JP2001098269A - Grout for hardly injectable ground and method for its production - Google Patents

Grout for hardly injectable ground and method for its production

Info

Publication number
JP2001098269A
JP2001098269A JP27354499A JP27354499A JP2001098269A JP 2001098269 A JP2001098269 A JP 2001098269A JP 27354499 A JP27354499 A JP 27354499A JP 27354499 A JP27354499 A JP 27354499A JP 2001098269 A JP2001098269 A JP 2001098269A
Authority
JP
Japan
Prior art keywords
fine powder
particle size
grout
blast furnace
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27354499A
Other languages
Japanese (ja)
Inventor
Atsumoto Ueda
厚元 植田
Atsushi Hasegawa
敦 長谷川
Koji Nagami
幸治 永水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP27354499A priority Critical patent/JP2001098269A/en
Publication of JP2001098269A publication Critical patent/JP2001098269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grout which can be injected even into a gravel-clay layer ground into which the injection of a conventional grout is regarded to be difficult and which has a coefficient of permeability of 3.9×10-4 cm/s, thus enabling dam construction even at a site at which dam construction is considered to be impossible. SOLUTION: This grout comprises a fine blast furnace slag powder having the max. particle size of 12 μm or lower, a fine anhydrous gypsum powder having the max. particle size of 12 μm or lower or sodium hydroxide, a dispersant, and water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地盤注入材が浸透
し難い細粒砂からなる地盤や微細な亀裂を持つ地盤にも
注入可能な注入材(以下グラウト材という)と、その製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injectable material (hereinafter referred to as a grout material) which can be injected into a ground made of fine-grained sand or a ground having fine cracks, into which a soil injectable material hardly penetrates, and a method for producing the same. .

【0002】[0002]

【従来技術】近年のダム建設では、建設地の地盤が悪い
場合が多く、このような場合、通常地盤注入材を用いる
止水工事が行われるが、止水が困難で所定の能力が発揮
でない場合が多い。これはグラウト材として用いられる
超微粒子セメント系グラウト材では注入が困難で、止水
できないことによる。従って、このような既存のグラウ
ト材では注入できないような難注入性地盤でも容易に注
入しうる高性能のグラウト材の開発が要望されていた。
2. Description of the Related Art In recent years, dam construction often has poor ground at the construction site. In such a case, water blocking work is usually performed using a ground injection material. However, it is difficult to stop water and a predetermined capacity is not exhibited. Often. This is because ultrafine cement cement grout used as a grout is difficult to inject and cannot stop water. Accordingly, there has been a demand for the development of a high-performance grout material that can be easily injected even into a hardly injectable ground that cannot be injected with such an existing grout material.

【0003】上記注入が困難な地盤について、その原因
を究明する研究を行ったところ、上記微粒子を主体とし
たグラウト材は、グラウト材の製造の過程で超微粒子が
凝集し粗大粒子を作り出しているという知見を得るに至
った。この事実に基づき、本出願人は、特開平9ー32
4177号公報において、超微粒子セメントを主体とし
た超微粉末と分散剤とからなる混練物を超音波処理した
超微粒子セメント系グラウト材を製造する方法。または
所定のpH値に調整した水とカオリンと分散剤からなる
混練物を同じく超音波処理により粒子を分散させたカオ
リン系グラウト材を製造する方法。更に、上記製造方法
で製造した超微粒子セメント系グラウト材とカオリン系
グラウト材とを混合するグラウト材の製造法を開示して
いる。
A study was conducted to determine the cause of the above-mentioned difficult-to-inject ground. As a result, in the grout material mainly composed of the above-mentioned fine particles, ultra-fine particles aggregated during the production of the grout material to produce coarse particles. That led to the finding. Based on this fact, the applicant of the present invention
No. 4177, a method for producing an ultrafine cement grout material obtained by subjecting a kneaded product composed of an ultrafine powder mainly composed of ultrafine cement and a dispersant to ultrasonic treatment. Alternatively, a method for producing a kaolin-based grout material in which particles are dispersed in a kneaded product of water, kaolin and a dispersant adjusted to a predetermined pH value by the same ultrasonic treatment. Further, the present invention discloses a method for producing a grout material by mixing the ultrafine cement grout material and the kaolin grout material produced by the above production method.

【0004】[0004]

【発明が解決しようとする課題】上記特開平9−324
177号公報において開示した製造方法で製造された上
記グラウト材は、何れも砂・粘土層地盤では良好な浸透
性を示すが、更に透水係数の小さいれき・粘土層地盤で
は目標とする止水効果が得られなかった。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 9-324 is disclosed.
Each of the above grout materials manufactured by the manufacturing method disclosed in Japanese Patent Publication No. 177 shows good permeability in the sand / clay layer ground, but the target water stopping effect in the debris / clay layer ground having a smaller permeability coefficient. Was not obtained.

【0005】[0005]

【課題を解決するための手段】本発明者等は、微細な粒
子からなるれき・粘土層地盤等においても、確実に注入
可能なグラウト材を開発すべく、種々研究を行ったとこ
ろ、次ぎに示すグラウト材とその製造方法を発明するに
至った。請求項1の発明は、最大粒径12μm以下の高
炉スラグ微粉末と、最大粒径12μm以下の無水石膏微
粉末または水酸化ナトリウムと、分散剤と水とから構成
される難注入性地盤用グラウト材である。
Means for Solving the Problems The present inventors have conducted various studies to develop a grout material that can be reliably injected even in the case of rubble or clay layer ground made of fine particles. The grout material shown and the manufacturing method thereof have been invented. The invention of claim 1 provides a hard-to-injectable ground grout comprising blast furnace slag fine powder having a maximum particle size of 12 μm or less, anhydrous gypsum fine powder or sodium hydroxide having a maximum particle size of 12 μm or less, a dispersant and water. Material.

【0006】請求項2の発明は、請求項1の発明に記載
している高炉微粉末と無水石膏微粉末との混合物の最大
粒径が12μ以下である難注入性地盤用グラウト材であ
る。
According to a second aspect of the present invention, there is provided a grout material for hardly injectable ground, wherein the maximum particle size of the mixture of the blast furnace fine powder and the anhydrous gypsum fine powder according to the first aspect of the present invention is 12 μm or less.

【0007】請求項3の発明は、分散剤と水と最大粒径
12μm以下の高炉スラグ微粉末と、最大粒径12μm
以下の無水石膏微粉末、または水酸化ナトリウムとの混
練物を形成させ、この混練物に0.01〜140秒間の
超音波処理を施す難注入性地盤用グラウト材の製造方法
である。
A third aspect of the present invention relates to a blast furnace slag fine powder having a maximum particle size of 12 μm or less, a dispersant, water, and a maximum particle size of 12 μm.
This is a method for producing a grout material for hardly injectable ground, in which a kneaded material with the following anhydrous gypsum fine powder or sodium hydroxide is formed, and the kneaded material is subjected to ultrasonic treatment for 0.01 to 140 seconds.

【0008】請求項4の発明は、請求項3の発明に記載
されている混練物の水粉体比が6〜20である難注入性
地盤用グラウト材の製造方法である。
A fourth aspect of the present invention is a method for producing a grout material for hardly injectable ground, wherein the water powder ratio of the kneaded material is 6 to 20.

【0009】[0009]

【発明の実施の態様】本発明は、粒径12μm以下の高
炉スラグ微粉末を主構成物とし、これに刺激剤として粒
径12μm以下の無水石膏、または水酸化ナトリウム
と、分散剤と、水とより構成される難注入性地盤用グラ
ウト材である。また上記高炉スラグ微粉末と無水石膏微
粉末とは、事前に混合しておいても良く、この混合物の
最大粒径は、12μm以下である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention comprises a blast furnace slag fine powder having a particle size of 12 μm or less as a main component, and anhydrous gypsum or sodium hydroxide having a particle size of 12 μm or less, a dispersing agent, water as a stimulant. And a grouting material for hard-to-inject soil composed of The blast furnace slag fine powder and the anhydrous gypsum fine powder may be mixed in advance, and the maximum particle size of this mixture is 12 μm or less.

【0010】このグラウト材の製造方法は、上記高炉ス
ラグ微粉末に所定量の無水石膏微粉末を加えた微粉末
に、水粉体比が6〜20となるように分散剤と水とを加
えて混練し、この混練物を0.01〜140秒間の超音
波処理を施すことにより、上記高炉スラグ微粉末および
無水石膏微粉末(但し、無水石膏を使用した場合)の粒
子の凝集を防止した難注入性地盤注入用グラウト材の製
造方法である。上記高炉スラグ微粉末を主体とした混練
物を形成する際、高炉スラブ微粉末、無水石膏微粉末ま
たは水酸化ナトリウム、分散剤および水の添加順序は特
に限定されないが、粒子の凝集防止を考慮すれば、所定
量の水と分散剤とを混合し、この混合物を攪拌しなが
ら、上記高炉スラグ微粉末および無水石膏微粉末または
この混合物を徐々に添加しながら混練(攪拌)して混練
物を形成させる方法が好ましい。
In the method for producing a grout material, a dispersant and water are added to a fine powder obtained by adding a predetermined amount of anhydrous gypsum fine powder to the above blast furnace slag fine powder so that a water powder ratio becomes 6 to 20. By subjecting the kneaded material to ultrasonic treatment for 0.01 to 140 seconds, aggregation of the particles of the blast furnace slag fine powder and the anhydrous gypsum fine powder (when using anhydrous gypsum) was prevented. This is a method for producing a grout material for hardly injectable ground injection. When forming the kneaded product mainly composed of the blast furnace slag fine powder, the order of adding the blast furnace slab fine powder, the anhydrous gypsum fine powder or sodium hydroxide, the dispersant and the water is not particularly limited, but it is necessary to consider the prevention of particle aggregation. For example, a predetermined amount of water and a dispersant are mixed, and while the mixture is being stirred, the blast furnace slag fine powder and the anhydrous gypsum fine powder or the mixture are gradually added and kneaded (stirred) to form a kneaded product. Is preferred.

【0011】本発明に使用する高炉スラグ微粉末は、刺
激材の存在により水硬性を有する急冷高炉スラグ微粉末
である。これは、溶鉱炉より排出される高温のスラグ
(高炉滓)を急冷した物であり、アルカリ性物質などの
刺激材により硬化する性質を有している。この高炉スラ
グを粉砕装置と分級装置とにより、最大粒径12μm以
下の高炉スラグ微粉末を製造する。最大粒径が12μm
を越えると、本発明が注入の目的としているれき・粘土
層地盤に対する浸透性が悪くなる。好ましくは10μm
以下、更に好ましくは8μm以下である。
The blast furnace slag fine powder used in the present invention is a quenched blast furnace slag fine powder having hydraulic properties due to the presence of a stimulating material. This is a product obtained by rapidly cooling a high-temperature slag (blast furnace slag) discharged from a blast furnace, and has a property of being hardened by a stimulant such as an alkaline substance. Fine granulated blast furnace slag powder having a maximum particle size of 12 μm or less is produced from the blast furnace slag by a pulverizer and a classifier. Maximum particle size is 12μm
If the ratio exceeds the above range, the permeability to the gravel / clay layer ground, which is the object of the present invention, becomes poor. Preferably 10 μm
The thickness is more preferably 8 μm or less.

【0012】刺激材として使用する無水石膏は、II型の
無水石膏であり、無水石膏の製造方法および種類は、特
に限定されない。この無水石膏を上記高炉スラグ微粉末
と同様に粉砕装置と分級装置とを用いて、最大粒径12
μm以下に分級したものである。最大粒径は上記高炉ス
ラグ微粉末と同様に10μ以下が好ましく、更に好まし
くは8μm以下である。その添加量は、高炉スラグ微粉
末に対し内割りで1.0〜15.0重量%である。1.
0%未満であると初期強度の発現性が悪い。また、1
5.0重量%を越えて添加すると粒子が凝集するおそれ
があり、好ましい範囲として2.0〜8.0重量%であ
る。また、刺激材(剤)として水酸化ナトリウムも使用
することが出来る。この水酸化ナトリウムの添加量は、
使用する水が0.1〜0.5規定の濃度となるように添
加する。その添加量が0.1規定未満であると、硬化す
るまでの時間が長くかかりすぎる。0.5規定を越える
と、硬化時間が早くなり不適当であるばかりか、取扱に
注意を要する。好ましい範囲としては0.15〜0.2
5規定である。
The anhydrous gypsum used as the stimulant is a type II anhydrous gypsum, and the method and type of the anhydrous gypsum are not particularly limited. This anhydrous gypsum was treated with a pulverizer and a classifier in the same manner as the blast furnace slag fine powder to obtain a maximum particle size of 12%.
It was classified to μm or less. The maximum particle size is preferably 10 μm or less, more preferably 8 μm or less, similarly to the above blast furnace slag fine powder. The addition amount is 1.0 to 15.0% by weight based on the blast furnace slag fine powder. 1.
If it is less than 0%, the initial strength is poorly expressed. Also, 1
If it is added in excess of 5.0% by weight, the particles may aggregate, and the preferred range is 2.0 to 8.0% by weight. Also, sodium hydroxide can be used as a stimulant (agent). The amount of sodium hydroxide added is
The water used is added so as to have a concentration of 0.1 to 0.5N. If the addition amount is less than 0.1 normal, it takes too long to cure. If it exceeds 0.5, the curing time is too short to be unsuitable, and care must be taken in handling. A preferred range is 0.15 to 0.2
5 rules.

【0013】分散剤としては、特に限定された物でな
く、市販されているリグニン系スルホン酸塩、多環アロ
マ系スルホン酸塩、メラミン系スルホン酸塩、ポリオキ
シエチレンエーテルなどの市販の高性能分散剤を例示す
ることが出来る。添加量の目安としては、花王株式会社
製の商品名マイテイ150(ナフタレンスルホン酸塩)
の場合、上記高炉スラグ微粉末に対して2〜8%である
が、この数値は、市販されている分散剤の種類によって
も変化するので、使用する分散剤に応じて定めることが
必要である。
The dispersing agent is not particularly limited, and may be a commercially available high-performance dispersing agent such as a commercially available lignin sulfonate, polycyclic aroma sulfonate, melamine sulfonate, polyoxyethylene ether, or the like. Dispersants can be exemplified. As a guide of the amount of addition, a product name of Mighty 150 (naphthalene sulfonate) manufactured by Kao Corporation
In the case of the above, the content is 2 to 8% based on the blast furnace slag fine powder. However, since this value varies depending on the type of a commercially available dispersant, it is necessary to determine the value according to the dispersant used. .

【0014】本発明においては、上記高炉スラグ微粉末
を主体とした混練物中の粒子を、上記分散剤と超音波処
理とで分散させるものである。まず、上記分散剤で上記
微粉末粒子を分散させるが、使用する粒子が微粉末であ
るため、分散剤だけでは粒子を完全に分散させることは
不可能でる。この混練物中の粒子径を計測すると、使用
した上記微粉末の最大粒径より大きい粒径の粒子が検出
され、グラウト材の性能を低下させる。このため、超音
波処理により、上記混練物中の粒子を再分散させ、グラ
ウト材の性能を向上させるものである。この超音波処理
する時間は、0.01〜140秒である。0.01秒未
満では処理時間が短すぎ粒子の分散が不十分である。1
40秒を越えて超音波処理を行っても効果は変わらず不
経済である。好ましくは30〜120秒である。
In the present invention, the particles in the kneaded material mainly composed of the blast furnace slag fine powder are dispersed by the above dispersant and ultrasonic treatment. First, the fine powder particles are dispersed with the dispersant. However, since the particles to be used are fine powder, it is impossible to completely disperse the particles only with the dispersant. When the particle size in the kneaded material is measured, particles having a particle size larger than the maximum particle size of the used fine powder are detected, and the performance of the grout material is reduced. Therefore, the particles in the kneaded material are re-dispersed by the ultrasonic treatment, and the performance of the grout material is improved. The time for the ultrasonic treatment is 0.01 to 140 seconds. If the time is less than 0.01 second, the treatment time is too short and the dispersion of the particles is insufficient. 1
Even if the ultrasonic treatment is performed for more than 40 seconds, the effect does not change and it is uneconomical. Preferably it is 30 to 120 seconds.

【0015】水粉体比は、グラウト材の性能に大きい影
響を及ぼす項目である。本発明のグラウト材において
は、水粉体比を6〜20とする。水粉体比が6未満であ
ると、粘度が高くなりすぎ所定の注入性能が得られな
い。20を越えると分散剤の添加量が増加し経済的でな
い。好ましい水粉体比の範囲としては、8〜16であ
る。
The water powder ratio is an item that has a large effect on the performance of the grout material. In the grout material of the present invention, the water powder ratio is 6 to 20. If the water powder ratio is less than 6, the viscosity becomes too high, and a predetermined injection performance cannot be obtained. If it exceeds 20, the amount of the dispersant added increases, which is not economical. A preferable range of the water powder ratio is 8 to 16.

【0016】また、上記高炉スラグ微粉末と無水石膏微
粉末を上記の方法を用いて製造したグラウト材中の最大
粒度が、12μmを越えないことが好ましい。更に上記
の通り10μm以下、8μm以下となることがより好ま
しい。本発明グラウト材の粒度は、シーラス(株)製レ
ーザ回析式粒度分分布測定器HR850型を用いて測定
した値である。
Further, it is preferable that the maximum particle size in the grout material produced by using the above-mentioned method for the blast furnace slag fine powder and the anhydrous gypsum fine powder does not exceed 12 μm. Further, as described above, the thickness is more preferably 10 μm or less and 8 μm or less. The particle size of the grout material of the present invention is a value measured using a laser diffraction type particle size distribution analyzer HR850 type manufactured by Cirrus Co., Ltd.

【0017】[0017]

【実施例】本発明を以下に示す実施例をもって詳細に説
明するが、本発明は、この実施例に限定される物でな
い。 〔実施例1〕 三菱マテリアル黒崎工場に入荷した高
炉水砕スラグおよび市販の無水石膏を粉砕装置と分級機
を用いて、表1に示す水準の高炉スラグ微粉末および無
水石膏微粉末を製造した。上記高炉スラグ微粉末および
無水石膏微粉末の粒度分布は、シーラス(株)製レーザ
回析式粒度分布測定器HR850型を用い、溶媒をエタ
ノールとして測定した。また、そのブレーン比表面積
は、JIS R 5201に規定する方法で測定た。そ
の結果を、表1に示す。
EXAMPLES The present invention will be described in detail with reference to the following examples, but the present invention is not limited to these examples. Example 1 Granulated blast furnace slag and anhydrous gypsum fine powder at the level shown in Table 1 were produced using a crusher and a classifier for granulated blast furnace slag and commercially available anhydrous gypsum received at the Mitsubishi Materials Kurosaki Factory. The particle size distribution of the blast furnace slag fine powder and the anhydrous gypsum fine powder was measured using a laser diffraction type particle size distribution analyzer HR850 type manufactured by Cirrus Co., Ltd., using ethanol as a solvent. Further, the Blaine specific surface area was measured by a method specified in JIS R5201. Table 1 shows the results.

【0018】[0018]

【表1】 [Table 1]

【0019】本実施例に使用するグラウト材は、ハンド
ミキサー(マキタ製カクハン器UT1301型)に水と
分散剤を投入して10秒間攪拌し、引き続き攪拌(混
合)しながら所定量の微粉末(含む無水石膏)を供給し
た後、引き続き2分間混合して混練物(ペースト)を形
成させる。続いて超音波分散器としてホモジナイザー
(日本精機製:US1200T型、出力1200W、周
波数15kHz)で所定時間処理してグラウト材を製造
する。ただし、無水石膏に変わり水酸化ナトリウムを使
用する場合は、粉体投入前に添加する。)
The grout material used in the present embodiment is prepared by adding water and a dispersant to a hand mixer (Makita type UT1301), stirring the mixture for 10 seconds, and subsequently stirring (mixing) a predetermined amount of fine powder ( And then mixing for 2 minutes to form a kneaded material (paste). Subsequently, a grout material is manufactured by performing a predetermined time treatment with a homogenizer (made by Nippon Seiki Co., Ltd .: US1200T, output 1200 W, frequency 15 kHz) as an ultrasonic disperser. However, when sodium hydroxide is used instead of anhydrous gypsum, it is added before charging the powder. )

【0020】次ぎに示す項目につき試験を行い、本発明
のグラウト材の配合およびその性能を確認した。 (1)分散剤添加量 花王株式会社製のマイテイ150を用いて分散性(分散
剤の添加量)の検討を行うため、水粉体比を6として分
散剤の添加量と超音波処理時間とを変化させてグラウト
材を製造し、このグラウト材の粒度分布をシーラス
(株)製レーザ回析式粒度分布測定器を使用して測定し
た。その結果は、表2および表3に示すとおりである。
The following items were tested to confirm the composition of the grout material of the present invention and its performance. (1) Dispersant addition amount In order to examine the dispersibility (addition amount of the dispersant) using Mighty 150 manufactured by Kao Corporation, the water powder ratio was set to 6 and the addition amount of the dispersant, the ultrasonic treatment time, Was changed to produce a grout material, and the particle size distribution of the grout material was measured using a laser diffraction type particle size distribution analyzer manufactured by Cirrus Co., Ltd. The results are as shown in Tables 2 and 3.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】(2)浸透性の確認 上記グラウト材について、粒径8μmを越える量が最も
多いものと、最もブレーン比表面積の大きいものと、粒
径8μを越える量が最も少ないものとについて、自然浸
透試験を行い、浸透性の比較を行った。その結果は、表
4に示すとおりである。
(2) Confirmation of permeability Of the above grout materials, those having the largest amount exceeding 8 μm in particle size, those having the largest Blaine specific surface area, and those having the smallest amount exceeding 8 μm in particle size are naturally determined. A penetration test was performed to compare the permeability. The results are as shown in Table 4.

【0024】[0024]

【表4】 [Table 4]

【0025】(3)水粉体比 分散剤の添加量を5重量%、注入圧力0.5kgf/c
の条件下で、水粉体比を変化させた場合について浸
透試験を行い、水粉体比と浸透長さの関係の検討を行っ
た。その結果は、図2に示すとおりである。圧力浸透試
験は、図1に示す構造のφ50×500mmのアクリル
性モールド管に、嘉穂7号珪砂と嘉穂珪砂のフィラーと
を重量比で8:1の混合したものを、透水係数:3.0
×10−4〜4.0×10−4cm/s(れき・粘土層
地盤に相当する透水係数)となるように充填し、浸透試
験用のベッドを製作した。このベッドを用いて、浸透試
験を行った。 (4)刺激材(剤)およびその添加量の決定 刺激材の選定および添加量の検討は、無水石膏、水酸化
ナトリウム、水酸化カルシウムおよびクリンカ粉末につ
いて添加量を変化させ、その自然浸透性を測定した。そ
の結果は、表5に示すとおりであり、無水石膏および水
酸化ナトリウム以外は、凝集やゲル化を起こし、浸透性
を阻害することが判明した。
(3) Water Powder Ratio The amount of the dispersant added was 5% by weight, and the injection pressure was 0.5 kgf / c.
Under the condition of m 2, a penetration test was performed for a case where the water powder ratio was changed, and the relationship between the water powder ratio and the penetration length was examined. The result is as shown in FIG. The pressure permeation test was conducted by mixing a Kaho No. 7 silica sand and a Kaho silica sand filler at a weight ratio of 8: 1 in an acrylic mold tube of φ50 × 500 mm having a structure shown in FIG.
The bed was filled so as to have a density of × 10 −4 to 4.0 × 10 −4 cm / s (a coefficient of permeability corresponding to the gravel / clay layer ground) to produce a bed for a penetration test. A penetration test was performed using this bed. (4) Determination of stimulant (agent) and its addition amount The selection of the stimulant and the examination of the addition amount are carried out by changing the addition amount of anhydrous gypsum, sodium hydroxide, calcium hydroxide and clinker powder to improve the natural permeability. It was measured. The results are as shown in Table 5, and it was found that except for anhydrous gypsum and sodium hydroxide, aggregation and gelation were caused and the permeability was inhibited.

【0026】[0026]

【表5】 [Table 5]

【0027】この結果に基づき、無水石膏と水酸化ナト
リウムについて、高炉スラグ微粉末M−20を用いて、
水粉体比10、および圧力0.5kgf/cmの条件
下で浸透試験と、JIS R 5201に準拠し、水ー粉
体比0.6、砂ー粉体比3のモルタル供試体を作成し、
材齢7日と28日の強さ試験を行なった。その結果は、
図3と表6に示す通りである。
Based on the results, the anhydrous gypsum and sodium hydroxide were obtained using blast furnace slag fine powder M-20.
A mortar specimen having a water-to-powder ratio of 0.6 and a sand-to-powder ratio of 3 was prepared in accordance with JIS R 5201 under a penetration test under the conditions of a water powder ratio of 10 and a pressure of 0.5 kgf / cm 2. And
A strength test was carried out at the ages of 7 days and 28 days. The result is
It is as shown in FIG.

【0028】[0028]

【表6】 [Table 6]

【0029】自然浸透試験は、φ50×500mmのア
クリル性モールド管に、豊浦砂700gを高さ225m
mに充填したベッド(透水係数k15=1.1×10
−2cm/s)を使用した。試験は、グラウト材の注入
前にベッドへ水を浸透させ飽和状態にした後、グラウト
材400mlを注入し、浸透長とグラウト材が底から抜
け出るまでの時間を測定した。また、グラウト材の硬化
性状の確認は、JSCE−F522に規定されるポリエ
チレン袋に、グラウト材400mlを入れ、硬化状態を
確認した。また、沈殿物量は、表5に示すグラウト材5
00mlをメスシリンダーに取り、60分間静置後の沈
殿物の量を測定した。
In the natural penetration test, 700 g of Toyoura sand was placed in an acrylic mold tube of φ50 × 500 mm at a height of 225 m.
bed filled with m (permeability k15 = 1.1 × 10
-2 cm / s). In the test, the bed was saturated with water by infiltration into the bed before the grout was injected, 400 ml of the grout was injected, and the permeation length and the time until the grout came off from the bottom were measured. In addition, to confirm the curability of the grout material, 400 ml of the grout material was put into a polyethylene bag specified in JSCE-F522, and the cured state was confirmed. In addition, the amount of sediment was determined by grout material 5 shown in Table 5.
00 ml was taken in a measuring cylinder, and the amount of the precipitate after standing for 60 minutes was measured.

【0030】(5)配合の決定 上記試験結果より、本発明のグラウト材の主要構成物で
ある高炉スラグ微粉末の物性については、グラウト材の
浸透性に影響を与える8μ以上の粒子径の少ないもの
は、M−20であり、続いてM−30となっている。こ
の結果と上記試験(2)〜(4)の結果に基づき、表7
に示す配合のグラウト材について、浸透試験を行いグラ
ウト材の性能を確認した。これらの検討結果は、図4に
示すとおりである。
(5) Determination of Mixing From the above test results, regarding the physical properties of the blast furnace slag fine powder, which is a main component of the grout material of the present invention, the particle size of 8 μm or more which affects the permeability of the grout material is small. The result is M-20, followed by M-30. Based on these results and the results of the above tests (2) to (4), Table 7
The grout material having the composition shown in Table 2 was subjected to a penetration test to confirm the performance of the grout material. The results of these studies are as shown in FIG.

【0031】[0031]

【表7】 [Table 7]

【0032】〔比較試験〕 本発明のグラウト材と比較
するため、三菱マテリアル社製、超微粒子セメント系グ
ラウト材(商品名ファインハード)(粉末度:1260
0cm/g)と、カオリン系微粉末グラウト材(商品
名ファインハードK)最大粒径6μm、d50の粒子径
3.1μmとを使用する。まず、図4に示す水粉体比と
なるように計量した水とマイテイ150を内割で3%添
加した混合物に上記超微粒子セメント系グラウト材(F
H)を供給しながら混練して、混練物を形成させた後、
超音波処理を120秒間施し、超微粒子セメント系グラ
ウト材を製造する。同時に、pHを11に調整した水に
マイテイ150を4%添加して混合し、これに上記カオ
リン系グラウト材(FK)を供給して混練物を形成させ
た後、同じく120秒間超音波処理を施したカオリン系
グラウト材を製造する。この超微粒子セメント系グラウ
ト材とカオリン系グラウト材とを容積比で1:1に混合
して比較用グラウト材を製造した。このグラウト材を用
いて、実施例1の(4)と同一条件でモルタル強度およ
び浸透試験を実施した。その結果は、同じく表6、表7
および図4に示すとおりである。
[Comparative Test] For comparison with the grout material of the present invention, an ultra fine cement grout material (trade name: Fine Hard) manufactured by Mitsubishi Materials Corporation (fineness: 1260)
0 cm 2 / g), a kaolin-based fine powder grout material (trade name: Fine Hard K), a maximum particle diameter of 6 μm, and a particle diameter of d50 of 3.1 μm. First, the ultrafine cement grout material (F) was added to a mixture obtained by adding 3% by weight of water and mighty 150 measured so as to have a water powder ratio shown in FIG.
After kneading while supplying H) to form a kneaded material,
Ultrasonic treatment is applied for 120 seconds to produce an ultrafine cement grout material. At the same time, 4% of Mighty 150 was added to water adjusted to pH 11 and mixed, and the above-mentioned kaolin-based grout material (FK) was supplied to form a kneaded material. To produce a coated kaolin grout. The ultrafine cement grout material and the kaolin grout material were mixed at a volume ratio of 1: 1 to produce a grout material for comparison. Using this grout material, a mortar strength and penetration test were performed under the same conditions as in (4) of Example 1. The results are also shown in Tables 6 and 7
And as shown in FIG.

【0033】[0033]

【発明の効果】本発明のグラウト材は、従来注入が困難
とされていた透水係数3.9×10 cm/s程度の
れき・粘土層地盤にも注入可能であることが確認され
た。したがって、従来ダム建設が不可能とされた地点に
おいても、ダム建設が可能になると考えられる。
[Effect of the Invention] grout of the present invention, conventional injection hydraulic conductivity 3.9 × 10 had been difficult - it was confirmed also be injected into 4 cm / s degree of gravel-clay layers Ground . Therefore, it is considered that dam construction will be possible even at a site where it was previously impossible to construct a dam.

【図面の簡単な説明】[Brief description of the drawings]

【図1】圧力浸透試験の工程図である。FIG. 1 is a process chart of a pressure penetration test.

【図2】実施例における水粉体比と浸透長の関係図であ
る。
FIG. 2 is a diagram showing a relationship between a water powder ratio and a permeation length in Examples.

【図3】実施例における刺激材添加量と浸透長との関係
図である。
FIG. 3 is a graph showing the relationship between the amount of stimulant added and the permeation length in an example.

【図4】本発明のグラウト材における水粉体比と浸透長
の関係図である。
FIG. 4 is a diagram showing the relationship between the water powder ratio and the permeation length in the grout material of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 17/06 C09K 17/06 P E02D 3/12 101 E02D 3/12 101 // C04B 103:40 C04B 103:40 111:70 111:70 C09K 103:00 C09K 103:00 (72)発明者 永水 幸治 福岡県北九州市八幡西区洞南町1番地1 三菱マテリアル株式会社セメント開発セン ター内 Fターム(参考) 2D040 AA01 AB01 CA03 CA04 CA10 4G012 MA00 MB23 PA04 PB03 PB11 PB25 PC03 4H026 CA04 CA05 CB02 CB08 CC05 CC06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09K 17/06 C09K 17/06 P E02D 3/12 101 E02D 3/12 101 // C04B 103: 40 C04B 103 : 40 111: 70 111: 70 C09K 103: 00 C09K 103: 00 (72) Inventor Koji Nagamizu 1 Fukuoka, Kitakyushu-shi, Yawata-nishi-ku, 1-Donami-cho F-term in the Mitsubishi Materials Corporation Cement Development Center (reference) 2D040 AA01 AB01 CA03 CA04 CA10 4G012 MA00 MB23 PA04 PB03 PB11 PB25 PC03 4H026 CA04 CA05 CB02 CB08 CC05 CC06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 最大粒径12μm以下の高炉スラグ微粉
末と、 最大粒径12μm以下の無水石膏微粉末または水酸化ナ
トリウムと、 分散剤と、水とから構成される難注入性地盤用注入材。
An injectable material for hard-to-inject ground comprising: a blast furnace slag fine powder having a maximum particle size of 12 μm or less; an anhydrous gypsum fine powder or sodium hydroxide having a maximum particle size of 12 μm or less; a dispersant; and water. .
【請求項2】 上記高炉スラグ微粉末と上記無水石膏微
粉末との混合物の最大粒径が12μm以下である請求項
1記載の難注入性地盤用注入材。
2. The injection material for hardly injectable ground according to claim 1, wherein a maximum particle size of a mixture of the blast furnace slag fine powder and the anhydrous gypsum fine powder is 12 μm or less.
【請求項3】 分散剤と水と最大粒径12μm以下の高
炉スラグ微粉末と最大粒径12μm以下の無水石膏微粉
末または水酸化ナトリウムとの混練物を形成させ、 この混練物に0.01〜140秒間の超音波処理を施す
難注入性地盤用注入材の製造方法。
3. A kneaded product of a dispersant, water, blast furnace slag fine powder having a maximum particle size of 12 μm or less, and anhydrous gypsum fine powder having a maximum particle size of 12 μm or less or sodium hydroxide is formed. A method for producing a hard-to-injectable ground injection material to be subjected to ultrasonic treatment for up to 140 seconds.
【請求項4】上記混練物の水粉体比が6〜20である請
求項3記載の難注入性地盤用注入材の製造方法。
4. The method according to claim 3, wherein the water powder ratio of the kneaded material is 6 to 20.
JP27354499A 1999-09-28 1999-09-28 Grout for hardly injectable ground and method for its production Pending JP2001098269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27354499A JP2001098269A (en) 1999-09-28 1999-09-28 Grout for hardly injectable ground and method for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27354499A JP2001098269A (en) 1999-09-28 1999-09-28 Grout for hardly injectable ground and method for its production

Publications (1)

Publication Number Publication Date
JP2001098269A true JP2001098269A (en) 2001-04-10

Family

ID=17529316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27354499A Pending JP2001098269A (en) 1999-09-28 1999-09-28 Grout for hardly injectable ground and method for its production

Country Status (1)

Country Link
JP (1) JP2001098269A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174695A (en) * 2007-01-22 2008-07-31 Ube Ind Ltd Grouting material for soil
JP2010532307A (en) * 2007-06-29 2010-10-07 インダストリー ファウンデーション オブ チョンナム ナショナル ユニバーシティー Alkali active binder containing no cement, method for producing mortar using the same, and method for producing alkali active reinforced mortar containing no cement
WO2010125799A1 (en) 2009-04-27 2010-11-04 塩野義製薬株式会社 Urea derivative having pi3k inhibitory activity
JP2020122327A (en) * 2019-01-30 2020-08-13 株式会社Core技術研究所 Composite pile, and construction method of composite pile

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174695A (en) * 2007-01-22 2008-07-31 Ube Ind Ltd Grouting material for soil
JP2010532307A (en) * 2007-06-29 2010-10-07 インダストリー ファウンデーション オブ チョンナム ナショナル ユニバーシティー Alkali active binder containing no cement, method for producing mortar using the same, and method for producing alkali active reinforced mortar containing no cement
JP2012232901A (en) * 2007-06-29 2012-11-29 Industry Foundation Chonnam National Univ Alkaline active binder containing no cement, method for producing mortar using the same, and method for producing alkaline active reinforcing mortar containing no cement
WO2010125799A1 (en) 2009-04-27 2010-11-04 塩野義製薬株式会社 Urea derivative having pi3k inhibitory activity
JP2020122327A (en) * 2019-01-30 2020-08-13 株式会社Core技術研究所 Composite pile, and construction method of composite pile
JP7201968B2 (en) 2019-01-30 2023-01-11 株式会社Core技術研究所 Composite pile and construction method of composite pile

Similar Documents

Publication Publication Date Title
US5804175A (en) Method for producing cement
CN105906226B (en) A kind of preparation method of cement mixing pile compound additive, curing materials and compound additive
Burhan et al. Enhancing the fresh and hardened properties of the early age concrete modified with powder polymers and characterized using different models
JP4253355B1 (en) Heavy aggregate and heavy concrete
CN100343193C (en) Chemical agent for improving engineering properties of soil
JP2003049164A (en) Grouting material
JP2001234167A (en) Ultra fast-curing injection material and injection process using the same
JP2001098269A (en) Grout for hardly injectable ground and method for its production
JPH042642A (en) Cement composition for watertight concrete and production thereof
US10865142B2 (en) Method of making cementitious compositions
AU2017343641A1 (en) Controllable high flow concrete
KR101578854B1 (en) The waterproofed concrete and manufacturing method thereof
Hadi et al. Compaction and strength properties of road subbase infused with a latex copolymer
JP4081748B2 (en) Injection material for ground improvement
KR100845248B1 (en) Solidificator manufacturing method for construction soil cement
JP2894529B2 (en) Injection material for ground improvement
JP2000070700A (en) Method for producing suspension and method for injecting the same
JP2011079990A (en) Grouting material
JP2005273387A (en) Mixing design method for improved soil
JP4234924B2 (en) Ground improvement method
CN106032314B (en) Concrete and preparation method thereof
JP3280125B2 (en) Methods for enhancing the effect of dispersants on high fineness cement.
JP7304024B1 (en) SOIL IMPROVEMENT METHOD AND SOIL IMPROVEMENT MATERIAL
JP2010126610A (en) Grouting material, grout, and method for grouting
JP2012140522A (en) Grouting material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071228