JP2001105028A - Method for deciding position for straightening bend of bar and amount to be straightened - Google Patents

Method for deciding position for straightening bend of bar and amount to be straightened

Info

Publication number
JP2001105028A
JP2001105028A JP28694299A JP28694299A JP2001105028A JP 2001105028 A JP2001105028 A JP 2001105028A JP 28694299 A JP28694299 A JP 28694299A JP 28694299 A JP28694299 A JP 28694299A JP 2001105028 A JP2001105028 A JP 2001105028A
Authority
JP
Japan
Prior art keywords
phase
straightening
amount
correction
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28694299A
Other languages
Japanese (ja)
Other versions
JP4419224B2 (en
Inventor
Hitoshi Sannomiya
仁志 三宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP28694299A priority Critical patent/JP4419224B2/en
Publication of JP2001105028A publication Critical patent/JP2001105028A/en
Application granted granted Critical
Publication of JP4419224B2 publication Critical patent/JP4419224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for deciding a position for straightening the bend of a bar and an amount to be straightened by which high accuracy of straightening is attained with a small number of times of straightening without depending on the manual operation of a skilled technician and which is easily automated. SOLUTION: Deflection in plural places in the longitudinal direction of a work is measured at prescribed phase intervals and, from the amount of deflection, phase data and measuring coordinate at each measuring point, the amount R of deflection and partial bend angle θat each measuring point in a prescribed phase cross section of the work are calculated. By reproducing measured deflection data on calculation by accumulating the amount R of deflection and partial bend angle θ by each phase, the predictive calculation of simulation straightening using those reproduced data and the deflection of the whole work after the simulation straightening is predicted. The optimum straightening position, straightening phase and straightening amount are decided so that the predicted value of the deflection is not larger than the standard value (target value). By executing a series of these calculations about all the combinations of each straightening phase, straightening position and straightening amount, the optimum straightening position and straightening amount are determined at the minimum number of times of straightening.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、曲がりを有する棒
材の曲がり矯正位置,矯正量の決定方法に関し、予め計
測した曲がりデータを用いてその曲がりの矯正結果を計
算でシュミレートし、その結果からワーク振れの値が規
格値以下となるように最適矯正位置,矯正位相,矯正量
を決定するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining a straightening position and a straightening amount of a bent bar having a bent, and simulates a corrected result of the bent by using a previously measured bending data, and simulates the calculated result. The optimum correction position, correction phase, and correction amount are determined so that the value of the workpiece shake is equal to or less than the standard value.

【0002】ここにいう棒材には、ねじ溝を有するねじ
軸の如きものも包含される。
[0002] The term "bar" as used herein includes a threaded shaft having a thread groove.

【0003】[0003]

【従来の技術】長尺の棒材の曲がりの矯正は、当該棒材
の曲がり部分に、曲がり方向とは反対向きの荷重(矯正
荷重)をかけて押し込むことで行われている。その場合
に、矯正荷重を負荷する位置,矯正すべき量等を決定す
る必要がある。従来は、矯正すべき棒材の両端を支持し
つつ回転させたときの振れの最大となる位置又は棒材の
長手方向に或るスパンで測定した曲がりの最大位置にお
いて、曲がりを0にする矯正量を求めて矯正している。
2. Description of the Related Art The bending of a long bar is corrected by applying a load (correcting load) in a direction opposite to the bending direction to a bent portion of the bar. In this case, it is necessary to determine the position where the correction load is applied, the amount to be corrected, and the like. Conventionally, straightening is performed such that the bending becomes zero at the position where the deflection becomes maximum when rotating while supporting both ends of the bar to be corrected or at the maximum position of the bending measured at a certain span in the longitudinal direction of the bar. I am correcting for the amount.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、複数個
所の曲がりを有する棒材で或る部分の矯正を行うと、そ
の矯正が他の部分の曲がり個所における振れに影響を与
える。そのため、上述のように振れや曲がりの最大とな
る位置での曲がりを0にするだけではなく、その影響を
受けた他の曲がり部分も矯正しなければならず、矯正に
長時間を要するという問題点がある。
However, when a certain portion is corrected with a bar having a plurality of bends, the correction affects deflection at a bend in another portion. Therefore, as described above, it is necessary to correct not only the bend at the position where the deflection and the bend are maximum, but also the other bends affected by the bend, and the correction takes a long time. There is a point.

【0005】また、長手方向位置により曲がりの位相が
異なっているような複雑曲がりをした棒材の場合、振れ
を高精度に矯正することは不可能であり、安定した矯正
が実現できないことから矯正の自動化が難しく、熟練技
能者による手動矯正に頼らざるを得ないという問題点が
ある。そこで、本発明は、このような従来技術の未解決
の課題に着目してなされたもので、熟練技能者の手作業
によらずに、少ない矯正回数で高い矯正精度が得られる
自動化の容易な棒材の曲がり矯正位置,矯正量の決定方
法を提供することを目的とする。
In the case of a bar having a complicated curve in which the phase of the curve differs depending on the position in the longitudinal direction, it is impossible to correct the deflection with high precision, and it is impossible to realize a stable correction. However, there is a problem that automation is difficult, and manual correction by a skilled technician must be performed. Therefore, the present invention has been made by focusing on such unresolved problems of the prior art, and without manual work of a skilled technician, it is easy to automate to obtain high correction accuracy with a small number of corrections. It is an object of the present invention to provide a method for determining a bending correction position and a correction amount of a bar.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る棒材(ワーク)の曲がり矯正位置,
矯正量の決定方法は、 曲がりを有する棒材(ワーク)の長手方向に複数個
所の振れを所定の位相間隔で計測する。
In order to achieve the above object, a bar (work) according to the present invention is provided with a straightening position,
The correction amount is determined by measuring deflections at a plurality of positions in a longitudinal direction of a bent bar (work) at predetermined phase intervals.

【0007】 得られた各測定個所毎の振れ量,位相
データ及び測定座標から、所定のワーク位相断面におけ
る各測定個所毎の振れ量R及び部分曲がり角θを算出す
る。 前記で算出した各測定個所毎の振れ量R及び部分
曲がり角θを各位相毎に累積することにより、で計測
したワークの振れデータを再現する。 得られた「部分曲がり量」の再現データを用いて各
位相における模擬矯正結果の予測計算を行い、その結果
を各位相毎に再度累積することにより模擬矯正後のワー
ク全体の振れを予測する。
[0007] From the obtained runout amount, phase data, and measurement coordinates at each measurement location, a runout amount R and a partial bending angle θ at each measurement location in a predetermined work phase cross section are calculated. By accumulating the shake amount R and the partial bend angle θ for each measurement point calculated for each phase, the shake data of the work measured by is reproduced. Prediction calculation of the simulation correction result in each phase is performed using the obtained reproduction data of the "partial bending amount", and the result is accumulated again for each phase to predict the runout of the entire work after the simulation correction.

【0008】 模擬矯正によるワーク振れの値が規格
値以下となるように最適矯正位置,矯正位相,矯正量を
決定する。この一連の計算方法で、各矯正位相,矯正位
置,矯正量のすべての組合せについて計算を行うことに
より、最小の矯正回数で、振れ目標の矯正を行うための
矯正位置,矯正量を求めることが可能になる。
An optimum correction position, a correction phase, and a correction amount are determined so that the value of the workpiece runout due to the simulated correction is equal to or less than a standard value. By performing a calculation for all combinations of each correction phase, correction position, and correction amount with this series of calculation methods, it is possible to obtain the correction position and correction amount for correcting the shake target with the minimum number of corrections. Will be possible.

【0009】また、長手方向の測定位置が多く、全ての
組合せについての計算に時間を要し、演算装置の性能か
ら実用的でない場合においても、実用上十分短時間で且
つ高精度な矯正を行うことが可能になる。本発明によれ
ば、曲がりを有する棒材を、特定位置,特定位相におい
て特定の矯正量だけ矯正した場合の、棒材全体の振れに
及ぼす影響を計算することにより、矯正前に予め、他の
長手方向位置,位相に与える矯正の影響を予想する。曲
がりの長手方向の位置,位相及び矯正量の組合せの全て
について計算を行うことにより、振れ規格を満たして最
小の矯正回数で矯正できる最適矯正位置,矯正量を求め
ることができる。また、矯正前の曲がり状態に関係な
く、高精度に矯正することもできる。
In addition, even when there are many measurement positions in the longitudinal direction, it takes time to calculate all combinations, and it is not practical due to the performance of the arithmetic unit, correction is performed in a sufficiently short time and with high accuracy in practical use. It becomes possible. According to the present invention, when a bent bar is corrected by a specific correction amount at a specific position and a specific phase, the influence on the runout of the entire bar is calculated, so that another bar can be obtained before correction. Predict the effect of correction on longitudinal position and phase. By performing calculations for all combinations of the position in the longitudinal direction of the bend, the phase, and the correction amount, it is possible to obtain the optimum correction position and correction amount that can satisfy the deflection standard and can be corrected with the minimum number of corrections. Moreover, it is possible to perform the correction with high accuracy regardless of the bending state before the correction.

【0010】かくして、従来は熟練作業とされている長
尺の棒材の曲がりを高精度に矯正する矯正の自動化が実
現可能となった。
[0010] Thus, it has become possible to realize automation of straightening for correcting the bending of a long bar, which has been conventionally performed by a skilled worker, with high precision.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は、本発明の棒材の曲がり矯
正位置,矯正量の決定方法に従った曲がり矯正作業の概
要を示す流れ図である。先ず、曲がりを有する棒材(ワ
ーク)の振れを、ワーク長手方向の複数個所に設定した
測定位置において測定する(ステップ1)。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart showing an outline of a bending correction operation according to the method of determining a bending correction position and a correction amount of a bar according to the present invention. First, deflection of a bent bar (work) is measured at measurement positions set at a plurality of positions in the longitudinal direction of the work (step 1).

【0012】測定した振れと矯正規格とを比較し、振れ
<矯正規格であるか否かを判断する振れ<矯正規格であ
れば矯正不要であるからそのまま終了する。一方、振れ
が矯正規格より大きければステップ3に進む(ステップ
2)。振れ最大位置,位相において最も振れが小さくな
る矯正量を予測する(ステップ3)。
The measured run-out is compared with the correction standard, and it is determined whether the run-out is smaller than the correction standard. On the other hand, if the shake is larger than the correction standard, the process proceeds to step 3 (step 2). A correction amount at which the shake is minimized at the shake maximum position and the phase is predicted (step 3).

【0013】予測した振れと振れ目標とを比較し、予測
振れ<振れ目標か否かを判断する(ステップ4)。予測
振れ<振れ目標であればステップ6にジャンプして矯正
を実行する。一方、予測振れが振れ目標より大きけれ
ば、部分曲がり最大位置,位相において部分曲がり=0
となる矯正量を求める(ステップ5)。
The predicted shake is compared with the shake target, and it is determined whether or not the predicted shake <the shake target (step 4). If the predicted shake is smaller than the shake target, the flow jumps to step 6 to execute the correction. On the other hand, if the predicted shake is larger than the shake target, the partial bend = 0 at the partial bend maximum position and phase.
(Step 5).

【0014】その矯正量に従い、矯正を実行する(ステ
ップ6)。ステップ1に戻り、矯正後のワークの振れを
測定し、その結果に応じてステップ2以降を繰り返す。
続いて、上記の各ステップにおける測定・計算の詳細を
説明する。 (1)ワークの振れを測定し、振れ量,位相を求める工
程。
The correction is executed according to the correction amount (step 6). Returning to step 1, the deflection of the work after the correction is measured, and steps 2 and subsequent steps are repeated according to the result.
Next, details of the measurement and calculation in each of the above steps will be described. (1) A step of measuring the run-out of the work and obtaining the run-out amount and phase.

【0015】曲がり矯正精度を高めるには、ワークの振
れを正確に把握する必要がある。そこで本実施の形態で
は、図2に示すように、ワークWの両端を支持して軸回
転させながら、長手方向の複数個所に設定した測定位置
(P1 ,P2 ,P3 等)における振れを、例えば電気マ
イクロの如き測定手段Gを用いて所定の位相間隔(例え
ば0〜360度にわたり1度間隔)で測定する。この場
合、振れ,位相の実測データを三角関数等で近似させて
近似曲線を求め、その近似曲線の振れ量,位相を算出す
るようにすると、ワークWの非真円成分や傷等の影響が
除去できてより精度が向上する。
In order to improve the bending correction accuracy, it is necessary to accurately grasp the deflection of the work. Therefore, in the present embodiment, as shown in FIG. 2, while rotating the shaft while supporting both ends of the work W, the run-out at measurement positions (P 1 , P 2 , P 3, etc.) set at a plurality of positions in the longitudinal direction. Is measured at predetermined phase intervals (for example, at 1-degree intervals from 0 to 360 degrees) using a measuring means G such as an electric micrometer. In this case, the approximated curve is obtained by approximating the measured data of the shake and the phase with a trigonometric function and the like, and the amount of the shake and the phase of the approximate curve is calculated. The accuracy can be improved by removing it.

【0016】例えば、図3は、ワークWを1回転させつ
つ、測定位置P1 において所定の位相間隔(測定ポイン
ト)で測定した振れを、三角関数で近似して得た近似曲
線の例である。この近似曲線の各測定ポイント(位相)
毎の振れ量Rrを次の演算に利用する。 (2)上記の振れ量及び位相のデータより、ワークの各
位相断面における振れ及び部分曲がりを算出する工程。
For example, FIG. 3 shows an example of an approximation curve obtained by approximating a shake measured at a predetermined phase interval (measurement point) at a measurement position P 1 by a trigonometric function while rotating the work W by one rotation. . Each measurement point (phase) of this approximation curve
The shake amount Rr for each calculation is used for the next calculation. (2) a step of calculating a run-out and a partial bend at each phase section of the work from the above-mentioned run-out amount and phase data;

【0017】図4は、曲がりを有するワークWを、或る
位相Θ(図ではΘ=90度)で長手方向に切断した位相
断面S(Θ)における振れ,部分曲がりの状態を模式的
に表示した2次元イメージ図、図5はその位相断面S
(Θ)における振れR1 (Θ)及び部分曲がり量θ
1 (Θ)を、前記近似曲線の振れ量Rr,位相のデータ
に基づき算出する手法を説明する図である。
FIG. 4 schematically shows the state of deflection and partial bending in a phase section S (Θ) obtained by cutting a bent workpiece W in a longitudinal direction at a certain phase Θ (Θ = 90 degrees in the figure). FIG. 5 shows the phase cross section S
Runout R 1 (Θ) and partial bending θ in (に お け る)
FIG. 3 is a diagram for explaining a method of calculating 1 (Θ) based on data of a shake amount Rr and a phase of the approximate curve.

【0018】すなわち、ワーク長手方向にn個所の測定
位置P1 ,P2 ,P3,…Pn を設定し、0〜360度の
全周を例えば位相角1度間隔として振れを測定して得た
測定値のうちの、或る位相Θ(例えばΘ=90度)の位
相断面S(Θ)における各測定位置Pn 毎の振れR
n (Θ)、及び部分曲がりθn (Θ)は、前記近似曲線
の振れ量Rr(Θ),振れ位相を利用して次のように計
算する。
That is, n measurement positions P 1 , P 2 , P 3, ... P n are set in the longitudinal direction of the work, and the run-out is measured by setting the entire circumference of 0 to 360 degrees as, for example, a phase angle of 1 degree. Of the obtained measurement values, the shake R at each measurement position Pn in a phase cross section S (Θ) of a certain phase Θ (eg, Θ = 90 degrees)
n (Θ) and partial bending θ n (Θ) are calculated as follows using the shake amount Rr (Θ) and shake phase of the approximate curve.

【0019】振れ,位相の測定値を解析して、ワーク位
相断面S(Θ)における振れデータ,部分曲がりデータ
に変換する。例えば、 測定位置P1 における振れR1 (Θ)は、次式(1)
による。 R1 (Θ)=(振れ量Rr1 ×1/2)×Cos(振れ位相−Θ)……(1) 各測定位置P2 ,P3 …Pn における振れR2 (Θ),
3 (Θ),……Rn(Θ)も同様にして変換する。
The measured values of the shake and phase are analyzed and converted into shake data and partial bending data in the work phase cross section S (断面). For example, the deflection R 1 (Θ) at the measurement position P 1 is given by the following equation (1).
by. R 1 (Θ) = (shake amount Rr 1 × 1/2) × Cos ( phase deviation -Θ) ...... (1) each measurement position P 2, P 3 ... shake in P n R 2 (Θ),
R 3 (Θ),..., R n (Θ) are similarly converted.

【0020】また、測定位置P1 における部分曲がり
量θ1 (Θ)は、次式(2)による。 θ1 (Θ)=tan-1{(R0 (Θ)−R1 (Θ))/X1 }+ tan-1{(R2 (Θ)−R1 (Θ))/X2 } ……(2) 各測定位置P2 ,P3 …Pn における部分曲がり量θ2
(Θ),θ3 (Θ),……θn (Θ)も同様にして変換
する。
The partial bend θ 1 (Θ) at the measurement position P 1 is given by the following equation (2). θ 1 (Θ) = tan -1 {(R 0 (Θ) -R 1 (Θ)) / X 1 } + tan -1 {(R 2 (Θ) -R 1 (Θ)) / X 2 … ... (2) each measuring position P 2, P 3 ... partial curve amount theta 2 at P n
(Θ), θ 3 (Θ),... Θ n (Θ) are similarly converted.

【0021】但し、R0 (Θ)=0,Rn+1(Θ)=0 図6は、このようにして求めた位相断面Θの振れ,部分
曲がりの状態及び各測定 置P1 ,P2 ,P3 で測定し
た振れ──位相近似曲線を模式的に表示した3次元イメ
ージ図である。 (3)部分曲がりのデータを累積して振れのデータを作
成する。
However, R 0 (Θ) = 0, R n + 1 (Θ) = 0 FIG. 6 shows the state of the deflection and partial bending of the phase section Θ obtained in this way, and the measurement positions P 1 , P FIG. 3 is a three-dimensional image diagram schematically showing a shake / phase approximation curve measured at 2 and P 3 . (3) The data of the partial bend is accumulated to create the data of the deflection.

【0022】各測定位置P1 〜Pn 毎に得られた位相Θ
の部分曲がり量θ1 (Θ),θ2 (Θ),θ3 (Θ),
……θn (Θ)を、累積する。同様に、各位相(例えば
0〜360度にわたり1度間隔)別の部分曲がり量を各
測定位置P1 〜Pn 毎に累積する。これにより、ワーク
Wの振れを示すデータを再現できる。すなわち、 先ず、図7に示すように、θ1 (Θ),θ2 (Θ),
θ3 (Θ)及び各測定位置P1 ,P2 ,P3 ,P4 の間
隔(長手方向座標)X1 ,X2 ,X3 ,X4 の値より、
逆算した変位R’1 (Θ),R’2 (Θ) ,R’
3 (Θ) ,R’4(Θ)を求める。
The phase Θ obtained for each of the measurement positions P 1 to P n
Partial bending θ 1 (Θ), θ 2 (Θ), θ 3 (Θ),
... Θ n (Θ) is accumulated. Similarly, it accumulates each phase (e.g. one degree intervals over 0-360 degrees) another partial curve amount at each measurement position P 1 to P n. As a result, data indicating the deflection of the work W can be reproduced. That is, first, as shown in FIG. 7, θ 1 (Θ), θ 2 (Θ),
From θ 3 (Θ) and the values of the intervals (longitudinal coordinates) X 1 , X 2 , X 3 , and X 4 between the measurement positions P 1 , P 2 , P 3 , and P 4 ,
Back calculated displacement R ' 1 (Θ), R' 2 (Θ) , R '
3 (Θ) , R ′ 4 (Θ).

【0023】次に、図8に示すように、前記逆算した
変位のうちの最後の値が0となるように、即ちR’
4 (Θ)=0になるように累積振れ線を傾けて、新たな
振れR” 1 (Θ),R”2 (Θ), R”3 (Θ)を求
める。このように、ある位相Θにおける部分曲がりデー
タθn (Θ)を長手方向に累積すると、当該位相におい
て測定した振れRn (Θ)を計算上で再現することがで
きる。 (4)計算で再現した部分曲がりのデータを、その曲が
りが矯正されるように変更し、その変更後のデータを長
手方向に再累積することにより、当該変更を加えた後の
ワークの振れを予測する。例えば図9(a)に示すよう
に、計算された部分曲がりのデータを累積して再現され
た位相Θにおけるワーク長手方向の曲がり線Lの最大部
分曲がり位置P1 に矯正負荷Fを加えた後の振れを計算
して、そのデータを再累積することにより、図10
(a)に示すような矯正後後の曲がり線L’を得る。図
9(b)は矯正前の、図10(b)は矯正予測後の、そ
れぞれの曲がりの3次元イメージの図である。
Next, as shown in FIG.
So that the last value of the displacement is 0, that is, R '
FourBy tilting the cumulative deflection line so that (Θ) = 0, a new
Swing R " 1(Θ), R "Two(Θ), R "Three(Θ)
Confuse. Thus, the partial bending data at a certain phase Θ
TA θnWhen (を) is accumulated in the longitudinal direction,
Run-out Rn(Θ) can be reproduced by calculation
Wear. (4) The data of the partial bend reproduced by the calculation
Data to be corrected, and the changed data
By re-accumulating in the hand direction, the
Predict the run-out of the work. For example, as shown in FIG.
The calculated partial bend data is accumulated and reproduced
Of the bending line L in the work longitudinal direction at the phase た
Minute bending position P1Calculate run-out after adding correction load F
By re-accumulating the data,
A post-correction curved line L 'as shown in FIG. Figure
9 (b) before correction, and FIG. 10 (b) after correction prediction.
It is a figure of the three-dimensional image of each curve.

【0024】この矯正予測後の曲がり線を求める修正式
は、修正個所の位相Θにおいて次式(3)となる。 新部分曲がり(Θ)=旧部分曲がり(Θ)−部分曲がり矯正量×Cos(Θ− 矯正位相) ……(3) これにより、各位相における部分曲がり量の修正を行
い、その結果を再度累積すれば、部分曲がりを矯正した
場合のワーク全体の振れを計算で予測できる。
The correction equation for obtaining the corrected curved line after the correction is given by the following equation (3) at the phase Θ at the correction location. New partial bend (Θ) = old partial bend (Θ) −partial bend correction amount × Cos (Θ−correction phase) (3) Thereby, the partial bend amount in each phase is corrected, and the results are accumulated again. Then, the run-out of the entire work when the partial bending is corrected can be predicted by calculation.

【0025】すなわち、実際に特定位置での曲がり矯正
を行うと、その影響を受けて矯正位置における各位相の
部分曲がり値が変化するから、この影響分を修正しなけ
ればならない。しかるに本発明では、計算で再現した部
分曲がりのデータを用いて、矯正後の各測定個所の振れ
量,振れ位相を予測し、振れ最大位置,位相において最
も小さい振れとなる矯正量を見極め、その予測値が振れ
目標値(規格値)以下となるように、最適な矯正個所,
矯正位置,矯正量(部分曲がり量)を計算で求めて、そ
の結果に基づき実際の矯正作業を行うから、少ない矯正
回数で高い矯正精度が得られる。
That is, when the bending correction is actually performed at a specific position, the partial bending value of each phase at the correction position changes under the influence of the correction, so that the influence must be corrected. However, in the present invention, using the data of the partial bend reproduced by calculation, the amount of shake and the shake phase at each measurement point after correction are predicted, and the correction amount that minimizes the shake at the maximum position and phase of the shake is determined. The optimal correction point, so that the predicted value is less than the runout target value (standard value),
The correction position and the correction amount (partial bending amount) are obtained by calculation, and the actual correction work is performed based on the calculation result. Therefore, high correction accuracy can be obtained with a small number of corrections.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
棒材の曲がり矯正位置,矯正量の決定を、振れの測定値
から計算でシュミレートして予測し、得られた最適値に
基づいて実際の矯正作業を行うため、高効率,高精度の
曲がり矯正を自動化でき、熟練者の手作業の廃止に大き
く貢献できるという効果を奏する。
As described above, according to the present invention,
Highly efficient and high-precision bending straightening is performed because the determination of the bending straightening position and straightening amount of the bar is simulated and calculated from the measured run-out to predict and perform the actual straightening work based on the obtained optimum value. Can be automated, and it is possible to greatly contribute to the elimination of the manual work of the skilled person.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の棒材の曲がり矯正位置,矯正量の決定
方法に従った曲がり矯正作業の概要を示す流れ図であ
る。
FIG. 1 is a flowchart showing an outline of a bending correction operation according to a method for determining a bending correction position and a correction amount of a bar according to the present invention.

【図2】ワークの振れ測定方法を説明する斜視図であ
る。
FIG. 2 is a perspective view illustrating a method of measuring the run-out of a workpiece.

【図3】測定位置P1 において所定の位相間隔(測定ポ
イント)で測定した振れを、三角関数で近似して得た近
似曲線の例である。
[3] The deflection was measured at predetermined phase intervals (measurement points) in the measuring position P 1, an example of the approximate curve obtained by approximating a triangle function.

【図4】ワークWを長手方向に切断した位相断面S
(Θ)における振れ,部分曲がりの状態を模式的に表示
した2次元イメージ図である。
FIG. 4 is a phase cross section S obtained by cutting the work W in the longitudinal direction.
It is the two-dimensional image figure which displayed typically the state of the deflection and partial bending in (II).

【図5】位相断面S(Θ)における振れR1 (Θ)及び
部分曲がり量θ1 (Θ)を、前記近似曲線の振れ量,位
相のデータに基づき算出する手法を説明する図である。
FIG. 5 is a diagram illustrating a method of calculating a shake R 1 (Θ) and a partial bending amount θ 1 (Θ) in a phase cross section S (Θ) based on data of a shake amount and a phase of the approximate curve.

【図6】位相断面Θの振れ,部分曲がりの状態及び各測
定位置P1 ,P2 ,P3 で測定した振れ──位相近似曲
線を模式的に表示した3次元イメージ図である。
FIG. 6 is a three-dimensional image diagram schematically showing the state of the deflection and partial bending of the phase cross section 及 び and the deflection ── phase approximation curve measured at each of the measurement positions P 1 , P 2 , and P 3 .

【図7】実測したワークWの振れを、演算で再現する手
法を説明する図である。
FIG. 7 is a diagram illustrating a method of reproducing the actually measured deflection of the work W by calculation.

【図8】実測したワークWの振れを、演算で再現する手
法を説明する図である。
FIG. 8 is a diagram illustrating a method of reproducing the actually measured deflection of the work W by calculation.

【図9】(a)は演算で再現された矯正前のワーク長手
方向の曲がり線Lを示す2次元イメージ図、(b)はそ
の3次元イメージ図である。
9A is a two-dimensional image diagram showing a curved line L in the longitudinal direction of a work before correction reproduced by calculation, and FIG. 9B is a three-dimensional image diagram thereof.

【図10】(a)は演算で予測した矯正後のワーク長手
方向の曲がり線L’を示す2次元イメージ図、(b)は
その3次元イメージ図である。
10A is a two-dimensional image diagram showing a curved line L ′ in the longitudinal direction of a work after correction, which is predicted by calculation, and FIG. 10B is a three-dimensional image diagram thereof.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 次の工程を包含することを特徴とする棒
材の曲がり矯正位置,矯正量の決定方法。 ワークの長手方向に複数個所の振れを所定の位相間
隔で計測する。 得られた各測定個所毎の振れ量,位相データ及び測
定座標から、所定のワーク位相断面における各測定個所
毎の振れ量R及び部分曲がり角θを算出する。 前記で算出した各測定個所毎の振れ量R及び部分
曲がり角θを各位相毎に累積することにより、で計測
したワークの振れデータを再現する。 得られた「部分曲がり量」の再現データを用いて各
位相における模擬矯正結果の予測計算を行い、その結果
を各位相毎に再度累積することにより模擬矯正後のワー
ク全体の振れを予測する。 模擬矯正によるワーク振れの値が規格値以下となる
ように最適矯正位置,矯正位相,矯正量を決定する。こ
れに従ってワークに実際の矯正を施す。
1. A method for determining a bending correction position and a correction amount of a bar, which includes the following steps. The deflection at a plurality of locations in the longitudinal direction of the work is measured at predetermined phase intervals. From the obtained shake amount, phase data and measurement coordinates at each measurement point, a shake amount R and a partial bending angle θ at each measurement point in a predetermined work phase cross section are calculated. By accumulating the shake amount R and the partial bend angle θ for each measurement point calculated for each phase, the shake data of the work measured by is reproduced. Prediction calculation of the simulation correction result in each phase is performed using the obtained reproduction data of the "partial bending amount", and the result is accumulated again for each phase to predict the runout of the entire work after the simulation correction. The optimum correction position, correction phase, and correction amount are determined so that the value of the workpiece run-out due to the simulated correction is equal to or less than the standard value. According to this, the work is actually corrected.
JP28694299A 1999-10-07 1999-10-07 How to determine the bending correction position and correction amount of bar Expired - Lifetime JP4419224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28694299A JP4419224B2 (en) 1999-10-07 1999-10-07 How to determine the bending correction position and correction amount of bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28694299A JP4419224B2 (en) 1999-10-07 1999-10-07 How to determine the bending correction position and correction amount of bar

Publications (2)

Publication Number Publication Date
JP2001105028A true JP2001105028A (en) 2001-04-17
JP4419224B2 JP4419224B2 (en) 2010-02-24

Family

ID=17710959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28694299A Expired - Lifetime JP4419224B2 (en) 1999-10-07 1999-10-07 How to determine the bending correction position and correction amount of bar

Country Status (1)

Country Link
JP (1) JP4419224B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245608A (en) * 2010-05-31 2011-12-08 Mitsubishi Electric Corp Phase forming method of eccentric workpiece and device therefor, and method for supplying workpiece to cylindrical grinding machine using the same and device therefor
CN103394550A (en) * 2013-07-29 2013-11-20 长春机械科学研究院有限公司 Non-contact straightening point confirming method for straightness of rectangular-section long-rail work piece
CN104907366A (en) * 2014-03-14 2015-09-16 加特可株式会社 Method for correcting curve of workpiece
CN113894185A (en) * 2021-11-23 2022-01-07 成都先进金属材料产业技术研究院股份有限公司 Straightening method of titanium alloy ribbed pipe
CN115921594A (en) * 2022-12-15 2023-04-07 山东沃尔鑫机械有限公司 500 ton-level automatic intelligent shape correction equipment
CN113894185B (en) * 2021-11-23 2024-05-14 成都先进金属材料产业技术研究院股份有限公司 Straightening method of titanium alloy ribbed pipe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245608A (en) * 2010-05-31 2011-12-08 Mitsubishi Electric Corp Phase forming method of eccentric workpiece and device therefor, and method for supplying workpiece to cylindrical grinding machine using the same and device therefor
CN103394550A (en) * 2013-07-29 2013-11-20 长春机械科学研究院有限公司 Non-contact straightening point confirming method for straightness of rectangular-section long-rail work piece
CN104907366A (en) * 2014-03-14 2015-09-16 加特可株式会社 Method for correcting curve of workpiece
CN113894185A (en) * 2021-11-23 2022-01-07 成都先进金属材料产业技术研究院股份有限公司 Straightening method of titanium alloy ribbed pipe
CN113894185B (en) * 2021-11-23 2024-05-14 成都先进金属材料产业技术研究院股份有限公司 Straightening method of titanium alloy ribbed pipe
CN115921594A (en) * 2022-12-15 2023-04-07 山东沃尔鑫机械有限公司 500 ton-level automatic intelligent shape correction equipment
CN115921594B (en) * 2022-12-15 2023-11-03 山东沃尔鑫机械有限公司 500 ton-level automatic intelligent shape correction equipment

Also Published As

Publication number Publication date
JP4419224B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
KR101949070B1 (en) Residual stress estimation method and residual stress estimation apparatus
JP6591131B1 (en) Structure measuring apparatus and structure measuring method
JP5981029B2 (en) Method for evaluating the rotational speed of a tool mounted on a rotating spindle of a machine tool and such a machine tool
CN113812902B (en) Method and device for controlling tail end of flexible instrument, electronic equipment and storage medium
JP2001105028A (en) Method for deciding position for straightening bend of bar and amount to be straightened
JP2007101279A (en) Correction coefficient determining method of rectangular coordinate moving mechanism, and collecting method of measuring data
JP3509005B2 (en) Shape measurement method
JP3461607B2 (en) Method and apparatus for setting magnetic field influence coefficient
CN111857051A (en) Waveform display device and waveform display method
JP4253112B2 (en) Contour shape measuring method and apparatus
WO2021070395A1 (en) Method for setting condition for peen molding, peen molding method, and device for setting condition for peen molding
JPS63308317A (en) Charged beam aligner
JPH09323129A (en) Method for correcting real time of calculated data of linear shape deformation by heating
JPH105872A (en) Method for straightening bend of long stock
JPH08240513A (en) Apparatus for forming characteristic map of motor
JPS6182933A (en) Three roll bending device
CN111855151A (en) Detection device and detection method for polarizer transmission shaft
JP2007003205A (en) Device, method and program for measuring shape
JP2800911B2 (en) Seismic intensity measurement method for control
JP2008077376A (en) Simulation apparatus, method and program
CN114520614B (en) Motor trigger angle calculation method and device, storage medium and processor
JP2000126809A (en) Set up device of rolling mill
JP2007133707A (en) Program and method for computing helix angle of finished product
JPH08285574A (en) Analysis method and analysis processor for circular motion accuracy measuring data
JP2006218582A (en) Machining method for curved surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4419224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

EXPY Cancellation because of completion of term