JP2001105021A - Method of manufacturing hot-rolled steel sheet - Google Patents

Method of manufacturing hot-rolled steel sheet

Info

Publication number
JP2001105021A
JP2001105021A JP27944799A JP27944799A JP2001105021A JP 2001105021 A JP2001105021 A JP 2001105021A JP 27944799 A JP27944799 A JP 27944799A JP 27944799 A JP27944799 A JP 27944799A JP 2001105021 A JP2001105021 A JP 2001105021A
Authority
JP
Japan
Prior art keywords
descaling
hot
steel sheet
scale
pressure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27944799A
Other languages
Japanese (ja)
Inventor
Shuichi Ishikawa
秀一 石川
Hideaki Nagai
秀明 永井
Yoshiro Kudo
芳郎 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP27944799A priority Critical patent/JP2001105021A/en
Publication of JP2001105021A publication Critical patent/JP2001105021A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a hot-rolled steel sheet excellent in surface property without scale defects by executing descaling by jetting high-pressure water jet from two rows of nozzles to high silicon and high nickel steel containing Si and Ni of 0.2-2.0 wt.% respectively in a hot-rolling stage. SOLUTION: By using a descaling device on which two rows of headers 4a, 4b are arranged at a proper interval in the advancing direction of the line and setting the collision pressure for descaling at >=3 kgf/cm2 and the attack angles θ of the descaling nozzles of each row respectively at 0-5 deg., descaling is executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、熱間圧延時に鋼材
表面に高圧水ジェットを噴射してデスケーリングを行
い、スケール疵やスケール模様の発生を防止し、表面性
状に優れた熱延鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-rolled steel sheet having excellent surface properties by performing descaling by injecting a high-pressure water jet onto a steel material surface during hot rolling to prevent scale flaws and scale patterns from occurring. It relates to a manufacturing method.

【0002】[0002]

【従来技術】鋼板の製造に当たっては、素材の鋼材を加
熱炉により通常1100〜1300℃の温度で数時間加
熱し、ついでホットストリップミルにて熱間圧延される
のが一般的であるが、この際、鋼材表面に生成した酸化
スケールが充分に除去されない状態のまゝで鋼材が圧延
されると、酸化スケールが成品の表面に押込まれ、スケ
ール疵やスケール模様として残る。
2. Description of the Related Art In the production of a steel sheet, it is general that a steel material is heated in a heating furnace at a temperature of usually 1100 to 1300 ° C. for several hours and then hot-rolled in a hot strip mill. At this time, if the steel material is rolled until the oxide scale generated on the surface of the steel material is not sufficiently removed, the oxide scale is pushed into the surface of the product and remains as scale flaws or scale patterns.

【0003】このようなスケール疵やスケール模様は、
圧延後の成品(黒皮成品)の外観を悪化させるのみなら
ず、酸洗により酸化スケールを除去した後の成品(白皮
成品)の表面に凹凸状の欠陥を残存させる原因となり、
また曲げ加工時のクラックの起点となったり、熱間圧延
工程内の鋼板強制冷却時にスケール残存部と剥離部の冷
却能の差により、鋼板の機械的特性値にむらが発生する
など、鋼板の品質に重大な悪影響を及ぼすようになる。
[0003] Such scale flaws and scale patterns are
Not only deteriorates the appearance of the rolled product (black scaled product), but also causes uneven defects to remain on the surface of the product (white scaled product) after removing the oxide scale by pickling.
In addition, it becomes a starting point of cracks during bending, and the difference in cooling capacity between the scale remaining part and the peeled part during forced cooling of the steel sheet in the hot rolling process causes unevenness in the mechanical property values of the steel sheet. It has a serious negative effect on quality.

【0004】こうしたスケール疵が発生するのを防止す
る方法として従来、加熱炉出側、粗圧延機、仕上圧延機
入側等にノズルを一定間隔で取付けたヘッダーよりなる
デスケーリング装置を設置し、各ノズルから鋼材表面に
高圧水ジェットを噴射して鋼材表面の酸化スケールを剥
離し除去する方法が採られ、とくに表面品質を重視する
鋼材では、スケール剥離性を向上させるため図1に示す
ように、仕上圧延機1の入側にデスケーリング用のヘッ
ダー2を二列以上配置し、高圧水を複数列から同時噴射
させることが通常行われている。
Conventionally, as a method for preventing the occurrence of such scale flaws, a descaling device comprising a header having nozzles attached at regular intervals has been installed on the exit side of a heating furnace, on the side of a rough rolling mill, on the entrance side of a finishing mill, or the like. A method is adopted in which a high-pressure water jet is sprayed from each nozzle onto the steel surface to separate and remove oxide scale on the steel surface. In particular, for steel materials that emphasize surface quality, as shown in FIG. It is common practice to arrange two or more rows of descaling headers 2 on the entry side of the finishing mill 1 and to simultaneously inject high-pressure water from a plurality of rows.

【0005】デスケーリング用ノズルはまた、ライン進
行方向に対する迎え角θが通常15°前後となってい
る。これは高圧水ジェットを鋼材進行方向と逆方向に噴
射させることにより高圧水ジェットの衝突力のライン方
向の速度成分を増加させ、スケール剥離性を向上させる
ためである。ノズルから噴射される高圧水ジェットはま
た、鋼材表面への衝突力を鋼材幅方向で均一化するた
め、図2に示すようにライン進行方向と直交する方向に
対し、捩れ角γで噴射され、隣合う高圧水ジェットと一
定のラップ幅aでラップさせている。一列のノズルでは
ラップ部分以外が高温となり、仕上スタンド噛み込み前
及び仕上スタンド間で高温性のスケールが発生し易くな
る。そこで通常はノズルを図2に示すように前後に二列
配置し、しかも前列のノズルと後列のノズルをライン進
行方向と直交する方向にずらし、高圧水ジェットの噴射
部をずらして鋼材幅方向の温度を均一化させるようにし
ている。
The angle of attack θ of the descaling nozzle with respect to the line traveling direction is usually about 15 °. This is because the high-pressure water jet is jetted in the direction opposite to the steel material advancing direction to increase the speed component of the collision force of the high-pressure water jet in the line direction, thereby improving the scale peelability. The high-pressure water jet sprayed from the nozzle is also sprayed at a torsion angle γ with respect to a direction orthogonal to the line advancing direction as shown in FIG. 2 in order to make the impact force on the steel material surface uniform in the width direction of the steel material. It is wrapped with an adjacent high-pressure water jet with a constant wrap width a. In a row of nozzles, the temperature becomes high in portions other than the wrap portion, so that a high-temperature scale easily occurs before the finishing stand is engaged and between the finishing stands. Therefore, normally, the nozzles are arranged in two rows in front and back as shown in FIG. 2, and furthermore, the nozzles in the front row and the rear row are shifted in a direction orthogonal to the line advancing direction, and the injection part of the high-pressure water jet is shifted so that the width in the steel material width direction is The temperature is made uniform.

【0006】[0006]

【発明が解決しようとする課題】デスケーリング用のヘ
ッダーを二列に配置する場合を例にとっていえば、図3
に示すようにライン進行方向に対し、前方に設置されて
いるヘッダー4aのノズルからの高圧水ジェットは鋼材
表面に沿って後方に位置しているヘッダー4bのノズル
からの高圧水ジェットに干渉し、該ジェットによる鋼材
表面への衝突力を低下させる。とくにオフラインテスト
での観察によると、図4に示すようにノズルから噴射さ
れる高圧水ジェットが鋼材表面に衝突して後方の矢印方
向に流れる高圧水の一部が隣の高圧水ジェットで堰止め
られ、その水が後方に廻り込んで強い水流を生み出すこ
とにより、図5の斜線で示すような強水流域3が発生
し、これが後方のノズルから噴射される高圧水ジェット
を突き抜ける現象が見られ、該域でのジェットの衝突力
を大幅に低下させることが分かった。
FIG. 3 shows an example in which the headers for descaling are arranged in two rows.
As shown in the line, the high-pressure water jet from the nozzle of the header 4a installed at the front interferes with the high-pressure water jet from the nozzle of the header 4b located at the rear along the steel material surface, The impact force of the jet against the steel surface is reduced. According to the observation in the off-line test, in particular, as shown in Fig. 4, the high-pressure water jet injected from the nozzle collides with the steel surface and a part of the high-pressure water flowing in the direction of the back arrow is blocked by the next high-pressure water jet. When the water flows backward to generate a strong water flow, a strong water flow area 3 as shown by the diagonal lines in FIG. 5 is generated, and a phenomenon is seen in which this water penetrates the high-pressure water jet injected from the rear nozzle. It was found that the impact force of the jet in this area was significantly reduced.

【0007】本発明は、デスケーリング用ノズルを複数
列配置した場合において生ずる上記の問題を解消するこ
とができる熱延鋼板の製造方法を提供することを目的と
する。
An object of the present invention is to provide a method for manufacturing a hot-rolled steel sheet which can solve the above-mentioned problem that occurs when a plurality of rows of descaling nozzles are arranged.

【0008】[0008]

【課題の解決手段】請求項1記載の発明は、鋼材を熱間
圧延して熱延鋼板を製造するに際し、ライン進行方向に
適宜の間隔を存して配置される複数列のデスケーリング
用ノズルより鋼材表面に高圧水ジェットを噴射してデス
ケーリングを行う熱延鋼板の製造方法において、上記デ
スケーリングを鋼材表面への衝突圧が3kgf/cm2 以上
で、かつライン進行方向に対し前方に位置するデスケー
リング用ノズルの鋼材に対する迎え角を0〜5°にして
実施することを特徴とする。
According to the first aspect of the present invention, a plurality of rows of descaling nozzles are arranged at appropriate intervals in the line traveling direction when hot rolling a steel material to produce a hot rolled steel sheet. In a method for producing a hot-rolled steel sheet in which a high-pressure water jet is sprayed onto a steel material surface to perform descaling, the descaling is performed by setting the impact pressure on the steel surface to 3 kgf / cm 2 or more and forward in the line advancing direction. The angle of attack of the descaling nozzle with respect to the steel material is set to 0 to 5 °.

【0009】請求項2記載の発明は、請求項1記載の発
明において、複数列の各列におけるデスケーリング用ノ
ズルを全て、その迎え角を0〜5°にしたことを特徴と
する。本発明者らは、難スケール剥離材である、Si含
有鋼及びNi含有鋼について、デスケーリング用ノズル
をライン進行方向に対し適宜の間隔を存して二列配置し
た場合の各ノズルのライン進行方向に対する迎え角θ及
びデスケーリング時の高圧水ジェットの衝突圧を変えた
調査を種々行った。
The invention according to claim 2 is characterized in that, in the invention according to claim 1, all of the descaling nozzles in each of the plurality of rows have an angle of attack of 0 to 5 °. The present inventors have developed a line progression for each nozzle when the descaling nozzles are arranged in two rows at appropriate intervals in the line progression direction with respect to the Si-containing steel and the Ni-containing steel, which are difficult-scale release materials. Various investigations were carried out by changing the angle of attack θ with respect to the direction and the collision pressure of the high-pressure water jet during descaling.

【0010】調査は、表1に示す組成の鋼材A及びBに
対して行い、その結果、ライン進行方向の後方に位置す
るノズルからの高圧水の噴射を停止し、高圧水ジェット
を一列にした場合は、衝突圧が3kgf/cm2 以上で、かつ
迎え角θが5°以下でもスケール残存率が大きくなり、
また高圧水ジェットを二列にした場合、衝突圧が3kgf/
cm2 未満では迎え角θが5°以下でもスケール残存率が
大きくなること、衝突圧を3kgf/cm2 以上に上げ、迎え
角θを5°以下にすると、スケール残存率が1%未満と
なることを見出した。
The investigation was carried out on steel materials A and B having the compositions shown in Table 1, and as a result, the injection of high-pressure water from the nozzle located at the rear in the line advancing direction was stopped, and the high-pressure water jets were aligned. In this case, even if the collision pressure is 3 kgf / cm 2 or more and the angle of attack θ is 5 ° or less, the scale residual ratio increases,
When two rows of high pressure water jets are used, the collision pressure is 3kgf /
cm is less than 2 angle of attack θ is 5 ° even the scale residual rate increases will increase the impact pressure to 3 kgf / cm 2 or more, when the angle of attack θ on 5 ° or less, the scale residual rate is less than 1% I found that.

【0011】ライン進行方向に対し、前方に位置するノ
ズルの迎え角θの上限を5°としたのは、5°を越える
と、後方に位置するノズルからの高圧水ジェットに干渉
し、該ジェットの衝突力を低下させるためで、水流干渉
による衝突力の低下をより少なくするには迎え角θを0
°にするのが望ましい。因みにノズルを二列に配置する
場合、前方及び後方に位置するノズルの迎え角θを0°
にすると、図6に示すように後方のヘッダー4bのノズ
ルから噴射される高圧水ジェットが鋼材5の表面に当た
ってライン後方に流れる水量と、前方のヘッダー4aの
ノズルから噴射される高圧水ジェットが鋼材表面に当た
ってライン前方に流れる水量とが等しくなり、したがっ
て前後の水流が両ヘッダー間の中間点で干渉されるよう
になり、後方のノズルから噴射される高圧水ジェットの
衝突力低下を防止する。
The reason why the upper limit of the angle of attack θ of the nozzle located in front with respect to the line traveling direction is set to 5 ° is that if it exceeds 5 °, it interferes with the high-pressure water jet from the nozzle located in the rear, and In order to reduce the drop in collision force due to water flow interference, the angle of attack θ should be set to 0.
° is desirable. Incidentally, when the nozzles are arranged in two rows, the angle of attack θ of the nozzles located at the front and the rear is 0 °.
As shown in FIG. 6, the high-pressure water jet injected from the nozzle of the rear header 4b hits the surface of the steel material 5 and flows toward the rear of the line, and the high-pressure water jet injected from the nozzle of the front header 4a is The amount of water flowing in front of the line on the surface is equalized, so that the front and rear water flows are interfered at an intermediate point between the two headers, thereby preventing the collision force of the high-pressure water jet ejected from the rear nozzle from being reduced.

【0012】また迎え角θの下限を0°としたのは、0
°未満、すなわちノズルをライン進行方向に向けると、
デスケーリングによって鋼材表面から剥離し、除去され
た酸化スケールが圧延機のロールに噛み込み、成品の表
面品質を著しく悪化させるためである。なお、ノズルの
迎え角を変えるには、ヘッダーと配管を連結するフラン
ジ部分での連結を一旦解除し、ヘッダーを軸心の回りに
必要量回動させて向きを調整し、その後、フランジ部分
を締結するとよい。これによりヘッダーの角度調整をす
るだけで、ノズルの向きが異なるヘッダーと取換える必
要がなくなり、経済的である。
The lower limit of the angle of attack θ is set to 0 °
°, that is, when the nozzle is oriented in the line travel direction,
This is because the oxide scale that has peeled off from the steel material surface due to the descaling and that has been removed is caught in the rolls of the rolling mill, thereby significantly deteriorating the surface quality of the product. To change the angle of attack of the nozzle, first disconnect the connection at the flange that connects the header and the pipe, rotate the header around the axis by the required amount, adjust the direction, and then remove the flange. It is good to fasten. This eliminates the need to replace a header with a different nozzle direction only by adjusting the angle of the header, which is economical.

【0013】請求項3記載の発明は、請求項1又は2記
載の発明のデスケーリングをSi含有量が0.2〜2.
0重量%の鋼材に対して実施することを特徴とし、請求
項4記載の発明は、請求項1又は2記載の発明のデスケ
ーリングをNi含有量が0.2〜2.0重量%の鋼材に
実施することを特徴とする。Si含有鋼はSiの含有量
が0.2重量%以上になると、加熱時のスケールや二次
スケール中にファイアライト2FeO・SiO2 が生成
して地鉄界面に深く進入し、スケール剥離が困難とな
る。またNi含有鋼もNiの含有量が0.2重量%以上
になると、地鉄界面の凹凸が激しくなり、スケール剥離
が困難となる。
According to a third aspect of the present invention, the descaling according to the first or second aspect of the present invention is performed such that the Si content is 0.2 to 2.0.
According to a fourth aspect of the present invention, the descaling according to the first or second aspect is performed on a steel material having a Ni content of 0.2 to 2.0% by weight. It is characterized by being carried out. When the Si content of the Si-containing steel is 0.2% by weight or more, firelite 2FeO.SiO 2 is generated in the scale and the secondary scale during heating and penetrates deeply into the ground iron interface, making scale peeling difficult. Becomes Also, when the Ni content of the Ni-containing steel is 0.2% by weight or more, the unevenness of the ground iron interface becomes severe, and scale peeling becomes difficult.

【0014】請求項1及び2記載の発明は、Si及びN
iの含有量がそれぞれ0.2重量%以上あるような鋼材
に対して実施してもスケール剥離効果が十分にあること
が分かった。請求項3記載の発明において、Siの含有
量は上限を本来限定する必要がないが、Siの含有量が
増えると、溶接性及び冷間加工性が悪化するため、Si
含有量を2.0重量%以下とした。
According to the first and second aspects of the present invention, Si and N
It was found that the scale peeling effect was sufficient even when the test was carried out on steel materials in which the content of i was 0.2% by weight or more. In the invention according to claim 3, the upper limit of the Si content does not need to be limited, but when the Si content increases, the weldability and cold workability deteriorate.
The content was 2.0% by weight or less.

【0015】また請求項4記載の発明において、Niの
含有量も上限は本来限定する必要がないが、靱性、延
性、経済性等を総合的に考慮してNi含有量を2.0重
量%以下とした。
In the invention according to claim 4, the upper limit of the Ni content is not necessarily limited, but the Ni content is set to 2.0% by weight in consideration of toughness, ductility, economy and the like. It was as follows.

【0016】[0016]

【実施例】以下の表1に示す鋼材A及びBについて、ヘ
ッダーを二列に配置したデスケーリング装置を用い、表
2に示した条件によりデスケーリングを実施したのち仕
上圧延を行い、得られたコイルをリコイルし酸洗したの
ち、コイル表裏面の単位面積当たりのスケール残存率%
を目視にて点検した。結果を表2に併記した。
EXAMPLES Steel materials A and B shown in Table 1 below were descaled under the conditions shown in Table 2 using a descaling apparatus having headers arranged in two rows, and then subjected to finish rolling. After the coil is recoiled and pickled, the scale remaining rate per unit area on the front and back of the coil is%.
Was visually inspected. The results are shown in Table 2.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】ここで衝突圧は、一本のノズルからの噴射
水による荷重を受圧センサーにより測定し、荷重/噴射
水の衝突面積、により単位面積当たりの衝突圧を実測に
より求めたものである。表中、ノズルAはライン進行方
向前方に位置するノズルを示し、ノズルBはライン進行
方向後方に位置するノズルを示す。
Here, the collision pressure is obtained by measuring the load due to water jetted from one nozzle by a pressure receiving sensor and obtaining the collision pressure per unit area from the load / collision area of the water jet by actual measurement. In the table, nozzle A indicates a nozzle located in the front in the line traveling direction, and nozzle B indicates a nozzle located in the rear in the line traveling direction.

【0020】また迎え角θは、鋼材に対し高圧水ジェッ
トが垂直に噴射されるときを0°とし、ライン進行方向
と逆向きに噴射されるときを+、同じ向きに噴射される
ときを−とする。表2に示されるように、請求項1記載
の発明の範囲内にあるNo.2、No.6及びNo.8
の鋼材はそれぞれスケール残存率が1%未満であり、請
求項2記載の発明の範囲内にあるNo.6及びNo.8
の鋼材ではスケール残存率が更に低下し、前後のノズル
の迎え角θをそれぞれ0°にした場合、スケール残存率
は0%となった。これに対し、一列のノズルでデスケー
リングを実施したNo.5及びNo.10の鋼材は、ス
ケール残存率がそれぞれ5.9%及び12.2%に達
し、衝突圧で請求項1記載の発明の範囲を外れたNo.
5及びNo.9の鋼材はスケール残存率がそれぞれ6.
8%及び9.5%に達し、また迎え角で請求項1記載の
発明の範囲を越えたNo.1、No.3及びNo.7の
鋼材はスケール残存率がそれぞれ、11.2%、29.
9%及び14.9%に達した。とくに迎え角θを−にし
たNo.3の鋼材は、デスケーリングしたスケール片が
仕上圧延機に噛み込み、その際に発生したロール疵が成
品に転写し、スケール噛み込み疵の程度が大となった。
The angle of attack θ is 0 ° when the high-pressure water jet is injected perpendicularly to the steel, + when the high-pressure water jet is injected in the direction opposite to the line traveling direction, and − when the high-pressure water jet is injected in the same direction. And As shown in Table 2, No. 1 within the scope of the invention described in claim 1 was obtained. 2, No. 6 and no. 8
The steel materials of No. 1 each have a scale residual ratio of less than 1%, and are within the scope of the invention according to claim 2. 6 and no. 8
In the case of the steel material of No. 1, the scale remaining ratio further decreased, and when the attack angles θ of the front and rear nozzles were each set to 0 °, the scale remaining ratio was 0%. On the other hand, No. 1 in which descaling was performed with one row of nozzles. 5 and No. 5 Steel No. 10 has scale residual ratios of 5.9% and 12.2%, respectively, and has a collision pressure out of the range of the invention according to claim 1.
5 and No. 5 Steel No. 9 has a scale residual ratio of 6.
No. 8% and 9.5%, and the angle of attack exceeded the range of the invention according to claim 1. 1, No. 3 and No. 3 7 have a scale residual ratio of 11.2% and 29.
Reached 9% and 14.9%. In particular, in the case of No. In the case of the steel material No. 3, the descaled scale pieces were bitten into the finish rolling mill, and the roll flaws generated at that time were transferred to the finished product, and the scale bite flaws became large.

【0021】[0021]

【発明の効果】本発明によると、従来スケール除去が困
難と考えられていた高Si含有鋼及びNi含有鋼に対し
てもデスケーリング用ヘッダーを複数列配置し、デスケ
ーリング衝突圧を3kgf/cm2 以上で、かつ前方に位置す
るデスケーリング用ノズルの迎え角を0〜5°にしてデ
スケーリングを実施することによりスケール疵の少ない
表面性状の良好な熱延鋼板を得ることができ、更に請求
項2記載の発明のように、各列のノズルの迎え角をそれ
ぞれ0〜5°にすると、スケール疵の少ない表面性状の
より良好な熱延鋼板を得ることができる。とくに各列の
ノズルの迎え角を0°にすると、高圧水ジェット水流の
干渉による衝突圧の低下を最も効果的に防止することが
できる。
According to the present invention, a plurality of rows of descaling headers are arranged for a high Si content steel and a Ni content steel, which have conventionally been considered to be difficult to remove scale, and the descaling impact pressure is 3 kgf / cm. By performing descaling by setting the angle of attack of the descaling nozzle located at 2 or more and in front to 0 to 5 °, it is possible to obtain a hot-rolled steel sheet having good surface properties with few scale flaws. As in the invention described in Item 2, when the angle of attack of each row of nozzles is set to 0 to 5 °, a hot-rolled steel sheet having better surface properties with less scale flaws can be obtained. In particular, when the angle of attack of the nozzles in each row is set to 0 °, it is possible to most effectively prevent a decrease in the collision pressure due to interference of the high-pressure water jet water flow.

【図面の簡単な説明】[Brief description of the drawings]

【図1】デスケーリング装置を備えた圧延ラインの模式
図。
FIG. 1 is a schematic diagram of a rolling line provided with a descaling device.

【図2】高圧水ジェットの衝突域を示す図。FIG. 2 is a diagram showing a collision area of a high-pressure water jet.

【図3】二列のデスケーリング用ノズルから噴射される
高圧水ジェットの流れを示す図。
FIG. 3 is a diagram showing a flow of a high-pressure water jet ejected from two rows of descaling nozzles.

【図4】高圧水ジェットの作用を示す図。FIG. 4 is a view showing the operation of a high-pressure water jet.

【図5】高圧水ジェット水流を示す図。FIG. 5 is a diagram showing a high-pressure water jet water flow.

【図6】本発明のデスケーリング用ノズルから噴射され
る高圧水ジェットの流れを示す図。
FIG. 6 is a diagram showing a flow of a high-pressure water jet injected from a descaling nozzle of the present invention.

【符号の説明】[Explanation of symbols]

1・・仕上圧延機 2・・デスケーリング用ヘッダー 3・・強水流域 4a、4b・・ヘッダー 5・・鋼材 1. Finishing mill 2. Descaling header 3. Strong water basin 4a, 4b Header 5. Steel

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】鋼材を熱間圧延して熱延鋼板を製造するに
際し、ライン進行方向に適宜の間隔を存して配置される
複数列のデスケーリング用ノズルより鋼材表面に高圧水
ジェットを噴射してデスケーリングを行う熱延鋼板の製
造方法において、上記デスケーリングを鋼材表面への衝
突圧が3kgf/cm2 以上で、かつライン進行方向に対し前
方に位置するデスケーリング用ノズルの鋼材に対する迎
え角を0〜5°にして実施することを特徴とする熱延鋼
板の製造方法。
When a steel material is hot-rolled to produce a hot-rolled steel sheet, a high-pressure water jet is jetted onto the surface of the steel material from a plurality of rows of descaling nozzles arranged at appropriate intervals in the line traveling direction. In the method for producing a hot-rolled steel sheet for descaling, the descaling is performed with respect to a steel material of a descaling nozzle having a collision pressure against a steel material surface of 3 kgf / cm 2 or more and located forward with respect to a line traveling direction. A method for producing a hot-rolled steel sheet, wherein the method is performed at an angle of 0 to 5 °.
【請求項2】複数列の各列におけるデスケーリング用ノ
ズルを全て、その迎え角を0〜5°にしたことを特徴と
する請求項1記載の熱延鋼板の製造方法。
2. A method for manufacturing a hot-rolled steel sheet according to claim 1, wherein the angles of attack of all the descaling nozzles in each of the plurality of rows are set to 0 to 5 °.
【請求項3】Si含有量が0.2〜2.0重量%の鋼材
に対して実施することを特徴とする請求項1又は2記載
の熱延鋼板の製造方法。
3. The method for producing a hot-rolled steel sheet according to claim 1, wherein the method is applied to a steel material having a Si content of 0.2 to 2.0% by weight.
【請求項4】Ni含有量が0.2〜2.0重量%の鋼材
に実施することを特徴とする請求項1又は2記載の熱延
鋼板の製造方法。
4. The method for producing a hot-rolled steel sheet according to claim 1, wherein the method is carried out on a steel material having a Ni content of 0.2 to 2.0% by weight.
JP27944799A 1999-09-30 1999-09-30 Method of manufacturing hot-rolled steel sheet Withdrawn JP2001105021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27944799A JP2001105021A (en) 1999-09-30 1999-09-30 Method of manufacturing hot-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27944799A JP2001105021A (en) 1999-09-30 1999-09-30 Method of manufacturing hot-rolled steel sheet

Publications (1)

Publication Number Publication Date
JP2001105021A true JP2001105021A (en) 2001-04-17

Family

ID=17611206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27944799A Withdrawn JP2001105021A (en) 1999-09-30 1999-09-30 Method of manufacturing hot-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP2001105021A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264498A (en) * 2009-05-18 2010-11-25 Jfe Steel Corp Method and device for descaling steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264498A (en) * 2009-05-18 2010-11-25 Jfe Steel Corp Method and device for descaling steel sheet

Similar Documents

Publication Publication Date Title
JP5200653B2 (en) Hot rolled steel sheet and method for producing the same
JPH06269839A (en) Descaling method and rolling method for slab
JP3802830B2 (en) Steel sheet descaling method and equipment
JP4765344B2 (en) Method and apparatus for descaling hot rolled material
AU2011275945A1 (en) Method and production line for producing a cold rolled flat steel product from a rustproof steel
JP2009275256A (en) Hot rolled steel sheet and method for producing the same
JP3551129B2 (en) Manufacturing method and manufacturing equipment for hot rolled steel strip
JP2001105021A (en) Method of manufacturing hot-rolled steel sheet
CN112222185B (en) Production method of hot continuous-rolled checkered plate and hot continuous-rolled checkered plate
JP4217847B2 (en) Continuous casting method
JP3994582B2 (en) Steel sheet descaling method
JP3331860B2 (en) Hot rolling material descaling equipment
JPH11267739A (en) Production of hot rolled steel sheet
JP3811380B2 (en) Manufacturing method of thick steel plate by hot rolling
JP3764350B2 (en) Thick plate manufacturing method and rolling mill
JP3425017B2 (en) Manufacturing method of hot rolled steel sheet
JP3231698B2 (en) Manufacturing method of hot rolled steel sheet with excellent surface properties
JP2002120011A (en) Apparatus and method for descaling
JP3882465B2 (en) Method for producing hot-rolled steel sheet with good surface properties
JP3249006B2 (en) Structural steel plate with excellent surface properties and method of manufacturing the same
JP3985401B2 (en) Steel sheet rolling method
JP3129967B2 (en) How to remove scale from hot rolled steel sheet
JP3422891B2 (en) Manufacturing method of hot rolled steel sheet
JPH09155437A (en) Manufacture of hot rolled steel sheet
JP2689845B2 (en) Descaling method for hot rolled steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205