JP2001097735A - Antibacterial glass and its production method - Google Patents

Antibacterial glass and its production method

Info

Publication number
JP2001097735A
JP2001097735A JP28109499A JP28109499A JP2001097735A JP 2001097735 A JP2001097735 A JP 2001097735A JP 28109499 A JP28109499 A JP 28109499A JP 28109499 A JP28109499 A JP 28109499A JP 2001097735 A JP2001097735 A JP 2001097735A
Authority
JP
Japan
Prior art keywords
antibacterial
glass
metal
compound
antibacterial glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28109499A
Other languages
Japanese (ja)
Inventor
Tadashi Kokubo
正 小久保
Masakazu Kawashita
将一 川下
Noriaki Masuda
紀彰 益田
Takehiro Shibuya
武宏 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ION KOGAKU SHINKO ZAIDAN
Nippon Electric Glass Co Ltd
Original Assignee
ION KOGAKU SHINKO ZAIDAN
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ION KOGAKU SHINKO ZAIDAN, Nippon Electric Glass Co Ltd filed Critical ION KOGAKU SHINKO ZAIDAN
Priority to JP28109499A priority Critical patent/JP2001097735A/en
Publication of JP2001097735A publication Critical patent/JP2001097735A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/02Antibacterial glass, glaze or enamel

Abstract

PROBLEM TO BE SOLVED: To produce an antibacterial glass and to provide its production method capable of inexpensively producing a high-performance antibacterial glass by utilizing a sol-gel process. SOLUTION: This antibacterial glass is obtained by mixing a hydrolysable organic silicone compound, a hydrolysable metal M compound (M is a metal atom having a valence in its oxide <= coordination number), an antibacterial metal salt, an alkali catalyst and water and then braking the mixture.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、繊維、建材、プラ
スティック、塗料、水の殺菌等に好適に利用される抗菌
性ガラスとその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antibacterial glass suitably used for sterilizing fibers, building materials, plastics, paints, water and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】抗菌性ガラスの製造方法の一つとして、
ゾルーゲル法が知られている。ゾルーゲル法は、テトラ
エチルシリケート等の金属アルコキシド化合物と、トリ
メトキシシリルプロピルジエチレントリアミン等のアル
コキシ基含有化合物を配位してなるAg配位化合物との
反応物を加水分解してゲル体を調整し、熱処理する方法
であり、Ag配位化合物は、Ag塩を非水有機溶媒に溶
解して得られるAgイオンとアルコキシ基含有化合物と
をエタノール等の非水有機溶媒中で混合することによっ
て生成する製造方法である。ところで従来のゾルゲル法
では、Agがイオン状態ではなく、コロイド粒子状態で
ガラス中に存在するので、得られた抗菌性ガラスが着
色しており、用途が限られる、Agの融点以上にゲル
体を熱処理できず、緻密で安定なガラスが得られない、
Agの放出速度が緩やかでない、といった問題点があ
る。
2. Description of the Related Art As one of manufacturing methods of antibacterial glass,
The sol-gel method is known. In the sol-gel method, a gel body is prepared by hydrolyzing a reaction product of a metal alkoxide compound such as tetraethyl silicate and an Ag coordination compound obtained by coordinating an alkoxy group-containing compound such as trimethoxysilylpropyldiethylenetriamine. Ag coordination compound is produced by mixing an Ag salt obtained by dissolving an Ag salt in a non-aqueous organic solvent and an alkoxy group-containing compound in a non-aqueous organic solvent such as ethanol. It is. By the way, in the conventional sol-gel method, Ag is present not in an ionic state but in a colloidal particle state in the glass, so that the obtained antibacterial glass is colored, and its use is limited. Heat treatment cannot be performed, and dense and stable glass cannot be obtained.
There is a problem that the release rate of Ag is not slow.

【0003】そこで、これらの問題点を解決するため、
本発明者等は特開平9−110463号において、加水
分解性の有機ケイ素化合物、加水分解性の金属M化合物
(ただし、Mは酸化物となったときにその価数が配位数
よりも少ない金属原子を示す。)、抗菌性金属塩、酸触
媒及び水を含む原料溶液を混合してゲル化させた後、焼
成することにより、Agをイオンの状態でガラス中に含
有させた抗菌性ガラスを提案している。なおこの方法で
得られる抗菌性ガラスはバルク体であり、粉砕、分級し
た後に実際の使用に供される。
[0003] To solve these problems,
The present inventors have disclosed in Japanese Patent Application Laid-Open No. Hei 9-110463 that a hydrolyzable organic silicon compound and a hydrolyzable metal M compound (however, when M is an oxide, its valence is smaller than the coordination number) A metal solution), a raw material solution containing an antibacterial metal salt, an acid catalyst, and water are mixed and gelled, and then calcined, whereby Ag is contained in the glass in an ion state. Has been proposed. The antibacterial glass obtained by this method is a bulk material, and is used for actual use after being crushed and classified.

【0004】[0004]

【発明が解決しようとする課題】上記方法により得られ
る抗菌性ガラスは、抗菌性金属がイオン状態でガラス中
に分散しているため、ガラスが着色しない、高温焼成に
より緻密なガラスが得られる、Agの放出速度が連続
的、且つ緩やかである、といった特徴を有している。し
かしながらガラス中に含まれる抗菌性金属のうち、抗菌
性能に寄与するのはガラスの表面部分に存在するものの
みであり、高価な抗菌性金属を有効に利用していない。
The antibacterial glass obtained by the above method is characterized in that the antibacterial metal is dispersed in the glass in an ionic state, so that the glass is not colored. It has the feature that the Ag release rate is continuous and slow. However, among the antibacterial metals contained in glass, only those present on the surface of the glass contribute to the antibacterial performance, and expensive antibacterial metals are not effectively used.

【0005】本発明の目的は、ゾル−ゲル法を用いて作
製でき、抗菌性金属を有効に利用し、効率よく抗菌性能
を発揮させることが可能な抗菌性ガラスとその製造方法
を提供することである。
An object of the present invention is to provide an antibacterial glass which can be produced by using a sol-gel method, can effectively utilize an antibacterial metal, and can exhibit antibacterial performance efficiently, and a method for producing the same. It is.

【0006】[0006]

【課題を解決するための手段】本発明の抗菌性ガラス
は、基体上に表面層が形成されてなる抗菌性ガラスであ
って、抗菌性金属イオンが表面層のみに含有されている
ことを特徴とする。また本発明の抗菌性ガラスの製造方
法は、加水分解性の有機ケイ素化合物、加水分解性の金
属M化合物(ただし、Mは酸化物となったときにその価
数が配位数よりも少ない金属原子を示す)、抗菌性金属
塩、アルカリ触媒、及び水を混合した後、焼成すること
を特徴とする。
The antimicrobial glass of the present invention is an antimicrobial glass having a surface layer formed on a substrate, characterized in that antimicrobial metal ions are contained only in the surface layer. And Further, the method for producing the antibacterial glass of the present invention comprises a hydrolyzable organosilicon compound, a hydrolyzable metal M compound (however, when M is an oxide, its valence is smaller than the coordination number. (Indicating an atom), an antibacterial metal salt, an alkali catalyst, and water, followed by baking.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳述する。本発明
の抗菌性ガラスは、アルカリ触媒及び水を含むアルカリ
溶媒に、加水分解性の有機ケイ素化合物、加水分解性の
金属M化合物、及び抗菌性金属塩を混合した後、焼成す
ることにより作製することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The antibacterial glass of the present invention is prepared by mixing a hydrolyzable organosilicon compound, a hydrolyzable metal M compound, and an antibacterial metal salt with an alkali solvent containing an alkali catalyst and water, and then baking the mixture. be able to.

【0008】ここで有機ケイ素化合物としては、加水分
解性を有するものであれば特に制限はなく、例えばテト
ラエトキシシラン(TEOS)等のケイ素のアルコキシ
ドを使用することができる。金属M化合物としては、加
水分解性を有するとともに、金属Mが酸化物となったと
きにその価数が配位数よりも少ないものであれば特に制
限はなく、例えばアルミニウムトリイソプロポキシド
(Al(OPr)3)等のアルミニウムアルコキシドが
使用できる。抗菌性金属塩としては、硝酸銀(AgNO
3)等が使用可能である。金属Mと抗菌性金属の好適な
組み合わせは、MがAl、抗菌性金属がAgである。ま
たアルカリ触媒としては、アンモニア(NH3)が好適
である。
Here, the organosilicon compound is not particularly limited as long as it has hydrolyzability. For example, silicon alkoxide such as tetraethoxysilane (TEOS) can be used. The metal M compound is not particularly limited as long as it has hydrolyzability and the valence of the metal M when converted to an oxide is smaller than the coordination number. For example, aluminum triisopropoxide (Al Aluminum alkoxides such as (OPr) 3 ) can be used. As an antibacterial metal salt, silver nitrate (AgNO
3 ) etc. can be used. A preferred combination of the metal M and the antibacterial metal is M for Al and the antibacterial metal for Ag. Ammonia (NH 3 ) is suitable as the alkali catalyst.

【0009】有機ケイ素化合物や金属M化合物を水と混
合すると、各化合物が加水分解を起こし、縮合してゲル
化する。このとき触媒にアルカリを用いると、初期に生
成したゲル微粒子表面に負電荷が帯電し、そのクーロン
反発力により微粒子同士の結合が防止され、その結果、
後の粉砕工程が不要になる。なお従来法のように、硝酸
等の酸触媒を用いた場合には、ゲル化の進行に伴って微
粒子同士が結合(熟成)してバルク体となり、微粉化の
ための粉砕工程が必要となる。
When an organosilicon compound or a metal M compound is mixed with water, each compound undergoes hydrolysis, condenses and gels. At this time, if an alkali is used as a catalyst, negative charges are charged on the surface of the initially generated gel fine particles, and the Coulomb repulsion prevents the bonding between the fine particles, and as a result,
The subsequent pulverizing step becomes unnecessary. When an acid catalyst such as nitric acid is used as in the conventional method, the fine particles are combined (aged) with the progress of gelation to form a bulk body, and a pulverizing step for pulverization is required. .

【0010】溶媒中に抗菌性金属塩を添加すると、加水
分解、縮合過程で抗菌性金属イオンがゲル中に均一に分
散する。またゲル中に含まれる金属Mは、価数nが配位
数zよりも少ないので、金属Mの電荷(n+)で電気的
に中和されずに負電荷を帯びた余剰の酸素原子が金属M
の周囲に存在しており、これが抗菌性金属イオンと中和
して安定化する。従って焼成後に抗菌性金属をイオンの
状態で安定、且つ均一に分散させることができる。
When an antibacterial metal salt is added to a solvent, antibacterial metal ions are uniformly dispersed in the gel during the hydrolysis and condensation processes. Further, since the metal M contained in the gel has a valence n smaller than the coordination number z, an excess oxygen atom having a negative charge without being electrically neutralized by the charge (n + ) of the metal M becomes Metal M
Which neutralizes and stabilizes with antibacterial metal ions. Therefore, the antibacterial metal can be stably and uniformly dispersed in an ion state after firing.

【0011】各成分を溶媒と混合するに当たっては、ま
ず最初に一定量の有機ケイ素化合物のみをアルカリ溶媒
に添加した後、別に調整しておいたガラス化可能な組成
を有する加水分解性の有機ケイ素化合物、加水分解性の
金属M化合物及び抗菌性金属塩を添加することが好まし
い。
In mixing each component with a solvent, first, only a certain amount of an organosilicon compound is added to an alkaline solvent, and then a separately prepared hydrolyzable organosilicon having a vitrizable composition is added. It is preferable to add a compound, a hydrolyzable metal M compound and an antibacterial metal salt.

【0012】有機ケイ素化合物のみを溶媒に添加する
と、高度に縮合した核種(Seed)となるシリカゲル
微粒子が生成し、液が白濁する。シリカゲル微粒子をS
eedとすることにより、抗菌性金属イオンを効率的に
ガラスの表面部分に存在させることができる。なお最初
に添加する有機ケイ素化合物の濃度を調整することによ
って、得られる微小球状ガラスの粒径を制御することが
できる。
When only an organosilicon compound is added to a solvent, highly condensed silica gel fine particles serving as a nuclide (Seed) are formed, and the solution becomes cloudy. Silica gel particles
By setting it as “ed”, the antibacterial metal ions can be efficiently present on the surface portion of the glass. By adjusting the concentration of the organosilicon compound to be added first, the particle size of the obtained microspherical glass can be controlled.

【0013】Seed生成後に、別に調整しておいたガ
ラス化可能な組成を有する加水分解性の有機ケイ素化合
物、加水分解性の金属M化合物及び抗菌性金属塩を溶液
に添加すると、Seedを基体としてその表面に抗菌性
金属イオンを含むSiO2−MxOy系ガラスからなる表
面層が形成され、単一粒として成長する。なお有機ケイ
素化合物、金属M化合物及び抗菌性金属塩の添加回数や
添加割合を変化させることにより、表面層の膜厚を調整
したり、その組成を段階的に変化させることができる。
After the seed is formed, a separately prepared hydrolyzable organosilicon compound having a vitrizable composition, a hydrolyzable metal M compound and an antibacterial metal salt are added to the solution. surface layer made of SiO 2 -MxOy system glass containing antimicrobial metal ions is formed on the surface, grow as a single particle. The thickness of the surface layer can be adjusted or its composition can be changed stepwise by changing the number of times and the ratio of addition of the organosilicon compound, the metal M compound and the antibacterial metal salt.

【0014】その後、一定時間攪拌し、乾燥後、600
〜1000℃程度の温度で焼成すると、シリカ微粒子か
らなる基体上に、抗菌性金属イオンを含むSiO2−Mx
Oy系ガラスからなる表面層が形成されたサブミクロン
〜ミクロンオーダーの微小球状の抗菌性ガラスとなる。
なお乾燥工程は、必ずしも必要でない。
Thereafter, the mixture is stirred for a predetermined time, dried, and
When calcined at a temperature of about 1000 ° C., SiO 2 -Mx containing antibacterial metal ions
A microsphere antibacterial glass of submicron to micron order having a surface layer made of Oy glass is formed.
Note that the drying step is not always necessary.

【0015】このようにして得られる抗菌性ガラスは、
抗菌性金属がイオン状態で分散しているので、ガラスが
着色することがなく、高温焼成により緻密なガラスが得
られる。そして、ガラス表面から抗菌性金属イオンが放
出され消費されても、表面層内部の抗菌性金属がイオン
状態で表面に向かって拡散するので、ガラス表面からの
抗菌性金属の放出速度は連続的かつ緩やかである。しか
も金属Mと抗菌性金属との比及び抗菌性金属の総量によ
って、抗菌性金属の放出速度−時間グラフの勾配を制御
することができる。さらにプロセスを変更することによ
って表面層の組成を自由に変化させることができ、様々
な用途に合った抗菌剤設計が可能となる。
The antibacterial glass thus obtained is
Since the antibacterial metal is dispersed in an ionic state, the glass is not colored, and a dense glass can be obtained by firing at a high temperature. And even if the antibacterial metal ions are released from the glass surface and consumed, the antibacterial metal inside the surface layer diffuses toward the surface in an ionic state, so the release rate of the antibacterial metal from the glass surface is continuous and It is moderate. Moreover, the gradient of the antibacterial metal release rate-time graph can be controlled by the ratio of the metal M to the antibacterial metal and the total amount of the antibacterial metal. Further, by changing the process, the composition of the surface layer can be freely changed, and an antibacterial agent suitable for various uses can be designed.

【0016】[0016]

【実施例】以下、実施例に基づいて本発明を説明する。
なお表1〜4は各実施例の作製条件を、表5は得られた
試料のガラス組成を示している。シリカ、アルミナ及び
酸化銀の各原料となるテトラエトキシシラン(TEO
S)、アルミニウムトリイソプロポキシド(Al(OP
r)3)及び硝酸銀については、理論的に表5の組成が
得られる量を計算し、これを総使用量とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.
Tables 1 to 4 show the manufacturing conditions of each example, and Table 5 shows the glass composition of the obtained sample. Tetraethoxysilane (TEO) as a raw material for silica, alumina and silver oxide
S), aluminum triisopropoxide (Al (OP
For r) 3 ) and silver nitrate, the amount that theoretically yielded the composition shown in Table 5 was calculated and used as the total amount used.

【0017】(1)試料の調製 [実施例1] シリカ微粒子(Seed)分散白濁液の作製 まず、テフロン製容器に溶媒としてエタノール、アルカ
リ触媒としてNH3水溶液を入れる。加水分解に必要な
水については、NH3水溶液中の水を使用した。次にS
eed作製のため、テトラエトキシシラン(TEOS)
を重量比で総使用量の8%、16%、16%の3回に分
けて加え、その状態で攪拌した。なおTEOSの添加は
1時間おきに行った。
(1) Preparation of Sample [Example 1] Preparation of Silica Fine Particle (Seed) -Dispersed Cloudy Liquid First, a Teflon container is charged with ethanol as a solvent and an aqueous NH 3 solution as an alkali catalyst. As water required for hydrolysis, water in an aqueous NH 3 solution was used. Then S
Tetraethoxysilane (TEOS) for eed production
Was added in three portions of 8%, 16% and 16% of the total amount used by weight, and the mixture was stirred in that state. The addition of TEOS was performed every one hour.

【0018】微小球状ガラスの作製 で作製した白濁液に、TEOSを総使用量の15%加
え、その後にアルミニウムトリイソプロポキシド(Al
(OPr)3)を総使用量の25%、硝酸銀(AgN
3)を同じく総使用量の25%加え、この一連の操作
を1時間おきに合計4回繰り返した。以下の各実施例に
おいても繰り返し作業はいずれも1時間おきに行った。
TEOS was added to the turbid liquid prepared in the step of preparing the microspherical glass at 15% of the total amount used, and then aluminum triisopropoxide (Al
(OPr) 3 ) in 25% of the total amount used, silver nitrate (AgN
O 3 ) was also added at 25% of the total used amount, and this series of operations was repeated every hour for a total of four times. In each of the following examples, the repetitive work was performed every hour.

【0019】エージング、乾燥、加熱処理 上記の作業終了後、さらに約20時間攪拌を続け、その
後室温で5時間、40℃で1日乾燥させ、完全に溶媒を
除去した後、1000℃で2時間(昇温100℃/時
間)加熱処理を行い、平均粒径が約1μmのガラス試料
を得た。
Aging, drying, heat treatment After completion of the above operation, stirring is continued for about 20 hours, then dried at room temperature for 5 hours and at 40 ° C. for 1 day to completely remove the solvent, and then at 1000 ° C. for 2 hours. A heat treatment was performed at a temperature rise of 100 ° C./hour to obtain a glass sample having an average particle size of about 1 μm.

【0020】[実施例2] シリカ微粒子(Seed)分散白濁液の作製 まず、テフロン製容器に溶媒としてエタノール、アルカ
リ触媒としてNH3水溶液を入れる。加水分解に必要な
水については、NH3水溶液中の水を使用した。次に、
Seed作製のため、TEOSを一度に総使用量の40
%(重量比)を加え、その状態で攪拌した。 微小球状ガラスの作製 で作製した白濁液に、実施例1と同様にしてTEO
S、アルミニウムトリイソプロポキシド(Al(OP
r)3)、硝酸銀(AgNO3)を添加した。 エージング、乾燥、加熱処理 上記の作業終了後、実施例1と同様にして撹拌、乾燥
及び加熱処理を行い、平均粒径が約1.2μmのガラス
試料を得た。
Example 2 Preparation of Silica Fine Particle (Seed) -Dispersed Cloudy Liquid First, a Teflon container was charged with ethanol as a solvent and an aqueous NH 3 solution as an alkali catalyst. As water required for hydrolysis, water in an aqueous NH 3 solution was used. next,
For the production of Seed, TEOS is used at a time,
% (Weight ratio), and the mixture was stirred in that state. In the same manner as in Example 1, TEO was added to the cloudy liquid prepared in
S, aluminum triisopropoxide (Al (OP
r) 3 ), silver nitrate (AgNO 3 ) was added. Aging, drying, and heat treatment After the above operation, stirring, drying, and heat treatment were performed in the same manner as in Example 1 to obtain a glass sample having an average particle size of about 1.2 μm.

【0021】[実施例3] シリカ微粒子(Seed)分散白濁液の作製 実施例1と同様にしてシリカ微粒子(Seed)分散白
濁液を作製した。 微小球状ガラスの作製 で作製した白濁液に、TEOSを総使用量の15%加
え、1時間攪拌し、この作業を合計2回繰り返した。そ
の後、TEOSを総使用量の15%加え、その後にアル
ミニウムトリイソプロポキシド(Al(OPr)3)を
総使用量の50%、硝酸銀(AgNO3)を同じく総使
用量の50%加え、攪拌し、この一連の作業を合計2回
繰り返した。 エージング、乾燥、加熱処理 上記の作業終了後、実施例1と同様にして撹拌、乾燥
及び加熱処理を行い、平均粒径が約1μmのガラス試料
を得た。
Example 3 Preparation of a Silica Fine Particle (Seed) -Dispersed Cloudy Liquid In the same manner as in Example 1, a silica fine particle (Seed) -dispersed cloudy solution was prepared. 15% of the total amount of TEOS was added to the cloudy liquid prepared in the preparation of microspherical glass, and the mixture was stirred for 1 hour, and this operation was repeated twice in total. Thereafter, TEOS was added at 15% of the total usage, then aluminum triisopropoxide (Al (OPr) 3 ) was added at 50% of the total usage, and silver nitrate (AgNO 3 ) was also added at 50% of the total usage, followed by stirring. This series of operations was repeated twice in total. Aging, drying and heat treatment After completion of the above operations, stirring, drying and heat treatment were carried out in the same manner as in Example 1 to obtain a glass sample having an average particle size of about 1 μm.

【0022】[実施例4] シリカ微粒子(Seed)分散白濁液の作製 実施例1と同様にしてシリカ微粒子(Seed)分散白
濁液を作製した。 微小球状ガラスの作製 で作製した白濁液に、TEOSを総使用量の15%加
えて1時間攪拌し、この作業を合計3回繰り返した。そ
の後、TEOSを総使用量の15%加え、その後にアル
ミニウムトリイソプロポキシド(Al(OPr)3)及
び硝酸銀(AgNO3)を加え、攪拌した。 エージング、乾燥、加熱処理 上記の作業終了後、実施例1と同様にして撹拌、乾燥
及び加熱処理を行い、平均粒径が約1μmのガラス試料
を得た。
Example 4 Preparation of Opaque Dispersion of Silica Fine Particles (Seed) A turbid solution of silica fine particles (Seed) was prepared in the same manner as in Example 1. TEOS was added to the white turbid liquid prepared in the preparation of the microspherical glass at 15% of the total used amount, and the mixture was stirred for 1 hour. This operation was repeated three times in total. Thereafter, 15% of the total amount of TEOS was added, and then aluminum triisopropoxide (Al (OPr) 3 ) and silver nitrate (AgNO 3 ) were added and stirred. Aging, drying, and heat treatment After the above operation, stirring, drying, and heat treatment were performed in the same manner as in Example 1 to obtain a glass sample having an average particle size of about 1 μm.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【表5】 [Table 5]

【0028】(2)ガラスの化学的耐久性 評価方法 得られたガラスの化学的耐久性及びAgの徐放性を評価
するために、以下の要領でガラス中から水中へのSi及
びAgの溶出量を調べた。まず上記で作製したガラスを
0.1g秤取り、それぞれ個別にポリプロピレン製の容
器に入れて蒸留水を20ml添加し、容器を37℃の恒
温漕に入れた後、回転頻度100rpmで振動した。振
動を与えながらガラスを水中に所定期間浸漬後、容器を
恒温漕より取り出し、濾過してガラスと溶液とを分別
し、同溶液中のSi及びAgの濃度を高周波誘導結合プ
ラズマ発光分析により測定した。Si濃度及びAg濃度
の測定結果を図1、2に示す。
(2) Evaluation method for chemical durability of glass In order to evaluate the chemical durability and sustained release of Ag of the obtained glass, elution of Si and Ag from the glass into water in the following manner. The amount was checked. First, 0.1 g of the glass prepared above was weighed, individually placed in a polypropylene container, 20 ml of distilled water was added, the container was placed in a thermostat at 37 ° C., and the container was vibrated at a rotation frequency of 100 rpm. After immersing the glass in water for a predetermined period while applying vibration, the container was taken out of the constant temperature bath, filtered to separate the glass and the solution, and the concentrations of Si and Ag in the solution were measured by high-frequency inductively coupled plasma emission analysis. . The measurement results of the Si concentration and the Ag concentration are shown in FIGS.

【0029】化学的耐久性の評価 図1より、各実施例ともSiの溶出量は浸漬時間が長く
なると一定速度で増加し、浸漬後2週間における溶出量
は約5ppmであった。これは、ガラス中からのSiの
溶出量が約0.1%程度であると考えられ、化学耐久性
が非常に高いことを示している。なお同様にしてAlの
溶出について測定したところ、Alの溶出もほとんど確
認できなかった。
Evaluation of Chemical Durability As shown in FIG. 1, in each of the examples, the elution amount of Si increased at a constant rate as the immersion time became longer, and the elution amount in two weeks after immersion was about 5 ppm. This indicates that the elution amount of Si from the glass is about 0.1%, which indicates that the chemical durability is extremely high. When the elution of Al was measured in the same manner, almost no elution of Al was confirmed.

【0030】Agの徐放性の評価 図2より、各実施例ともAgの溶出量は浸漬時間に対し
てほぼ一定速度で溶出し、浸漬後2週間におけるAgの
溶出量は約2ppmであった。なお抗菌性能はAgの溶
出量に依存するところが大きく、Ag量を1/4に減少
させた実施例4でもガラス表面層のAg含有比を同じに
することでほぼ同量の溶出量を得られることが確認され
た。
Evaluation of sustained release of Ag From FIG. 2, it can be seen from FIG. 2 that the amount of Ag eluted at a substantially constant rate with respect to the immersion time in each of the examples, and the amount of Ag eluted about 2 ppm two weeks after immersion. . The antibacterial performance largely depends on the amount of Ag eluted, and even in Example 4 in which the Ag amount was reduced to 1/4, almost the same amount of eluted amount can be obtained by making the Ag content ratio of the glass surface layer the same. It was confirmed that.

【0031】(3)ガラスの抗菌性 評価方法 作製したガラスの抗菌性について評価した。評価方法は
液体培地希釈法による最小発育阻止濃度(MIC)法を
用い、下記の手順で測定した。 1)菌液の調整 ミューラーヒントン(MHB)液体培地で大腸菌を調整
する。(菌数:1.0〜5.0×104/ml) 2)試料の調整 160〜180℃で120分以上加熱して滅菌処理す
る。 3)試験培地調整 MHB培地に6400μg/mlの試料を添加し、それ
を基準にして順次に1/2倍希釈を行い、試料培地を調整
する。 4)菌液接種 調整した菌液をそれぞれに希釈された試験培地に接種す
る。 5)培養 菌液を接種した試料をウォーターバスに入れ、振とう培
養させる。(35〜37℃、24h)
(3) Evaluation method of antibacterial property of glass The antibacterial property of the produced glass was evaluated. The evaluation was performed using the minimum growth inhibitory concentration (MIC) method based on the liquid medium dilution method, and measured according to the following procedure. 1) Preparation of bacterial solution Escherichia coli is prepared in a Mueller Hinton (MHB) liquid medium. (Bacterial count: 1.0 to 5.0 × 10 4 / ml) 2) Preparation of sample Heat sterilization at 160 to 180 ° C. for 120 minutes or more. 3) Preparation of test medium A sample of 6400 μg / ml is added to the MHB medium, and a 1 / 2-fold dilution is sequentially performed based on the sample to prepare a sample medium. 4) Inoculation of bacterial solution The adjusted bacterial solution is inoculated into the test medium diluted in each. 5) Culture The sample inoculated with the bacterial solution is placed in a water bath and cultured with shaking. (35-37 ° C, 24h)

【0032】判定 MIC法により作製したサンプルのMIC値を表6に示
す。
Judgment Table 6 shows the MIC values of the samples prepared by the MIC method.

【表6】 [Table 6]

【0033】表6から、作製したサンプルはすべて抗菌
性能規格基準である800ppmをクリアーしている。
またAg量を1/4に減少させた実施例4でも十分な抗
菌性を示しており、コストダウンの可能性を有してい
る。また表面層の厚さやAg含有比を変化させることに
より、容易に多様な抗菌性能を有するガラスを設計する
ことができる。
As shown in Table 6, all of the prepared samples passed the antibacterial performance standard of 800 ppm.
Further, Example 4 in which the Ag amount was reduced to 1/4 also showed sufficient antibacterial properties, and has the possibility of cost reduction. Further, by changing the thickness of the surface layer and the Ag content ratio, glasses having various antibacterial properties can be easily designed.

【0034】[0034]

【発明の効果】以上の通り、本発明の抗菌性ガラスは、
無色で緻密な材料であり、また化学耐久性及び抗菌性物
質の徐放性に優れており、良好な抗菌性能を発揮する。
従って、抗菌性を必要とする様々な個所で長期安定的な
抗菌力の持続性が期待でき、抗菌材料として好適であ
る。しかも抗菌性金属が表面層のみに含まれているた
め、高価な抗菌性金属を有効に利用することができる。
またプロセスを変更することで、種々の用途にあった抗
菌剤設計が可能である。
As described above, the antibacterial glass of the present invention comprises:
It is a colorless and dense material, and has excellent chemical durability and sustained release of antibacterial substances, and exhibits good antibacterial performance.
Therefore, long-term stable antimicrobial continuity can be expected in various places that require antimicrobial properties, and it is suitable as an antimicrobial material. Moreover, since the antibacterial metal is contained only in the surface layer, the expensive antibacterial metal can be effectively used.
Further, by changing the process, it is possible to design an antibacterial agent suitable for various uses.

【0035】また従来の方法のように、得られるガラス
がバルク体であれば、抗菌剤として使用するために粉砕
工程が必要となり、製造コストが増大する。また粉砕ミ
ル等の摩耗によるコンタミ等により、抗菌性能の劣化が
問題となる。さらに抗菌性の向上のためには、粒子が球
状であること、粒度が細かいこと、粒度が揃っているこ
とが好ましいが、粉砕、分級を行うと、粒子が破砕状に
なってしまう。また細かい粒度に揃えようとするとコス
トアップとなる。これに対して本発明の方法により作製
される抗菌性ガラスは微小球状であるため、粉砕、分級
を行う必要がない。また粒度の調整が容易である。それ
ゆえ抗菌性能に優れた微小球状の抗菌性ガラスを安価に
製造することができる。
If the obtained glass is a bulk material as in the conventional method, a pulverizing step is required to use the glass as an antibacterial agent, which increases the production cost. In addition, deterioration of antibacterial performance becomes a problem due to contamination due to abrasion of the pulverizing mill or the like. In order to further improve the antibacterial property, it is preferable that the particles are spherical, the particle size is fine, and the particle size is uniform. However, if the particles are crushed and classified, the particles become crushed. In addition, the cost is increased if the size is adjusted to be fine. On the other hand, since the antibacterial glass produced by the method of the present invention has a fine spherical shape, there is no need to perform pulverization and classification. Further, the adjustment of the particle size is easy. Therefore, a microsphere antibacterial glass excellent in antibacterial performance can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Siの溶出量を示すグラフである。FIG. 1 is a graph showing the elution amount of Si.

【図2】Agの溶出量を示すグラフである。FIG. 2 is a graph showing the elution amount of Ag.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 531 C02F 1/50 531E C03C 12/00 C03C 12/00 (72)発明者 川下 将一 京都府京都市左京区田中門前町13−1 松 屋レジデンス百万辺310号 (72)発明者 益田 紀彰 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内 (72)発明者 渋谷 武宏 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内 Fターム(参考) 4G062 AA10 BB01 CC05 DA02 DB02 DC01 DD01 DE01 DF01 EA01 EA10 EB01 EC01 ED01 EE01 EF01 EG01 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH04 HH05 HH07 HH09 HH11 HH13 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM15 NN40 4H011 AA02 BB18 BC18 DA01 DD07──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/50 531 C02F 1/50 531E C03C 12/00 C03C 12/00 (72) Inventor Shoichi Kawashita Kyoto 13-1 Tamiyamonmaecho, Sanaka-ku, Kyoto-shi, Japan 310 Matsuya Residence Hyakumanbe 310 (72) Inventor Noriaki Masuda 2-7-1, Hararashi, Otsu-shi, Shiga Prefecture Nippon Electric Glass Co., Ltd. (72) Inventor Shibuya Takehiro F-term (reference) 4-7 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH04 HH05 HH07 HH09 HH11 HH13 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM15 NN4 0 4H011 AA02 BB18 BC18 DA01 DD07

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 基体上に表面層が形成されてなる抗菌性
ガラスであって、抗菌性金属イオンが表面層のみに含有
されていることを特徴とする抗菌性ガラス。
An antibacterial glass comprising a substrate and a surface layer formed thereon, wherein the antibacterial metal ion is contained only in the surface layer.
【請求項2】 基体が、シリカ微粒子からなることを特
徴とする請求項1の抗菌性ガラス。
2. The antibacterial glass according to claim 1, wherein the substrate is made of silica fine particles.
【請求項3】 表面層が、抗菌性金属イオンを含むSi
2−MxOy系ガラス(ただし、Mはその価数が配位数
よりも少ない金属原子、xとyはそれぞれMとOの原子比
を示す)からなることを特徴とする請求項1の抗菌性ガ
ラス。
3. The method according to claim 1, wherein the surface layer is made of Si containing antibacterial metal ions.
2. The antibacterial composition according to claim 1, wherein the glass is made of an O2-MxOy glass (where M is a metal atom whose valence is smaller than the coordination number, and x and y indicate the atomic ratio of M to O, respectively). Glass.
【請求項4】 Mが、Alであることを特徴とする請求
項3の抗菌性ガラス。
4. The antibacterial glass according to claim 3, wherein M is Al.
【請求項5】 抗菌性金属が、Agであることを特徴と
する請求項1又は3の抗菌性ガラス。
5. The antibacterial glass according to claim 1, wherein the antibacterial metal is Ag.
【請求項6】 加水分解性の有機ケイ素化合物、加水分
解性の金属M化合物(ただし、Mは酸化物となったとき
にその価数が配位数よりも少ない金属原子を示す)、抗
菌性金属塩、アルカリ触媒、及び水を混合した後、焼成
することを特徴とする抗菌性ガラスの製造方法。
6. A hydrolyzable organosilicon compound, a hydrolyzable metal M compound (where M represents a metal atom whose valence is smaller than the coordination number when formed into an oxide), an antibacterial property A method for producing an antibacterial glass, which comprises mixing a metal salt, an alkali catalyst, and water and then firing.
【請求項7】 前記混合が、所定量の一部の前記有機ケ
イ素化合物とアルカリ触媒及び水を含む予備混合液を調
整する第一混合工程と、この予備混合液に所定量の残部
の有機ケイ素化合物、金属M化合物、及び抗菌性金属塩
を添加し混合する第二混合工程とからなることを特徴と
する抗菌性ガラスの製造方法。
7. A first mixing step in which the mixing comprises preparing a pre-mixed liquid containing a predetermined amount of a part of the organosilicon compound, an alkali catalyst and water, and adding a predetermined amount of the remaining organosilicon compound to the pre-mixed liquid. A second mixing step of adding and mixing the compound, the metal M compound, and the antibacterial metal salt.
【請求項8】 Mが、Alであることを特徴とする請求
項6又は7の抗菌性ガラスの製造方法。
8. The method for producing an antibacterial glass according to claim 6, wherein M is Al.
【請求項9】 抗菌性金属が、Agであることを特徴と
する請求項6又は7の抗菌性ガラスの製造方法。
9. The method for producing antibacterial glass according to claim 6, wherein the antibacterial metal is Ag.
【請求項10】 アルカリ触媒が、アンモニアであるこ
とを特徴とする請求項6又は7の抗菌性ガラスの製造方
法。
10. The method for producing antibacterial glass according to claim 6, wherein the alkali catalyst is ammonia.
JP28109499A 1999-10-01 1999-10-01 Antibacterial glass and its production method Pending JP2001097735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28109499A JP2001097735A (en) 1999-10-01 1999-10-01 Antibacterial glass and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28109499A JP2001097735A (en) 1999-10-01 1999-10-01 Antibacterial glass and its production method

Publications (1)

Publication Number Publication Date
JP2001097735A true JP2001097735A (en) 2001-04-10

Family

ID=17634265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28109499A Pending JP2001097735A (en) 1999-10-01 1999-10-01 Antibacterial glass and its production method

Country Status (1)

Country Link
JP (1) JP2001097735A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103013192A (en) * 2012-12-08 2013-04-03 上海迪道科技有限公司 Manufacturing method of micronano-coating for metal material surface corrosion prevention and modification
CN103013191A (en) * 2012-12-06 2013-04-03 上海迪道科技有限公司 Method for manufacturing ultra-thin nano-coating for surface modification of organic polymer material
CN103031007A (en) * 2012-12-10 2013-04-10 彩虹集团电子股份有限公司 Preparation method of nanosilicon dioxide sol coating solution with low volatility
JP2013532625A (en) * 2010-07-27 2013-08-19 エージーシー グラス ユーロップ Glass articles with antibacterial properties
KR20160096166A (en) 2014-03-13 2016-08-12 가부시키가이샤 고베 세이코쇼 Antibacterial member
US9840438B2 (en) 2014-04-25 2017-12-12 Corning Incorporated Antimicrobial article with functional coating and methods for making the antimicrobial article
US9919963B2 (en) 2014-02-13 2018-03-20 Corning Incorporated Glass with enhanced strength and antimicrobial properties, and method of making same
US10131574B2 (en) 2013-06-17 2018-11-20 Corning Incorporated Antimicrobial glass articles and methods of making and using same
US10209441B2 (en) 2008-11-19 2019-02-19 Hamamatsu Photonics K.K. Fiber optic plate and method for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10209441B2 (en) 2008-11-19 2019-02-19 Hamamatsu Photonics K.K. Fiber optic plate and method for producing the same
US10802211B2 (en) 2008-11-19 2020-10-13 Hamamatsu Photonics, K.K. Fiber optic plate and method for producing the same
JP2013532625A (en) * 2010-07-27 2013-08-19 エージーシー グラス ユーロップ Glass articles with antibacterial properties
CN103013191A (en) * 2012-12-06 2013-04-03 上海迪道科技有限公司 Method for manufacturing ultra-thin nano-coating for surface modification of organic polymer material
CN103013192A (en) * 2012-12-08 2013-04-03 上海迪道科技有限公司 Manufacturing method of micronano-coating for metal material surface corrosion prevention and modification
CN103031007A (en) * 2012-12-10 2013-04-10 彩虹集团电子股份有限公司 Preparation method of nanosilicon dioxide sol coating solution with low volatility
US10131574B2 (en) 2013-06-17 2018-11-20 Corning Incorporated Antimicrobial glass articles and methods of making and using same
US10676394B2 (en) 2013-06-17 2020-06-09 Corning Incorporated Antimicrobial glass articles and methods of making and using same
US9919963B2 (en) 2014-02-13 2018-03-20 Corning Incorporated Glass with enhanced strength and antimicrobial properties, and method of making same
US10710928B2 (en) 2014-02-13 2020-07-14 Corning Incorporated Glass with enhanced strength and antimicrobial properties, and method of making same
KR20160096166A (en) 2014-03-13 2016-08-12 가부시키가이샤 고베 세이코쇼 Antibacterial member
US9840438B2 (en) 2014-04-25 2017-12-12 Corning Incorporated Antimicrobial article with functional coating and methods for making the antimicrobial article

Similar Documents

Publication Publication Date Title
Kawashita et al. Preparation of antibacterial silver‐doped silica glass microspheres
JP5142354B2 (en) ε-Fe2O3 crystal manufacturing method
KR101179385B1 (en) Composition for dispersing of particle, composition having particle dispersed therein, process for producing the same, and sintered compact of anatase titanium oxide
EP1188716B1 (en) Fine particle, sol having fine particles dispersed, method for preparing said sol and substrate having coating thereon
WO2013036746A1 (en) Antimicrobial composite material
JPS62162626A (en) Highly dispersed sol or gel of ultrafine crystal of monoclinic zirconia and production thereof
Chen et al. Sol–Gel Synthesis and Microstructure Analysis of Amino‐Modified Hybrid Silica Nanoparticles from Aminopropyltriethoxysilane and Tetraethoxysilane
JP2001097735A (en) Antibacterial glass and its production method
JPH11240719A (en) Particulate metal oxide having uniformly coated film
EP0384728B1 (en) Preparation method for zircon powder
JP3199354B2 (en) Antibacterial glass and method for producing the same
JP4052836B2 (en) Antibacterial glass microsphere and method for producing the same
JPH0925437A (en) Antimicrobial inorganic coating material
JP2538527B2 (en) Method for producing metal oxide glass film and spherical fine particles
CN109496201B (en) Composite particle containing zinc oxide, composition for shielding ultraviolet ray, and cosmetic
Miola et al. Sol-gel synthesis of spherical monodispersed bioactive glass nanoparticles co-doped with boron and copper
JP2770264B2 (en) Crystalline antibacterial composition
JP2011001205A (en) Method of manufacturing porous silica capsule
JP2003054915A (en) Stable metallic oxide fine grain and production method therefor
CN111559926B (en) Antibacterial material based on silicate-based surface and preparation method thereof
JP3286071B2 (en) Production method of hydrophobic antimony-containing tin oxide fine particles, heat ray shielding coating liquid and its production method, and heat ray shielding glass and its production method
Astuti et al. Synthesis, Characterization, and Antibacterial Activity Test of Geothermal Silica/AgNO3 Thin Film
JP2006076854A (en) Antibacterial glass fine sphere and manufacturing method therefor
JP2000313624A (en) Production of antimicrobial glass
JPH1157494A (en) Microcapsule-shaped photocatalyst and its manufacture, paint composition, resin composition and resin body

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20091024

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20101024

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20111024

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20121024

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20121024

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 17

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term