JP2001098322A - Method of producing steel having fine-grained ferritic structure - Google Patents

Method of producing steel having fine-grained ferritic structure

Info

Publication number
JP2001098322A
JP2001098322A JP27172499A JP27172499A JP2001098322A JP 2001098322 A JP2001098322 A JP 2001098322A JP 27172499 A JP27172499 A JP 27172499A JP 27172499 A JP27172499 A JP 27172499A JP 2001098322 A JP2001098322 A JP 2001098322A
Authority
JP
Japan
Prior art keywords
steel
temperature
phase
processing
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27172499A
Other languages
Japanese (ja)
Other versions
JP4183861B2 (en
Inventor
Yoshitaka Adachi
吉隆 足立
Toshiro Tomita
俊郎 富田
Shuhei Shimokawa
修平 下川
Masaaki Fujioka
政昭 藤岡
Tomoyuki Yokota
智之 横田
Narikazu Matsukura
功和 枩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
JFE Engineering Corp
Nippon Steel Corp
Original Assignee
Kobe Steel Ltd
Nippon Steel Corp
Sumitomo Metal Industries Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Nippon Steel Corp, Sumitomo Metal Industries Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Kobe Steel Ltd
Priority to JP27172499A priority Critical patent/JP4183861B2/en
Publication of JP2001098322A publication Critical patent/JP2001098322A/en
Application granted granted Critical
Publication of JP4183861B2 publication Critical patent/JP4183861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing steel with a ferritic structure excellent in strength, toughness and ductility, and in which the average crystal grain size is extremely fine by using low carbon steel or low carbon alloy steel. SOLUTION: Steel containing, by weight, 0.05 to 0.3% C and 0.5 to 3% Mn or steel containing 0.05 to 0.3% C, 0.5 to 3% Mn, 0.01 to 0.3% Si, 0 to 0.05% Nb, 0 to 0.05 Ti, 0 to 0.08% V, 0 to 1% Cr and 0 to 1% Mo is cooled from >=Ac3 point at a cooling rate of 5 to <100 deg.C/s to <=650 deg.C, in the temperature range from the same to a temperature in which a low temperature phase starts to precipitate, working in which the reduction rate of the cross-sectional area after the finish of the working to the start of the working is >=60% is executed by one pass or multipass of at least >=30% per pass, and after that, the steel is cooled to >=400% deg.C at a cooling rate of air cooling or above the same.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、多量の合金元素を
含まず、しかも、延性にすぐれかつ高靱性の高強度鋼の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength steel which does not contain a large amount of alloying elements, has excellent ductility, and has high toughness.

【0002】[0002]

【従来の技術】鋼の強化方法としては、従来、特定元素
を固溶させる方法、冷間にて加工し加工歪みを与える方
法、熱処理により強度の高い組織に変態させる方法、A
lN(窒化アルミニウム)やTiC(炭化チタン)など
の微細な粒子を析出させる方法、または結晶粒を細かく
する方法などが知られている。これらの強化方法は、そ
れぞれ利点と欠点とを併せ持ち、実用鋼では、これらの
強化方法を組み合わせて必要とする鋼の性能を得てい
る。
2. Description of the Related Art Conventionally, methods of strengthening steel include a method of forming a solid solution of a specific element, a method of working in a cold state to give a working strain, a method of transforming into a high-strength structure by heat treatment, and
A method of precipitating fine particles such as 1N (aluminum nitride) and TiC (titanium carbide), a method of making crystal grains fine, and the like are known. These strengthening methods have both advantages and disadvantages, and in practical steels, the required steel performance is obtained by combining these strengthening methods.

【0003】固溶による強化は、鋼の場合、通常は多量
の合金元素、例えばSiなどを含有させることにより得
られる。このため、表面性状の変化や耐食性の劣化な
ど、強度以外の面に添加元素の影響が強く現れる。ま
た、添加する合金元素は鋼より高価なものが多く、この
効果により強度を上昇させようとすれば鋼は必然的に高
価になり、安くて強度があるという鋼本来の特質が失わ
れてしまう。
In the case of steel, reinforcement by solid solution is usually obtained by including a large amount of alloying elements, for example, Si. For this reason, the influence of the added element strongly appears on surfaces other than the strength, such as changes in surface properties and deterioration of corrosion resistance. In addition, the alloying elements to be added are often more expensive than steel, and if it is attempted to increase the strength by this effect, the steel is inevitably expensive, and the inherent properties of steel that are cheap and strong are lost. .

【0004】加工歪みを与える方法は、冷間加工などに
より歪みを加えることにより硬くなる効果を利用するも
のであるが、強度上昇とともに延性が急激に低下し、靱
性も大きく劣化して、材料が脆くなる難点があり、その
上形状が限定される。
[0004] The method of imparting work strain utilizes the effect of hardening by applying strain by cold working or the like. However, ductility decreases sharply with increase in strength, and toughness also deteriorates significantly, and the material becomes harder. There is a difficulty in becoming brittle, and the shape is further limited.

【0005】変態を利用する方法としては、一般にはC
が0.3%以上の鋼が用いられ、焼入れ−焼戻し処理がお
こなわれる。焼入れは900℃前後の高温から水冷や油冷
などにより急冷し、マルテンサイト相やベーナイト相な
どの準安定相を形成させる。これらの極めて硬度の高い
相とするには、被処理鋼のサイズに基づき、その化学組
成を十分に選定する必要があり、このような焼入れ−焼
戻しの調質によってすぐれた性質の鋼を得ることができ
る。しかし、この熱処理のための余分の工程が必要であ
り、加熱炉や急冷装置が必要となる。そこで、近年は、
熱間加工直後にその高温の状態のまま焼入れをおこなう
など、工程を短縮する手段が種々講じられている。
[0005] As a method of utilizing the transformation, generally C
Is used, and a quenching-tempering treatment is performed. The quenching is performed by rapidly cooling from a high temperature of about 900 ° C. by water cooling or oil cooling to form a metastable phase such as a martensite phase or a bainite phase. In order to obtain these extremely hard phases, it is necessary to select the chemical composition of the steel based on the size of the steel to be treated, and to obtain a steel having excellent properties by such quenching and tempering. Can be. However, an extra step for this heat treatment is required, and a heating furnace and a rapid cooling device are required. So, in recent years,
Various measures have been taken to shorten the process, for example, quenching is performed immediately after hot working in the high temperature state.

【0006】微細粒子の析出による硬化は、Ti、N
b、Vなど炭化物や窒化物を形成する元素を少量添加
し、これらの元素が固溶状態になっている熱間で加工し
た後、冷却過程にて微細に析出させるものである。少量
の添加元素で大きな硬化が得られる利点があるが、靱性
が劣化する傾向があり、添加量を厳密に調整する必要が
ある。また、上記のような合金元素の添加が必要なこと
から、鋼材の価格も高くなる。
[0006] The hardening due to the precipitation of fine particles is performed by Ti, N
A small amount of elements that form carbides or nitrides such as b and V are added, hot-worked in a solid solution state of these elements, and then finely precipitated in a cooling process. Although there is an advantage that a large amount of hardening can be obtained with a small amount of added element, the toughness tends to be deteriorated, and the amount of addition needs to be strictly adjusted. Further, since the addition of alloying elements as described above is required, the price of steel materials also increases.

【0007】結晶粒を細かくすると、一般に延性を低下
させることなく強度、とくに降伏点が向上し、さらに靭
性も向上する。通常の鋼の場合、強度を高くすると靭性
が低下する傾向があるが、結晶粒を微細にすることによ
り、靭性の改善すなわち靭性−脆性遷移温度を低くする
ことができる。結晶粒を微細にすることは、プレス成形
に用いる薄鋼板のように加工性を強く要求される場合と
か、高温でのクリープ強度が重要である場合を除き、通
常は鋼の性能向上に好ましい結果をもたらす。このた
め、上記の各種の鋼の強化方法には、いずれも結晶粒の
微細化が組み合わされて適用される。
[0007] When the crystal grains are made finer, the strength, especially the yield point, is generally improved without lowering the ductility, and the toughness is also improved. In the case of ordinary steel, toughness tends to decrease when the strength is increased. However, by making the crystal grains fine, the toughness can be improved, that is, the toughness-brittle transition temperature can be lowered. Refining the crystal grains is usually a favorable result for improving the performance of steel, unless the workability is strongly required as in the case of a thin steel sheet used for press forming or when the creep strength at high temperatures is important. Bring. For this reason, any of the above various methods of strengthening steel is applied in combination with the refinement of crystal grains.

【0008】通常の低炭素のフェライト相を主とする鋼
においては、結晶粒の微細化は、基本的には加工変形を
加えて素材の粗大結晶を破壊し細かくする方法、または
オーステナイト−フェライトの変態を利用し細かくする
方法によっておこなわれる。Alなど非鉄金属では、溶
湯中に微細な析出核生成元素を添加し、凝固組織から細
粒化させる方法もあるが、鋼では凝固組織は通常粗大で
ある。しかし、通常は最終製品形状に至るまでに様々な
加工が施されるので、その過程である程度の細粒化が進
行する。
[0008] In a steel mainly containing an ordinary low-carbon ferrite phase, the grain refinement is basically performed by a method of applying a working deformation to break a coarse crystal of a material to make it finer, or a method of austenite-ferrite. It is performed by a method of making use of metamorphosis. In the case of non-ferrous metals such as Al, there is a method of adding a fine precipitation nucleation element to the molten metal to make the solidified structure finer, but in the case of steel, the solidified structure is usually coarse. However, various processes are usually performed until the final product shape is reached, and in the process, some degree of grain refinement proceeds.

【0009】鋼板の場合を例にとれば、連続鋳造法によ
る200mm前後の厚さの鋳片は、熱間にて圧延加工され
て、鋼の変形とともに粗大な凝固組織は破壊され圧延変
形組織になる。そして高温であるため、圧延ロールから
離れた直後から圧延変形組織の中に加工の歪みのない新
たな再結晶粒が発生し、これが成長して鋼全体が速やか
に再結晶粒の組織となる。その場合、圧延の加工度が大
きいほど数多くの再結晶粒が発生し、細粒組織になる傾
向がある。また、より大きく厚さを減ずるためにこの圧
延加工が繰り返しされると、組織の破壊と再結晶がその
都度おこなわれ、より細粒化が進む。熱間加工は通常オ
ーステナイト相の領域でおこなわれ、加工後の冷却でフ
ェライト相に変態する。この変態の際にもオーステナイ
ト相の結晶組織の中からフェライト相の結晶粒が発生
し、やがては鋼全体がフェライト粒組織となる。しか
し、このように単に高温のオーステナイト相から低温の
フェライト相に変態する場合、一般にはオーステナイト
相における組織の結晶粒径とほぼ同じ結晶粒径のフェラ
イト相組織になる。
Taking the case of a steel sheet as an example, a slab having a thickness of about 200 mm by a continuous casting method is hot rolled, and a coarse solidified structure is destroyed as the steel is deformed to form a rolled deformed structure. Become. Because of the high temperature, new recrystallized grains without deformation during processing are generated in the rolling deformation structure immediately after leaving the rolling roll, and these grow and the whole steel quickly becomes a recrystallized grain structure. In that case, as the degree of rolling increases, a larger number of recrystallized grains are generated, which tends to result in a fine grain structure. Further, when this rolling process is repeated to further reduce the thickness, the structure is destroyed and recrystallized each time, and the grain size is further reduced. Hot working is usually performed in the region of the austenite phase, and is transformed into a ferrite phase by cooling after working. During this transformation, crystal grains of the ferrite phase are generated from the crystal structure of the austenite phase, and eventually the entire steel has a ferrite grain structure. However, when the transformation from the high-temperature austenite phase to the low-temperature ferrite phase is performed, the ferrite phase structure generally has the same crystal grain size as that of the structure in the austenite phase.

【0010】上記のように、加工と再結晶の繰り返しに
より、結晶粒を細かくすることができるが、結晶が細か
くなってくると今度は結晶粒同志が合体し、成長しやす
くなってくる。これは、結晶粒内よりも粒界の持つエネ
ルギーの方が大きく、エネルギーを放出して安定化する
方向に進むため、結晶粒が細かいほどその傾向が強いか
らである。このため、単なる加工と再結晶だけでは、細
粒化に限界がある。これに対し、AlやTi、Nb、V
など、窒化物や炭窒化物形成元素を少量添加することに
より微細な析出物を形成させ、それによって結晶粒界の
移動を抑止し、結晶粒の成長を阻止して、鋼の組織を細
粒化する方法がある。実用的な低コストの細粒化鋼はこ
のような炭窒化物形成元素の添加によって得られてい
る。
As described above, the crystal grains can be made finer by repetition of processing and recrystallization. However, as the crystals become finer, the crystal grains become united and grow more easily. This is because the energy of the grain boundary is larger than that in the crystal grain, and the energy is released and stabilized. Therefore, the smaller the crystal grain, the stronger the tendency. For this reason, there is a limit to grain refinement only by simple processing and recrystallization. On the other hand, Al, Ti, Nb, V
Addition of a small amount of nitride or carbonitride forming element such as to form fine precipitates, thereby suppressing the movement of grain boundaries, inhibiting the growth of crystal grains, There is a way to Practical low-cost refined steels have been obtained by the addition of such carbonitride forming elements.

【0011】しかしながら、鋼の性能に対する要求がま
すます厳しくなり、より強度が高くより靭性のすぐれた
ものが要望され、加工熱処理または制御圧延、あるいは
TMCP(Thermo Mechanical Control Process)といわ
れる手法が開発され、実用化されるようになった。これ
は鋼組成を規制し、圧延など熱間加工の過程で加工温度
や加工度を制御して、より高靭性の高強度鋼にしようと
するものである。鋼組成としては、通常、従来の焼入れ
−焼戻しを適用する場合よりも低炭素とし、Ti、N
b、Vなどが添加される。ことにNbの添加はオーステ
ナイト域での再結晶を遅らせる効果があり、より低温で
の圧延と繰り返し圧延による加工歪みの蓄積増大が可能
となるので、好んで用いられる。そして、熱間加工をオ
ーステナイト域だけでなく、オーステナイト+フェライ
トの二相域にまでも拡大して、加工変形を温度変化とと
もに生じる再結晶、析出、変態等の進行に組み合わせ
る。それによって、変態強化および析出強化に細粒化が
加わり、強度が向上し、靭性がより一層改善される。
[0011] However, the demands on the performance of steel have become more and more severe, and there has been a demand for a steel having higher strength and higher toughness, and a method called thermomechanical heat treatment or controlled rolling or TMCP (Thermo Mechanical Control Process) has been developed. , Has come to practical use. This is intended to regulate the steel composition and to control the working temperature and the working degree in the process of hot working such as rolling to make a high-strength steel with higher toughness. The steel composition is usually lower in carbon than when conventional quenching-tempering is applied, and Ti, N
b, V, etc. are added. In particular, the addition of Nb has an effect of delaying the recrystallization in the austenite region, and can increase the accumulation of processing strain due to rolling at lower temperatures and repeated rolling, so that it is preferably used. Then, the hot working is expanded not only to the austenite region but also to the two-phase region of austenite + ferrite, and the working deformation is combined with the progress of recrystallization, precipitation, transformation and the like which occur with temperature change. Thereby, grain refinement is added to the transformation strengthening and the precipitation strengthening, the strength is improved, and the toughness is further improved.

【0012】このように加工熱処理法では、とくに結晶
粒の微細化による強度上昇と靭性改善の効果が大きい。
結晶粒の微細化は、上記の再結晶を遅らせ微細析出物を
形成する元素の添加により、加工後再結晶前の歪みエネ
ルギーが増加し、そのエネルギー解放に基づく再結晶核
の生成頻度が増して細粒化するとともに、微細析出物の
結晶粒界移動阻止により粒成長が抑止されることによ
る。これは加工温度が通常より低めに設定されることに
より一層助長される。さらに、オーステナイト+フェラ
イトの二相域においても加工を施すことにより、変態の
エネルギーも核生成頻度を高め、相界面の粒界移動阻止
による粒成長抑止効果も加わってくると考えられる。
As described above, in the thermomechanical treatment, the effect of increasing the strength and improving the toughness due to the refinement of crystal grains is particularly large.
The refinement of the crystal grains increases the strain energy before recrystallization after processing and the frequency of generation of recrystallization nuclei based on the release of energy due to the addition of the element that delays the recrystallization and forms a fine precipitate. This is because the grains are refined and grain growth is suppressed by inhibiting the movement of fine precipitates at the grain boundaries. This is further promoted by setting the processing temperature lower than usual. Further, it is considered that, by performing the processing in the two-phase region of austenite + ferrite, the energy of the transformation also increases the nucleation frequency, and the effect of suppressing the grain growth by inhibiting the movement of the grain boundary at the phase interface is considered to be added.

【0013】加工熱処理は、素材の加熱後の熱間加工の
過程にて、温度低下にともなう金属組織的変化に、加工
を組み合わせたものであるが、その加工の途中で急冷や
再加熱がおこなわれることもある。また、冷却して得ら
れた変態組織を冷間または温間にて加工し、昇温して変
態(逆変態)させ、結晶粒を微細化する方法も高合金鋼
で実施されている。これは、現在のところ最も結晶粒が
微細化された例であるが、高合金鋼の準安定オーステナ
イト鋼にて、室温で加工し加工誘起変態させてマルテン
サイト相とし、これを加熱してオーステナイト相に変態
させるもので、超微細粒組織が得られている。
[0013] The thermomechanical heat treatment is a combination of metallographic change due to a temperature drop in the course of hot working after heating of a material and working, and rapid cooling or reheating is performed during the working. It may be. In addition, a method of processing a transformed structure obtained by cooling in a cold or warm state, raising the temperature to transform (reverse transformation), and refining crystal grains has also been practiced with high alloy steel. This is an example in which the crystal grains are most refined at present.However, in a metastable austenitic steel of high alloy steel, it is processed at room temperature and is subjected to a work-induced transformation to form a martensite phase, which is heated to austenite. It transforms into a phase, and an ultrafine grain structure is obtained.

【0014】上記のように、鋼の強度向上とその性能向
上のため、結晶粒微細化が種々検討され、実用的にもそ
の改善効果が認められてきた。しかし、超微細粒の鋼に
ついては、高合金鋼においてある程度実現されているも
のの、低炭素鋼ないしは低合金鋼においては、まだ十分
なものは得られていない。
As described above, various refinements of crystal grains have been studied to improve the strength and performance of steel, and the effect of improvement has been recognized in practical use. However, although ultra-fine-grained steel has been realized to some extent in high-alloy steels, sufficient material has not yet been obtained in low-carbon steels or low-alloy steels.

【0015】[0015]

【発明が解決しようとする課題】前述のように、低炭素
鋼または低炭素低合金鋼においても、結晶粒をさらに微
細にすれば、より性能のすぐれた低コストの鋼が得られ
ることが期待される。本発明の目的は、低炭素鋼または
低炭素低合金鋼であって、平均結晶粒径が極めて小さ
く、強度と靱性および延性がすぐれた鋼の製造方法を提
供することにある。
As described above, even in a low-carbon steel or a low-carbon low-alloy steel, if the crystal grains are further refined, it is expected that a steel with better performance and a lower cost will be obtained. Is done. An object of the present invention is to provide a method for producing a low-carbon steel or a low-carbon low-alloy steel having an extremely small average crystal grain size and excellent strength, toughness, and ductility.

【0016】[0016]

【課題を解決するための手段】結晶粒を微細にすれば、
鋼の強度を上昇させるばかりでなく、靱性や延性を同時
に向上させることができる。すなわち他の鋼の強化方法
のように、強度の上昇にともなって靱性が劣化したり、
加工性が悪くなるという問題点がなく、鋼の強化方法と
しては理想的なものと考えられる。
Means for Solving the Problems By making the crystal grains fine,
Not only can the strength of the steel be increased, but also the toughness and ductility can be improved at the same time. That is, like other steel strengthening methods, with the increase in strength, toughness deteriorates,
There is no problem of poor workability, and it is considered to be an ideal method for strengthening steel.

【0017】低炭素鋼ないしは低炭素低合金鋼の結晶粒
微細化方法として、加工熱処理方法は種々検討され、微
細結晶組織の鋼が得られている。これらの方法は、前述
のように加工により素地組織ないしは結晶粒を破砕細分
化し、その加工組織から発生した再結晶粒の成長をでき
るだけ抑止し、細粒鋼を得るもので、この手法による限
界に近いところまで微細粒化が実現されていて、これ以
上の細粒化は困難であると思われる。加工のままの組織
では歪みが多すぎ、靱性も延性も極めて劣った状態にあ
り、これらを回復するには必ず歪みを解放しなければな
らず、歪みの解放の過程で、再結晶と粒成長が進むため
である。また、高合金鋼におけるような逆変態は、低炭
素低合金鋼の場合、結晶粒微細化には利用できない。こ
れは、冷間での加工度を如何に大きくしても、低炭素低
合金鋼ではフェライト相以外のものにはならず、これを
加熱するとフェライト相の温度域で加工歪みが解放さ
れ、再結晶核生成、粒成長が進んでしまい、逆変態する
時にはすでにかなり成長した粒になっているからであ
る。
As a method for refining crystal grains of a low-carbon steel or a low-carbon low-alloy steel, various thermomechanical treatment methods have been studied, and a steel having a fine crystal structure has been obtained. As described above, these methods crush and subdivide the base structure or crystal grains by processing, suppress the growth of recrystallized grains generated from the processed structure as much as possible, and obtain fine-grained steel. Fine graining has been realized to a close place, and further fine graining seems to be difficult. In the as-processed structure, the strain is too high, the toughness and the ductility are extremely poor, and the strain must be released in order to recover them.In the process of strain release, recrystallization and grain growth Is to advance. In addition, reverse transformation as in high alloy steel cannot be used for grain refinement in low carbon low alloy steel. This is because no matter how large the degree of cold working, the low-carbon low-alloy steel does not become anything other than the ferrite phase. This is because crystal nucleation and grain growth proceed, and when reverse transformation occurs, the grains have already grown considerably.

【0018】そこで、本発明者らは、低炭素鋼または低
炭素低合金鋼の微細粒化をより一層促進させる手段とし
て、加工による破砕と粒成長抑止の手法に変態を組み合
わせる方法を検討した。
Therefore, the present inventors have studied a method of combining transformation with a method of crushing by processing and suppressing grain growth as a means for further promoting the fine graining of low carbon steel or low carbon low alloy steel.

【0019】Ac3点以上に加熱されオーステナイト相に
なった鋼を急冷すると、通常、Ar3点以下に過冷された
状態のオーステナイト相となり、その温度に保持する
か、またはさらに冷却を続ければ変態して、鋼組成やそ
の際の冷却条件によって、フェライト相、マルテンサイ
ト相あるいはベイナイト相となる。この変態直前の過冷
状態にて加工を加えると、フェライトを主体とする組織
に急速に変化する。これは加工により変態が誘起され促
進されるためと考えられる。その際に、加工温度および
加工率を変えることにより、歪みが解放されたフェライ
ト相で、しかも極めて結晶粒径の小さい組織が得られる
ことを見出したのである。
[0019] heated above Ac 3 point to quench the steel becomes an austenite phase usually becomes austenite phase in a state of being subcooled below 3 points Ar, or held at that temperature, or even Continuing with cooling It transforms into a ferrite phase, a martensite phase or a bainite phase depending on the steel composition and cooling conditions at that time. When processing is performed in a supercooled state immediately before the transformation, the structure rapidly changes to a structure mainly composed of ferrite. This is presumably because the transformation induces and promotes the transformation. At that time, they found that by changing the processing temperature and the processing rate, it was possible to obtain a ferrite phase in which strain was released and a structure having an extremely small crystal grain size.

【0020】この細粒のフェライト相を主体とする組織
が得られる条件をさらに調査した結果、加工を加える温
度が高すぎると、結晶粒が微細にならないこと、そして
その場合、変形量ないしは圧下率は十分大きくしなけれ
ば、フェライト相の比率が低下して、マルテンサイト相
やベイナイト相が増加すること、などがわかった。この
加工後の冷却は、当初微細組織の粒成長抑止の目的で、
できるだけ早くすることが望ましいと考えられたが、空
冷程度の冷却でもフェライト粒の成長はそれほど進まな
いことも明らかになった。
As a result of further investigation on conditions for obtaining a structure mainly composed of the fine-grained ferrite phase, it was found that if the temperature for processing was too high, the crystal grains would not be fine, and in that case, the deformation or the rolling reduction It was found that, if not sufficiently large, the ratio of the ferrite phase decreases and the martensite phase and the bainite phase increase. Cooling after this processing is initially for the purpose of suppressing grain growth of the microstructure,
It was thought that it was desirable to make it as quickly as possible, but it became clear that the growth of ferrite grains did not progress so much even with air cooling.

【0021】これはオーステナイトをできるだけ過冷し
た状態で加工し変態させたため、フェライトの生成温度
が650℃以下と低く、粒成長が進行しない温度域になっ
ていることや、低温相への変態直前に強加工を加えるこ
とにより、フェライトの変態再結晶核が急速かつ高密度
に生成しつつ変態が進み、それと同時にその加工歪みが
解放されて、粒成長を推進するための歪みエネルギーが
消滅していることもあると推定される。この場合、加工
による変形が大きいほど、それによって誘起される変態
が促進され、さらにそれにともなう加工歪みの放出がよ
り十分におこなわれると考えられる。加工度が不十分で
あれば、結晶粒の細粒化が不十分になるばかりでなく、
歪みの解放も不十分となってしまう。このようにして、
加工により誘起された変態によって極めて微細になった
フェライト結晶組織は、従来の加工熱処理とは違って、
変態後とくには急冷しなくてもその微細組織が保持され
るのである。
This is because austenite is processed and transformed in a state of being supercooled as much as possible, so that the ferrite formation temperature is as low as 650 ° C. or less, so that the temperature is in a temperature range where grain growth does not proceed, By applying strong processing, transformation proceeds while ferrite transformation recrystallization nuclei are generated rapidly and at high density, and at the same time, the processing strain is released, and the strain energy for promoting grain growth disappears. It is presumed that there are times. In this case, it is considered that the larger the deformation due to the processing, the more the transformation induced by the deformation is promoted, and the more the associated processing strain is released. If the degree of processing is insufficient, not only the refinement of the crystal grains will be insufficient, but also
The release of distortion is also insufficient. In this way,
The ferrite crystal structure that has become extremely fine due to the transformation induced by processing, unlike conventional thermomechanical treatment,
After the transformation, the fine structure is maintained even without rapid cooling.

【0022】このようにして、鋼の化学組成、冷却条
件、加工の温度範囲、加工度、などの限界条件を明確に
し、本発明を完成させた。本発明の要旨は次のとおりで
ある。 (1) 重量%にて、C:0.05〜0.3%とMn:0.5〜3%を
含み、残部が実質的にFeからなる組成の鋼を、Ac3
以上の温度から5℃/s以上100℃/s未満の冷却速度にて
冷却して650℃以下とし、フェライト相、ベイナイト
相、またはマルテンサイト相のような低温相が析出を開
始する温度までの温度範囲で、加工開始に対する加工終
了の断面積減少率が60%以上の加工を、1パスまたは1
パス当たり30%以上の多パスにて施し、その後空冷また
はそれ以上の冷却速度にて400℃以下の温度にまで冷却
することを特徴とする微細粒フェライト組織を有する鋼
の製造方法。 (2) 重量%にて、C:0.05〜0.3%、Mn:0.5〜3%、
Si:0.01〜0.3%、Nb:0〜0.05%、Ti:0〜0.05
%、V:0〜0.08%、Cr:0〜1%およびMo:0〜1%
を含み、残部が実質的にFeからなる鋼を、Ac3点以上
の温度から5℃/s以上100℃/s未満の冷却速度にて冷却
して650℃以下とし、フェライト相、ベイナイト相、ま
たはマルテンサイト相のような低温相が析出を開始する
温度までの温度範囲で、加工開始に対する加工終了の断
面積減少率が60%以上の加工を、1パスまたは1パス当
たり30%以上の多パスにて施し、その後空冷またはそれ
以上の冷却速度にて400℃以下の温度にまで冷却するこ
とを特徴とする微細粒フェライト組織を有する鋼の製造
方法。
In this way, the present invention was completed by clarifying the chemical composition of steel, cooling conditions, working temperature range, working degree, and other critical conditions. The gist of the present invention is as follows. (1) A steel containing, by weight%, C: 0.05 to 0.3% and Mn: 0.5 to 3%, with the balance being substantially Fe, was heated from a temperature of 3 or more Ac to a temperature of 5 ° C./s or more. Cool at a cooling rate of less than ℃ / s to 650 ℃ or less, at the temperature range up to the temperature at which low-temperature phase such as ferrite phase, bainite phase, martensite phase starts to precipitate Processing with a cross-sectional area reduction rate of 60% or more in one pass or one
A method for producing steel having a fine-grained ferrite structure, wherein the steel is applied in multiple passes of 30% or more per pass, and then cooled to a temperature of 400 ° C or less at a cooling rate of air or higher. (2) In weight%, C: 0.05 to 0.3%, Mn: 0.5 to 3%,
Si: 0.01 to 0.3%, Nb: 0 to 0.05%, Ti: 0 to 0.05
%, V: 0 to 0.08%, Cr: 0 to 1%, and Mo: 0 to 1%
, The balance of which is substantially composed of Fe, is cooled from a temperature of 3 or more Ac at a cooling rate of 5 ° C / s or more and less than 100 ° C / s to 650 ° C or less, a ferrite phase, a bainite phase, Alternatively, in a temperature range up to a temperature at which a low-temperature phase such as a martensite phase starts to be precipitated, processing in which the cross-sectional area reduction rate at the end of processing relative to the start of processing is 60% or more is performed in one pass or 30% or more per pass. A method for producing a steel having a fine-grained ferrite structure, wherein the steel is applied in a pass and thereafter cooled to a temperature of 400 ° C. or less at a cooling rate of air cooling or higher.

【0023】なお、ここでオーステナイトの低温変態に
よって生成したフェライトというのは、結晶組織が微細
であるため通常の光学顕微鏡観察では観察が困難である
が、鋼から採取した薄膜試料により、透過型電子顕微鏡
で直接観察して見出すことのできる歪みの少ない結晶粒
からなるフェライト組織のことである。上記(1)および
(2)の本発明の鋼は、この組織が断面観察の面積率で80
%以上を占めるものである。
The ferrite formed by the low-temperature transformation of austenite is difficult to observe by ordinary optical microscopy because of its fine crystal structure. It is a ferrite structure composed of crystal grains with little distortion that can be found by direct observation with a microscope. (1) above and
In the steel of the present invention (2), this structure has an area ratio of 80
% Or more.

【0024】[0024]

【発明の実施の形態】本発明の方法において、鋼の化学
組成を限定した理由は次のとおりである。なお、成分元
素の含有量はすべて重量%である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the chemical composition of steel in the method of the present invention are as follows. In addition, all the contents of the component elements are% by weight.

【0025】Cはの含有範囲は0.05〜0.3%とする。そ
の含有量が0.05%より少なければ、Ac3点以上のオース
テナイト相とした後に、急冷しても高温で変態を開始し
てしまうので、低温の過冷された状態のオーステナイト
相での強加工が不可能となり、微細粒の鋼が得られなく
なる。一方、Cが0.3%を超えると、変形抵抗が増大
し、低温での強加工が困難となってくるとともに、パー
ライト組織が主相となり、フェライト主相の組織とはな
らない。したがってCの含有量は0.05〜0.3%の範囲と
する。
The content range of C is 0.05-0.3%. If the content is less than 0.05%, after transformation to an austenite phase of Ac 3 points or more, transformation will start at high temperature even if quenched, so strong working in low temperature supercooled austenite phase It becomes impossible and fine-grained steel cannot be obtained. On the other hand, if C exceeds 0.3%, the deformation resistance increases, and it becomes difficult to perform strong working at low temperatures, and the pearlite structure becomes the main phase and does not become the structure of the ferrite main phase. Therefore, the content of C is in the range of 0.05 to 0.3%.

【0026】Mnは、Ac3点以上のオーステナイト相か
ら急冷する際、フェライト相、ベイナイト相、またはマ
ルテンサイト相等の低温相が析出を開始する温度を十分
低下させるために必要である。すなわち、Mnは、低温
の過冷された状態のオーステナイト相を安定して実現さ
せるために重要である。その量が少ない場合は過冷状態
のオーステナイト相の安定化が困難になるので、0.5%
以上の含有が必要である。しかし、Mnの含有量が3%
を超えると、変形抵抗が増大して強加工が困難となる。
その上、オーステナイトの安定化効果すなわち変態の抑
止効果が過度になりすぎ、強加工によっても変態を生じ
ず、加工後の冷却時にベイナイトやマルテンサイトのよ
うな低温変態相となり、フェライトを主相とする組織に
ならなくなる。したがって、Mnの含有量は0.5〜3%に
限定する。
Mn is necessary for sufficiently lowering the temperature at which a low-temperature phase such as a ferrite phase, a bainite phase, or a martensite phase starts to precipitate when quenched from an austenite phase having three or more Ac points. That is, Mn is important for stably realizing a low-temperature supercooled austenite phase. If the amount is small, it becomes difficult to stabilize the supercooled austenite phase, so 0.5%
The above content is necessary. However, the content of Mn is 3%
When it exceeds, the deformation resistance increases, and it becomes difficult to perform strong working.
In addition, the stabilizing effect of austenite, that is, the effect of suppressing transformation, is excessively large, does not cause transformation even by heavy working, becomes a low-temperature transformed phase such as bainite or martensite during cooling after working, and ferrite becomes the main phase. Organization. Therefore, the content of Mn is limited to 0.5 to 3%.

【0027】本発明方法の一つは、上記のCおよびMn
以外に特殊な合金成分を含まない、いわゆる低炭素鋼を
対象にするものである。すなわち、CおよびMn以外の
残部は実質的にFeである鋼であって、「実質的にFe
である」というのは、鋼の製造上、不可避的に混入する
不純物の存在は許される、という意味である。不可避的
不純物としては、P、S、O、Nなどがあるが、これら
はできるだけ少ないことが望ましい。
One of the methods of the present invention is the above-mentioned C and Mn.
It is intended for so-called low carbon steel that does not contain any special alloy components. That is, the balance other than C and Mn is substantially Fe, and “substantially Fe
"Means that the presence of impurities that are inevitably mixed in the production of steel is permissible. As inevitable impurities, there are P, S, O, N and the like, and it is desirable that these are as small as possible.

【0028】なお、Al(アルミニウム)は、細粒組織
を得る目的にはとくには必要ないが、鋳造の際、欠陥の
ない健全な鋳片を得るための溶鋼の脱酸に必須の元素で
ある。上記の不可避不純物の中には、十分な溶鋼脱酸を
おこなうために添加したAlの残留分(0.01%以上が望
ましい)も含まれる。ただし、Alの多量の添加は効果
が飽和するため無意味であり、鋼の価格を上げることに
なるので、多くても0.1%以下に止めておくのがよい。
Although Al (aluminum) is not particularly necessary for the purpose of obtaining a fine grain structure, it is an essential element for deoxidizing molten steel in order to obtain a sound slab free of defects during casting. . Among the above unavoidable impurities, there is also included a residual amount of Al (preferably 0.01% or more) added for performing sufficient deoxidation of molten steel. However, the addition of a large amount of Al is meaningless because the effect is saturated and increases the price of steel. Therefore, it is better to keep the content at most 0.1% or less.

【0029】本発明鋼のもう一つは、CおよびMnの外
に、超微細な細粒組織を安定して得るのに寄与するS
i、Nb、Ti、V、CrおよびMoの各元素を一種以
上、以下に示す範囲で含有する、いわゆる低炭素低合金
鋼である。なお、これらの元素の含有量を0〜X%とい
うように表記したが、それは、その元素が積極的に添加
されなくてもよく、添加される場合にはその含有量の上
限をX%にするという意味である。
Another of the steels according to the present invention is that, in addition to C and Mn, S contributes to stably obtain an ultrafine grain structure.
This is a so-called low-carbon low-alloy steel containing at least one element of i, Nb, Ti, V, Cr and Mo in the following ranges. In addition, although the content of these elements was described as 0 to X%, it is not necessary to add the elements positively, and when they are added, the upper limit of the content is set to X%. It means to do.

【0030】Siを含有させるとC量が比較的少ない場
合でも安定して微細粒を得ることができる。その効果は
0.01%以下では、ほとんど認められないので、添加する
場合はその含有量を0.01%以上とするのがよい。一方、
Siの含有量が0.3%を超えると、変形抵抗が増して強
加工が困難になるので、添加する場合でも、その含有の
上限は0.3%とする。
When Si is contained, fine particles can be stably obtained even when the amount of C is relatively small. The effect is
If it is less than 0.01%, it is hardly recognized. Therefore, when it is added, its content is preferably made 0.01% or more. on the other hand,
If the content of Si exceeds 0.3%, the deformation resistance increases and it becomes difficult to perform strong working. Therefore, even when Si is added, the upper limit of the content is set to 0.3%.

【0031】NbまたはTiを含有させると、低温相が
析出を開始する温度から多少離れた高めの温度で加工を
加えても、十分安定して微細組織にすることができる。
これは微細な炭窒化物の析出により変態後の結晶粒の成
長が抑止されるためと考えられる。この効果を十分得る
ためには、Nbでは0.005%以上、Tiでは0.005%以上
含有させることが望ましい。ただし、これらの元素が過
剰になると靱性が低下してくるので、Nbでは0.05%以
下、Tiも0.05%以下とすべきである。すなわち含有さ
せる場合、Nbは0.005〜0.05%、Tiは0.005〜0.05%
の範囲とするのがよい。
When Nb or Ti is contained, a fine structure can be obtained sufficiently stably even when processing is performed at a temperature slightly higher than the temperature at which the low-temperature phase starts to precipitate.
This is presumably because the growth of crystal grains after transformation is suppressed by the precipitation of fine carbonitrides. In order to sufficiently obtain this effect, it is desirable that the content of Nb be 0.005% or more and that of Ti be 0.005% or more. However, if these elements become excessive, the toughness decreases, so that Nb should be 0.05% or less and Ti should be 0.05% or less. That is, when it is contained, Nb is 0.005 to 0.05% and Ti is 0.005 to 0.05%.
It is good to be in the range of.

【0032】V、CrおよびMoも含有させることによ
り、微細粒組織を安定して得ることができるようにな
る。これらの元素は炭化物を形成し、その析出物は、N
bまたはTiの場合と同様結晶粒の成長を抑止する作用
があるが、その効果は大きくない。それよりは、これら
の元素は変態を遅らせる作用が強く、低温相の析出をよ
り低温にするとともに、その析出時期を遅くし、過冷状
態の低温でのオーステナイトとなる範囲を拡大できるの
で、微細粒組織の生成を容易にする効果がある。このよ
うな効果を得るためには、それぞれVでは0.008%以
上、Crでは0.05%以上、Moでは0.05%以上含有して
いることが望ましい。しかし、これらの元素は、Mnと
同じく大加工による変態を遅らせる傾向があり、必要以
上に含有量を多くするとフェライトを主体とする組織が
得にくくなる。したがって、Vでは0.08%以下、Crと
Moではそれぞれ1%以下とするのがよい。すなわち含
有させる場合の含有量は、Vでは0.008〜0.08%、Cr
では0.05〜1%、Moでは0.05〜1%とするのが望まし
い。
By containing V, Cr and Mo, a fine grain structure can be obtained stably. These elements form carbides and the precipitates are N
As in the case of b or Ti, there is an action of suppressing the growth of crystal grains, but the effect is not so great. Rather, these elements have a strong effect of delaying the transformation, lowering the precipitation of the low-temperature phase at a lower temperature, delaying the precipitation time, and expanding the range of austenite at a low temperature in a supercooled state. This has the effect of facilitating the generation of a grain structure. In order to obtain such an effect, it is preferable that V contains 0.008% or more, Cr contains 0.05% or more, and Mo contains 0.05% or more. However, these elements tend to delay the transformation by large working like Mn, and if the content is excessively large, it becomes difficult to obtain a structure mainly composed of ferrite. Therefore, it is preferable that V is 0.08% or less, and that of Cr and Mo is 1% or less. In other words, the content of V is 0.008 to 0.08% for V,
Is preferably 0.05 to 1%, and Mo is preferably 0.05 to 1%.

【0033】フェライト結晶粒には、高温生成による粗
大な粒、加工により転位網に取り囲まれた粒、冷間の加
工組織から発生した再結晶粒などがあるが、3μm以下の
歪みの少ない結晶粒が集まった状態で、透過型の電子顕
微鏡にて観察できるのは低温生成フェライトだけであ
る。この低温生成フェライト組織が全体の80%を下回る
場合は、靱性のすぐれた鋼にはならない。これは低温生
成フェライト組織以外の部分が、マルテンサイト相やベ
イナイト相となり、強度は高くても靱性の劣る鋼となる
か、またはフェライト相でも歪みの多い加工組織の鋼
や、粗大結晶粒のフェライト相で強度と靱性が劣る鋼と
なるからである。また、平均結晶粒径が3μmを超える
と、これもまた強度および靱性が劣った鋼となる。した
がって、製造方法はこのような組織の鋼の得られるもの
でなければならない。
The ferrite grains include coarse grains formed by high-temperature generation, grains surrounded by dislocation networks by processing, and recrystallized grains generated from a cold worked structure. In a state in which the ferrite is gathered, only ferrite produced at a low temperature can be observed with a transmission electron microscope. If the low-temperature formed ferrite structure is less than 80% of the whole, the steel does not have excellent toughness. This is because the part other than the low-temperature generated ferrite structure becomes a martensite phase or a bainite phase, resulting in steel with high strength but poor toughness. This is because the steel phase is inferior in strength and toughness. If the average crystal grain size exceeds 3 μm, this also results in a steel having poor strength and toughness. Therefore, the manufacturing method must be such that a steel having such a structure can be obtained.

【0034】本発明の製造方法は、上記の組成範囲の鋼
素材を用い、Ac3点以上の温度から5〜100℃/sの冷却
速度にて冷却して650℃以下とし、フェライト相、ベイ
ナイト相、またはマルテンサイト相のような低温相が析
出を開始する温度までの温度範囲で、加工開始に対する
加工終了の断面積減少率が60%以上の加工を、1パスま
たは1パス当たり30%以上の多パスにて施し、その後は
空冷ないしはそれ以上の冷却速度で温度で冷却するもの
である。
The production method of the present invention uses a steel material having the above composition range, and cools from a temperature of 3 or more points of Ac at a cooling rate of 5 to 100 ° C./s to 650 ° C. or less. In a temperature range up to the temperature at which a low-temperature phase such as a martensite phase starts to precipitate, processing in which the cross-sectional area reduction rate at the end of processing to the processing start is 60% or more per pass or 30% or more per pass And then cooling at a temperature with air cooling or a higher cooling rate.

【0035】ここで、Ac3点以上の温度から650℃以下
までの冷却速度を5〜100℃/sとするのは、5℃/s
を下回る冷却速度の場合、過冷のオーステナイト状態を
650℃以下にまで持ち来すことが困難であり、加工をお
こなうまでにフェライトに変態してしまい、結晶粒が粗
大化してしまうからである。そして、100℃/sを超え
る急激な冷却速度とすると、被冷却材の温度分布が悪く
なり、場所による不均一を招くことに加え、低温相が析
出する温度以下にまで低下してしまうおそれがあるから
である。
Here, the cooling rate from the temperature of three or more Ac to 650 ° C. or less is set to 5 to 100 ° C./s.
If the cooling rate is lower than
This is because it is difficult to bring the temperature down to 650 ° C. or lower, and it is transformed into ferrite by the time of processing, and the crystal grains become coarse. When the cooling rate is abruptly higher than 100 ° C./s, the temperature distribution of the material to be cooled is deteriorated, causing nonuniformity depending on the location, and may be lowered to a temperature lower than a temperature at which a low-temperature phase is precipitated. Because there is.

【0036】この冷却開始以前の素材は、常温から加熱
炉にてAc3点以上の温度に加熱されたものでもよいが、
素材を加熱し、粗鍛造、粗圧延など所要形状にAc3点以
上の温度にて加工された状態であってもよく、その前歴
は問わない。
The material before the start of cooling may be a material heated from room temperature to a temperature of three or more Ac in a heating furnace.
The material may be heated and processed into a required shape such as rough forging or rough rolling at a temperature of three or more Ac, regardless of its prior history.

【0037】650℃以下にまで冷却するのは、650℃を上
回る温度にて加工を加えると、加工変形直後の再結晶に
より十分な微細組織が得られなくなるからである。ま
た、変態が始まってしまってから加工がおこなわれる
と、均質な微細組織が得られなくなり、加工歪みが残存
してしまうばかりでなく、変形抵抗が増加するので強加
工を加えることが困難になる。したがって加工は、650
℃以下でかつ低温相が析出するまでの温度範囲において
おこなわなければならない。
The reason why the temperature is cooled to 650 ° C. or less is that if the working is performed at a temperature exceeding 650 ° C., a sufficient fine structure cannot be obtained due to recrystallization immediately after working deformation. In addition, if processing is performed after the transformation has begun, a uniform fine structure cannot be obtained, and not only processing strain remains, but also deformation resistance increases, so that it becomes difficult to apply strong processing. . Therefore, processing is 650
It must be carried out in a temperature range of not more than 0 ° C and a temperature range until a low-temperature phase is precipitated.

【0038】この場合の加工は、断面積の減少率にて60
%以上であることが必要である。60%を下回る変形量で
は、変形が不十分で十分な微細粒組織とはならず、しか
も、変態による加工歪みの放出が不十分になる傾向があ
る。板圧延の場合は幅方向の変形がほとんどないので、
断面積の減少率は板厚減少率と実質的に同じである。こ
の加工は、断面積減少率で60%以上であれば、いくら大
きくても同様な効果が得られるが、変形に要するエネル
ギーの増大や温度降下のため、通常90%程度までが限度
である。
Processing in this case is performed at a reduction rate of the cross-sectional area of 60%.
%. When the deformation amount is less than 60%, the deformation is insufficient and the structure does not have a sufficient fine grain structure, and further, there is a tendency that the release of the processing strain due to the transformation is insufficient. In the case of sheet rolling, there is almost no deformation in the width direction,
The cross-sectional area reduction rate is substantially the same as the sheet thickness reduction rate. This processing can achieve the same effect no matter how large the cross-sectional area reduction rate is 60% or more, but is generally limited to about 90% due to an increase in energy required for deformation and a temperature drop.

【0039】この60%以上の加工を施す際、1パスにて
加工してもよいが、多数回に分けておこなってもよい。
ただし、多数回に分ける場合、1回の加工は30%以上で
なければならない。これは、30%に満たない加工が施さ
れると、かえって結晶粒成長が促進され、微細粒組織が
得られなくなることがあるからである。また、パスとパ
スの間隔は、前述の加工温度範囲に保持される限り、と
くに短時間である必要はなく、必要に応じて保温しても
よい。
When performing the processing of 60% or more, the processing may be performed in one pass, but may be performed in a large number of times.
However, when dividing into many times, one processing must be 30% or more. This is because if the processing is less than 30%, the growth of crystal grains is rather promoted, and a fine grain structure may not be obtained. The interval between passes does not need to be particularly short as long as the interval is maintained in the above-mentioned processing temperature range, and the temperature may be kept as needed.

【0040】加工後、空冷ないしはそれ以上の冷却速度
にて400℃以下の温度にまで冷却する。この温度域での
空冷は、鋼の形状などによって異なるが、平均冷却速度
にて0.2〜5℃/s程度である。一方、変態により生じる
組織は、650℃以下の低温であるため粒成長が遅く、こ
の程度の冷却速度で十分微細組織を維持できる。
After the processing, the air is cooled to a temperature of 400 ° C. or less at a cooling rate of air or higher. Air cooling in this temperature range varies depending on the shape of steel and the like, but is about 0.2 to 5 ° C./s at an average cooling rate. On the other hand, the microstructure formed by the transformation has a low temperature of 650 ° C. or lower, so that the grain growth is slow, and the microstructure can be sufficiently maintained at such a cooling rate.

【0041】[0041]

【実施例】表1に示す組成の鋼を、50kgの高周波真空溶
解炉にて溶解し、鋳塊を鍛造して幅150mm、厚さ50mmの
スラブとし、1200℃に加熱して圧延し、厚さ20mmの素板
とした。この素板を1000℃に加熱してオーステナイト化
させた後、噴霧冷却により冷却速度を変えて冷却し、目
的とする温度にまで達してから低温相が析出し始める温
度、すなわち変態を開始する温度の直上の温度までに圧
延をおこない、圧延後直ちに冷却した。
EXAMPLE A steel having the composition shown in Table 1 was melted in a 50 kg high-frequency vacuum melting furnace, and an ingot was forged into a slab having a width of 150 mm and a thickness of 50 mm. The plate was 20 mm in length. After heating this base plate to 1000 ° C to austenitize, it is cooled by changing the cooling rate by spray cooling, and the temperature at which the low-temperature phase starts to precipitate after reaching the target temperature, that is, the temperature at which transformation starts Was rolled to a temperature just above the temperature, and cooled immediately after the rolling.

【0042】[0042]

【表1】 [Table 1]

【0043】これらの圧延に供した鋼番号それぞれの圧
延加工条件、すなわち加工開始温度、多パス圧延の場合
は、1回当たりの下限の加工率、圧延開始厚さに対する
終了厚さの全加工率、などを表2に示す。得られた圧延
試片から任意の位置にて採取した10ヶ所の板厚中心部の
薄膜試験片にて、透過型電子顕微鏡を用いて7000倍の写
真を撮りフェライト粒径を測定し、2000倍の写真にてフ
ェライト組織の比率を求めた。また圧延試片からJIS5
号の引張り試験片を切り出して引張り強さを測定し、幅
2.5mmのJIS4号サブサイズ試験片により衝撃試験をおこ
ない、破面遷移温度を求めた。
The rolling conditions for each of the steel numbers subjected to these rolling processes, ie, the working start temperature, in the case of multi-pass rolling, the lower limit of the working ratio per roll, and the total working ratio of the end thickness to the rolling start thickness , Etc. are shown in Table 2. Using a transmission electron microscope, a 7,000-fold photograph was taken using a transmission electron microscope to measure the ferrite particle size, and the 2,000-fold magnification was obtained from the thin-film specimens at the center of the sheet thickness, which were collected at arbitrary positions from the obtained rolling specimens at arbitrary positions. The ratio of the ferrite structure was determined from the photograph. In addition, JIS5
Cut out the tensile test piece of No.
An impact test was performed using a 2.5 mm JIS No. 4 subsize test piece to determine the fracture surface transition temperature.

【0044】[0044]

【表2】 [Table 2]

【0045】フェライトの平均結晶粒径、フェライト組
織の占有率、強度および靱性の試験結果をまとめて表2
に示す。この結果から明らかなように、本発明の製造方
法による低温生成フェライトが全体の80%以上を占め、
かつその平均結晶粒径が3μm以下の鋼は、その強度に対
する靱性がすぐれた鋼であることがわかる。またこのよ
うな超微細粒の鋼は、本発明にて定めるように、鋼組
成、オーステナイトから加工までの冷却速度、加工温
度、加工度および加工後の冷却速度を規制し製造する必
要のあることが明らかである。
Table 2 summarizes the test results of the average grain size of ferrite, the occupancy of the ferrite structure, the strength and the toughness.
Shown in As is clear from the results, the ferrite produced at a low temperature by the production method of the present invention accounts for 80% or more of the whole,
Further, it is understood that steel having an average crystal grain size of 3 μm or less has excellent toughness with respect to its strength. In addition, such ultrafine-grained steel must be manufactured by regulating the steel composition, the cooling rate from austenite to processing, the processing temperature, the degree of processing, and the cooling rate after processing as defined in the present invention. Is evident.

【0046】[0046]

【発明の効果】本発明の製造方法によれば、合金組成の
含有量の少ない素材鋼であるにもかかわらず、高強度で
しかも靱性が極めてすぐれた鋼が得られる。これは、鋼
の組織が低温変態により生成したフェライトが80%以上
を占め、かつその平均結晶粒が微細であることによる。
According to the production method of the present invention, a steel having high strength and extremely excellent toughness can be obtained despite being a material steel having a small alloy composition content. This is due to the fact that ferrite generated by low-temperature transformation accounts for 80% or more of the steel structure and its average crystal grains are fine.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000001199 株式会社神戸製鋼所 兵庫県神戸市中央区脇浜町1丁目3番18号 (72)発明者 足立 吉隆 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 (72)発明者 富田 俊郎 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 (72)発明者 下川 修平 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 (72)発明者 藤岡 政昭 千葉県富津市新富20−1新日本製鐵株式会 社研究所内 (72)発明者 横田 智之 東京都千代田区丸の内1丁目1番2号日本 鋼管株式会社技術開発本部内 (72)発明者 枩倉 功和 兵庫県神戸市西区高塚台1丁目5番5号株 式会社神戸製鋼所総合技術研究所内 Fターム(参考) 4K032 AA01 AA04 AA05 AA11 AA16 AA17 AA19 AA22 AA27 AA29 AA31 AA35 AA36 BA01 CA02 CB01 CB02 CD02 CD03 CD05 ────────────────────────────────────────────────── ─── Continued on the front page (71) Applicant 000001199 Kobe Steel, Ltd. 1-3-18, Wakihama-cho, Chuo-ku, Kobe, Hyogo (72) Inventor Yoshitaka Adachi 4-5-Kitahama, Chuo-ku, Osaka, Osaka No. 33 Sumitomo Metal Industries, Ltd. (72) Inventor Toshiro Tomita 4-5-5 Kitahama, Chuo-ku, Osaka-shi, Osaka Prefecture No. 33 Sumitomo Metal Industries, Ltd. (72) Shuhei Shimokawa, Kitahama, Chuo-ku, Osaka, Osaka 4-5-233 Sumitomo Metal Industries, Ltd. (72) Inventor Masaaki Fujioka 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Research Institute (72) Inventor Tomoyuki Yokota 1 Marunouchi, Chiyoda-ku, Tokyo Kobe Steel Co., Ltd. Kobe Steel Ltd. Research house F-term (reference) 4K032 AA01 AA04 AA05 AA11 AA16 AA17 AA19 AA22 AA27 AA29 AA31 AA35 AA36 BA01 CA02 CB01 CB02 CD02 CD03 CD05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%にて、C:0.05〜0.3%とMn:0.5
〜3%を含み、残部が実質的にFeからなる組成の鋼
を、Ac3点以上の温度から5℃/s以上100℃/s未満の冷
却速度にて冷却して650℃以下とし、フェライト相、ベ
イナイト相、またはマルテンサイト相のような低温相が
析出を開始する温度までの温度範囲で、加工開始に対す
る加工終了の断面積減少率が60%以上の加工を、1パス
または1パス当たり30%以上の多パスにて施し、その後
空冷またはそれ以上の冷却速度にて400℃以下の温度に
まで冷却することを特徴とする微細粒フェライト組織を
有する鋼の製造方法。
C. 0.05 to 0.3% and Mn: 0.5% by weight.
The steel containing about 3% and the balance substantially consisting of Fe is cooled from a temperature of 3 points or more to a cooling rate of 5 ° C./s or more and less than 100 ° C./s to 650 ° C. or less. In a temperature range up to the temperature at which a low-temperature phase such as a phase, a bainite phase, or a martensite phase starts to precipitate, a process in which the cross-sectional area reduction rate at the end of processing relative to the start of processing is 60% or more per pass or per pass A method for producing a steel having a fine-grained ferrite structure, wherein the steel is applied in multiple passes of 30% or more, and then cooled to a temperature of 400 ° C or less at a cooling rate of air or higher.
【請求項2】重量%にて、C:0.05〜0.3%、Mn:0.5
〜3%、Si:0.01〜0.3%、Nb:0〜0.05%、Ti:0
〜0.05%、V:0〜0.08%、Cr:0〜1%およびMo:0
〜1%を含み、残部が実質的にFeからなる鋼を、Ac3
点以上の温度から5℃/s以上100℃/s未満の冷却速度に
て冷却して650℃以下とし、フェライト相、ベイナイト
相、またはマルテンサイト相のような低温相が析出を開
始する温度までの温度範囲で、加工開始に対する加工終
了の断面積減少率が60%以上の加工を、1パスまた1パ
ス当たり30%以上の多パスにて施し、その後空冷または
それ以上の冷却速度にて400℃以下の温度にまで冷却す
ることを特徴とする微細粒フェライト組織を有する鋼の
製造方法。
2. C: 0.05 to 0.3%, Mn: 0.5% by weight.
-3%, Si: 0.01-0.3%, Nb: 0-0.05%, Ti: 0
-0.05%, V: 0-0.08%, Cr: 0-1% and Mo: 0
Comprises 1%, the steel balance being substantially Fe, Ac 3
Cooling at a cooling rate of 5 ° C / s or more and less than 100 ° C / s from a temperature above the point to 650 ° C or less, until a temperature at which a low-temperature phase such as a ferrite phase, a bainite phase, or a martensite phase starts to precipitate. In the above temperature range, processing with a cross-sectional area reduction rate of 60% or more at the end of processing relative to the start of processing is performed in one pass or in multiple passes of 30% or more per pass, and then air-cooled or cooled at a cooling rate of 400 or more. A method for producing a steel having a fine-grained ferrite structure, characterized in that the steel is cooled to a temperature of not more than ℃.
JP27172499A 1999-09-27 1999-09-27 Method for producing steel having fine grain ferrite structure Expired - Fee Related JP4183861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27172499A JP4183861B2 (en) 1999-09-27 1999-09-27 Method for producing steel having fine grain ferrite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27172499A JP4183861B2 (en) 1999-09-27 1999-09-27 Method for producing steel having fine grain ferrite structure

Publications (2)

Publication Number Publication Date
JP2001098322A true JP2001098322A (en) 2001-04-10
JP4183861B2 JP4183861B2 (en) 2008-11-19

Family

ID=17503967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27172499A Expired - Fee Related JP4183861B2 (en) 1999-09-27 1999-09-27 Method for producing steel having fine grain ferrite structure

Country Status (1)

Country Link
JP (1) JP4183861B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08512094A (en) * 1993-06-29 1996-12-17 ザ ブロークン ヒル プロプライエタリー カンパニー リミテッド Strain-induced transformation to ultrafine microstructure in steel
JPH11323481A (en) * 1998-05-15 1999-11-26 Sumitomo Metal Ind Ltd Steel with fine grained structure, and its production
JP2000104115A (en) * 1998-09-28 2000-04-11 Nippon Steel Corp Production of high tension steel having fine crystal grain
JP2000192139A (en) * 1998-12-28 2000-07-11 Kawasaki Steel Corp Thermomechanical treating method for steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08512094A (en) * 1993-06-29 1996-12-17 ザ ブロークン ヒル プロプライエタリー カンパニー リミテッド Strain-induced transformation to ultrafine microstructure in steel
JPH11323481A (en) * 1998-05-15 1999-11-26 Sumitomo Metal Ind Ltd Steel with fine grained structure, and its production
JP2000104115A (en) * 1998-09-28 2000-04-11 Nippon Steel Corp Production of high tension steel having fine crystal grain
JP2000192139A (en) * 1998-12-28 2000-07-11 Kawasaki Steel Corp Thermomechanical treating method for steel

Also Published As

Publication number Publication date
JP4183861B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP3758508B2 (en) Manufacturing method of duplex stainless steel pipe
WO2012036312A1 (en) High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same
EP3559299A1 (en) High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof
JP7410936B2 (en) High-strength cold-rolled steel sheet with high hole expandability, high-strength hot-dip galvanized steel sheet, and manufacturing method thereof
WO2021104417A1 (en) Carbon steel and austenitic stainless steel rolling clad plate and manufacturing method therefor
ZA200705233B (en) Process for manufacturing iron-carbon-manganese austenitic steel sheet with a high resistance to delayed cracking, and sheet thus produced
CN101263239A (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
KR20130037208A (en) Ultrahigh-strength cold-rolled steel sheet with excellent ductility and delayed-fracture resistance, and process for producing same
JP4085826B2 (en) Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP4529549B2 (en) Manufacturing method of high-strength cold-rolled steel sheets with excellent ductility and hole-expansion workability
CN114921732A (en) Multiphase reinforced ultrahigh-strength maraging stainless steel and preparation method thereof
EP3556890B1 (en) High-strength steel plate having excellent burring workability in low temperature range and manufacturing method therefor
JP2023534180A (en) Heat-treated cold-rolled steel sheet and manufacturing method thereof
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP4405026B2 (en) Method for producing high-tensile strength steel with fine grain
JP2000008123A (en) Production of high tensile strength steel excellent in low temperature toughness
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP3623656B2 (en) Steel having fine grain structure and method for producing the same
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP7440605B2 (en) High strength steel plate and its manufacturing method
JP5423309B2 (en) Thick steel plate for offshore structures and manufacturing method thereof
JP3844645B2 (en) Method for producing steel having fine ferrite structure
JP2001098322A (en) Method of producing steel having fine-grained ferritic structure
CN114829658B (en) High-strength steel sheet excellent in workability and method for producing same
CN115537677B (en) High-strength high-plasticity austenitic high-manganese steel with double-peak structure and production method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20030522

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20030522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060830

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4183861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees