piston top surface in the in-cylinder injection spark ignition internal combustion engine of FIG. 1;

【図3】吸気弁の開弁時期及び燃料噴射時期の制御を示
すフローチャートである。
FIG. 3 is a flowchart showing control of an intake valve opening timing and a fuel injection timing.

【図4】吸気弁の開弁時期の変化に伴う気筒内圧力及び
吸気流速の変化を示すグラフである。
FIG. 4 is a graph showing changes in the in-cylinder pressure and the intake flow velocity with a change in the opening timing of the intake valve.

【図5】図1の筒内噴射式火花点火内燃機関におけるシ
リンダヘッドの底面図である。
FIG. 5 is a bottom view of a cylinder head in the in-cylinder injection spark ignition internal combustion engine of FIG. 1;

【符号の説明】[Explanation of symbols]

1…吸気ポート 2…排気ポート 3…吸気弁 4…排気弁 5…ピストン 6…点火プラグ 7…燃料噴射弁 8…キャビティ 10,11…アクチュエータ DESCRIPTION OF SYMBOLS 1 ... Intake port 2 ... Exhaust port 3 ... Intake valve 4 ... Exhaust valve 5 ... Piston 6 ... Spark plug 7 ... Fuel injection valve 8 ... Cavity 10, 11 ... Actuator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/06 335 F02D 41/06 335Z 43/00 301 43/00 301J 301Z (72)発明者 古賀 伸彦 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 3G023 AA02 AA03 AB01 AC05 AD02 AD07 AG02 3G084 AA04 BA15 BA21 BA23 CA02 CA05 DA02 DA10 FA10 FA20 FA32 FA33 3G092 AA01 AA06 AA09 AA10 AA11 BB06 DA01 DA06 DA07 DA08 DA12 DA14 DE03S EA02 EA03 EA04 EA11 FA15 FA25 GA02 HA13X HB02X HE01Z HE06Z HE08Z HF08Z 3G301 HA01 HA04 HA09 HA10 HA16 HA17 HA19 JA02 JA21 KA05 KA21 LA07 LB04 LC01 LC08 MA19 MA20 NE06 NE11 NE12 PB05Z PE01Z PE06Z PE08Z PE10A PE10Z PF03Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 41/06 335 F02D 41/06 335Z 43/00 301 43/00 301J 301Z (72) Inventor Nobuhiko Koga Aichi No. 1 Toyota Town, Toyota City, Toyota Prefecture F-term (reference) in Toyota Motor Corporation DA12 DA14 DE03S EA02 EA03 EA04 EA11 FA15 FA25 GA02 HA13X HB02X HE01Z HE06Z HE08Z HF08Z 3G301 HA01 HA04 HA09 HA10 HA16 HA17 HA19 JA02 JA21 KA05 KA21 LA07 LB04 LC01 LC08 MA19 MA20 NE06 NE11 NE12 PEB05Z08 PE01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 燃料を主に吸気行程で噴射する均質燃焼
を実施し、吸気弁の開弁時期は排気弁の閉弁時期より遅
く吸気上死点以降とされ、前記均質燃焼時には前記排気
弁の閉弁時期から前記吸気弁の開弁時期までの期間内に
燃料噴射を開始することを特徴とする筒内噴射式火花点
火内燃機関。
1. A homogeneous combustion in which fuel is mainly injected in an intake stroke is performed, and an opening timing of an intake valve is later than a closing timing of an exhaust valve and after the intake top dead center. A cylinder injection type spark ignition internal combustion engine, wherein fuel injection is started during a period from a valve closing timing to a valve opening timing of the intake valve.
【請求項2】 前記均質燃焼時には前記期間内に燃料噴
射を終了することを特徴とする請求項1に記載の筒内噴
射式火花点火内燃機関。
2. The in-cylinder injection spark ignition internal combustion engine according to claim 1, wherein the fuel injection is terminated within the period during the homogeneous combustion.
【請求項3】 前記筒内噴射式火花点火内燃機関は、機
関運転状態に応じて前記均質燃焼と成層燃焼とを切り換
えて実施することを特徴とする請求項1に記載の筒内噴
射式火花点火内燃機関。
3. The cylinder injection type spark according to claim 1, wherein the cylinder injection type spark ignition internal combustion engine switches between the homogeneous combustion and the stratified combustion in accordance with an engine operating state. Ignition internal combustion engine.
【請求項4】 前記吸気弁の開弁時期を可変とする可変
手段を具備し、前記可変手段によって、前記均質燃焼時
には前記吸気弁の開弁時期を前記排気弁の閉弁時期より
遅く吸気上死点以降とし、前記成層燃焼時には前記均質
燃焼時に比較して前記吸気弁の開弁時期を進角すること
を特徴とする請求項3に記載の筒内噴射式火花点火内燃
機関。
4. A variable means for varying the opening timing of the intake valve, wherein the variable means causes the opening timing of the intake valve to be later than the closing timing of the exhaust valve during the homogeneous combustion. The in-cylinder injection spark ignition internal combustion engine according to claim 3, wherein after the dead center, the valve opening timing of the intake valve is advanced during the stratified combustion as compared with the homogeneous combustion.
【請求項5】 前記吸気弁の開弁時期を可変とする可変
手段を具備し、前記均質燃焼時における冷間時には、前
記可変手段によって前記吸気弁の開弁時期を前記排気弁
の閉弁時期より遅く吸気上死点以降とし、前記排気弁の
閉弁時期から前記吸気弁の開弁時期までの前記期間内に
燃料噴射を開始し、前記均質燃焼時における温間時には
前記冷間時に比較して前記吸気弁の開弁時期を進角する
ことを特徴とする請求項1に記載の筒内噴射式火花点火
内燃機関。
5. A variable means for changing a valve opening timing of the intake valve, wherein the variable means changes the valve opening timing of the exhaust valve to the valve closing timing of the exhaust valve when the homogeneous combustion is cold. Later, after the intake top dead center, fuel injection is started during the period from the closing timing of the exhaust valve to the opening timing of the intake valve. 2. The cylinder injection type spark ignition internal combustion engine according to claim 1, wherein the valve opening timing of the intake valve is advanced.
【請求項6】 互いに隣接する少なくとも二つの前記吸
気弁が設けられ、前記二つの吸気弁を介して気筒内へ導
入される吸気量を互いに異ならせることを可能とする吸
気量可変手段を具備することを特徴とする請求項1に記
載の筒内噴射式火花点火内燃機関。
6. At least two intake valves adjacent to each other are provided, and there is provided intake amount variable means for making it possible to make intake amounts introduced into a cylinder through the two intake valves different from each other. The in-cylinder injection spark ignition internal combustion engine according to claim 1, wherein:
JP29107799A 1999-10-13 1999-10-13 Cylinder fuel injection type spark ignition internal combustion engine Pending JP2001107758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29107799A JP2001107758A (en) 1999-10-13 1999-10-13 Cylinder fuel injection type spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29107799A JP2001107758A (en) 1999-10-13 1999-10-13 Cylinder fuel injection type spark ignition internal combustion engine

Publications (1)

Publication Number Publication Date
JP2001107758A true JP2001107758A (en) 2001-04-17

Family

ID=17764144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29107799A Pending JP2001107758A (en) 1999-10-13 1999-10-13 Cylinder fuel injection type spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP2001107758A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088875A (en) * 2006-09-29 2008-04-17 Mazda Motor Corp Spark ignition type gasoline engine
WO2014196047A1 (en) * 2013-06-06 2014-12-11 トヨタ自動車株式会社 Fuel injection valve control device
EP2902607A4 (en) * 2012-09-27 2016-05-25 Hitachi Automotive Systems Ltd Cylinder injection engine control apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088875A (en) * 2006-09-29 2008-04-17 Mazda Motor Corp Spark ignition type gasoline engine
EP2902607A4 (en) * 2012-09-27 2016-05-25 Hitachi Automotive Systems Ltd Cylinder injection engine control apparatus
WO2014196047A1 (en) * 2013-06-06 2014-12-11 トヨタ自動車株式会社 Fuel injection valve control device

Similar Documents

Publication Publication Date Title
US6971365B1 (en) Auto-ignition gasoline engine combustion chamber and method
JP3963088B2 (en) Control device for spark ignition direct injection engine
JP3852363B2 (en) Engine control device
JP2001248484A (en) Direct cylinder injection engine, control device and controlling method
JP2006258021A (en) Control device for internal combustion engine
US10968859B2 (en) Premixed compression ignition engine and method for controlling premixed compression ignition engine
WO2006017051A2 (en) Auto-ignition gasoline engine combustion chamber and method
JP4054223B2 (en) In-cylinder injection engine and control method for in-cylinder injection engine
JP2003120300A (en) Gasoline direct injection engine
JP2006274946A (en) Spark ignition type direct injection engine
JP2004507658A (en) Control method of direct fuel injection
JP3770015B2 (en) In-cylinder direct injection compression ignition engine
JP2006274945A (en) Spark ignition type direct injection engine
JP4316719B2 (en) In-cylinder injection control device
JP2001107758A (en) Cylinder fuel injection type spark ignition internal combustion engine
CN107429619B (en) Fuel injection control device for direct injection engine
JP2002155748A (en) Cylinder injection type spark ignition internal combustion engine
JP2004245204A (en) Fuel injection apparatus for internal combustion engine
JP3890749B2 (en) In-cylinder direct injection internal combustion engine
JPH10212986A (en) In-cylinder injection type engine
JP2003106195A (en) Control system for spark ignition type direct injection engine
JP4123974B2 (en) Direct-injection spark ignition internal combustion engine
JP2004316449A (en) Direct injection spark ignition type internal combustion engine
JP2001073819A (en) Control device for direct injection spark ignition type internal combustion engine
JP4078894B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller