JP2001100194A - Reflective liquid crystal display element - Google Patents

Reflective liquid crystal display element

Info

Publication number
JP2001100194A
JP2001100194A JP10819198A JP10819198A JP2001100194A JP 2001100194 A JP2001100194 A JP 2001100194A JP 10819198 A JP10819198 A JP 10819198A JP 10819198 A JP10819198 A JP 10819198A JP 2001100194 A JP2001100194 A JP 2001100194A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
crystal display
display device
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10819198A
Other languages
Japanese (ja)
Other versions
JP3172706B2 (en
Inventor
Hisanori Yamaguchi
久典 山口
Tomoaki Sekime
智明 関目
Yoshio Iwai
義夫 岩井
Tetsu Ogawa
鉄 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP10819198A priority Critical patent/JP3172706B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to PCT/JP1999/001890 priority patent/WO1999054781A1/en
Priority to CN99805112A priority patent/CN1127672C/en
Priority to US09/673,310 priority patent/US6567149B1/en
Priority to EP99913599A priority patent/EP1072928A4/en
Priority to KR10-2000-7011536A priority patent/KR100379718B1/en
Priority to TW088105966A priority patent/TW556019B/en
Publication of JP2001100194A publication Critical patent/JP2001100194A/en
Application granted granted Critical
Publication of JP3172706B2 publication Critical patent/JP3172706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • G02F1/1398Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell the twist being below 90°
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective

Abstract

PROBLEM TO BE SOLVED: To provide a reflective liquid crystal display element which achromati cally displays a bright white color with high contrast with a structure using only one polarizing film. SOLUTION: A twist angle of a nematic liquid crytal is set as 0-90 deg.. Relations among birefringence of the liquid crystal ΔnLC, thickness of the liquid crystal layer dLC and retardation of a polymer film RFILM are set as ΔnLC.dLC=0.20 to 0.30 μm and RFILM-ΔnLC.dLC=-0.20 to -0.05 μm. Defining the twist direction of the nematic liquid crystal toward the lower substrate side seen from the upper substrate side as positive, the angle between a reference line and the direction of long molecular axis of the liquid crystal closest to the one substrate as ϕLC, the angle between the reference line and the direction of the slow axis of the polymer film as ϕF and the angle between the reference line and the direction of the absorption or transmission axis of the polarizing film as ϕP, ϕF-ϕLC is set as -40 to -25 deg. and ϕP-ϕF is set as +50 to +80 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、反射型液晶表示素
子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection type liquid crystal display device.

【0002】[0002]

【従来の技術】液晶表示素子は、薄く、軽いので、携帯
型の情報端末のディスプレイをはじめとして様々な用途
に広く用いられている。液晶表示素子は、自らは発光せ
ずに、光の透過強度を変化させて表示を行う受光型素子
であり、数ボルトの実効電圧で駆動できるため、液晶表
示素子の下側に反射板を備えて外部光の反射光で表示を
見る反射型として用いれば、極めて消費電力の低い表示
素子となる。
2. Description of the Related Art Liquid crystal display elements are thin and light, and thus are widely used in various applications including displays for portable information terminals. The liquid crystal display element is a light-receiving element that performs display by changing the light transmission intensity without emitting light by itself, and can be driven with an effective voltage of several volts, so it has a reflector under the liquid crystal display element If it is used as a reflection type in which a display is viewed by reflected light of external light, a display element with extremely low power consumption is obtained.

【0003】従来の反射型のカラー液晶表示素子は、カ
ラーフィルタを備えた液晶セルとこの液晶セルを挟んで
配置された一対の偏光フィルムからなっている。カラー
フィルタは上記液晶セルの一方の基板に設けられてお
り、基板上にカラーフィルターと、さらにその上に透明
電極が形成される。この液晶セルに電圧を印加すること
で、液晶分子の配向状態を変化させて各カラーフィルタ
ごとの光の透過率を変化させカラー表示を行っている。
A conventional reflection type color liquid crystal display device comprises a liquid crystal cell provided with a color filter and a pair of polarizing films disposed so as to sandwich the liquid crystal cell. The color filter is provided on one substrate of the liquid crystal cell, and the color filter is formed on the substrate, and the transparent electrode is further formed thereon. By applying a voltage to the liquid crystal cell, the orientation of the liquid crystal molecules is changed to change the light transmittance of each color filter, thereby performing color display.

【0004】1枚の偏光板の透過率は、せいぜい45%
程度であり、このとき偏光フィルムの吸収軸に平行な偏
光の透過率はほぼ0%で、垂直な偏光の透過率はほぼ9
0%である。従って偏光板を2枚用いる反射型の液晶表
示素子では、光が偏光フィルムを4回通って出射するた
め、カラーフィルタの吸収を考えないとき、
The transmittance of one polarizing plate is at most 45%.
At this time, the transmittance of the polarized light parallel to the absorption axis of the polarizing film is almost 0%, and the transmittance of the perpendicular polarized light is about 9%.
0%. Therefore, in a reflection type liquid crystal display element using two polarizing plates, light is emitted four times through the polarizing film.

【0005】(0.9)4×50%=32.8%(0.9) 4 × 50% = 32.8%

【0006】となり、反射率は白黒パネルでも高々約3
3%である。
[0006] The reflectance is at most about 3 even for a black and white panel.
3%.

【0007】そこで、表示を明るくするために、偏光フ
ィルムを液晶セルの上側の1枚だけにして、液晶セルを
1枚の偏光フィルムと反射板で挟む構成がいくつか提案
されている(例えば、特開平7−146469号公報、
特開平7−84252号公報)。この場合、偏光フィル
ムを2回しか通らないので、カラーフィルタの吸収を考
えないとき
Therefore, in order to make the display brighter, there have been proposed some configurations in which only one polarizing film is provided on the upper side of the liquid crystal cell and the liquid crystal cell is sandwiched between one polarizing film and a reflection plate (for example, see, for example, Japanese Patent Application Laid-Open No. HEI 9-157556). JP-A-7-146469,
JP-A-7-84252). In this case, since the light passes through the polarizing film only twice, when the absorption of the color filter is not considered

【0008】(0.9)2×50%=40.5%(0.9) 2 × 50% = 40.5%

【0009】となり、偏光フィルム2枚用いた構成に対
して最大で約23.5%の反射率の向上が期待できる。
Thus, an improvement in reflectance of up to about 23.5% can be expected with respect to the configuration using two polarizing films.

【0010】また、カラーフィルタを用いずに液晶セル
のツイスト配向したネマティック液晶層の複屈折と偏光
フィルムによって着色表示を行う反射型カラー液晶表示
装置(特開平6−308481号公報)や、液晶層と位
相差フィルムの複屈折を利用するカラー液晶表示装置
(特開平6−175125号公報、特開平6−3010
06号公報)が提案されている。
A reflective color liquid crystal display device (Japanese Patent Application Laid-Open No. 6-308481) which performs birefringence of a twisted nematic liquid crystal layer of a liquid crystal cell without using a color filter and performs colored display with a polarizing film, and a liquid crystal layer And a color liquid crystal display device utilizing the birefringence of a retardation film (JP-A-6-175125, JP-A-6-3010)
No. 06 publication) has been proposed.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、偏光フ
ィルムを2枚用いる反射型液晶表示素子は、この素子に
カラーフィルタを用いてカラー表示を行う場合、充分な
明るさを得られるだけの反射率を確保できないという課
題を有していた。
However, a reflective liquid crystal display device using two polarizing films has a reflectance sufficient to obtain sufficient brightness when color display is performed by using a color filter for this device. There was a problem that it could not be secured.

【0012】また、偏光フィルムを1枚にした反射型液
晶表示素子は、この素子にカラーフィルタを用いてカラ
ー表示を行い反射率を高くして明るさを確保しようとし
た場合、従来の構成では、白黒の無彩色表示が困難であ
り、特に、反射率が低くて無彩色な黒の表示が困難であ
るという課題を有していた。
In a reflection type liquid crystal display device having a single polarizing film, when a color display is performed by using a color filter for this device to increase the reflectance and secure the brightness, the conventional structure is not used. However, black-and-white achromatic display is difficult, and in particular, there is a problem that reflectance is low and achromatic black display is difficult.

【0013】また、カラーフィルタを用いずに液晶セル
のツイスト配向したネマティック液晶層の複屈折と偏光
フィルムによって着色表示を行う反射型液晶表示素子
や、液晶層と位相差フィルムの複屈折を利用するカラー
液晶表示素子は、カラーフィルタがないため、2枚の偏
光フィルムを用いても実用的な明るさを得られるだけの
反射率を確保することができる。しかしながら、複屈折
の着色を用いたカラー表示であるため、16階調409
6色表示あるいは64階調フルカラー表示などの多階調
・多色表示が原理的に難しく、また、色純度・色再現範
囲も狭いという課題を有していた。
Further, a reflection type liquid crystal display element for performing a colored display with a polarizing film and a birefringence of a twisted nematic liquid crystal layer of a liquid crystal cell without using a color filter, and a birefringence between a liquid crystal layer and a retardation film are used. Since the color liquid crystal display element has no color filter, even if two polarizing films are used, it is possible to secure a reflectance sufficient to obtain practical brightness. However, since color display is performed using birefringent coloring, 16 gradations 409
In principle, multi-gradation / multi-color display such as 6-color display or 64-gradation full-color display is difficult, and the color purity and the color reproduction range are narrow.

【0014】また、白黒表示モードでの反射型液晶表示
素子も、偏光フィルムを2枚用いる構成では、高い白の
反射率がとれないという課題を有していた。
Further, the reflection type liquid crystal display device in the black and white display mode also has a problem that a high white reflectance cannot be obtained when two polarizing films are used.

【0015】本発明では、かかる事情に鑑み、白表示が
明るく、高いコントラストがとれ、無彩色の白黒表示が
可能な反射型液晶表示素子を提供することを目的とす
る。
In view of such circumstances, it is an object of the present invention to provide a reflective liquid crystal display device which can provide a bright white display, a high contrast, and an achromatic monochrome display.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するべ
く、本発明は以下の構成とする。
In order to achieve the above object, the present invention has the following arrangement.

【0017】即ち、本発明の反射型液晶表示素子は、一
対の基板間にネマティック液晶を封入した液晶セルと、
前記液晶セルの一方の基板側に配置された偏光フィルム
と、前記偏光フィルムと前記液晶セルとの間に配置され
た高分子フィルムと、他方の基板側に配置された光反射
手段とを含み、前記一対の基板間におけるネマティック
液晶のツイスト角度が0゜〜90゜、前記ネマティック
液晶の複屈折ΔnLCと液晶層厚dLCとの積ΔnLC・dLC
が0.20〜0.30μm、前記積ΔnLC・d LCと前記
高分子フィルムのレターデーションRFilmとによりR
Film−ΔnLC・d LCと定義される複屈折差ΔRが−0.
20μm〜−0.05μmであり、前記一方の基板側か
ら見て前記ネマティック液晶が前記一方の基板側から前
記他方の基板側にかけてツイストしていく方向を正とし
て、基板面内に定められた基準線と前記一方の基板に最
近接している液晶分子の長軸方向とが為す角度をφLC
前記基準線と高分子フィルムの遅相軸の方向とが為す角
度をφF、前記基準線と前記偏光フィルムの吸収軸また
は透過軸の方向をφPとしたときに、φF−φLCが−40
゜〜−25゜、φP−φFが+50゜〜+80゜であるこ
とを特徴とする。このような構成とすることにより、明
るく、無彩色の白黒変化が可能なノーマリーホワイト型
の反射型液晶表示素子とすることができる。
That is, the reflection type liquid crystal display element of the present invention is
A liquid crystal cell in which nematic liquid crystal is sealed between a pair of substrates,
Polarizing film disposed on one substrate side of the liquid crystal cell
And disposed between the polarizing film and the liquid crystal cell.
Polymer film and light reflection arranged on the other substrate side
And a nematic between the pair of substrates.
Liquid crystal twist angle is 0 ° ~ 90 °, the nematic
Birefringence Δn of liquid crystalLCAnd liquid crystal layer thickness dLCAnd the product ΔnLC・ DLC
Is 0.20 to 0.30 μm, and the product ΔnLC・ D LCAnd said
Retardation R of polymer filmFilmAnd R
Film−ΔnLC・ D LCThe birefringence difference ΔR defined as −0.
20 μm to −0.05 μm, which is different from the one substrate side
Viewed from above, the nematic liquid crystal is
Note that the direction of twisting toward the other substrate is positive.
The reference line defined in the substrate plane and the one substrate
The angle between the long axis direction of the adjacent liquid crystal molecules is φLC,
Angle between the reference line and the direction of the slow axis of the polymer film
Degree φF, The reference line and the absorption axis of the polarizing film or
Is the direction of the transmission axisPAnd φF−φLCBut -40
゜ ~ -25 ゜, φP−φFIs between + 50 ° and + 80 °
And features. With this configuration,
Normally white type that can change achromatic black and white
Reflective liquid crystal display device of the present invention.

【0018】ここで、φPを吸収軸の方向にとることと
透過軸の方向にとることは光学的に等価であるので、ど
ちらの方向にとっても良い。
Here, it is optically equivalent to take φ P in the direction of the absorption axis and in the direction of the transmission axis.

【0019】また、本発明の別の構成に係る反射型液晶
表示素子は、一対の基板間にネマティック液晶を封入し
た液晶セルと、前記液晶セルの一方の基板側に配置され
た偏光フィルムと、前記偏光フィルムと前記液晶セルと
の間に配置された高分子フィルムと、他方の基板側に配
置された光反射手段とを含み、前記一対の基板間におけ
るネマティック液晶のツイスト角度が0゜〜90゜、前
記ネマティック液晶の複屈折ΔnLCと液晶層厚dLCとの
積ΔnLC・dLCが0.20〜0.30μm、前記積Δn
LC・dLCと前記高分子フィルムのレターデーションR
FilmとによりRFi lm−ΔnLC・dLCと定義される複屈折
差ΔRが−0.20μm〜−0.05μmであり、前記
一方の基板側から見て前記ネマティック液晶が前記一方
の基板側から前記他方の基板側にかけてツイストしてい
く方向を正として、基板面内に定められた基準線と前記
一方の基板に最近接している液晶分子の長軸方向とが為
す角度をφLC、前記基準線と高分子フィルムの遅相軸の
方向とが為す角度をφF、前記基準線と前記偏光フィル
ムの吸収軸または透過軸の方向をφPとしたときに、φF
−φLCが+65゜〜+105゜、φP−φFが−60゜〜
−90゜であることを特徴とする。このような構成とす
ることにより、明るく、無彩色の白黒変化が可能なノー
マリーホワイト型の反射型液晶表示素子とすることがで
きる。
Further, a reflection type liquid crystal display device according to another configuration of the present invention comprises a liquid crystal cell in which nematic liquid crystal is sealed between a pair of substrates, a polarizing film disposed on one substrate side of the liquid crystal cell, A polymer film disposed between the polarizing film and the liquid crystal cell; and a light reflecting means disposed on the other substrate side, wherein a twist angle of the nematic liquid crystal between the pair of substrates is 0 ° to 90 °. °, the product Δn LC · d LC of the nematic liquid crystal of the birefringence [Delta] n LC of the liquid crystal layer thickness d LC is 0.20~0.30Myuemu, the product [Delta] n
LC / d LC and retardation R of the polymer film
A Film and by R Fi lm -Δn LC · d LC and defined by the birefringence difference ΔR is -0.20μm~-0.05μm, the nematic liquid crystal is the one substrate side when viewed from the substrate side of the one The direction of twisting from the other substrate side to the positive is defined as positive, and the angle formed between the reference line defined in the substrate plane and the major axis direction of the liquid crystal molecules closest to the one substrate is φ LC , When the angle between the reference line and the direction of the slow axis of the polymer film is φ F , and the direction of the absorption axis or the transmission axis of the reference line and the polarizing film is φ P , φ F
−φ LC is + 65 ° to + 105 °, φ P −φ F is −60 ° to
-90 °. With such a configuration, it is possible to provide a normally white reflective liquid crystal display element which is bright and capable of changing achromatic black and white.

【0020】ここで、高分子フィルムのレターデーショ
ンRFilmは、高分子フィルム面内の遅相軸方向の屈折率
(異常光屈折率)をnx、進相軸方向の屈折率(常光屈折
率)をny、フィルム厚をdFilmとしたときに、RFilm
(nx−ny)・dFilmと表すことができる。
Here, the retardation R Film of the polymer film is a refractive index in the slow axis direction in the plane of the polymer film.
(Extraordinary index) and n x, the refractive index of the fast axis direction (ordinary refractive index) n y, the film thickness is taken as d Film, R Film =
It can be represented as (n x -n y) · d Film.

【0021】本発明の反射型液晶表示素子においては、
ネマティック液晶のツイスト角度が30゜〜65゜であ
り、RFilmが0.10μm〜0.30μmであることが
好ましい。この好ましい例によれば、更に良好な特性を
得ることができる。
In the reflection type liquid crystal display device of the present invention,
Preferably, the twist angle of the nematic liquid crystal is 30 ° to 65 °, and R Film is 0.10 μm to 0.30 μm. According to this preferred example, even better characteristics can be obtained.

【0022】また、前記反射型液晶表示素子において
は、高分子フィルムが、ポリカーボネート、ポリアリレ
ートおよびポリスルフォンから選ばれる少なくとも1つ
からなることが好ましい。この好ましい例によれば、充
分に反射率の低い無彩色の黒表示および反射率の高い無
彩色の白表示を得て、コントラストの高い反射型液晶表
示素子とすることができる。
In the reflection type liquid crystal display device, the polymer film is preferably made of at least one selected from polycarbonate, polyarylate and polysulfone. According to this preferred example, an achromatic black display with a sufficiently low reflectance and an achromatic white display with a high reflectance can be obtained, and a reflective liquid crystal display device with high contrast can be obtained.

【0023】また、前記反射型液晶表示素子において
は、高分子フィルムのZ係数QZが1.0〜3.0であ
ることが好ましい。ここで、QZは、フィルム面の法線
方向をz軸として定める空間座標系(x,y,z)にお
ける各軸方向の屈折率nx、nyおよびnz(nxは遅相軸
方向の屈折率、nyは進相軸方向の屈折率)を用いて、
Z=(nx−nz)/(nx−ny)により示される係数
である。この好ましい例によれば、視角による反射率変
化の少ない反射型液晶表素子を得ることができる。同様
の観点から、QZは、1.0〜2.0であることが更に
好ましい。
Further, in the reflection type liquid crystal display device is preferably Z factor Q Z of the polymer film is 1.0 to 3.0. Here, Q Z is space coordinate system defining the direction normal to the film plane as z-axis (x, y, z) the refractive index of each axis direction in the n x, the n y and n z (n x slow axis Direction, and n y is the refractive index in the fast axis direction)
A Q Z = (n x -n z ) / coefficients indicated by (n x -n y). According to this preferred example, it is possible to obtain a reflective liquid crystal display element in which the reflectance changes little with the viewing angle. From the same viewpoint, Q Z is more preferably 1.0 to 2.0.

【0024】また、前記反射型液晶表示素子において
は、前記一方の基板側に散乱フィルムを配置することで
パネルの周囲光を集光して明るい表示を得るという構成
とることができる。この散乱フィルムは、表示画像のボ
ケを抑制するという点から、高分子フィルムと一方の基
板の間に配置することが好ましい。更には、この散乱フ
ィルムは前方散乱フィルムであることが好ましい。前方
散乱フィルムとしては、後方散乱特性がほとんど認めら
れず前方散乱特性の強いものが好ましい。
Further, in the reflection type liquid crystal display device, by arranging a scattering film on the one substrate side, it is possible to obtain a bright display by condensing ambient light of the panel. This scattering film is preferably disposed between the polymer film and one of the substrates from the viewpoint of suppressing blurring of the displayed image. Further, the scattering film is preferably a forward scattering film. As the forward scattering film, a film having little forward scattering characteristics and strong forward scattering characteristics is preferable.

【0025】また、前記反射型液晶表示素子において
は、前記光反射手段がアルミニウムおよび銀から選ばれ
る少なくとも1つの金属を構成要素として含むことが好
ましく、更には、前記他方の基板側の電極を兼ねる金属
電極であることが好ましい。
In the reflection type liquid crystal display device, it is preferable that the light reflection means includes at least one metal selected from aluminum and silver as a component, and furthermore, the light reflection means also serves as the electrode on the other substrate side. It is preferably a metal electrode.

【0026】前記金属電極は、特に前述の散乱フィルム
を備えた液晶表示素子の場合には、鏡面状の表面を有す
ることが好ましい。この好ましい例によれば、液晶の配
向の乱れが少なく、自然な視認性を得ることができる。
一方、特に散乱フィルムを用いない反射型液晶表示素子
の場合には、金属電極に散乱膜を配置するか、あるいは
金属電極自体に拡散反射性を付与することが好ましい。
拡散反射性を有する金属電極としては、例えば、平均傾
斜角が3゜〜12゜となる程度に表面に凹凸を付与する
ことが好ましい。これらの好ましい例によれば、自然な
視認特性を持つ反射型液晶表示素子を得ることができ
る。
The metal electrode preferably has a mirror-like surface, especially in the case of a liquid crystal display device provided with the above-mentioned scattering film. According to this preferred example, the disturbance of the alignment of the liquid crystal is small, and natural visibility can be obtained.
On the other hand, particularly in the case of a reflection type liquid crystal display element not using a scattering film, it is preferable to arrange a scattering film on the metal electrode or to impart diffuse reflection to the metal electrode itself.
As the metal electrode having a diffuse reflection property, for example, it is preferable that the surface is provided with irregularities such that the average inclination angle is 3 ° to 12 °. According to these preferred examples, it is possible to obtain a reflection type liquid crystal display device having natural viewing characteristics.

【0027】また、前記他方の基板を透明基板とし、こ
の透明基板の外側に拡散反射板などの光反射手段を配置
した構成を有する反射型液晶表示素子としてもよい。こ
の場合の他方の基板には、透明電極を用いることにな
る。このような構成を採用する場合には、透明基板と拡
散反射板との間に空気層を介在させることが好ましい。
この好ましい例によれば、拡散効果を更に大きくするこ
とができる。
Further, a reflection type liquid crystal display element having a configuration in which the other substrate is a transparent substrate and light reflecting means such as a diffuse reflection plate is arranged outside the transparent substrate may be used. In this case, a transparent electrode is used for the other substrate. When such a configuration is adopted, it is preferable to interpose an air layer between the transparent substrate and the diffuse reflection plate.
According to this preferred example, the diffusion effect can be further increased.

【0028】また、前記反射型液晶表示素子において
は、カラーフィルタを配置して反射型カラー液晶表示素
子としてもよく、カラーフィルタを配置せずに白黒モー
ドの液晶表示素子としてもよい。後者の場合には、特に
高い白表示の反射率により明るい反射型液晶表示素子を
得ることができる。前者の場合には、白から黒まで無彩
色で変化する特性により、例えば64階調のフルカラー
表示が可能となる。
In the reflection type liquid crystal display device, a color filter may be provided to provide a reflection type color liquid crystal display device, or a black and white mode liquid crystal display device may be provided without a color filter. In the latter case, a bright reflective liquid crystal display device can be obtained due to a particularly high reflectance of white display. In the former case, for example, full-color display of 64 gradations is possible due to the characteristic of changing achromatically from white to black.

【0029】また、前記反射型液晶表示素子において
は、前記他方の基板側に非線形素子を配置することによ
り、マトリクス状に配置したTFTなどの非線形素子に
より駆動するアクティブマトリクス型の反射型液晶表示
素子とすることができる。この場合は、特に、前記非線
形素子の上に絶縁性の平坦化膜を形成し、この平坦化膜
に形成したコンタクトホールを通じて前記非線形素子と
前記他方の基板側の電極とが導通している構成にするこ
とが好ましい。この好ましい例によれば、高い開口率を
有してのアクティブ駆動が可能となり、高い反射率の反
射型液晶表示素子を得ることができる。
In the reflection type liquid crystal display device, an active matrix type reflection type liquid crystal display device driven by a non-linear element such as a TFT arranged in a matrix by arranging a non-linear element on the other substrate side. It can be. In this case, particularly, a configuration in which an insulating flattening film is formed on the non-linear element, and the non-linear element and the electrode on the other substrate side are electrically connected through a contact hole formed in the flattening film. Is preferable. According to this preferred example, active driving with a high aperture ratio becomes possible, and a reflection type liquid crystal display device having a high reflectance can be obtained.

【0030】[0030]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0031】(第1の実施の形態)図1は第1の実施の
形態の反射型液晶表示素子の概略構成を示した断面図で
ある。10は偏光フィルム、11は高分子フィルム、1
2は散乱フィルム層、13は上側透明基板、14はカラ
ーフィルタ層、15a、15bは配向層、16は透明電
極、17は液晶層(厚さdLC)、18は金属反射電極、1
9は下側基板を示す。
(First Embodiment) FIG. 1 is a sectional view showing a schematic configuration of a reflection type liquid crystal display device according to a first embodiment. 10 is a polarizing film, 11 is a polymer film, 1
2 is a scattering film layer, 13 is an upper transparent substrate, 14 is a color filter layer, 15a and 15b are alignment layers, 16 is a transparent electrode, 17 is a liquid crystal layer (thickness dLC ), 18 is a metal reflective electrode,
Reference numeral 9 denotes a lower substrate.

【0032】図2は第1の実施の形態の反射型液晶表示
素子の光学構成図である。20は基準線、21は下側基
板に最も近い液晶分子の配向方向、22は上側透明基板
に最も近い液晶分子の配向方向、23は高分子フィルム
の遅相軸方向、24は上側偏光フィルムの吸収軸方向を
示す。また、φLC0は下側基板19に最も近い液晶分子
の配向方向21の、φLCは上側透明基板13に最も近い
液晶分子の配向方向22の、φFは高分子フィルム11
の遅相軸方向23の、φPは偏光フィルム10の吸収軸
または透過軸の方向24の、それぞれ基準線20から測
った角度を示す。なお、角度の正負は、ΩLCで示される
液晶のツイスト方向(上側透明基板から下側基板へと液
晶分子が捩れていく方向)を正と定める。
FIG. 2 is an optical configuration diagram of the reflection type liquid crystal display device of the first embodiment. 20 is a reference line, 21 is the orientation direction of liquid crystal molecules closest to the lower substrate, 22 is the orientation direction of liquid crystal molecules closest to the upper transparent substrate, 23 is the slow axis direction of the polymer film, and 24 is the orientation direction of the upper polarizing film. Shows the absorption axis direction. Further, φ LC0 is the alignment direction 21 of the liquid crystal molecules closest to the lower substrate 19, φ LC is the alignment direction 22 of the liquid crystal molecules closest to the upper transparent substrate 13, and φ F is the polymer film 11.
The slow axis direction 23, phi P indicates the absorption axis or direction 24 of the transmission axis, the angle measured from the reference line 20, respectively of the polarizing film 10. The angle is defined as positive in the twist direction of the liquid crystal represented by Ω LC (the direction in which liquid crystal molecules are twisted from the upper transparent substrate to the lower substrate).

【0033】上側透明基板13および下側基板19とし
て無アルカリガラス基板(例えば1737:コーニング
社製)を用い、上側透明基板13上に、カラーフィルタ
層14として顔料分散タイプで赤、緑、青のストライプ
配列のものをフォトリソグラフィーで形成し、その上
に、透明電極16としてインジウム・錫・オキサイドで
画素電極を形成した。また、下側基板19上には、チタ
ンを300nm蒸着した上にアルミニウムを200nm蒸着
したものを形成することで鏡面反射タイプの金属反射電
極18を形成した。
An alkali-free glass substrate (for example, 1737: manufactured by Corning Incorporated) is used as the upper transparent substrate 13 and the lower substrate 19, and a pigment dispersion type red, green, and blue color filter layer 14 is formed on the upper transparent substrate 13. A pixel having a stripe arrangement was formed by photolithography, and a pixel electrode was formed thereon using indium, tin, and oxide as a transparent electrode 16. On the lower substrate 19, a mirror-reflective metal reflective electrode 18 was formed by depositing titanium to a thickness of 300 nm and aluminum to a thickness of 200 nm.

【0034】透明電極16および金属反射電極18上に
は、ポリイミドのγ−ブチロラクトンの5重量%溶液を
印刷し、250℃で硬化したのち、所定のツイスト角を
実現するようにレーヨン布を用いた回転ラビング法によ
る配向処理を行うことで配向層15a、15bを形成し
た。
A 5% by weight solution of polyimide γ-butyrolactone was printed on the transparent electrode 16 and the metal reflective electrode 18 and cured at 250 ° C., and then a rayon cloth was used so as to realize a predetermined twist angle. The alignment layers 15a and 15b were formed by performing an alignment treatment by a rotary rubbing method.

【0035】そして、上側透明基板13上の周辺部には
所定の径のガラスファイバーを1.0重量%混入した熱
硬化性シール樹脂(例えばストラクトボンド:三井東圧
化学(株)製)を印刷し、下側基板19上には所定の径
の樹脂ビーズを100〜200個/mm2の割合で散布
し、上側透明基板13と下側基板19を互いに貼り合わ
せ、150℃でシール樹脂を硬化した後、ΔnLC=0.
09のフッ素エステル系ネマティック液晶にカイラルピ
ッチが80μmになるようにカイラル液晶を混ぜた液晶
を真空注入し、紫外線硬化性樹脂で封口した後、紫外線
光により硬化した。
Then, a thermosetting sealing resin (for example, Stract Bond: manufactured by Mitsui Toatsu Chemicals, Inc.) containing 1.0% by weight of glass fiber having a predetermined diameter is printed on the peripheral portion on the upper transparent substrate 13. Then, resin beads having a predetermined diameter are sprayed on the lower substrate 19 at a rate of 100 to 200 beads / mm 2 , the upper transparent substrate 13 and the lower substrate 19 are bonded to each other, and the sealing resin is cured at 150 ° C. After that, Δn LC = 0.
A liquid crystal obtained by mixing a chiral liquid crystal in a fluorine ester type nematic liquid crystal of No. 09 with a chiral liquid crystal having a chiral pitch of 80 μm was vacuum-injected, sealed with an ultraviolet curable resin, and then cured by ultraviolet light.

【0036】こうして形成された液晶セル1の上側透明
基板13の上に、散乱フィルム層12として、等方性の
前方散乱フィルムを貼付し、その上に、高分子フィルム
11としてポリカーボネート1枚を遅相軸が所定の角度
となるように貼付し、さらに、偏光フィルム10として
ニュートラルグレーの偏光フィルム(住友化学工業
(株)製SQ−1852AP)にアンチグレア(AG)と
アンチリフレクション(AR)処理を施したものを、吸
収軸または透過軸の方向が所定の角度をなすように貼付
した。
On the upper transparent substrate 13 of the liquid crystal cell 1 thus formed, an isotropic forward scattering film is adhered as the scattering film layer 12, and one polycarbonate film as the polymer film 11 is formed thereon. The polarizer is stuck so that the phase axes are at a predetermined angle, and a neutral gray polarizing film (SQ-1852AP manufactured by Sumitomo Chemical Co., Ltd.) is subjected to anti-glare (AG) and anti-reflection (AR) treatment as the polarizing film 10. This was attached so that the direction of the absorption axis or the transmission axis was at a predetermined angle.

【0037】φLC0=−67.5゜、φLC=67.5
゜、ΩLC=45.0゜、φF=33.0゜、φP=96.
0゜とし、ΔR=RFilm−ΔnLC・dLCを−0.10μ
mを満たすようにしながら、ΔnLC・dLCを変化させて
反射モードで光学特性を測定すると、0.20μm〜
0.30μmの範囲で、反射率が低くて無彩色の黒と反
射率が高くて無彩色の白を得ることができるノーマリー
ホワイトモードの反射型液晶表示素子が実現できた。こ
れは、白と黒が充分とれるだけの液晶の複屈折差があっ
て、なおかつ、液晶の複屈折による色付きを補償できる
範囲であることによる。
Φ LC0 = -67.5 °, φ LC = 67.5
゜, Ω LC = 45.0 °, φ F = 33.0 °, φ P = 96.
0 °, ΔR = R Film− Δn LC · d LC −0.10μ
m, while changing Δn LC · d LC and measuring the optical characteristics in the reflection mode, 0.20 μm to
In the range of 0.30 μm, a normally white mode reflective liquid crystal display device capable of obtaining achromatic black with low reflectance and achromatic white with high reflectance was realized. This is because there is a difference in the birefringence of the liquid crystal enough to obtain white and black, and it is within a range in which coloring due to the birefringence of the liquid crystal can be compensated.

【0038】また、ΔRが−0.20μm〜0.05μ
mを満たしていると、白表示から黒表示へと電圧を印加
していったとき、表示の色が実用上で無彩色の範囲内で
変化することが確認できた。これは、ΔRを−0.20
μm〜0.05μmとし、φ F−φLCを−40゜〜−2
5゜の範囲内にすることで、白から黒への変化の間、特
に、オン電圧印加時の黒表示のときの、液晶層の複屈折
による着色を解消できることによる。これにより、反射
率の低い無彩色の黒表示と反射率の高い無彩色の白表示
のコントラストの高い反射型液晶表示素子を実現でき
た。
Further, ΔR is −0.20 μm to 0.05 μm.
When m is satisfied, voltage is applied from white display to black display
The color of the display is practically within the range of achromatic color
It was confirmed that it changed. This means that ΔR is -0.20
μm to 0.05 μm, φ F−φLCFrom -40 ° to -2
By setting it within the range of 5mm, it will be especially
In addition, the birefringence of the liquid crystal layer during black display when the on-voltage is applied
Coloration can be eliminated. This allows for reflection
Achromatic black display with low reflectance and achromatic white display with high reflectance
High-contrast reflective liquid crystal display device
Was.

【0039】次に、液晶のツイスト角ΩLCを変化させた
ときの特性を調べたところ、本発明の第1の実施の形態
では、ツイスト角を0゜〜90゜の範囲内で良好な特性
が得られることを確認した。そして、ツイスト角ΩLC
30゜〜65゜としたとき特に良好な特性を得られた。
Next, the characteristics when the twist angle Ω LC of the liquid crystal was changed were examined. In the first embodiment of the present invention, good characteristics were obtained when the twist angle was in the range of 0 ° to 90 °. Was confirmed to be obtained. Particularly good characteristics were obtained when the twist angle Ω LC was 30 ° to 65 °.

【0040】そして、RFilmが0.10μm〜0.30
μmを満たしているとき、特に、オン電圧印加時の黒の
反射率を低くすることができることを確認できた。
Then, R Film is 0.10 μm to 0.30 μm.
It was confirmed that the black reflectance when the on-voltage was applied can be particularly reduced when the thickness of μm is satisfied.

【0041】ここで特に、ΔnLC・dLC=0.270μ
m、RFilm=0.170μm、φLC0=−67.5゜、
φLC=67.5゜、ΩLC=45.0゜、φF=33.0
゜、φP=96.0゜としたときの光学特性を測定した
結果を示すことにする。このとき、ΔR=RFilm−Δn
LC・dLC=−0.100μm、φF−φLC=−34.5
゜、φP−φF=+63.0゜であって上記で確認した条
件を満たしている。
Here, in particular, Δn LC · d LC = 0.270 μm
m, R Film = 0.170 μm, φ LC 0 = −67.5 °,
φ LC = 67.5 °, Ω LC = 45.0 °, φ F = 33.0
The results of measuring the optical characteristics when {, φ P = 96.0} are shown. At this time, ΔR = R Film− Δn
LC · d LC = −0.100 μm, φ F −φ LC = −34.5
゜, φ P −φ F = + 63.0 °, which satisfies the condition confirmed above.

【0042】図3は第1の実施の形態の反射型液晶表示
素子の反射率と印加電圧の関係を示す特性図である。正
面特性で、白のY値換算での反射率は18.2%、コン
トラストは、15.8であった。また、黒から白まで無
彩色で変化するので、64階調フルカラーの表示が可能
であることも確認できた。
FIG. 3 is a characteristic diagram showing the relationship between the reflectance and the applied voltage of the reflection type liquid crystal display device of the first embodiment. As for the frontal characteristics, the reflectance of white converted to a Y value was 18.2%, and the contrast was 15.8. In addition, since the color changes from black to white in an achromatic color, it was confirmed that 64 gradation full-color display was possible.

【0043】また、以上の構成で、カラーフィルタ層1
4を除いた反射型液晶表示素子を作製したところ、正面
特性で、コントラスト15.3、白のY値換算での反射
率34.9%が得られた。
Further, with the above structure, the color filter layer 1
When the reflective liquid crystal display element except for No. 4 was manufactured, a contrast of 15.3 and a reflectance of 34.9% in terms of Y value of white were obtained in frontal characteristics.

【0044】また、以上の構成では、散乱フィルム層1
2を高分子フィルム11と上側透明基板13の間に配置
したが、散乱フィルム層12を偏光フィルム10の上に
配置したときも、偏光フィルム11と高分子フィルム1
2の間に配置したときも同じ特性が得られた。
In the above configuration, the scattering film layer 1
2 was disposed between the polymer film 11 and the upper transparent substrate 13, but when the scattering film layer 12 was disposed on the polarizing film 10, the polarizing film 11 and the polymer film 1 were also disposed.
The same characteristics were obtained when the arrangement was made between the two.

【0045】なお、本実施の形態では、高分子フィルム
としてポリカーボネートを用いたが、発明の効果はそれ
に限定されるものではなく、例えば、ポリアリレートや
ポリスルフォンを用いても同様の効果を得ることができ
ることを確認した。
In this embodiment, polycarbonate is used as the polymer film. However, the effects of the present invention are not limited thereto. For example, similar effects can be obtained by using polyarylate or polysulfone. I confirmed that I can do it.

【0046】また、本実施の形態では、反射電極として
アルミニウムを構成要素として含む金属反射電極を用い
たが、発明の効果はそれに限定されるものではなく、例
えば、銀を構成要素として含む金属反射電極などを用い
ても同様の効果を得ることができる。
In this embodiment, a metal reflective electrode containing aluminum as a component is used as a reflective electrode. However, the effect of the invention is not limited to this. For example, a metal reflective electrode containing silver as a component is used. Similar effects can be obtained by using an electrode or the like.

【0047】(第2の実施の形態)図4は第2の実施の
形態の反射型液晶表示素子の概略構成を示した断面図で
ある。40は偏光フィルム、41は高分子フィルム、4
3は上側透明基板、44はカラーフィルタ層、45a、
45bは配向層、46は透明電極、47は液晶層、48
は金属反射電極、49は下側基板を示す。
(Second Embodiment) FIG. 4 is a sectional view showing a schematic configuration of a reflection type liquid crystal display device according to a second embodiment. 40 is a polarizing film, 41 is a polymer film, 4
3 is an upper transparent substrate, 44 is a color filter layer, 45a,
45b is an alignment layer, 46 is a transparent electrode, 47 is a liquid crystal layer, 48
Indicates a metal reflective electrode, and 49 indicates a lower substrate.

【0048】第2の実施の形態の光学構成は、第1の実
施の形態と同じであって、図2に示した反射型液晶表示
素子の光学構成と同様である。
The optical configuration of the second embodiment is the same as that of the first embodiment, and is the same as the optical configuration of the reflection type liquid crystal display element shown in FIG.

【0049】上側透明基板43および下側基板49とし
て無アルカリガラス基板(例えば1737:コーニング
社製)を用い、上側透明基板43上に、カラーフィルタ
層44として顔料分散タイプで赤、緑、青のストライプ
配列のものをフォトリソグラフィーで形成し、その上
に、透明電極46としてインジウム・錫・オキサイドで
画素電極を形成した。また、下側基板49上には、チタ
ンを300nm蒸着した上にアルミニウムを200nm蒸着
したものを形成し、さらに、その表面を平均傾斜角3゜
〜12゜となるように荒らして、拡散(散乱)反射タイプ
の金属反射電極48を形成した。
A non-alkali glass substrate (for example, 1737: manufactured by Corning Incorporated) is used as the upper transparent substrate 43 and the lower substrate 49, and a pigment dispersion type red, green, and blue color filter layer 44 is formed on the upper transparent substrate 43. A pixel having a stripe arrangement was formed by photolithography, and a pixel electrode was formed thereon using indium, tin, and oxide as a transparent electrode 46. On the lower substrate 49, a film is formed by evaporating titanium to a thickness of 300 nm and aluminum to a thickness of 200 nm, and further roughening the surface so as to have an average inclination angle of 3 ° to 12 °, thereby diffusing (scattering). ) A reflective metal reflective electrode 48 was formed.

【0050】透明電極46および金属反射電極48上に
は、ポリイミドのγ−ブチロラクトンの5wt%溶液を
印刷し、250℃で硬化したのち、所定のツイスト角を
実現するようにレーヨン布を用いた回転ラビング法によ
る配向処理を行うことで配向層45a、45bを形成し
た。
A 5 wt% solution of γ-butyrolactone of polyimide is printed on the transparent electrode 46 and the metal reflective electrode 48, cured at 250 ° C., and then rotated using a rayon cloth so as to realize a predetermined twist angle. The alignment layers 45a and 45b were formed by performing an alignment treatment by a rubbing method.

【0051】そして、上側透明基板43上の周辺部には
所定の径のガラスファイバーを1.0重量%混入した熱
硬化性シール樹脂(例えばストラクトボンド:三井東圧
化学(株)製)を印刷し、下側基板49上には所定の径
の樹脂ビーズを100〜200個/mm2の割合で散布
し、上側透明基板43と下側基板49を互いに貼り合わ
せ、150℃でシール樹脂を硬化した後、ΔnLC=0.
09のフッ素エステル系ネマティック液晶にカイラルピ
ッチが80μmとなるようにカイラル液晶を混ぜた液晶
を真空注入し、紫外線硬化性樹脂で封口した後、紫外線
光により硬化した。
Then, a thermosetting sealing resin (for example, Stract Bond: manufactured by Mitsui Toatsu Chemicals, Inc.) in which glass fiber of a predetermined diameter is mixed at 1.0% by weight is printed on the peripheral portion on the upper transparent substrate 43. Then, resin beads having a predetermined diameter are sprayed on the lower substrate 49 at a rate of 100 to 200 beads / mm 2 , the upper transparent substrate 43 and the lower substrate 49 are bonded to each other, and the sealing resin is cured at 150 ° C. After that, Δn LC = 0.
A liquid crystal obtained by mixing a chiral liquid crystal with a fluorine ester type nematic liquid crystal of No. 09 so that the chiral pitch becomes 80 μm was vacuum-injected, sealed with an ultraviolet curable resin, and then cured with ultraviolet light.

【0052】こうして形成された液晶セル4の上側透明
基板43の上に、高分子フィルム41としてポリカーボ
ネートを遅相軸が所定の角度となるように貼付し、さら
に、偏光フィルム40としてニュートラルグレーの偏光
フィルム(住友化学工業(株)製SQ−1852AP)
にアンチグレア(AG)とアンチリフレクション(AR)
処理を施したものを、吸収軸または透過軸の方向が所定
の角度をなすように貼付した。
On the upper transparent substrate 43 of the liquid crystal cell 4 thus formed, polycarbonate is adhered as the polymer film 41 so that the slow axis is at a predetermined angle. Film (SQ-1852AP manufactured by Sumitomo Chemical Co., Ltd.)
Anti-glare (AG) and anti-reflection (AR)
The treated product was affixed so that the direction of the absorption axis or the transmission axis was at a predetermined angle.

【0053】φLC0=−67.5゜、φLC=67.5
゜、ΩLC=45.0゜、φF=33.0゜、φP=96.
0゜とし、ΔR=RFilm−ΔnLC・dLCを−0.10μ
mを満たすようにしながら、ΔnLC・dLCを変化させて
反射モードで光学特性を測定すると、0.20μm〜
0.30μmの範囲で、反射率が低くて無彩色の黒と反
射率が高くて無彩色の白を得ることができるノーマリー
ホワイトモードの反射型液晶表示素子が実現できた。こ
れは、白と黒が充分とれるだけの液晶の複屈折差があっ
て、なおかつ、液晶の複屈折による色付きを補償できる
範囲であることによる。
Φ LC0 = -67.5 °, φ LC = 67.5
゜, Ω LC = 45.0 °, φ F = 33.0 °, φ P = 96.
0 °, ΔR = R Film− Δn LC · d LC −0.10μ
m, while changing Δn LC · d LC and measuring the optical characteristics in the reflection mode, 0.20 μm to
In the range of 0.30 μm, a normally white mode reflective liquid crystal display device capable of obtaining achromatic black with low reflectance and achromatic white with high reflectance was realized. This is because there is a difference in the birefringence of the liquid crystal enough to obtain white and black, and it is within a range in which coloring due to the birefringence of the liquid crystal can be compensated.

【0054】また、ΔRが−0.20μm〜0.05μ
mを満たしていると、白表示から黒表示へと電圧を印加
していったとき、表示の色が実用上で無彩色の範囲内で
変化することが確認できた。これは、ΔRを−0.20
μm〜0.05μmとし、φ F−φLCを−40゜〜−2
5゜の範囲内にすることで、白から黒への変化の間、特
に、オン電圧印加時の黒表示のときの、液晶層の複屈折
による着色を解消できることによる。これにより、反射
率の低い無彩色の黒表示と反射率の高い無彩色の白表示
のコントラストの高い反射型液晶表示素子を実現でき
た。
Further, ΔR is -0.20 μm to 0.05 μm.
When m is satisfied, voltage is applied from white display to black display
The color of the display is practically within the range of achromatic color
It was confirmed that it changed. This means that ΔR is -0.20
μm to 0.05 μm, φ F−φLCFrom -40 ° to -2
By setting it within the range of 5mm, it will be especially
In addition, the birefringence of the liquid crystal layer during black display when the on-voltage is applied
Coloration can be eliminated. This allows for reflection
Achromatic black display with low reflectance and achromatic white display with high reflectance
High-contrast reflective liquid crystal display device
Was.

【0055】次に、液晶のツイスト角ΩLCを変化させた
ときの特性を調べたところ、本発明の第1の実施の形態
では、ツイスト角を0゜〜90゜の範囲内で良好な特性
が得られることを確認した。そして、ツイスト角ΩLC
30゜〜65゜としたとき特に良好な特性を得られた。
Next, the characteristics when the twist angle Ω LC of the liquid crystal was changed were examined. According to the first embodiment of the present invention, good characteristics were obtained when the twist angle was in the range of 0 ° to 90 °. Was confirmed to be obtained. Particularly good characteristics were obtained when the twist angle Ω LC was 30 ° to 65 °.

【0056】そして、RFilmが0.10μm〜0.30
μmを満たしているとき、特に、オン電圧印加時の黒の
反射率を低くすることができることを確認できた。
Then, R Film is 0.10 μm to 0.30 μm.
It was confirmed that the black reflectance when the on-voltage was applied can be particularly reduced when the thickness of μm is satisfied.

【0057】ここで特に、ΔnLC・dLC=0.270μ
m、RFilm=0.170μm、φLC0=−67.5゜、
φLC=67.5゜、ΩLC=45.0゜、φF=33.0
゜、φ P=96.0゜としたときの光学特性を測定した
結果を示すことにする。このとき、ΔR=RFilm−Δn
LC・dLC=−0.100μm、φF−φLC=−34.5
゜、φP−φF=+63.0゜であって上記で確認した条
件を満たしている。
Here, in particular, ΔnLC・ DLC= 0.270μ
m, RFilm= 0.170 μm, φLC0 = -67.5 °,
φLC= 67.5 ゜, ΩLC= 45.0 °, φF= 33.0
゜, φ P= 96.0 ° was measured.
I will show the result. At this time, ΔR = RFilm−Δn
LC・ DLC= −0.100 μm, φF−φLC= -34.5
゜, φP−φF= + 63.0 ° and the condition confirmed above
Are met.

【0058】このとき正面特性で、白のY値換算での反
射率は17.1%、コントラストは、15.4であっ
た。また、黒から白まで無彩色で変化するので、64階
調フルカラーの表示が可能であることも確認できた。
At this time, in terms of the frontal characteristics, the reflectance in terms of the Y value of white was 17.1%, and the contrast was 15.4. In addition, since the color changes from black to white in an achromatic color, it was confirmed that 64 gradation full-color display was possible.

【0059】また、以上の構成で、カラーフィルタ層1
4を除いた反射型液晶表示素子を作製したところ、正面
特性で、コントラスト15.1、白のY値換算での反射
率33.4%が得られた。
In the above configuration, the color filter layer 1
When a reflective liquid crystal display element excluding No. 4 was prepared, a contrast of 15.1 and a reflectance of 33.4% in terms of Y value of white were obtained in frontal characteristics.

【0060】なお、本実施の形態では、高分子フィルム
としてポリカーボネートを用いたが、発明の効果はそれ
に限定されるものではなく、例えば、ポリアリレートや
ポリスルフォンを用いても同様の効果を得ることができ
ることを確認した。
In this embodiment, polycarbonate is used as the polymer film. However, the effects of the present invention are not limited thereto. For example, similar effects can be obtained by using polyarylate or polysulfone. I confirmed that I can do it.

【0061】また、本実施の形態では、反射電極として
アルミニウムを構成要素として含む金属反射電極を用い
たが、発明の効果はそれに限定されるものではなく、例
えば、銀を構成要素として含む金属反射電極などを用い
ても同様の効果を得ることができる。
In this embodiment, a metal reflective electrode containing aluminum as a component is used as a reflective electrode. However, the effect of the invention is not limited to this. For example, a metal reflective electrode containing silver as a component is used. Similar effects can be obtained by using an electrode or the like.

【0062】(第3の実施の形態)第3の実施の形態の
反射型液晶表示素子は、作製および構造は第1の実施の
形態と共通であって、図1に示した反射型液晶表示素子
の断面および図2と同様のの反射型液晶表示素子の光学
構成を有する。
(Third Embodiment) The reflection type liquid crystal display device of the third embodiment has the same fabrication and structure as those of the first embodiment, and the reflection type liquid crystal display device shown in FIG. It has a cross section of the element and an optical configuration of a reflective liquid crystal display element similar to that of FIG.

【0063】φLC0=−67.5゜、φLC=67.5
゜、ΩLC=45.0゜、φF=155.0゜、φP=9
0.0゜とし、ΔR=RFilm−ΔnLC・dLCを−0.1
0μmを満たすようにしながら、ΔnLC・dLCを変化さ
せて反射モードで光学特性を測定すると、0.20μm
〜0.30μmの範囲で、反射率が低くて無彩色の黒と
反射率が高くて無彩色の白を得ることができるノーマリ
ーホワイトモードの反射型液晶表示素子が実現できた。
これは、白と黒が充分とれるだけの液晶の複屈折差があ
って、なおかつ、液晶の複屈折による色付きを補償でき
る範囲であることによる。
Φ LC0 = -67.5 °, φ LC = 67.5
゜, Ω LC = 45.0 °, φ F = 155.0 °, φ P = 9
0.0 ° and ΔR = R Film −Δn LC · d LC −0.1
When the optical characteristics were measured in the reflection mode while changing Δn LC · d LC while satisfying 0 μm, 0.20 μm
A normally white mode reflection type liquid crystal display device capable of obtaining achromatic black with low reflectance and achromatic white with high reflectance in the range of 0.30 μm was realized.
This is because there is a difference in the birefringence of the liquid crystal enough to obtain white and black, and it is within a range in which coloring due to the birefringence of the liquid crystal can be compensated.

【0064】また、ΔRを−0.20μm〜0.05μ
mを満たしていると、白表示から黒表示へと電圧を印加
していったとき、表示の色が実用上で無彩色の範囲内で
変化することが確認できた。これは、ΔRを−0.20
μm〜0.05μmとし、φ F−φLCを+65゜〜+1
05゜の範囲内にすることで、白から黒への変化の間、
特に、オン電圧印加時の黒表示のときの、液晶層の複屈
折による着色を解消できることによる。これにより、反
射率の低い無彩色の黒表示と反射率の高い無彩色の白表
示のコントラストの高い反射型液晶表示素子を実現でき
た。
Further, ΔR is set to −0.20 μm to 0.05 μm.
When m is satisfied, voltage is applied from white display to black display
The color of the display is practically within the range of achromatic color
It was confirmed that it changed. This means that ΔR is -0.20
μm to 0.05 μm, φ F−φLC+ 65 ° to +1
Within the range of 05 °, during the transition from white to black,
In particular, the birefringence of the liquid crystal layer during black display when applying on-voltage
This is because coloring due to folding can be eliminated. As a result,
Achromatic black display with low emissivity and achromatic white table with high reflectivity
Can realize a reflective LCD device with high contrast
Was.

【0065】次に、液晶のツイスト角ΩLCを変化させた
ときの特性を調べたところ、本発明の第3の実施の形態
では、ツイスト角を0°〜90°の範囲内で良好な特性
が得られることを確認した。そして、ツイスト角ΩLC
30゜〜65゜としたとき特に良好な特性を得られた。
Next, the characteristics when the twist angle Ω LC of the liquid crystal was changed were examined. In the third embodiment of the present invention, good characteristics were obtained when the twist angle was in the range of 0 ° to 90 °. Was confirmed to be obtained. Particularly good characteristics were obtained when the twist angle Ω LC was 30 ° to 65 °.

【0066】そして、RFilmが0.10μm〜0.30
μmを満たしているとき、特に、オン電圧印加時の黒の
反射率を低くすることができることを確認できた。
Then, RFilm is 0.10 μm to 0.30
It was confirmed that the black reflectance when the on-voltage was applied can be particularly reduced when the thickness of μm is satisfied.

【0067】ここで特に、ΔnLC・dLC=0.270μ
m、RFilm=0.170μm、φLC0=−67.5゜、
φLC=67.5゜、ΩLC=45.0゜、φF=155.
0゜、φP=90.0゜としたときの光学特性を測定し
た結果を示すことにする。このとき、ΔR=RFilm−Δ
LC・dLC=−0.10μm、φF−φLC=87.5
゜、φP−φF=−65.0゜であって上記で確認した条
件を満たしている。
Here, in particular, Δn LC · d LC = 0.270 μm
m, R Film = 0.170 μm, φ LC 0 = −67.5 °,
φ LC = 67.5 °, Ω LC = 45.0 °, φ F = 155.
The results of measuring the optical characteristics when 0 ° and φ P = 90.0 ° are shown. At this time, ΔR = R Film− Δ
n LC · d LC = −0.10 μm, φ F −φ LC = 87.5
゜, φ P −φ F = −65.0 °, which satisfies the conditions confirmed above.

【0068】図5は第3の実施の形態の反射型液晶表示
素子の反射率と印加電圧の関係を示す特性図である。正
面特性で、白のY値換算での反射率は18.1%、コン
トラストは、15.6であった。また、黒から白まで無
彩色で変化するので、64階調フルカラーの表示が可能
であることも確認できた。
FIG. 5 is a characteristic diagram showing the relationship between the reflectance and the applied voltage of the reflection type liquid crystal display device of the third embodiment. With respect to the front characteristics, the reflectance of white converted to a Y value was 18.1%, and the contrast was 15.6. In addition, since the color changes from black to white in an achromatic color, it was confirmed that 64 gradation full-color display was possible.

【0069】また、以上の構成で、カラーフィルタ層1
4を除いた反射型液晶表示素子を作製したところ、正面
特性で、コントラスト15.1、白のY値換算での反射
率34.3%が得られた。
In the above configuration, the color filter layer 1
When the reflective liquid crystal display element except for No. 4 was prepared, a contrast of 15.1 and a reflectance of 34.3% in terms of white Y value were obtained in terms of frontal characteristics.

【0070】また、以上の構成では、散乱フィルム層1
2を高分子フィルム11と上側透明基板13の間に配置
したが、散乱フィルム層12を偏光フィルム10の上に
配置したときも、偏光フィルム11と高分子フィルム1
2の間に配置したときも同じ特性が得られた。
In the above configuration, the scattering film layer 1
2 was disposed between the polymer film 11 and the upper transparent substrate 13, but when the scattering film layer 12 was disposed on the polarizing film 10, the polarizing film 11 and the polymer film 1 were also disposed.
The same characteristics were obtained when the arrangement was made between the two.

【0071】なお、本実施の形態では、高分子フィルム
としてポリカーボネートを用いたが、発明の効果はそれ
に限定されるものではなく、例えば、ポリアリレートや
ポリスルフォンを用いても同様の効果を得ることができ
ることを確認した。
In this embodiment, polycarbonate is used as the polymer film. However, the effects of the present invention are not limited thereto. For example, similar effects can be obtained by using polyarylate or polysulfone. I confirmed that I can do it.

【0072】また、本実施の形態では、反射電極として
アルミニウムを構成要素として含む金属反射電極を用い
たが、発明の効果はそれに限定されるものではなく、例
えば、銀を構成要素として含む金属反射電極などを用い
ても同様の効果を得ることができる。
In this embodiment, a metal reflective electrode containing aluminum as a component is used as a reflective electrode. However, the effect of the invention is not limited to this. For example, a metal reflective electrode containing silver as a component is used. Similar effects can be obtained by using an electrode or the like.

【0073】(第4の実施の形態)第4の実施の形態の
反射型液晶表示素子は、作製および構造は基本的に第1
の実施の形態と共通であって、図1に示した反射型液晶
表示素子の断面および図2と同様の反射型液晶表示素子
の光学構成を有する。
(Fourth Embodiment) The reflection type liquid crystal display device of the fourth embodiment is basically manufactured and structured in the first mode.
This embodiment has a cross section of the reflection type liquid crystal display device shown in FIG. 1 and an optical configuration of the reflection type liquid crystal display device similar to that of FIG.

【0074】図6aは右方向の視角変化に対するオン電
圧印加時の黒の反射率変化を示す特性図である。
FIG. 6A is a characteristic diagram showing a change in reflectance of black when an ON voltage is applied to a change in viewing angle in the right direction.

【0075】図6bは上方向の視角変化に対するオン電
圧印加時の黒の反射率変化を示す特性図である。
FIG. 6B is a characteristic diagram showing a change in the reflectance of black when an ON voltage is applied to a change in the viewing angle in the upward direction.

【0076】本実施の形態では、ΔnLC・dLC=0.2
70μm、RFilm=0.170μm、φLC0=−67.
5゜、φLC=67.5゜、ΩLC=45゜、φF1=33.
0゜、φP=96.0゜として、高分子フィルム11の
Z係数Qzを変化させて調べたところ、Qzが1.0〜
3.0のとき、視角変化に対する反射率変化が少なく良
好な特性が得られることが判った。
In the present embodiment, Δn LC · d LC = 0.2
70 μm, R Film = 0.170 μm, φ LC0 = −67.
5 °, φ LC = 67.5 °, Ω LC = 45 °, φ F1 = 33.
0 °, as phi P = 96.0 °, was examined by changing the Z coefficient Q z of the polymer film 11, Q z is 1.0
When it was 3.0, it was found that a change in the reflectance with respect to the change in the viewing angle was small and good characteristics were obtained.

【0077】そして、特に、Qzを0.3、0.5、
1.0、1.5のときの、黒表示の視角による反射率変
化を詳細に調べた。
In particular, Q z is set to 0.3, 0.5,
The change in reflectance with the viewing angle of black display at 1.0 and 1.5 was examined in detail.

【0078】図6aと図6bを見れば、高分子フィルム
11が視角特性変化に影響を及ぼしており、Qzが大き
いとき視角依存性の少ない良好な黒の反射率特性が得ら
れることがわかる。この結果を踏まえて、特に、Qz
1.0〜2.0を満たしているとき、より望ましい視角
特性を得られることが確認できた。
[0078] Looking at FIGS. 6a and 6b, the which affect the polymer film 11 is the viewing angle characteristic change, it can be seen that the reflectance characteristics of good black little viewing angle dependence when Q z is greater can be obtained . Based on this result, in particular, when Q z satisfies 1.0 to 2.0, it was confirmed that obtained a more desirable viewing angle characteristic.

【0079】(第5の実施の形態)図7は第5の実施の
形態の反射型液晶表示素子の概略構成を示した断面図で
ある。70は偏光フィルム、71は高分子フィルム、7
3は上側透明基板、74はカラーフィルタ層、75a、
75bは配向層、76は透明電極、77は液晶層、78
は透明電極、79は下側透明基板、72は拡散反射板を
示す。
(Fifth Embodiment) FIG. 7 is a sectional view showing a schematic structure of a reflection type liquid crystal display device according to a fifth embodiment. 70 is a polarizing film, 71 is a polymer film, 7
3 is an upper transparent substrate, 74 is a color filter layer, 75a,
75b is an alignment layer, 76 is a transparent electrode, 77 is a liquid crystal layer, 78
Denotes a transparent electrode, 79 denotes a lower transparent substrate, and 72 denotes a diffuse reflection plate.

【0080】反射型液晶表示素子の光学構成は、図2と
同様である。
The optical configuration of the reflection type liquid crystal display device is the same as that of FIG.

【0081】上側透明基板73および下側透明基板79
として無アルカリガラス基板(例えば1737:コーニ
ング社製)を用い、上側透明基板73上に、カラーフィ
ルタ層74として顔料分散タイプで赤、緑、青のストラ
イプ配列のものをフォトリソグラフィーで形成した。
The upper transparent substrate 73 and the lower transparent substrate 79
A non-alkali glass substrate (for example, 1737: manufactured by Corning Incorporated) was used as a color filter layer 74 on an upper transparent substrate 73. The color filter layer 74 was formed of a pigment dispersion type having a red, green, and blue stripe arrangement by photolithography.

【0082】そしてカラーフィルタ層74および下側透
明基板79の上に、透明電極76および78としてイン
ジウム・錫・オキサイドで画素電極を形成した。透明電
極76および78上には、ポリイミドのγ−ブチロラク
トンの5重量%溶液を印刷し、250℃で硬化したの
ち、所定のツイスト角を実現するようにレーヨン布を用
いた回転ラビング法による配向処理を行うことで配向層
75a、75bを形成した。
Then, pixel electrodes were formed on the color filter layer 74 and the lower transparent substrate 79 as indium, tin and oxide as the transparent electrodes 76 and 78. On the transparent electrodes 76 and 78, a 5% by weight solution of γ-butyrolactone of polyimide is printed, cured at 250 ° C., and then subjected to an orientation treatment by a rotary rubbing method using rayon cloth so as to realize a predetermined twist angle. Was performed to form alignment layers 75a and 75b.

【0083】上側透明基板73上の周辺部には所定の径
のガラスファイバーを1.0重量%混入した熱硬化性シ
ール樹脂(例えばストラクトボンド:三井東圧化学
(株)製)を印刷し、下側基板79上には所定の径の樹
脂ビーズを100〜200個/mm 2の割合で散布し、上
側透明基板73と下側基板79を互いに貼り合わせ、1
50℃でシール樹脂を硬化した後、ΔnLC=0.09の
フッ素エステル系ネマティック液晶にカイラルピッチが
80μmになるようにカイラル液晶を混ぜた液晶を真空
注入し、紫外線硬化性樹脂で封口した後、紫外線光によ
り硬化した。
The peripheral portion on the upper transparent substrate 73 has a predetermined diameter.
Thermosetting resin containing 1.0% by weight of glass fiber
Resin (for example, Structbond: Mitsui Toatsu Chemicals)
Is printed on the lower substrate 79 and has a predetermined diameter.
100-200 fat beads / mm TwoSpray at the rate of
The transparent substrate 73 and the lower substrate 79 are stuck together.
After curing the sealing resin at 50 ° C., ΔnLC= 0.09
Chiral pitch in fluoroester nematic liquid crystal
Vacuum the liquid crystal mixed with chiral liquid crystal to 80μm
Inject and seal with UV curable resin.
Hardened.

【0084】こうして形成された液晶セル7の上側透明
基板73の上に、高分子フィルム71としてポリカーボ
ネートを遅相軸が所定の角度となるように貼付し、さら
に、偏光フィルム70としてニュートラルグレーの偏光
フィルム(住友化学工業(株)製SQ−1852AP)
にアンチグレア(AG)およびアンチリフレクション(A
R)処理を施したものを、吸収軸または透過軸の方向が
所定の角度をなすように貼付した。
On the upper transparent substrate 73 of the liquid crystal cell 7 thus formed, polycarbonate is adhered as the polymer film 71 so that the slow axis is at a predetermined angle, and the polarizing film 70 is neutral gray polarized light. Film (SQ-1852AP manufactured by Sumitomo Chemical Co., Ltd.)
Anti-glare (AG) and anti-reflection (A
R) was applied so that the direction of the absorption axis or the transmission axis was at a predetermined angle.

【0085】下側透明基板79の下には、拡散反射板7
2として銀の拡散反射板を設置した。
Under the lower transparent substrate 79, the diffuse reflection plate 7
As No. 2, a silver diffuse reflector was installed.

【0086】本実施例の形態では、ΔnLC・dLC=0.
270μm、RFilm=0.170μm、φLC0=−6
7.5゜、φLC=67.5゜、ΩLC=45゜、φF=3
3.0゜、φP=96.0゜とした。
In this embodiment, Δn LC · d LC = 0.
270 μm, R Film = 0.170 μm, φ LC0 = −6
7.5 °, φ LC = 67.5 °, Ω LC = 45 °, φ F = 3
3.0 ° and φ P = 96.0 °.

【0087】このように上下基板を透明基板・透明電極
として、下側に拡散反射板を用いたとき、視差の影響に
よる画像ボケが多少現れたが、視角特性変化の自然な反
射型液晶表示素子を得られることが確認できた。
As described above, when the upper and lower substrates are transparent substrates and transparent electrodes, and the diffuse reflection plate is used on the lower side, some image blurring due to the influence of parallax appears, but the reflection type liquid crystal display element having a natural change in viewing angle characteristics. It was confirmed that it could be obtained.

【0088】正面特性を測定すると、白のY値換算の反
射率16.1%、コントラスト14.3が得られた。
When the front characteristics were measured, a reflectance of 16.1% in terms of Y value of white and a contrast of 14.3 were obtained.

【0089】また、以上の構成で、カラーフィルタ層7
4を除いた反射型液晶表示素子を作製したところ、正面
特性で、白のY値換算での反射率32.1%、コントラ
スト14.0が得られた。
In the above configuration, the color filter layer 7
When the reflective liquid crystal display element except for No. 4 was prepared, a reflectance of 32.1% and a contrast of 14.0% were obtained in terms of front characteristics in terms of white Y value.

【0090】また、拡散反射板72を下側透明基板79
の下に設置する際に、完全に粘着剤で接着せず、間に空
気層を入れることで、樹脂の屈折率の約1.6と空気の
屈折率1.0との差によって起こる拡散効果の拡大によ
り、より自然な視角特性を得られることが確認できた。
The diffuse reflection plate 72 is connected to the lower transparent substrate 79.
When it is installed under the air, it does not adhere completely with the adhesive, but by putting an air layer between them, the diffusion effect caused by the difference between the refractive index of resin about 1.6 and the refractive index of air 1.0. It was confirmed that a more natural viewing angle characteristic can be obtained by enlarging.

【0091】なお、本実施の形態では、拡散反射板とし
て銀を用いたが、アルミニウムの拡散反射板でも同様の
発明効果を得られることを確認した。
In this embodiment, silver was used as the diffuse reflection plate, but it was confirmed that the same invention effect can be obtained with the aluminum diffusion reflection plate.

【0092】(第6の実施の形態)図8は第6の実施の
形態の反射型液晶表示素子の概略構成を示した断面図で
ある。80は偏光フィルム、81は高分子フィルム、8
2は散乱フィルム層、83は上側透明基板、84はカラ
ーフィルタ層、85a、85bは配向層、86は透明電
極、87は液晶層、88は金属反射電極、89は下側基
板、90はゲート電極、91はソース線、92は薄膜ト
ランジスタ素子(TFT)、93はドレイン電極、94
は平坦化膜を示す。95はコンタクトホールである。第
1の実施の形態もしくは第3の実施の形態と異なるの
は、金属反射電極基板がコンタクトホールを介して、平
坦化膜の下の非線形スイッチング素子(TFT)と導通
して、アクティブ駆動できるようにしたことである。
(Sixth Embodiment) FIG. 8 is a sectional view showing a schematic configuration of a reflection type liquid crystal display device according to a sixth embodiment. 80 is a polarizing film, 81 is a polymer film, 8
2 is a scattering film layer, 83 is an upper transparent substrate, 84 is a color filter layer, 85a and 85b are alignment layers, 86 is a transparent electrode, 87 is a liquid crystal layer, 88 is a metal reflective electrode, 89 is a lower substrate, and 90 is a gate. Electrode, 91 is a source line, 92 is a thin film transistor element (TFT), 93 is a drain electrode, 94
Indicates a flattening film. 95 is a contact hole. The difference from the first embodiment or the third embodiment is that the metal reflective electrode substrate is electrically connected to the non-linear switching element (TFT) below the flattening film through the contact hole, so that active driving can be performed. That is what we did.

【0093】本実施の形態の反射型液晶表示素子の光学
構成は、図2と同様である。
The optical configuration of the reflection type liquid crystal display device of the present embodiment is the same as that of FIG.

【0094】上側透明基板83および下側基板89とし
て無アルカリガラス基板(例えば1737:コーニング
社製)を用い、上側透明基板83上に、カラーフィルタ
層84として顔料分散タイプで赤、緑、青のストライプ
配列のものをフォトリソグラフィーで形成し、その上
に、透明電極86としてインジウム・錫・オキサイドで
画素電極を形成した。
A non-alkali glass substrate (for example, 1737: manufactured by Corning Incorporated) is used as the upper transparent substrate 83 and the lower substrate 89. On the upper transparent substrate 83, as a color filter layer 84, a pigment dispersion type of red, green, and blue is used. A pixel having a stripe arrangement was formed by photolithography, and a pixel electrode was formed thereon using indium tin oxide as a transparent electrode 86.

【0095】また、下側基板89上には、所定の方法に
よりアルミニウムとタンタルからなるゲート電極90、
チタンとアルミニウムからなるソース電極91およびド
レイン電極93をマトリクス状に配置し、ゲート電極9
0とソース電極91の各交差部にアモルファスシリコン
からなるTFT素子92を形成した。
On the lower substrate 89, a gate electrode 90 made of aluminum and tantalum is formed by a predetermined method.
A source electrode 91 and a drain electrode 93 made of titanium and aluminum are arranged in a matrix, and a gate electrode 9 is formed.
A TFT element 92 made of amorphous silicon was formed at each intersection of 0 and the source electrode 91.

【0096】このように非線形素子を形成した下側基板
89上の全面に、ポジ型の感光性アクリル樹脂(例え
ば、FVR:富士薬品工業(株)製)を塗布して平坦化
膜94を形成した後、所定のフォトマスクを用いて、紫
外線照射して、ドレイン電極93上にコンタクトホール
95を形成した。そして、その上に、チタンを300nm
蒸着した上にアルミニウムを200nm蒸着したものを形
成することで鏡面反射タイプの金属反射電極88を形成
した。
A flat photosensitive film 94 is formed by applying a positive photosensitive acrylic resin (for example, FVR: manufactured by Fuji Pharmaceutical Co., Ltd.) on the entire surface of the lower substrate 89 on which the non-linear element is formed. After that, a contact hole 95 was formed on the drain electrode 93 by irradiating ultraviolet rays using a predetermined photomask. Then, on top of that, 300nm titanium
A metal reflective electrode 88 of a specular reflection type was formed by forming a film on which aluminum was vapor-deposited to a thickness of 200 nm.

【0097】透明電極86および金属反射電極88上に
は、ポリイミドのγ−ブチロラクトンの5重量%溶液を
印刷し、250℃で硬化したのち、所定のツイスト角を
実現するようにレーヨン布を用いた回転ラビング法によ
る配向処理を行うことで配向層85a、85bを形成し
た。
On the transparent electrode 86 and the metal reflective electrode 88, a 5% by weight solution of polyimide γ-butyrolactone was printed and cured at 250 ° C., and then a rayon cloth was used to achieve a predetermined twist angle. The orientation layers 85a and 85b were formed by performing an orientation treatment by a rotary rubbing method.

【0098】そして、上側透明基板83上の周辺部には
所定の径のガラスファイバーを1.0wt%混入した熱
硬化性シール樹脂(例えばストラクトボンド:三井東圧
化学(株)製)を印刷し、下側基板89上には所定の径
の樹脂ビーズを100〜200個/mm2の割合で散布
し、上側透明基板83と下側基板89を互いに貼り合わ
せ、150℃でシール樹脂を硬化した後、ΔnLC=0.
09のフッ素エステル系ネマティック液晶に所定の量の
カイラル液晶を混ぜた液晶を真空注入し、紫外線硬化性
樹脂で封口した後、紫外線光により硬化した。
Then, a thermosetting sealing resin (for example, Stract Bond: manufactured by Mitsui Toatsu Chemicals, Inc.) containing 1.0 wt% of glass fiber having a predetermined diameter is printed on the peripheral portion on the upper transparent substrate 83. On the lower substrate 89, resin beads having a predetermined diameter were sprayed at a rate of 100 to 200 beads / mm 2 , the upper transparent substrate 83 and the lower substrate 89 were bonded to each other, and the sealing resin was cured at 150 ° C. Then, Δn LC = 0.
A liquid crystal obtained by mixing a predetermined amount of a chiral liquid crystal with a fluorine ester type nematic liquid crystal of No. 09 was vacuum-injected, sealed with an ultraviolet curable resin, and then cured with ultraviolet light.

【0099】こうして形成された液晶セル8の上側透明
基板83の上に、散乱フィルム層82として等方性の前
方散乱フィルムを貼付し、その上に、高分子フィルム8
1としてポリカーボネートを遅相軸が所定の角度となる
ように貼付し、さらに、偏光フィルム80としてニュー
トラルグレーの偏光フィルム(住友化学工業(株)製S
Q−1852AP)にアンチグレア(AG)およびアンチ
リフレクション(AR)処理を施したものを、吸収軸ま
たは透過軸の方向が所定の角度をなすように貼付した。
On the upper transparent substrate 83 of the liquid crystal cell 8 thus formed, an isotropic forward scattering film is adhered as the scattering film layer 82, and the polymer film 8 is placed thereon.
As No. 1, a polycarbonate was stuck so that the slow axis was at a predetermined angle, and a neutral gray polarizing film (manufactured by Sumitomo Chemical Co., Ltd., S
Q-1852AP), which had been subjected to anti-glare (AG) and anti-reflection (AR) treatments, was affixed such that the direction of the absorption axis or transmission axis was at a predetermined angle.

【0100】本実施例では、ΔnLC・dLC=0.270
μm、RFilm=0.170μm、φ LC0=−67.5
゜、φLC=67.5゜、ΩLC=45.0゜、φF=3
3.0゜、φP=96.0゜とした。
In this embodiment, ΔnLC・ DLC= 0.270
μm, RFilm= 0.170 μm, φ LC0= -67.5
゜, φLC= 67.5 ゜, ΩLC= 45.0 °, φF= 3
3.0 °, φP= 96.0 °.

【0101】光学特性としては、第1の実施例の構成で
アクティブ駆動して、64階調のフルカラー表示を得る
ことができた。平坦化膜上に金属反射電極を形成したこ
とで、開口率は、97%を得ることができたため、正面
特性で、白のY値換算での反射率は17.9%、コント
ラストは、15.9であった。
As for the optical characteristics, active driving was performed in the configuration of the first embodiment, and a full-color display of 64 gradations could be obtained. By forming a metal reflective electrode on the flattening film, an aperture ratio of 97% could be obtained. Therefore, in the front characteristics, the reflectance in terms of white Y value was 17.9%, and the contrast was 15%. Was 0.9.

【0102】なお、本実施の形態に限らず、今まで述べ
たすべての実施の形態において、下側基板上にTFTな
どの非線形素子を形成することで、アクティブ駆動の反
射型液晶表示素子を、本実施の形態に述べた方法に準じ
て得ることができる。また非線形素子としては、アモル
ファスシリコンのTFTにとどまらず、二端子素子(M
IMおよび薄膜ダイオードなど)やポリシリコンTFT
などを用いても同様の効果を得ることができる。
Note that not only this embodiment but also all the embodiments described so far, by forming a non-linear element such as a TFT on the lower substrate, an active drive reflection type liquid crystal display element can be realized. It can be obtained according to the method described in the present embodiment. Non-linear elements are not limited to amorphous silicon TFTs, but are two-terminal elements (M
IM and thin film diode) and polysilicon TFT
The same effect can be obtained by using such a method.

【0103】[0103]

【発明の効果】以上説明したように、本発明の反射型液
晶表示素子によれば、明るく、高コントラストで、無彩
色の白黒変化が可能なノーマリーホワイト型の反射型液
晶表示素子を得ることができる。
As described above, according to the reflection type liquid crystal display device of the present invention, it is possible to obtain a bright white, high contrast, normally white type reflection type liquid crystal display device capable of changing achromatic black and white. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施の形態に係る反射型液晶
表示素子の概略構成を示した断面図である。
FIG. 1 is a cross-sectional view illustrating a schematic configuration of a reflective liquid crystal display device according to a first embodiment of the present invention.

【図2】 図1の反射型液晶表示素子の光学構成図であ
る。
FIG. 2 is an optical configuration diagram of the reflective liquid crystal display device of FIG.

【図3】 図1の反射型液晶表示素子の反射率と印加電
圧の関係の例を示す特性図である。
FIG. 3 is a characteristic diagram showing an example of the relationship between the reflectance and the applied voltage of the reflective liquid crystal display device of FIG.

【図4】 本発明の第2の実施の形態に係る反射型液晶
表示素子の概略構成を示した断面図である。
FIG. 4 is a cross-sectional view showing a schematic configuration of a reflective liquid crystal display device according to a second embodiment of the present invention.

【図5】 本発明の第3の実施の形態に係る反射型液晶
表示素子の反射率と印加電圧の関係の例を示す特性図で
ある。
FIG. 5 is a characteristic diagram showing an example of a relationship between a reflectance and an applied voltage of a reflective liquid crystal display device according to a third embodiment of the present invention.

【図6】 右方向(a)または上方向(b)の視角変化に対
するオン電圧印加時の黒の反射率変化の例を示す特性図
である。
FIG. 6 is a characteristic diagram illustrating an example of a change in black reflectance when an ON voltage is applied to a change in the viewing angle in the right direction (a) or the upward direction (b).

【図7】 本発明の第5の実施の形態に係る反射型液晶
表示素子の概略構成を示した断面図である。
FIG. 7 is a sectional view showing a schematic configuration of a reflective liquid crystal display device according to a fifth embodiment of the present invention.

【図8】 本発明の第6の実施の形態に係る反射型液晶
表示素子の概略構成を示した断面図である。
FIG. 8 is a cross-sectional view illustrating a schematic configuration of a reflective liquid crystal display device according to a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、4、7、8 液晶セル 10、40、70、80 偏光フィルム 11、41、71、81 高分子フィルム 12、82 散乱フィルム層 13、43、73、83 上側透明基板 14、44、74、84 カラーフィルタ層 15a、15b、45a、45b、75a、75b、8
5a、85b 配向層 16、46、76、86 透明電極 17、47、77、87 液晶層 18、48、88 金属反射電極 19、49、89 下側基板 20 基準線 21 下側基板に最も近い液晶
分子の配向方向 22 上側基板に最も近い液晶
分子の配向方向 23 高分子フィルムの遅相軸
方向 24 上側偏光フィルムの吸収
軸方向 72 拡散反射板 78 透明電極 79 下側透明基板 90 ゲート電極 91 ソース線 92 TFT素子 93 ドレイン電極 94 平坦化膜 95 コンタクトホール
1, 4, 7, 8 Liquid crystal cell 10, 40, 70, 80 Polarizing film 11, 41, 71, 81 Polymer film 12, 82 Scattering film layer 13, 43, 73, 83 Upper transparent substrate 14, 44, 74, 84 color filter layer 15a, 15b, 45a, 45b, 75a, 75b, 8
5a, 85b Alignment layer 16, 46, 76, 86 Transparent electrode 17, 47, 77, 87 Liquid crystal layer 18, 48, 88 Metal reflective electrode 19, 49, 89 Lower substrate 20 Reference line 21 Liquid crystal closest to lower substrate Orientation direction of molecules 22 Orientation direction of liquid crystal molecules closest to upper substrate 23 Slow axis direction of polymer film 24 Absorption axis direction of upper polarizing film 72 Diffuse reflector 78 Transparent electrode 79 Lower transparent substrate 90 Gate electrode 91 Source line 92 TFT element 93 Drain electrode 94 Flattening film 95 Contact hole

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02F 1/136 500 G02F 1/136 500 (72)発明者 岩井 義夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小川 鉄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2H042 BA02 BA04 BA20 DA02 DA04 DA12 DC02 DE00 2H091 FA02X FA08X FA14Z FA32Z FA50X FB02 FD07 GA06 GA13 HA07 KA02 KA03 LA17 2H092 JA24 JB07 PA02 PA08 PA11 PA12 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02F 1/136 500 G02F 1/136 500 (72) Inventor Yoshio Iwai 1006 Kadoma Kadoma, Kadoma City, Osaka Matsushita Electric Within Sangyo Co., Ltd. (72) Inventor Tetsu Ogawa 1006 Kadoma, Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd.F-term (reference) KA02 KA03 LA17 2H092 JA24 JB07 PA02 PA08 PA11 PA12

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 一対の基板間にネマティック液晶を封入
した液晶セルと、前記液晶セルの一方の基板側に配置さ
れた偏光フィルムと、前記偏光フィルムと前記液晶セル
との間に配置された高分子フィルムと、他方の基板側に
配置された光反射手段とを含み、 前記一対の基板間におけるネマティック液晶のツイスト
角度が0゜〜90゜、前記ネマティック液晶の複屈折Δ
LCと液晶層厚dLCとの積ΔnLC・dLCが0.20〜
0.30μm、前記積ΔnLC・dLCと前記高分子フィル
ムのレターデーションRFilmとによりRFilm−ΔnLC
LCと定義される複屈折差ΔRが−0.20μm〜−
0.05μmであり、 前記一方の基板側から見て前記ネマティック液晶が前記
一方の基板側から前記他方の基板側にかけてツイストし
ていく方向を正として、基板面内に定められた基準線と
前記一方の基板に最近接している液晶分子の長軸方向と
が為す角度をφ LC、前記基準線と高分子フィルムの遅相
軸の方向とが為す角度をφF、前記基準線と前記偏光フ
ィルムの吸収軸または透過軸の方向をφPとしたとき
に、φF−φ LCが−40゜〜−25゜、φP−φFが+5
0゜〜+80゜であることを特徴とする反射型液晶表示
素子。
1. A nematic liquid crystal is sealed between a pair of substrates.
And a liquid crystal cell arranged on one substrate side of the liquid crystal cell.
Polarizing film, the polarizing film and the liquid crystal cell
And the other side of the substrate
And a light reflecting means disposed, wherein a twist of the nematic liquid crystal between the pair of substrates is provided.
Angle: 0 ° to 90 °, birefringence Δ of the nematic liquid crystal
nLCAnd liquid crystal layer thickness dLCAnd the product ΔnLC・ DLCIs 0.20
0.30 μm, the product ΔnLC・ DLCAnd the polymer fill
Retardation RFilmAnd RFilm−ΔnLC
dLCBirefringence difference ΔR defined as -0.20 μm
0.05 μm, and the nematic liquid crystal is
Twist from one substrate side to the other substrate side
With the reference direction defined in the substrate plane
The long axis direction of the liquid crystal molecules closest to the one substrate;
Φ LC, The retardation between the reference line and the polymer film
The angle between the axis direction and φF, The reference line and the polarization filter.
The direction of the film's absorption axis or transmission axis is φPAnd when
And φF−φ LCIs -40 ° to -25 °, φP−φFIs +5
A reflection type liquid crystal display characterized by a range of 0 ° to + 80 °
element.
【請求項2】 一対の基板間にネマティック液晶を封入
した液晶セルと、前記液晶セルの一方の基板側に配置さ
れた偏光フィルムと、前記偏光フィルムと前記液晶セル
との間に配置された高分子フィルムと、他方の基板側に
配置された光反射手段とを含み、 前記一対の基板間におけるネマティック液晶のツイスト
角度が0゜〜90゜、前記ネマティック液晶の複屈折Δ
LCと液晶層厚dLCとの積ΔnLC・dLCが0.20〜
0.30μm、前記積ΔnLC・dLCと前記高分子フィル
ムのレターデーションRFilmとによりRFilm−ΔnLC
LCと定義される複屈折差ΔRが−0.20μm〜−
0.05μmであり、 前記一方の基板側から見て前記ネマティック液晶が前記
一方の基板側から前記他方の基板側にかけてツイストし
ていく方向を正として、基板面内に定められた基準線と
前記一方の基板に最近接している液晶分子の長軸方向と
が為す角度をφ LC、前記基準線と高分子フィルムの遅相
軸の方向とが為す角度をφF、前記基準線と前記偏光フ
ィルムの吸収軸または透過軸の方向をφPとしたとき
に、φF−φ LCが+65゜〜+105゜、φP−φFが−
60゜〜−90゜であることを特徴とする反射型液晶表
示素子。
2. A nematic liquid crystal is sealed between a pair of substrates.
And a liquid crystal cell arranged on one substrate side of the liquid crystal cell.
Polarizing film, the polarizing film and the liquid crystal cell
And the other side of the substrate
And a light reflecting means disposed, wherein a twist of the nematic liquid crystal between the pair of substrates is provided.
Angle: 0 ° to 90 °, birefringence Δ of the nematic liquid crystal
nLCAnd liquid crystal layer thickness dLCAnd the product ΔnLC・ DLCIs 0.20
0.30 μm, the product ΔnLC・ DLCAnd the polymer fill
Retardation RFilmAnd RFilm−ΔnLC
dLCBirefringence difference ΔR defined as -0.20 μm
0.05 μm, and the nematic liquid crystal is
Twist from one substrate side to the other substrate side
With the reference direction defined in the substrate plane
The long axis direction of the liquid crystal molecules closest to the one substrate;
Φ LC, The retardation between the reference line and the polymer film
The angle between the axis direction and φF, The reference line and the polarization filter.
The direction of the film's absorption axis or transmission axis is φPAnd when
And φF−φ LCIs + 65 ° to + 105 °, φP−φFBut-
A reflection type liquid crystal table having an angle of 60 ° to -90 °
Indicating element.
【請求項3】 ネマティック液晶の前記ツイスト角度が
30゜〜65゜である請求項1または2に記載の反射型
液晶表示素子。
3. The reflection type liquid crystal display device according to claim 1, wherein the twist angle of the nematic liquid crystal is 30 ° to 65 °.
【請求項4】 前記RFilmが0.10μm〜0.30μ
mである請求項1または2に記載の反射型液晶表素子。
4. The method according to claim 1, wherein the R film has a thickness of 0.10 μm to 0.30 μm.
3. The reflective liquid crystal display device according to claim 1, wherein m is m.
【請求項5】 前記高分子フィルムが、ポリカーボネー
ト、ポリアリレートおよびポリスルフォンから選ばれる
少なくとも1つからなる請求項1〜4のいずれかに記載
の反射型液晶表示素子。
5. The reflective liquid crystal display device according to claim 1, wherein the polymer film is made of at least one selected from polycarbonate, polyarylate, and polysulfone.
【請求項6】 前記高分子フィルムのZ係数QZが1.
0〜3.0である請求項1〜5のいずれかに記載の反射
型液晶表示素子。ただし、前記QZは、フィルム面の法
線方向をz軸として定める空間座標系(x,y,z)に
おける各軸方向の屈折率nx、nyおよびnz(nxは遅相
軸方向の屈折率、nyは進相軸方向の屈折率)を用いて、
Z=(nx−nz)/(nx-ny)により示される係数で
ある。
6. The polymer film having a Z coefficient Q Z of 1.
The reflective liquid crystal display device according to any one of claims 1 to 5, wherein the ratio is from 0 to 3.0. However, the Q Z is space coordinate system defining the direction normal to the film plane as z-axis (x, y, z) the refractive index of each axis direction in the n x, the n y and n z (n x slow axis direction of the refractive index, n y by using the refractive index of the fast axis direction),
A Q Z = (n x -n z ) / coefficients indicated by (n x -n y).
【請求項7】 前記QZが1.0〜2.0である請求項
6に記載の反射型液晶表示素子。
7. The reflective liquid crystal display device according to claim 6, wherein said Q Z is 1.0 to 2.0.
【請求項8】 前記一方の基板側に散乱フィルムを配置
した請求項1〜7のいずれかに記載の反射型液晶表示素
子。
8. The reflection type liquid crystal display device according to claim 1, wherein a scattering film is disposed on the one substrate side.
【請求項9】 前記散乱フィルムを前記高分子フィルム
と前記一方の基板の間に配置した請求項8に記載の反射
型液晶表示素子。
9. The reflective liquid crystal display device according to claim 8, wherein the scattering film is disposed between the polymer film and the one substrate.
【請求項10】 前記散乱フィルムが前方散乱フィルム
である請求項8または9に記載の反射型液晶表示素子。
10. The reflective liquid crystal display device according to claim 8, wherein the scattering film is a forward scattering film.
【請求項11】 前記光反射手段が、アルミニウムおよ
び銀から選ばれる少なくとも1つの金属を構成要素とし
て含む金属電極である請求項1〜10のいずれかに記載
の反射型液晶表示素子。
11. The reflective liquid crystal display device according to claim 1, wherein said light reflecting means is a metal electrode containing at least one metal selected from aluminum and silver as a constituent element.
【請求項12】 前記金属電極の表面が鏡面状である請
求項11に記載の反射型液晶表示素子。
12. The reflective liquid crystal display device according to claim 11, wherein the surface of the metal electrode is mirror-like.
【請求項13】 前記金属電極上に散乱膜を配置した請
求項11または12に記載の反射型液晶表示素子。
13. The reflection type liquid crystal display device according to claim 11, wherein a scattering film is disposed on the metal electrode.
【請求項14】 前記金属電極の表面が平均傾斜角3゜
〜12゜の凹凸を有し、入射光を拡散反射させる請求項
11に記載の反射型液晶表示素子。
14. The reflective liquid crystal display device according to claim 11, wherein the surface of the metal electrode has irregularities with an average inclination angle of 3 ° to 12 °, and diffusely reflects incident light.
【請求項15】 前記他方の基板が透明基板であって、
この透明基板の外側に光反射手段を配置した請求項1〜
10のいずれかに記載の反射型液晶表示素子。
15. The other substrate is a transparent substrate,
The light reflecting means is arranged outside the transparent substrate.
11. The reflective liquid crystal display device according to any one of items 10.
【請求項16】 前記透明基板と前記光反射手段との間
に空気層を介在させた請求項15に記載の反射型液晶表
示素子。
16. The reflection type liquid crystal display device according to claim 15, wherein an air layer is interposed between said transparent substrate and said light reflecting means.
【請求項17】 前記一方の基板側にカラーフィルタを
配置した請求項1〜16のいずれかに記載の反射型液晶
表示素子。
17. The reflection type liquid crystal display device according to claim 1, wherein a color filter is arranged on the one substrate side.
【請求項18】 前記他方の基板側に非線形素子を配置
した請求項1〜17のいずれかに記載の反射型液晶表示
素子。
18. The reflection type liquid crystal display element according to claim 1, wherein a non-linear element is arranged on the other substrate side.
【請求項19】 前記非線形素子の上に絶縁性の平坦化
膜を形成し、この平坦化膜に形成したコンタクトホール
を通じて前記非線形素子と前記他方の基板側の電極とが
導通している請求項18に記載の反射型液晶表示素子。
19. An insulating flattening film is formed on the non-linear element, and the non-linear element and the electrode on the other substrate are electrically connected through a contact hole formed in the flattening film. 19. The reflective liquid crystal display device according to 18.
JP10819198A 1998-04-17 1998-04-17 Reflective liquid crystal display Expired - Fee Related JP3172706B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP10819198A JP3172706B2 (en) 1998-04-17 1998-04-17 Reflective liquid crystal display
CN99805112A CN1127672C (en) 1998-04-17 1999-04-09 Reflection liquid crystal display device
US09/673,310 US6567149B1 (en) 1998-04-17 1999-04-09 Reflection liquid crystal display device
EP99913599A EP1072928A4 (en) 1998-04-17 1999-04-09 Reflection liquid crystal display device
PCT/JP1999/001890 WO1999054781A1 (en) 1998-04-17 1999-04-09 Reflection liquid crystal display device
KR10-2000-7011536A KR100379718B1 (en) 1998-04-17 1999-04-09 Reflection liquid crystal display device
TW088105966A TW556019B (en) 1998-04-17 1999-04-14 Reflection-type liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10819198A JP3172706B2 (en) 1998-04-17 1998-04-17 Reflective liquid crystal display

Publications (2)

Publication Number Publication Date
JP2001100194A true JP2001100194A (en) 2001-04-13
JP3172706B2 JP3172706B2 (en) 2001-06-04

Family

ID=14478321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10819198A Expired - Fee Related JP3172706B2 (en) 1998-04-17 1998-04-17 Reflective liquid crystal display

Country Status (7)

Country Link
US (1) US6567149B1 (en)
EP (1) EP1072928A4 (en)
JP (1) JP3172706B2 (en)
KR (1) KR100379718B1 (en)
CN (1) CN1127672C (en)
TW (1) TW556019B (en)
WO (1) WO1999054781A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2207603C2 (en) * 2001-06-04 2003-06-27 Хан Ир Гвон Optical device for production and/or transformation of polarized electromagnetic radiation and optical device in the form of liquid crystalline display
JP3705184B2 (en) * 2001-10-24 2005-10-12 セイコーエプソン株式会社 Liquid crystal device and electronic device
JP2003330022A (en) * 2002-05-10 2003-11-19 Advanced Display Inc Liquid crystal display
JP4308553B2 (en) * 2003-03-07 2009-08-05 株式会社 日立ディスプレイズ Liquid crystal display
US7956972B2 (en) * 2004-09-14 2011-06-07 Himax Technologies Limited Liquid crystal on silicon display panel with reducing fringe effect
US20060055857A1 (en) * 2004-09-14 2006-03-16 Meng-Hsun Hsieh Method for reducing fringe effect of liquid crystal on silicon display panel
KR100671132B1 (en) * 2004-09-22 2007-01-17 주식회사 엘지화학 Polyarylate Optical Compensator Film for LCD and Method for Preparing the same
CN105259706B (en) * 2015-11-26 2018-07-17 武汉华星光电技术有限公司 Reflecting type liquid crystal display panel and display device
CN105572951A (en) * 2015-12-16 2016-05-11 武汉华星光电技术有限公司 Display device and reflective display panel thereof
JP7016237B2 (en) * 2017-10-18 2022-02-04 三菱重工業株式会社 Information retrieval device, search processing method, and program

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0470817A3 (en) 1990-08-09 1992-11-25 Seiko Epson Corporation Liquid crystal electro-optical device
JP3180482B2 (en) 1992-12-08 2001-06-25 カシオ計算機株式会社 Color liquid crystal display
JP3289390B2 (en) 1993-04-19 2002-06-04 カシオ計算機株式会社 Color liquid crystal display
JP3289386B2 (en) 1993-04-12 2002-06-04 カシオ計算機株式会社 Color liquid crystal display
JPH0784252A (en) 1993-09-16 1995-03-31 Sharp Corp Liquid crystal display device
JP3096383B2 (en) 1993-11-25 2000-10-10 シャープ株式会社 Reflective liquid crystal display
MY114271A (en) * 1994-05-12 2002-09-30 Casio Computer Co Ltd Reflection type color liquid crystal display device
JPH1039296A (en) 1996-07-18 1998-02-13 Ricoh Co Ltd Reflection type liquid crystal display device
US6642981B1 (en) * 1996-09-30 2003-11-04 Fujitsu Display Technologies Corporation Liquid crystal display device operating in a vertically aligned mode including at least one retardation film
JP3210274B2 (en) * 1997-08-25 2001-09-17 松下電器産業株式会社 Reflective liquid crystal display

Also Published As

Publication number Publication date
EP1072928A1 (en) 2001-01-31
TW556019B (en) 2003-10-01
EP1072928A4 (en) 2003-01-08
JP3172706B2 (en) 2001-06-04
KR20010042793A (en) 2001-05-25
KR100379718B1 (en) 2003-04-10
WO1999054781A1 (en) 1999-10-28
CN1127672C (en) 2003-11-12
CN1297539A (en) 2001-05-30
US6567149B1 (en) 2003-05-20

Similar Documents

Publication Publication Date Title
JP3339334B2 (en) Reflective liquid crystal display
US6407787B1 (en) Reflective liquid crystal display device
US6144432A (en) Reflective liquid crystal display device
US6373541B1 (en) Reflection type liquid crystal display element
JPH1096887A (en) Color liquid crystal display element
JP3177212B2 (en) Reflective liquid crystal display
KR100306648B1 (en) Reflective liquid crystal display device
JP3310569B2 (en) Reflective liquid crystal display
JP3172706B2 (en) Reflective liquid crystal display
US6633352B2 (en) Reflection type liquid crystal display device
JP3210274B2 (en) Reflective liquid crystal display
JP3143271B2 (en) Liquid crystal display
JP2000111912A (en) Reflection type liquid crystal display device
JP3219388B2 (en) Reflective liquid crystal display
JP3361801B2 (en) Reflective liquid crystal display
JPH11249165A (en) Nw mode reflection type tn liquid crystal display
JPH11133416A (en) Reflection type liquid crystal display element

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080323

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees