JP2001100015A - Diffracting optical element and optical system composed of same diffracting optical element - Google Patents

Diffracting optical element and optical system composed of same diffracting optical element

Info

Publication number
JP2001100015A
JP2001100015A JP27973499A JP27973499A JP2001100015A JP 2001100015 A JP2001100015 A JP 2001100015A JP 27973499 A JP27973499 A JP 27973499A JP 27973499 A JP27973499 A JP 27973499A JP 2001100015 A JP2001100015 A JP 2001100015A
Authority
JP
Japan
Prior art keywords
optical element
diffractive optical
shape
optical system
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27973499A
Other languages
Japanese (ja)
Inventor
Hideki Sato
英樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27973499A priority Critical patent/JP2001100015A/en
Publication of JP2001100015A publication Critical patent/JP2001100015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diffracting optical element which can form a polygonal shape capable of maintaining high diffraction efficiency by a small number of straight lines when forming the polygonal shape similar to an ideal shape of a relief type diffracting optical element and can effectively suppress a flare, etc., when built in an optical system and the optical system composed of the diffracting optical element. SOLUTION: The diffracting optical element has a laminate structure wherein at least two or more layers of diffraction gratings are stacked; and the sectional phase of the diffraction grating is a relief type shape derived from a shape shift function by the polygonal shape obtained by connecting one or more straight lines in order and the sectional shapes of the diffraction gratings which are put one over another are similar.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は回折光学素子、特に
複数の波長又は帯域光で使用する回折光学素子及びそれ
を用いた光学系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diffractive optical element, and more particularly to a diffractive optical element used for a plurality of wavelengths or bands of light and an optical system using the same.

【0002】[0002]

【従来の技術】従来、硝材の組み合わせにより色収差を
減じる方法が用いられてきた。それに対し、レンズ面あ
るいは光学系の一部分に回折作用を持つ回折光学素子
(以下、回折格子とも表記)を設け、色収差を減じる方
法がSPIE Vol.1354 Internati
onal Lens Design Conferen
ce(1990)等の文献や特開平4−213421号
公報、特開平6−324262号公報、米国特許第50
44706号明細書等で開示されている。これは光学系
中に配置された屈折面と回折面では、ある基準波長の光
線に対する色収差が逆方向に現れる現象を利用したもの
である。またこのような回折光学素子は、周期的構造の
周期を変化させることで非球面レンズ的な効果をもたせ
ることができ、収差の低減に大きな効果がある。
2. Description of the Related Art Hitherto, a method of reducing chromatic aberration by combining glass materials has been used. On the other hand, a method of providing a diffractive optical element (hereinafter also referred to as a diffraction grating) having a diffractive action on a lens surface or a part of an optical system to reduce chromatic aberration is described in SPIE Vol. 1354 International
onal Lens Design Conferen
ce (1990), JP-A-4-213421, JP-A-6-324262, U.S. Pat.
No. 44706 and the like. This utilizes a phenomenon in which chromatic aberration with respect to a light beam having a certain reference wavelength appears in a reverse direction on a refraction surface and a diffraction surface arranged in an optical system. Further, such a diffractive optical element can have the effect of an aspheric lens by changing the period of the periodic structure, and has a great effect in reducing aberration.

【0003】屈折において1つの光線は屈折後も1つの
光線であるが、回折では各次数に光線が分かれるので、
レンズ系として回折光学素子を用いるには使用波長領域
の光束が特定次数(以下、設計次数とも表記)に集中す
るように格子構造を決定する必要がある。特定の次数に
光が集中している場合、それ以外の回折光の光線強度は
低くなり、強度が0ではその回折光は存在しない。その
ため、前記特徴を有効に使用するためにはその使用波長
全域において、設計次数の光線の回折効率が十分高いこ
とが必要となる。ここで、設計次数以外の回折次数を持
った光線が存在するときには、設計次数の光線とは別の
位置に結像するのでフレア光となってしまう。よって、
回折効果を利用した光学系では、設計次数での回折効率
の分光分布及び設計次数以外の光線の振る舞いについて
も考慮することが重要となる。
In refraction, one ray is one ray even after refraction, but in diffraction, rays are divided into each order.
In order to use a diffractive optical element as a lens system, it is necessary to determine a grating structure such that light beams in a used wavelength region concentrate on a specific order (hereinafter, also referred to as a design order). When light is concentrated at a specific order, the light intensity of the other diffracted light is low, and when the intensity is 0, the diffracted light does not exist. Therefore, in order to effectively use the feature, it is necessary that the diffraction efficiency of the light of the design order is sufficiently high over the entire wavelength range of use. Here, when a light beam having a diffraction order other than the design order exists, an image is formed at a different position from the light beam of the design order, so that flare light is generated. Therefore,
In an optical system using the diffraction effect, it is important to consider the spectral distribution of diffraction efficiency at the design order and the behavior of light rays other than the design order.

【0004】図10に示すような回折光学素子を、ある
面に形成した場合の特定回折次数における回折効率を図
11に示す。横軸は波長、縦軸は回折効率を表す。この
回折光学素子は1次の回折次数で、使用波長領域におい
て回折効率が最も高くなるように設計されている。この
場合、設計次数は1次となる。さらに、設計次数の±1
次の回折効率も併せて載せる。図11で示されるように
設計次数のある波長で回折効率は最も高くなる(以下、
設計波長とも表記)。それ以外の波長以外では回折効率
は徐々に低くなっていく。設計次数における回折効率の
減少分は、他の次数での回折光となり、フレアとなって
現れる。また、この回折光学素子を複数個使用した場合
には特に、設計波長以外の波長での回折効率の低下は透
過率の低下にもつながる。
FIG. 11 shows the diffraction efficiency at a specific diffraction order when a diffractive optical element as shown in FIG. 10 is formed on a certain surface. The horizontal axis represents wavelength, and the vertical axis represents diffraction efficiency. This diffractive optical element is designed so as to have the highest diffraction efficiency in the used wavelength region at the first diffraction order. In this case, the design order is the first order. Furthermore, ± 1 of the design order
The following diffraction efficiency is also shown. As shown in FIG. 11, the diffraction efficiency becomes highest at a certain wavelength of the design order (hereinafter, referred to as the diffraction efficiency).
Design wavelength). At other wavelengths, the diffraction efficiency gradually decreases. The decrease in the diffraction efficiency in the design order becomes diffracted light in another order and appears as a flare. In particular, when a plurality of diffractive optical elements are used, a decrease in diffraction efficiency at a wavelength other than the design wavelength leads to a decrease in transmittance.

【0005】特開平9−127321号公報、特開平9
−127322号公報にこの回折効率の低下を減少でき
る構成が提示されている。特開平9−127321号公
報は2層に重ね合わされた断面形状を持ち、特開平9−
127322号公報は3層に重ね合わされた格子構造を
持つ。この回折光学素子は各材料の境界面に形成された
回折光学素子において、境界前後の材質の屈折率差と格
子溝の深さを最適化することで、高い回折効率を実現し
ている。
[0005] JP-A-9-127321, JP-A-9-127321
Japanese Unexamined Patent Publication (Kokai) No. 127322 discloses a configuration capable of reducing this reduction in diffraction efficiency. Japanese Patent Application Laid-Open No. 9-127321 has a sectional shape superimposed on two layers.
No. 127322 has a lattice structure superimposed on three layers. This diffractive optical element achieves high diffraction efficiency by optimizing the refractive index difference between the materials before and after the boundary and the depth of the grating groove in the diffractive optical element formed on the boundary surface of each material.

【0006】上記実施例においては、格子領域の前後の
材質の屈折率差の波長特性を所望の値にする必要がある
ので、従来の片側が空気となっている回折光学素子の場
合ほど屈折率差を大きくとることができず、格子厚はか
なり厚い構成になる。特開平9−127321号公報で
は10μm程度の厚み、特開平9−127322号公報
では材質は3種類、格子の部分も2つに増えているが、
少なくとも一方の格子厚は7μm以上の格子厚を持つ。
これは通常の1層の回折格子の格子厚が1μm程度であ
るのと比較すると、かなり深い格子形状といえる。
In the above embodiment, since it is necessary to set the wavelength characteristic of the difference between the refractive indices of the materials before and after the grating region to a desired value, the refractive index of a conventional diffractive optical element having one side made of air is higher. The difference cannot be made large, so that the grating thickness becomes considerably thick. In Japanese Patent Application Laid-Open No. 9-127321, the thickness is about 10 μm, and in Japanese Patent Application Laid-Open No. 9-127322, the number of types of materials and the number of lattices are increased to two.
At least one grating thickness has a grating thickness of 7 μm or more.
This can be said to be a considerably deeper grating shape as compared with a normal one-layer diffraction grating having a grating thickness of about 1 μm.

【0007】最近の光学系の小型軽量化の要求に伴っ
て、レリーフ型回折光学素子が注目されており、このレ
リーフ型回折光学素子の断面形状は位相シフト関数から
導かれる形状(以下、理想形状と表記)にすることが望
ましいが、断面を理想形状にすることは、加工技術、加
工時間、検査にかかる時間など様々な問題がある。例え
ば、切削加工で理想形状を得ようとすると、バイトの先
端で加工をしなければならず、バイトの側面で加工を行
う場合と比べると、良好な表面荒さ、とすることは難し
くなる。そのため、このレリーフ型回折光学素子を加工
する際には、理想形状としての曲線形状に近似した形状
を、切削により複数の直線でつないで多角形形状に形成
する方法が、特開平10−293205号公報、特開平
10−332918号公報で提示されている。
With the recent demand for smaller and lighter optical systems, relief type diffractive optical elements have attracted attention, and the cross-sectional shape of the relief type diffractive optical element has a shape derived from a phase shift function (hereinafter, an ideal shape). It is desirable to make the cross section an ideal shape, but there are various problems such as processing technology, processing time, and time required for inspection. For example, in order to obtain an ideal shape by cutting, it is necessary to perform processing at the tip of the cutting tool, and it is difficult to obtain a good surface roughness as compared with the case of performing processing at the side surface of the cutting tool. Therefore, when processing this relief type diffractive optical element, a method of forming a polygonal shape by connecting a shape approximate to a curved shape as an ideal shape with a plurality of straight lines by cutting is disclosed in JP-A-10-293205. And Japanese Unexamined Patent Application Publication No. 10-332918.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、レリー
フ型回折光学素子の断面形状を、複数の直線でつないで
多角形形状を形成し、理想形状に近似する形状を形成す
る際には、理想形状とのずれによって回折効率が低下す
るため、理想形状とのずれを小さくする必要がある。前
述のように複数の層から構成される回折光学素子におい
て、格子厚が深くなる場合には、理想形状の曲率も大き
くなる。そのため、理想形状に近似した形状を得ようと
すれば、多角形形状に切削するに際して、多角形形状と
するための直線の数が増大することとなり、加工回数が
増加することによって、加工時間が長くなり、断面形状
を複数の直線でつないで多角形形状として、理想形状と
しての曲線形状に近似した形状を形成することのメリッ
トが少なくなってしまう。
However, when the cross-sectional shape of the relief type diffractive optical element is formed by connecting a plurality of straight lines to form a polygonal shape, and the shape approximate to the ideal shape is formed, the shape of the relief type diffractive optical element may be changed to the ideal shape. Since the diffraction efficiency decreases due to the deviation, it is necessary to reduce the deviation from the ideal shape. As described above, in a diffractive optical element composed of a plurality of layers, when the grating thickness becomes deep, the curvature of the ideal shape also becomes large. Therefore, when trying to obtain a shape close to the ideal shape, when cutting into a polygonal shape, the number of straight lines for forming the polygonal shape increases, and the processing time increases due to an increase in the number of times of processing. It becomes longer, and the merits of forming a shape that approximates a curved shape as an ideal shape by connecting the cross-sectional shapes with a plurality of straight lines and forming a polygonal shape are reduced.

【0009】そこで、本発明は、上記課題を解決し、レ
リーフ型回折光学素子における理想形状に近似した多角
形形状を形成するに際して、高い回折効率が維持できる
多角形形状を少ない直線の数で形成することができ、光
学系に組み込んだ際にフレア等を有効に抑制できる回折
光学素子、および該回折光学素子で構成した光学系を提
供することを目的としている。
In view of the above, the present invention has been made to solve the above-mentioned problems, and when forming a polygonal shape approximate to an ideal shape in a relief type diffractive optical element, a polygonal shape capable of maintaining high diffraction efficiency is formed with a small number of straight lines. It is an object of the present invention to provide a diffractive optical element capable of effectively suppressing flare and the like when incorporated in an optical system, and an optical system constituted by the diffractive optical element.

【0010】[0010]

【課題を解決するための手段】本発明は、上記課題を達
成するため、回折光学素子、および該回折光学素子で構
成した光学系を、つぎの(1)〜(12)のように構成
したことを特徴とするものである。 (1)本発明の回折光学素子は、少なくとも2層以上の
回折格子が重なり合う積層構造を有する回折光学素子に
おいて、前記回折格子の断面形状が、一つの直線または
複数の直線を順次連結した多角形形状により、位相シフ
ト関数から導かれるレリーフ型形状に近似した形状を有
し、該重なり合う回折格子の断面形状が相似形状である
ことを特徴としている。 (2)本発明の回折光学素子は、前記回折格子が、少な
くとも2種類の分散の異なる材質から構成されているこ
とを特徴としている。 (3)本発明の回折光学素子は、前記分散の異なる材質
から構成された回折格子の間に空気層を有することを特
徴としている。 (4)本発明の回折光学素子は、前記複数の直線を順次
連結した多角形形状が、凸形状で構成されていることを
特徴としている。 (5)本発明の回折光学素子は、前記複数の直線を順次
連結した多角形形状が、一層が凸形状、二層が凹形状の
格子形状で構成されていることを特徴としている。 (6)本発明の回折光学素子は、隣り合う回折格子の形
状が異なっていることを特徴としている。 (7)本発明の回折光学素子は、隣り合う回折格子にお
いて前記順次連結して多角形形状を形成するための複数
の直線の数が異なっていることを特徴としている。 (8)本発明の回折光学素子を有する光学系は、前記回
折光学素子を上記した本発明のいずれかの回折光学素子
で構成したことを特徴としている。 (9)本発明の前記光学系は、結像光学系であることを
特徴としている。 (10)本発明の前記結像光学系において、絞り近傍に
配置した平板ガラス面、またはレンズ曲面、または撮影
レンズ内を、上記した本発明のいずれかの回折光学素子
で構成したことを特徴としている。 (11)本発明の前記光学系は、観察光学系であること
を特徴としている。 (12)本発明の前記観察光学系において、対物レンズ
部、またはプリズム表面、または接眼レンズ内を、上記
した本発明のいずれかの回折光学素子で構成したことを
特徴としている。
According to the present invention, in order to achieve the above object, a diffractive optical element and an optical system constituted by the diffractive optical element are configured as in the following (1) to (12). It is characterized by the following. (1) A diffractive optical element according to the present invention is a diffractive optical element having a laminated structure in which at least two or more diffraction gratings overlap, wherein the cross-sectional shape of the diffraction grating is a polygon in which one straight line or a plurality of straight lines are sequentially connected. Depending on the shape, it has a shape similar to a relief type shape derived from a phase shift function, and the cross-sectional shape of the overlapping diffraction grating is similar. (2) The diffractive optical element of the present invention is characterized in that the diffraction grating is made of at least two kinds of materials having different dispersions. (3) The diffractive optical element of the present invention is characterized in that an air layer is provided between the diffraction gratings made of the materials having different dispersions. (4) The diffractive optical element of the present invention is characterized in that the polygonal shape in which the plurality of straight lines are sequentially connected is configured as a convex shape. (5) The diffractive optical element of the present invention is characterized in that the polygonal shape in which the plurality of straight lines are sequentially connected is formed in a lattice shape in which one layer is convex and two layers are concave. (6) The diffractive optical element of the present invention is characterized in that adjacent diffraction gratings have different shapes. (7) The diffractive optical element according to the present invention is characterized in that adjacent diffraction gratings have different numbers of a plurality of straight lines for forming the polygonal shape by being sequentially connected. (8) An optical system having a diffractive optical element according to the present invention is characterized in that the diffractive optical element is constituted by any one of the above-described diffractive optical elements according to the present invention. (9) The optical system according to the present invention is an imaging optical system. (10) In the image forming optical system of the present invention, the flat glass surface, the lens curved surface, or the inside of the taking lens arranged near the stop is constituted by any one of the diffractive optical elements of the present invention described above. I have. (11) The optical system according to the present invention is an observation optical system. (12) In the observation optical system of the present invention, the objective lens section, the prism surface, or the inside of the eyepiece is constituted by any one of the above-described diffractive optical elements of the present invention.

【0011】[0011]

【発明の実施の形態】上記した構成のように、重なり合
う複数の回折格子の格子形状を相似形状に加工すること
で、積層構造を持つ回折光学素子において、各回折格子
の直線による分割数を少なくすることができ、切削加工
時等の格子形状の加工性が大幅に改善される。また格子
の分割数が少なくなることで、良好な表面荒さ、とする
ことも容易となり、良好な回折光学素子が得られる。そ
のため、光学系に組み込んだ際にも、高い回折効率を維
持することができる。また、本発明の回折光学素子を用
いることによって、高性能な撮影レンズ、あるいは高性
能な観察光学系を提供することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, by processing a plurality of overlapping diffraction gratings into similar shapes, in a diffractive optical element having a laminated structure, the number of divisions of each diffraction grating by straight lines is reduced. And the workability of the lattice shape at the time of cutting or the like is greatly improved. In addition, since the number of divisions of the grating is reduced, it is easy to obtain good surface roughness, and a good diffractive optical element can be obtained. Therefore, even when incorporated in an optical system, high diffraction efficiency can be maintained. Further, by using the diffractive optical element of the present invention, a high-performance photographing lens or a high-performance observation optical system can be provided.

【0012】[0012]

【実施例】以下に、本発明の実施例について説明する。 [実施例1]図1は本発明の実施例1における回折光学
素子の正面図である。回折光学素子1は基板2の表面に
回折格子3が形成された構成となっている。図2は図1
のA−A’断面で切断した断面形状の一部である。図2
は、深さ方向に誇張した図となっている。本回折光学素
子全体の断面形状は、図2には示していないが、素子基
板2上に作製された第1層の領域4、第2層の領域5、
第1層の領域と第2層の領域の間に空気層6を有する構
造となっている。また、第1層の領域と第2層の領域は
異なる材質からなり、全層を通して1つの回折光学素子
として作用することを特徴としている。
Embodiments of the present invention will be described below. Embodiment 1 FIG. 1 is a front view of a diffractive optical element according to Embodiment 1 of the present invention. The diffractive optical element 1 has a configuration in which a diffraction grating 3 is formed on the surface of a substrate 2. FIG. 2 shows FIG.
Is a part of the cross-sectional shape taken along the line AA ′ of FIG. FIG.
Is a diagram exaggerated in the depth direction. Although the sectional shape of the entire diffractive optical element is not shown in FIG. 2, the first layer region 4, the second layer region 5,
The structure has an air space 6 between the first layer region and the second layer region. Further, the first layer region and the second layer region are made of different materials, and function as one diffractive optical element throughout all layers.

【0013】次に本発明の回折光学素子の回折効率につ
いて説明する。通常の図10に示すような1層の透過型
回折格子で、設計波長λ0で回折効率が最大となる条件
は、光束が格子に対して垂直入射した場合は、回折格子
の山と谷の光学光路長差が波長の整数倍になればよく (n011−n021)d=mλ0 (1) となる。ここでn011は波長λ0での入射側の材質の屈折
率、n021は波長λ0での射出側の材質の屈折率である。
dは格子厚、mは回折次数である。
Next, the diffraction efficiency of the diffractive optical element of the present invention will be described. In a single-layer transmission type diffraction grating as shown in FIG. 10, the condition at which the diffraction efficiency is maximized at the design wavelength λ 0 is that when the light beam is perpendicularly incident on the grating, the peaks and valleys of the diffraction grating are It is sufficient that the optical path length difference is an integral multiple of the wavelength, and (n 011 −n 021 ) d = mλ 0 (1). Here, n 011 is the refractive index of the material on the incident side at the wavelength λ 0 , and n 021 is the refractive index of the material on the emitting side at the wavelength λ 0 .
d is the grating thickness and m is the diffraction order.

【0014】2層以上の構造からなる回折光学素子で
も、基本は同様で、全層を通して一つの回折格子として
作用させるためには、各材質の境界に形成された回折格
子の山と谷の光学光路長差を求め、それを全層にわたっ
て加えあわせたものが波長の整数倍になるように決定す
る。従って図2に示した理想形状の場合の条件式は (n011−n021)d 1±(n022−n012)d2=mλ0 (2) となる。ここで、n011は第1の回折格子の入射側の材
質の波長λ0での屈折率、n021は第1の回折格子の射出
側の材質の波長λ0での屈折率、n012は第2の回折格子
の入射側の材質の波長λ0での屈折率、n022は第2の回
折格子の射出側の材質の波長λ0での屈折率、d1、d2
はそれぞれ第1の回折格子と第2の回折格子の格子厚で
ある。ここで回折方向を図2中0次回折光から左寄りに
回折するのを正の回折次数とすると、(2)式での各層
の加減の符号は、図中左から右に格子厚が減少する格子
形状の場合が正となり、逆に左から右に格子厚が増加す
る格子形状の場合が負となる。図2では各回折格子面は
空気との境界面に形成されているが、(2)式からも明
らかなようにこれに限定するものではなく、2つの異な
る材料の境界面に回折格子面を構成した回折格子を有し
ても良い。
A diffractive optical element having a structure of two or more layers
Is basically the same, as one diffraction grating through all layers
In order to work, the diffraction grating formed at the boundary of each material
Obtain the optical path length difference between the peak and valley of the child and spread it over all layers.
Is determined so that the sum is an integer multiple of the wavelength
You. Therefore, the conditional expression for the ideal shape shown in FIG.011-N021) D 1± (n022-N012) DTwo= Mλ0 (2) Where n011Is the material on the incident side of the first diffraction grating
Quality wavelength λ0Index of refraction at n021Is the emission of the first diffraction grating
Wavelength of material on the side0Index of refraction at n012Is the second diffraction grating
Wavelength λ of the material on the incident side of0Index of refraction at n022Is the second time
The wavelength λ of the material on the exit side of the folded grating0Index of refraction at d1, DTwo
Are the grating thicknesses of the first diffraction grating and the second diffraction grating, respectively.
is there. Here, the diffraction direction is shifted leftward from the 0th-order diffracted light in FIG.
Assuming that the diffraction order is a positive diffraction order, each layer in the equation (2)
The sign of the addition and subtraction is the lattice whose lattice thickness decreases from left to right in the figure.
In the case of a shape, the lattice thickness increases from left to right.
Is negative in the case of a lattice shape. In FIG. 2, each diffraction grating surface is
It is formed at the boundary surface with air, but it is clear from equation (2).
It is not limited to this as it seems, but two different
Having a diffraction grating on the boundary surface of the material
May be.

【0015】次に回折光学素子に形成させる回折格子に
ついて説明する。回折光学素子1に形成させる回折格子
3を表す位相関数は、 となる。ただし、rは基板中心からの距離である。位相
差として2πを与える構造が1周期となり、ピッチをP
とすれば、 より となる。
Next, a diffraction grating formed on the diffractive optical element will be described. The phase function representing the diffraction grating 3 formed on the diffractive optical element 1 is: Becomes Here, r is the distance from the center of the substrate. A structure that gives 2π as a phase difference is one cycle, and the pitch is P
given that, Than Becomes

【0016】以下に、具体例を示し本実施例の構成と従
来構成についての差を説明する。重なり合う回折格子の
形状の組み合わせによる回折効率の違いを明確にするた
めに、図2に示した形状を理想形状とし、極端な例とし
て両方の回折格子の形状を直線で構成したもの(相似形
状)、一方を直線で構成した場合の2つの組み合わせを
図3、図4に示す。本実施例における回折格子は、上下
の重なり合う格子が相似形状であれば、回折格子の形状
は問わない。また隣りあう回折格子の形状は同じでなく
とも良い。また、本実施例の積層回折格子は図2に示し
た2層の構造を有している。ここで材質、格子厚は図2
の4に大日本インキ化学工業(株)製の紫外線硬化樹脂
C001(nd=1.524、νd=50.8)、図2の
5に紫外線硬化樹脂2(nd=1.635、νd=23.
0)を例にとる。図2の4の回折格子の格子厚は9.5
μm、図2の5の回折格子の格子厚は6.9μm、2つ
の格子間距離(図2の6)は1.0μmである。また、
この実施例における回折格子の格子形状は、(4)式に
おいて、C1=−4.012057×10-5、C2=−
4.823176×10-10として求めた第2項までの
和を(3)式に代入し、(3)式でλ0=587.56
[nm]として求めた位相関数φ(r)に従う。
A specific example will be described below to explain the difference between the configuration of the present embodiment and the conventional configuration. In order to clarify the difference in diffraction efficiency due to the combination of the shapes of the overlapping diffraction gratings, the shape shown in FIG. 2 is assumed to be an ideal shape, and as an extreme example, both diffraction grating shapes are formed by straight lines (similar shape). FIG. 3 and FIG. 4 show two combinations in which one is constituted by a straight line. The shape of the diffraction grating in this embodiment is not limited as long as the vertically overlapping gratings have similar shapes. Also, the shapes of adjacent diffraction gratings need not be the same. Further, the laminated diffraction grating of this embodiment has a two-layer structure shown in FIG. Here, the material and grid thickness are shown in FIG.
4 to Dainippon Ink and Chemicals ultraviolet curing resin C001 of (n d = 1.524, ν d = 50.8), ultraviolet curable resin 5 in FIG. 2 2 (n d = 1.635, ν d = 23.
0) as an example. The grating thickness of the diffraction grating 4 in FIG. 2 is 9.5.
2, the grating thickness of the diffraction grating 5 in FIG. 2 is 6.9 μm, and the distance between the two gratings (6 in FIG. 2) is 1.0 μm. Also,
The grating shape of the diffraction grating in this embodiment is as follows: C 1 = −4.012057 × 10 −5 and C 2 = − in equation (4).
The sum up to the second term obtained as 4.823176 × 10 −10 is substituted into the equation (3), and λ 0 = 587.56 in the equation (3).
According to the phase function φ (r) obtained as [nm].

【0017】図5に、図2、図3および図4で示した回
折格子で10輪帯目を例にした際の回折効率を示す。図
5に示した回折効率のグラフでは、理想形状における回
折効率の最大は100.0%である。回折格子を相似形
状で構成したものと理想形状との差は最大で0.032
%、異形状で構成したものと理想形状との差は最大で
2.581%となった。このことから、本発明は回折光
学素子において、高い回折効率を維持したまま、直線で
回折格子を構成できるので、回折光学素子を容易に作製
することが可能となる。
FIG. 5 shows the diffraction efficiency of the diffraction grating shown in FIGS. 2, 3 and 4 when the tenth orbicular zone is taken as an example. In the diffraction efficiency graph shown in FIG. 5, the maximum diffraction efficiency in the ideal shape is 100.0%. The difference between the diffraction grating formed in a similar shape and the ideal shape is 0.032 at the maximum.
%, The difference between the one formed in the different shape and the ideal shape was 2.581% at the maximum. Accordingly, in the present invention, since the diffraction grating can be constituted by a straight line while maintaining a high diffraction efficiency in the diffractive optical element, the diffractive optical element can be easily manufactured.

【0018】[実施例2]図6に、実施例2の回折格子
の断面形状を示す。実施例1では、本発明における効果
を明確に示すために、理想形状を一本の直線で構成した
ブレーズ型の回折格子で構成しているが、本実施例で
は、第1層、第2層の回折格子は理想形状を複数の直線
で多角形近似した凸形状の回折格子で構成されている。
この図6の太い実線が実際の格子形状、細い実線は理想
形状を示す。また、第1層と第2層の重なり合う回折格
子は相似形状となっている。この格子形状は理想形状を
複数の直線で多角形近似しているので、理想形状に近い
回折効率が得られる。加えて積層構造の回折格子におい
て、重なり合う回折格子が相似形状となっているので、
前述の実施例と同様に高い回折効率を維持することがで
きる。
Embodiment 2 FIG. 6 shows a cross-sectional shape of a diffraction grating of Embodiment 2. In the first embodiment, in order to clearly show the effect of the present invention, a blazed diffraction grating in which an ideal shape is formed by one straight line is used. In the present embodiment, the first layer and the second layer are used. Is composed of a convex diffraction grating obtained by approximating an ideal shape to a polygon by a plurality of straight lines.
The thick solid line in FIG. 6 indicates the actual lattice shape, and the thin solid line indicates the ideal shape. The overlapping diffraction gratings of the first layer and the second layer have similar shapes. Since the lattice shape approximates the ideal shape to a polygon with a plurality of straight lines, a diffraction efficiency close to the ideal shape can be obtained. In addition, in the diffraction grating of the laminated structure, since the overlapping diffraction gratings have a similar shape,
High diffraction efficiency can be maintained as in the above-described embodiment.

【0019】また、理想形状を直線で加工するので、回
折格子を精度良く、容易に作製することができる。実施
例2においては、理想形状を複数の直線で分割して構成
しているが、重なり合う回折格子が相似形状であれば、
隣合う回折格子の分割数は異なっても良い。
Further, since the ideal shape is processed by a straight line, a diffraction grating can be easily manufactured with high accuracy. In the second embodiment, the ideal shape is divided by a plurality of straight lines, but if the overlapping diffraction gratings have similar shapes,
The number of divisions of adjacent diffraction gratings may be different.

【0020】[実施例3]図7に、実施例3の回折格子
の断面形状を示す。実施例2では、理想形状の回折格子
を複数の直線で多角形近似した凸形状の回折格子で第1
層、第2層を構成していたが、本実施例では第1層、第
2層の回折格子は理想形状を複数の直線で多角形近似し
た格子形状で構成されており、第1層は凸形状、第2層
は凹形状で構成されている。この図7の太い実線が実際
の格子形状、細い実線は理想形状を示す。また、第1層
と第2層の重なり合う回折格子は相似形状となってい
る。この格子形状においても、理想形状を複数の直線で
多角形近似しているので、理想形状に近い回折効率が得
られる。加えて積層構造の回折格子において、重なり合
う回折格子が相似形状となっているので、前述の実施例
と同様に高い回折効率を維持することができる。
Third Embodiment FIG. 7 shows a sectional shape of a diffraction grating of a third embodiment. In the second embodiment, the first diffraction grating is a convex diffraction grating obtained by approximating a diffraction grating having an ideal shape with a plurality of straight lines.
Although the first layer and the second layer are configured in the present embodiment, the diffraction grating of the first layer and the second layer is configured in a lattice shape obtained by approximating the ideal shape to a polygon with a plurality of straight lines. The convex shape and the second layer have a concave shape. The thick solid line in FIG. 7 indicates the actual lattice shape, and the thin solid line indicates the ideal shape. The overlapping diffraction gratings of the first layer and the second layer have similar shapes. Also in this lattice shape, since the ideal shape is approximated by a polygon with a plurality of straight lines, diffraction efficiency close to the ideal shape can be obtained. In addition, in the diffraction grating having the laminated structure, since the overlapping diffraction gratings have similar shapes, high diffraction efficiency can be maintained as in the above-described embodiment.

【0021】また、理想形状を直線で加工するので、回
折格子を精度良く、容易に作製することができる。実施
例3においては、理想形状を複数の直線で分割して構成
しているが、重なり合う回折格子が相似形状であれば、
隣合う回折格子の分割数は異なっても良い。
Further, since the ideal shape is processed by a straight line, the diffraction grating can be easily manufactured with high accuracy. In the third embodiment, the ideal shape is divided by a plurality of straight lines, but if the overlapping diffraction gratings have similar shapes,
The number of divisions of adjacent diffraction gratings may be different.

【0022】[実施例4]図8に、本発明の実施例4に
おける構成を示す。図8はカメラなどの撮影光学系の断
面を示したものである。図において、7は撮影レンズ
で、内部に8の絞りと上記各実施例で説明した回折光学
素子1を持つ。図中の9は結像面で、フイルムあるいは
CCDである。重なり合う格子を同形状としており、高
い回折効率を維持しているので、フレアが少なく、高い
解像力を持つ高性能の撮影レンズを得られる。
[Embodiment 4] FIG. 8 shows the configuration of Embodiment 4 of the present invention. FIG. 8 shows a cross section of a photographing optical system such as a camera. In the figure, reference numeral 7 denotes a photographing lens, which has an aperture stop 8 and the diffractive optical element 1 described in each of the above embodiments. Reference numeral 9 in the figure denotes an image forming surface, which is a film or a CCD. Since the overlapping gratings have the same shape and maintain high diffraction efficiency, it is possible to obtain a high-performance photographic lens with less flare and high resolution.

【0023】本実施例では、絞り近傍に配置した平板ガ
ラス面に上記各実施例で説明した回折光学素子を設けた
が、これに限定するものではなく、レンズ曲面に設けて
も良いし、撮影レンズ内に複数の回折格子を設けても良
い。
In this embodiment, the diffractive optical element described in each of the above embodiments is provided on the flat glass surface disposed near the stop. However, the present invention is not limited to this. A plurality of diffraction gratings may be provided in the lens.

【0024】また、本実施例ではカメラの撮影レンズに
ついて示したが、これに限定せず、ビデオカメラの撮影
レンズ、事務機のイメージスキャナ、デジタル複写機の
リーダーレンズなどの結像光学系に使用しても同様の効
果が得られる。
In this embodiment, the taking lens of the camera has been described. However, the present invention is not limited to this, and may be used for an imaging optical system such as a taking lens of a video camera, an image scanner of an office machine, and a leader lens of a digital copier. The same effect can be obtained even if the same is performed.

【0025】[実施例5]図9に、本発明の実施例5に
おける構成を示す。図9は双眼鏡などの観察光学系の断
面であり、図中の10は対物レンズ、11は像を成立さ
せるためのプリズム、12は接眼レンズ、13は瞳面
(評価面)で図中の1は上記各実施例で説明した回折光
学素子である。1は対物レンズの結像面12での色収差
等を補正するために形成されている。重なり合う格子を
同形状としていおり、高い回折効率を維持しているの
で、フレアが少なく、高い解像力を持つ高性能の撮影レ
ンズを得られる。
[Embodiment 5] FIG. 9 shows the configuration of Embodiment 5 of the present invention. FIG. 9 is a cross section of an observation optical system such as binoculars, in which 10 is an objective lens, 11 is a prism for establishing an image, 12 is an eyepiece, and 13 is a pupil plane (evaluation plane). Denotes a diffractive optical element described in each of the above embodiments. Reference numeral 1 is formed to correct chromatic aberration and the like on the image forming surface 12 of the objective lens. Since the overlapping gratings have the same shape and maintain high diffraction efficiency, a high-performance photographic lens with less flare and high resolution can be obtained.

【0026】本実施例では、対物レンズ部に回折光学素
子を形成した場合を示したが、これに限定するものでは
なく、プリズム表面や接眼レンズ内であっても、同様の
効果が得られる。しかし、結像面より物体側に設けるこ
とで対物レンズのみでの色収差低減効果があるため、肉
眼の観察系の場合は対物レンズ側に設けることが望まし
い。本実施例では、双眼鏡の場合を示したがこれに限定
するものではなく、地上望遠鏡や天体観測用望遠鏡など
であっても良いし、レンズシャッターカメラやビデオカ
メラなどの光学式ファインダーであっても同様の効果が
得られる。
In this embodiment, the case where the diffractive optical element is formed in the objective lens portion has been described. However, the present invention is not limited to this, and the same effect can be obtained even on the prism surface or in the eyepiece. However, since it is effective to reduce chromatic aberration only with the objective lens by providing it on the object side from the imaging plane, it is desirable to provide it on the objective lens side in the case of a macroscopic observation system. In the present embodiment, the case of binoculars has been described, but the present invention is not limited to this, and may be a terrestrial telescope or a telescope for astronomical observation, or may be an optical viewfinder such as a lens shutter camera or a video camera. Similar effects can be obtained.

【0027】[0027]

【発明の効果】以上に説明したように、本発明によれ
ば、レリーフ型回折光学素子における理想形状に近似し
た多角形形状を形成するに際して、高い回折効率が維持
できる多角形形状を少ない直線の数で形成することがで
き、光学系に組み込んだ際にフレア等を有効に抑制でき
る回折光学素子、および該回折光学素子で構成した光学
系を実現することができる。
As described above, according to the present invention, when forming a polygonal shape approximate to an ideal shape in a relief type diffractive optical element, a polygonal shape capable of maintaining high diffraction efficiency is reduced to a straight line with a small number of straight lines. A diffractive optical element which can be formed by a number and can effectively suppress flare and the like when incorporated in an optical system, and an optical system constituted by the diffractive optical element can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における回折光学素子の正面
図。
FIG. 1 is a front view of a diffractive optical element according to a first embodiment of the present invention.

【図2】図1における回折光学素子のA−A’断面図。FIG. 2 is a sectional view of the diffractive optical element taken along the line A-A 'in FIG.

【図3】実施例1における回折効率の違いを説明するた
めの上下相似形状の回折格子の断面形状を示す図。
FIG. 3 is a diagram illustrating a cross-sectional shape of a diffraction grating having a similar upper and lower shape for explaining a difference in diffraction efficiency in the first embodiment.

【図4】実施例1における回折効率の違いを説明するた
めの上下異形状の回折格子の断面形状を示す図。
FIG. 4 is a diagram illustrating a cross-sectional shape of a vertically differently shaped diffraction grating for explaining a difference in diffraction efficiency in the first embodiment.

【図5】実施例1において回折光学素子の理想形状との
差を説明するための回折効率を示す図。
FIG. 5 is a diagram showing diffraction efficiency for explaining a difference from an ideal shape of the diffractive optical element in the first embodiment.

【図6】本発明の実施例2における回折格子の断面形状
を示す図。
FIG. 6 is a diagram illustrating a cross-sectional shape of a diffraction grating according to a second embodiment of the present invention.

【図7】本発明の実施例3における回折格子の断面形状
を示す図。
FIG. 7 is a diagram illustrating a cross-sectional shape of a diffraction grating according to a third embodiment of the present invention.

【図8】本発明の実施例4における撮影光学系の構成を
示す図。
FIG. 8 is a diagram illustrating a configuration of a photographic optical system according to a fourth embodiment of the present invention.

【図9】本発明の実施例5における観察光学系の構成を
示す図。
FIG. 9 is a diagram illustrating a configuration of an observation optical system according to a fifth embodiment of the present invention.

【図10】従来例の回折格子における格子形状(ブレー
ズ形状)を示す図。
FIG. 10 is a diagram showing a grating shape (blaze shape) in a conventional diffraction grating.

【図11】従来例の回折効率を示す図。FIG. 11 is a diagram showing diffraction efficiency of a conventional example.

【符号の説明】[Explanation of symbols]

1:回折光学素子 2:素子基板 3:回折格子 4:第1層の領域 5:第2層の領域 6:第1層と第2層の間の空気層 7:撮影レンズ 8:絞り 9:結像面 10:対物レンズ 11:プリズム 12:接眼レンズ 13:瞳面(評価面) 1: Diffractive optical element 2: Element substrate 3: Diffraction grating 4: Area of first layer 5: Area of second layer 6: Air layer between first and second layers 7: Photographing lens 8: Aperture 9: Imaging surface 10: Objective lens 11: Prism 12: Eyepiece 13: Pupil surface (evaluation surface)

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】少なくとも2層以上の回折格子が重なり合
う積層構造を有する回折光学素子において、 前記回折格子の断面形状が、一つの直線または複数の直
線を順次連結した多角形形状により、位相シフト関数か
ら導かれるレリーフ型形状に近似した形状を有し、該重
なり合う回折格子の断面形状が相似形状であることを特
徴とする回折光学素子。
1. A diffractive optical element having a laminated structure in which at least two or more diffraction gratings overlap each other, wherein a cross-sectional shape of the diffraction grating is a phase shift function by a polygonal shape in which one straight line or a plurality of straight lines are sequentially connected. A diffractive optical element having a shape similar to a relief type shape derived from the above, wherein the cross-sectional shape of the overlapping diffraction grating is similar.
【請求項2】前記重なり合う回折格子が、少なくとも2
種類の分散の異なる材質から構成されていることを特徴
とする請求項1に記載の回折光学素子。
2. The method of claim 2, wherein said overlapping diffraction gratings have at least two diffraction gratings.
The diffractive optical element according to claim 1, wherein the diffractive optical element is made of materials having different kinds of dispersion.
【請求項3】前記分散の異なる材質から構成された回折
格子の間に空気層を有することを特徴とする請求項2に
記載の回折光学素子。
3. The diffractive optical element according to claim 2, wherein an air layer is provided between the diffraction gratings made of the materials having different dispersions.
【請求項4】前記複数の直線を順次連結した多角形形状
が、凸形状で構成されていることを特徴とする請求項1
〜3のいずれか1項に記載の回折光学素子。
4. A polygonal shape in which said plurality of straight lines are sequentially connected is constituted by a convex shape.
4. The diffractive optical element according to any one of claims 1 to 3.
【請求項5】前記複数の直線を順次連結した多角形形状
が、一層が凸形状、二層が凹形状の格子形状で構成され
ていることを特徴とする請求項1〜4のいずれか1項に
記載の回折光学素子。
5. A polygonal shape in which said plurality of straight lines are sequentially connected is formed in a lattice shape with one layer being convex and two layers being concave. Item 10. A diffractive optical element according to item 1.
【請求項6】前記回折格子は、隣り合う回折格子の形状
が異なっていることを特徴とする請求項1〜5のいずれ
か1項に記載の回折光学素子。
6. The diffractive optical element according to claim 1, wherein adjacent ones of the diffraction gratings have different shapes.
【請求項7】前記回折格子は、隣り合う回折格子におい
て前記順次連結して多角形形状を形成するための複数の
直線の数が異なっていることを特徴とする請求項1〜6
のいずれか1項に記載の回折光学素子。
7. The diffraction grating according to claim 1, wherein adjacent diffraction gratings have different numbers of a plurality of straight lines for forming the polygonal shape by being sequentially connected.
The diffractive optical element according to any one of the above.
【請求項8】回折光学素子を有する光学系において、前
記回折光学素子を請求項1〜7のいずれか1項に記載の
回折光学素子で構成したことを特徴とする光学系。
8. An optical system having a diffractive optical element, wherein the diffractive optical element is constituted by the diffractive optical element according to any one of claims 1 to 7.
【請求項9】前記光学系が、結像光学系であることを特
徴とする請求項8に記載の光学系。
9. The optical system according to claim 8, wherein said optical system is an imaging optical system.
【請求項10】前記結像光学系において、絞り近傍に配
置した平板ガラス面、またはレンズ曲面、または撮影レ
ンズ内に、請求項1〜7のいずれか1項に記載の回折光
学素子を設けたことを特徴とする請求項9に記載の光学
系。
10. The diffractive optical element according to any one of claims 1 to 7, wherein the diffractive optical element according to any one of claims 1 to 7 is provided on a flat glass surface, a lens curved surface, or a taking lens disposed near the stop in the imaging optical system. The optical system according to claim 9, wherein:
【請求項11】前記光学系が、観察光学系であることを
特徴とする請求項8記載の光学系。
11. The optical system according to claim 8, wherein said optical system is an observation optical system.
【請求項12】前記観察光学系において、対物レンズ
部、またはプリズム表面、または接眼レンズ内に、請求
項1〜7のいずれか1項に記載の回折光学素子を設けた
ことを特徴とする請求項11に記載の光学系。
12. A diffractive optical element according to claim 1, wherein said observation optical system is provided with an objective lens portion, a prism surface, or an eyepiece. Item 12. The optical system according to Item 11.
JP27973499A 1999-09-30 1999-09-30 Diffracting optical element and optical system composed of same diffracting optical element Pending JP2001100015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27973499A JP2001100015A (en) 1999-09-30 1999-09-30 Diffracting optical element and optical system composed of same diffracting optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27973499A JP2001100015A (en) 1999-09-30 1999-09-30 Diffracting optical element and optical system composed of same diffracting optical element

Publications (1)

Publication Number Publication Date
JP2001100015A true JP2001100015A (en) 2001-04-13

Family

ID=17615156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27973499A Pending JP2001100015A (en) 1999-09-30 1999-09-30 Diffracting optical element and optical system composed of same diffracting optical element

Country Status (1)

Country Link
JP (1) JP2001100015A (en)

Similar Documents

Publication Publication Date Title
JP5137432B2 (en) Adherent two-layer type diffractive optical element and optical system and optical apparatus using the same
JP3472103B2 (en) Diffractive optical element and optical system using the same
JP4336412B2 (en) Diffractive optical element and optical system using the same
JP3472097B2 (en) Diffractive optical element and optical system using the same
JP4587418B2 (en) Diffractive optical element and optical system having the diffractive optical element
JPH09127322A (en) Diffraction optical element
US7710651B2 (en) Contacting two-layer diffractive optical element
US8693096B2 (en) Diffractive optical element, optical system including the same, and image pickup apparatus
JP3495884B2 (en) Diffractive optical element and optical system using the same
JP5258204B2 (en) Diffractive optical element, optical system using the same, and optical instrument
JP3691638B2 (en) Zoom lens and camera using the same
JP4006362B2 (en) Diffractive optical element and optical system having the same
JP4227210B2 (en) Diffractive optical element and optical system using the same
JP3472154B2 (en) Diffractive optical element and optical system having the same
KR100506498B1 (en) Diffracting optical element, and optical system and optical apparatus having the same
US6937397B2 (en) Diffractive optical element and optical system having the same
US6930833B2 (en) Diffractive optical element, and optical system and optical apparatus provide with the same
US6947214B2 (en) Diffractive optical element and optical system having the same
JP2002071925A (en) Diffractive optical element and optical system using the same
JP2005308958A (en) Diffraction optical element and optical system having the same
JP2001100015A (en) Diffracting optical element and optical system composed of same diffracting optical element
JP5459966B2 (en) Diffractive optical element, optical system having the same, and optical instrument
JPH09325203A (en) Diffraction optical element
JP2015203790A (en) Optical system and optical device having the same
JP4088283B2 (en) Diffractive optical element, optical system including the same, and optical apparatus