JP2001096372A - Method of resistance welding - Google Patents

Method of resistance welding

Info

Publication number
JP2001096372A
JP2001096372A JP27419599A JP27419599A JP2001096372A JP 2001096372 A JP2001096372 A JP 2001096372A JP 27419599 A JP27419599 A JP 27419599A JP 27419599 A JP27419599 A JP 27419599A JP 2001096372 A JP2001096372 A JP 2001096372A
Authority
JP
Japan
Prior art keywords
electrode
workpiece
pressure
welding
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27419599A
Other languages
Japanese (ja)
Inventor
Tadashi Endo
正 遠藤
Mitsushi Kaneda
充司 金田
Yoshiyuki Shimatani
義行 嶋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27419599A priority Critical patent/JP2001096372A/en
Publication of JP2001096372A publication Critical patent/JP2001096372A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of resistance welding wherein electrode pressurizing force smaller than weight of a supply mechanism for electrode pressurizing force can be obtained and thermo-compression bonding or spot welding of workpieces can be done by reducing or increasing the electrode pressurizing force in welding. SOLUTION: The method comprises the steps of moving an electrode to the workpieces, detecting that the electrode abuts on the workpieces, pressurizing the workpieces, energizing the electrode, measuring a displacement quality of thickness of the workpieces in welding, reducing or increasing the electrode pressurizing force in welding when the displacement quality of the workpieces reaches the given value, stopping energizing the electrode after a specific time and making the workpieces held by the reduced or increased electrode pressurizing force after the welding expiration. The thermo-compression bonding or spot welding is done by the method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品あるいは
各種センサの端子部分に極小の導体線または導体部品を
極小の電極加圧力で熱圧着あるいはスポット溶接を行う
抵抗溶接方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance welding method for performing thermocompression bonding or spot welding of a very small conductor wire or a conductor component to a terminal portion of an electronic component or various sensors with a minimal electrode pressing force.

【0002】[0002]

【従来の技術】従来、電子部品あるいは各種センサの端
子部分に導体線または導体部品(以下、これらを総称し
て単に被溶接物と称する)を固着する方法として、被溶
接物を電極で加圧しながら溶接電流を流し、電極を高温
にしてその熱により被溶接物同士を圧着させる熱圧着方
式や、被溶接物を電極間で加圧して溶接電流を流すスポ
ット溶接方式がある。以下、これらの方式を総称して単
に抵抗溶接とする。
2. Description of the Related Art Conventionally, as a method of fixing a conductor wire or a conductor component (hereinafter, collectively simply referred to as a workpiece) to a terminal portion of an electronic component or various sensors, the workpiece is pressurized with an electrode. There are a thermocompression bonding method in which a welding current is applied while the electrodes are heated to a high temperature to press the objects to be welded together by the heat, and a spot welding method in which the welding current is applied by pressing the objects to be welded between the electrodes. Hereinafter, these methods are collectively referred to simply as resistance welding.

【0003】被溶接物である導体線が例えば数10ミク
ロンの細い線、または導体部品が極小サイズのときの抵
抗溶接は、電極加圧力を極小にしなければならないが、
その施策として電極加圧力を得るための機構をできるだ
け小さく、かつ軽量化するなどのハード面に工夫がなさ
れていた。
[0003] In resistance welding when the conductor wire to be welded is a fine wire of, for example, several tens of microns or the conductor component is of a very small size, the electrode pressing force must be minimized.
As a countermeasure, the mechanism for obtaining the electrode pressing force has been devised on the hardware side such as minimizing the size and reducing the weight.

【0004】[0004]

【発明が解決しようとする課題】従来のように電極の加
圧力供給機構をできるだけ小さく、かつ軽量化する方法
では電極加圧力供給機構そのものの重量が電極加圧力に
付加されているため、電極加圧力供給機構の重量よりも
小さい電極加圧力が得られず、そして、電極加圧方法や
溶接時の被溶接物の厚さの管理または電極の温度管理も
溶接品質に影響するため極小の細い線、または導体部品
の被溶接物の抵抗溶接はできないというのが実情であっ
た。
In the conventional method for reducing the electrode pressing force supply mechanism to be as small and light as possible, the weight of the electrode pressing force supply mechanism itself is added to the electrode pressing force. The electrode pressing force smaller than the weight of the pressure supply mechanism cannot be obtained, and the electrode pressing method, the thickness control of the workpiece to be welded during welding, or the temperature control of the electrode also affects the welding quality, so the extremely small thin wire In fact, it is impossible to perform resistance welding of a workpiece to be welded to a conductor part.

【0005】本発明は、上記従来の問題点を解決するた
めのものであり、極小の細い線、または導体部品の抵抗
溶接を可能とする抵抗溶接方法を提供することを目的と
する。
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a resistance welding method which enables resistance welding of extremely small wires or conductor parts.

【0006】[0006]

【課題を解決するための手段】本発明の第1の手段は、
電極を被溶接物に接近および離脱させる工程と、電極が
被溶接物に当接したことを検出する工程と、電極が被溶
接物を加圧する工程と、電極に溶接電流を通電する工程
と、溶接中に被溶接物の厚さの変位量を計測する工程
と、溶接中の被溶接物の変位量が所定の値に達したとき
に電極の加圧を減圧または増圧する工程と、溶接中の被
溶接物の変位量が所定の値に達したときに通電を一定時
間後に停止させる溶接終了遅延時間を計測する工程と、
溶接終了後に電極により被溶接物を一定時間、加圧を前
記の減圧または増圧で保持させる工程とを備えたことを
特徴とする。
A first means of the present invention is as follows.
A step of approaching and detaching the electrode from and to the workpiece, a step of detecting that the electrode has contacted the workpiece, a step of pressing the workpiece with the electrode, and a step of applying a welding current to the electrode, Measuring the displacement of the thickness of the workpiece during welding; reducing or increasing the pressure of the electrode when the displacement of the workpiece during welding reaches a predetermined value; A step of measuring a welding end delay time for stopping the energization after a certain time when the displacement amount of the workpiece reaches a predetermined value,
A step of maintaining the pressurization at the above-mentioned reduced pressure or increased pressure for a predetermined time by the electrode after the welding is completed.

【0007】本発明の第2の手段は、電極を被溶接物に
接近および離脱させる工程と、電極が被溶接物に当接し
たことを検出する工程と、電極が被溶接物を加圧する工
程と、電極に溶接電流を通電する工程と、溶接中に被溶
接物の厚さの変位量を計測する工程と、溶接中の電極の
温度が所定の値に達したときに電極の加圧を減圧または
増圧する工程と、溶接中の電極の温度が所定の値に達し
たときに通電を一定時間後に停止させる溶接終了遅延時
間を計測する工程と、溶接終了後に電極により被溶接物
を一定時間、加圧を前記の減圧または増圧で保持させる
工程とを備えたことを特徴とする。
[0007] A second means of the present invention includes a step of moving the electrode toward and away from the workpiece, a step of detecting that the electrode abuts on the workpiece, and a step of pressing the electrode with the workpiece. Applying a welding current to the electrode, measuring the thickness displacement of the workpiece during welding, and applying pressure to the electrode when the temperature of the electrode during welding reaches a predetermined value. A step of reducing or increasing the pressure; a step of measuring a welding end delay time for stopping the energization after a certain time when the temperature of the electrode during welding reaches a predetermined value; and And maintaining the pressurization at the reduced pressure or the increased pressure.

【0008】本発明の第3の手段は、操作部に被溶接物
への付勢力を電極加圧力として入力する工程と、制御部
により電極加圧力を駆動手段の移動量に算出する工程
と、駆動手段に連結した付勢手段である弾性体の伸縮に
より電極加圧力を得る工程とを備えたことを特徴とす
る。
[0008] A third means of the present invention comprises a step of inputting an urging force to the workpiece as an electrode pressing force to the operation unit, a step of calculating the electrode pressing force by the control unit into a moving amount of the driving means, Obtaining an electrode pressing force by expansion and contraction of an elastic body as an urging means connected to the driving means.

【0009】本発明の第4の手段は、電極が被溶接物を
加圧する工程において、電極が被溶接物に当接したとき
の被溶接物に対する被当接重量が、電極加圧力供給機構
の重量よりも小の電極加圧力を得ることができることを
特徴とする。
In a fourth aspect of the present invention, in the step of pressing the workpiece by the electrode, the contact weight of the electrode with the workpiece when the electrode comes into contact with the workpiece is determined by an electrode pressing force supply mechanism. It is characterized in that an electrode pressing force smaller than the weight can be obtained.

【0010】本発明の第5の手段は、電極が被溶接物を
加圧する工程において、電極が被溶接物に当接したとき
の被溶接物に対する電極加圧力供給機構の被当接重量と
同一値、または少なくともその値よりも小の値を操作部
に電極加圧力補正値として入力する工程と、操作部に被
溶接物への付勢力を電極加圧力として入力した値から、
前記の電極加圧力補正値を差し引いた電極加圧力を駆動
手段の移動量に算出する工程とを備えたことを特徴とす
る。
In a fifth aspect of the present invention, in the step of pressurizing the work to be welded by the electrode, the contact weight of the electrode pressing force supply mechanism for the work to be welded when the electrode comes into contact with the work to be welded is the same. From the value, or at least a step of inputting a value smaller than the value as an electrode pressing force correction value to the operation unit, and from the value obtained by inputting the urging force to the workpiece to the operation unit as the electrode pressing force,
Calculating the electrode pressing force obtained by subtracting the electrode pressing correction value into the moving amount of the driving means.

【0011】本発明の第6の手段は、電極加圧力を得る
付勢手段としての弾性体を取り替え変更することに合わ
せて、弾性体の品番と弾性体の伸縮に対する加圧力定数
および電極加圧力補正値を操作部に入力する工程とによ
って、被溶接物の種類に応じた電極加圧力を得ることが
できることを特徴とする。
According to a sixth aspect of the present invention, an elastic body as an urging means for obtaining an electrode pressing force is replaced and changed. The step of inputting the correction value to the operation unit can obtain an electrode pressing force according to the type of the workpiece.

【0012】本発明の第7の手段は、電極が被溶接物を
加圧する工程と、溶接中に駆動手段をマイナス方向に駆
動させて電極の加圧を減圧、または駆動手段をプラス方
向に駆動させて電極の加圧を増圧する工程と、電極加圧
力とともに電極の昇降速度を操作部に入力する工程とを
備えたことを特徴とする。
[0012] A seventh means of the present invention is a step in which the electrode pressurizes the work to be welded, and the driving means is driven in the minus direction during welding to reduce the pressure on the electrode, or the drive means is driven in the plus direction. The method further comprises the steps of: increasing the pressure of the electrode to increase the pressure of the electrode; and inputting the lifting / lowering speed of the electrode together with the electrode pressing force to the operation unit.

【0013】本発明の第8の手段は、電極の先端が被溶
接物に当接した位置を制御部に記憶する工程と、その位
置をデジタル座標値で表示する工程とを備えたことを特
徴とする。
The eighth means of the present invention is characterized in that the control means stores a position where the tip of the electrode abuts on the work to be welded, and a step of displaying the position as a digital coordinate value. And

【0014】本発明の第9の手段は、被溶接物検出兼変
位量計測手段の「入〜切」選択工程において入を選択し
た場合、被溶接物検出兼変位量計測手段のセンサが有効
となり、切を選択した場合は前記センサが無効になりプ
リセット位置入力手段で任意の被溶接物検出位置データ
を入力する工程と、その入力された位置を被溶接物に当
接した位置と同位置にみなして記憶する工程とを備えた
ことを特徴とする。
According to a ninth aspect of the present invention, when ON is selected in the "ON-OFF" selecting step of the workpiece detection and displacement measuring means, the sensor of the workpiece detection and displacement measuring means becomes effective. If the user selects OFF, the sensor becomes invalid and the preset position input means inputs arbitrary workpiece detection position data, and the input position is set to the same position as the position in contact with the workpiece. And a step of storing as deemed.

【0015】本発明の第10の手段は、被溶接物検出兼
変位量計測手段の「入〜切」選択工程において入を選択
した場合、プリセット位置入力手段で電極の下降を高速
から低速に速度切替えする位置データを入力する工程
と、電極を高速下降開始してから低速に切替えるまでは
駆動手段を位置決め運転する工程と、低速下降から任意
の位置での被溶接物を検出するまでは駆動手段をジョグ
運動する工程と、被溶接物を検出してから溶接終了し電
極が原点に上昇するまで駆動手段を位置決め運転する工
程とを備えたことを特徴とする。
[0015] A tenth means of the present invention is that, when "ON" is selected in the "ON-OFF" selection step of the workpiece detection and displacement amount measuring means, the preset position input means speeds down the electrode from high speed to low speed. A step of inputting position data to be switched, a step of positioning the driving means from the start of the high speed descent of the electrode to the switching to the low speed, and a driving means from the low descent to the detection of the work to be welded at an arbitrary position. And a step of positioning the drive means until the electrode is raised to the origin after welding is detected after the workpiece is detected.

【0016】本発明の第11の手段は、被溶接物検出兼
変位量計測手段の「入〜切」選択工程において切を選択
した場合、被溶接物に当接した位置と同位置にみなして
記憶された位置を常時デジタル座標値で表示する工程と
を備えたことを特徴とする。
According to an eleventh aspect of the present invention, when "OFF" is selected in the "ON-OFF" selecting step of the workpiece detection and displacement amount measuring means, it is regarded as the same position as the position in contact with the workpiece. Displaying the stored position as digital coordinate values at all times.

【0017】本発明の第12の手段は、被溶接物検出兼
変位量計測手段の「入〜切」選択工程において切を選択
した場合、プリセット位置入力手段で任意の被溶接物検
出位置データを入力した位置を基準とし、その位置に対
して手前の位置で電極下降を高速から低速に切替える位
置を入力する工程とを備えたことを特徴とする。
In a twelfth aspect of the present invention, when "OFF" is selected in the "ON-OFF" selection step of the workpiece detection / displacement amount measuring means, an arbitrary workpiece detection position data is inputted by the preset position input means. Inputting a position at which the electrode descent is switched from high speed to low speed at a position in front of the input position based on the input position.

【0018】本発明の第13の手段は、予め設定してお
いた被溶接物の厚さの変位量に対して、溶接中の被溶接
物の厚さが小、すなわち変位量が大のときは自動的に電
極加圧を減圧し、溶接中の被溶接物の厚さが大、すなわ
ち変位量が小のときは自動的に電極加圧を増圧する自動
増減圧工程を有することを特徴とする。
According to a thirteenth aspect of the present invention, when the thickness of the workpiece to be welded is small, that is, when the displacement is large, the displacement of the thickness of the workpiece is preset. Has an automatic pressure increasing / decreasing step of automatically increasing the electrode pressure when the thickness of the workpiece to be welded during welding is large, that is, when the amount of displacement is small, automatically. I do.

【0019】本発明の第14の手段は、電極に溶接電流
を通電する工程の初めに、通電を遅らせる溶接開始遅延
区間を有することを特徴とする。
A fourteenth means of the present invention is characterized in that at the beginning of the step of applying a welding current to the electrode, a welding start delay section for delaying the application of electricity is provided.

【0020】本発明の第15の手段は、溶接中に電極の
加圧を減圧または増圧に遅らせる減圧または増圧開始遅
延区間を有することを特徴とする。
A fifteenth aspect of the present invention is characterized in that the apparatus has a pressure-reducing or pressure-increasing start delay section for delaying the application of pressure to the pressure-reducing or pressure-increasing electrode during welding.

【0021】本発明の第16の手段は、溶接終了後に電
極の加圧を減圧または増圧値で、一定時間被溶接物を保
持する保持区間を有することを特徴とする。
The sixteenth means of the present invention is characterized in that after the welding is completed, the pressure of the electrode is reduced or increased, and a holding section for holding the work to be welded for a certain period of time is provided.

【0022】本発明の第17の手段は、電極が被溶接物
に当接したときから溶接終了して電極の加圧を減圧また
は増圧で保持するまでの区間に、電極加圧力値をデジタ
ル数値で表示する工程と、電極が被溶接物に当接したと
きと、電極を加圧したときおよび電極の加圧を減圧また
は増圧したときの各々に電極加圧力値の上限値と下限値
の設定を設け、電極加圧力値がその範囲外ならば異常信
号を出力し抵抗溶接装置の動作終了後に異常警報する工
程とを備えたことを特徴とする。
According to a seventeenth aspect of the present invention, an electrode pressing force value is digitalized in a section from when the electrode comes into contact with the work to be welded to when the welding is completed and the pressure of the electrode is reduced or increased. The upper and lower limits of the electrode pressure values for the process of displaying numerical values, and when the electrode contacts the workpiece, when the electrode is pressurized, and when the pressure of the electrode is reduced or increased. And a step of outputting an abnormal signal if the electrode pressing force value is out of the range, and performing an abnormal alarm after the operation of the resistance welding apparatus is completed.

【0023】本発明の第18の手段は、被溶接物を生産
するごとに電極研磨プリセットカウンターにて電極研磨
回数をカウントする工程と、前記電極研磨プリセットカ
ウンターがプリセット設定値に到達してから電極研磨装
置により電極を自動研磨する工程とを備えたことを特徴
とする。
The eighteenth means of the present invention comprises a step of counting the number of times of electrode polishing by an electrode polishing preset counter each time a workpiece to be welded is produced, and a step of counting the number of times the electrode polishing preset counter reaches a preset set value. Automatically polishing the electrode by a polishing apparatus.

【0024】[0024]

【発明の実施の形態】本発明の第1の手段によれば、電
極を被溶接物に接近および離脱させる工程と、電極が被
溶接物に当接したことを検出する工程と、電極が被溶接
物を加圧する工程と、電極に溶接電流を通電する工程
と、溶接中に被溶接物の厚さの変位量を計測する工程
と、溶接中の被溶接物の変位量が所定の値に達したとき
に電極の加圧を減圧または増圧する工程と、溶接中の被
溶接物の変位量が所定の値に達したときに通電を一定時
間後に停止させる溶接終了遅延時間を計測する工程と、
溶接終了後に電極により被溶接物を一定時間、加圧を前
記の減圧または増圧で保持させる工程とを備えたため、
品質の高い被溶接物の溶接結果が得られるという作用が
得られる。
According to a first aspect of the present invention, a step of moving an electrode toward and away from an object to be welded, a step of detecting contact of the electrode with the object to be welded, A step of applying a welding current to the electrodes, a step of applying a welding current to the electrodes, a step of measuring the displacement of the thickness of the workpiece during welding, and a step of measuring the displacement of the workpiece during welding to a predetermined value. A step of reducing or increasing the pressurization of the electrode when it reaches, and a step of measuring a welding end delay time for stopping the energization after a certain time when the displacement of the workpiece during welding reaches a predetermined value. ,
After the welding is completed, for a certain period of time the workpiece to be welded by the electrode, and the step of maintaining the pressurization at the reduced pressure or increased pressure,
The effect is obtained that a high quality welded object can be obtained.

【0025】第2の手段は、電極を被溶接物に接近およ
び離脱させる工程と、電極が被溶接物に当接したことを
検出する工程と、電極が被溶接物を加圧する工程と、電
極に溶接電流を通電する工程と、溶接中に被溶接物の厚
さの変位量を計測する工程と、溶接中の電極の温度が所
定の値に達したときに電極の加圧を減圧または増圧する
工程と、溶接中の電極の温度が所定の値に達したときに
通電を一定時間後に停止させる溶接終了遅延時間を計測
する工程と、溶接終了後に電極により被溶接物を一定時
間、加圧を前記の減圧または増圧で保持させる工程とを
備えたため、品質の高い被溶接物の溶接結果が得られる
という作用が得られる。
The second means includes: a step of moving the electrode toward and away from the workpiece; a step of detecting that the electrode is in contact with the workpiece; a step of pressing the workpiece with the electrode; Applying a welding current to the workpiece, measuring the thickness displacement of the workpiece during welding, and reducing or increasing the pressure of the electrode when the temperature of the electrode during welding reaches a predetermined value. Pressurizing, a step of measuring a welding end delay time in which energization is stopped after a certain time when the temperature of the electrode during welding reaches a predetermined value, and pressing the work piece by the electrode for a certain time after the welding is completed. And the step of maintaining the pressure at the above-mentioned reduced pressure or increased pressure, so that the effect of obtaining a high quality welding result of the workpiece can be obtained.

【0026】第3の手段は、操作部に被溶接物への付勢
力を電極加圧力として入力する工程と、制御部により電
極加圧力を駆動手段の移動量に算出する工程と、駆動手
段に連結した付勢手段である弾性体の伸縮により電極加
圧力を得る工程とを備えたため、電極加圧力の設定をデ
ジタル管理できることと、極小の電極加圧力を得ること
ができるという作用が得られる。
The third means includes a step of inputting the urging force to the workpiece as an electrode pressing force to the operation unit, a step of calculating the electrode pressing force by the control unit as a moving amount of the driving means, and a step of Since the method includes the step of obtaining the electrode pressing force by expansion and contraction of the elastic body as the connected urging means, it is possible to digitally manage the setting of the electrode pressing force and to obtain the operation of obtaining the minimum electrode pressing force.

【0027】第4の手段は、電極が被溶接物を加圧する
工程において、電極が被溶接物に当接したときの被溶接
物に対する被当接重量が、電極加圧力供給機構の重量よ
りも小の電極加圧力を得ることができるので、極小の細
い線、または導体部品の抵抗溶接ができるという作用が
得られる。
The fourth means is that, in the step of pressing the workpiece with the electrode, the contact weight of the electrode against the workpiece when the electrode contacts the workpiece is greater than the weight of the electrode pressing force supply mechanism. Since a small electrode pressing force can be obtained, an effect that resistance welding of an extremely small thin wire or a conductor component can be performed is obtained.

【0028】第5の手段は、電極が被溶接物を加圧する
工程において、電極が被溶接物に当接したときの被溶接
物に対する電極加圧力供給機構の被当接重量と同一値、
または少なくともその値よりも小の値を操作部に電極加
圧力補正値として入力する工程と、操作部に被溶接物へ
の付勢力を電極加圧力として入力した値から、前記の電
極加圧力補正値を差し引いた電極加圧力を駆動手段の移
動量に算出する工程とを備えたため、操作部に被溶接物
への付勢力を電極加圧力として入力した値が、そのまま
電極加圧力値として被溶接物を加圧することができると
いう作用が得られる。
The fifth means is that, in the step of pressing the workpiece with the electrode, the same value as the contact weight of the electrode pressing force supply mechanism with respect to the workpiece when the electrode contacts the workpiece,
Or at least a step of inputting a value smaller than the value as an electrode pressing force correction value to the operation unit, and the electrode pressing force correction from the value input as the electrode pressing force to the workpiece to the operation unit. Calculating the electrode pressing force from which the value has been subtracted into the amount of movement of the drive means, so that the value obtained by inputting the urging force to the workpiece into the operating section as the electrode pressing force is directly used as the electrode pressing force value. The effect that the object can be pressurized can be obtained.

【0029】第6の手段は、電極加圧力を得る付勢手段
としての弾性体を取り替え変更することに合わせて、弾
性体の品番と弾性体の伸縮に対する加圧力定数および請
求項5の電極加圧力補正値を操作部に入力する工程とに
よって、被溶接物の種類に応じた電極加圧力を得ること
ができるという作用が得られる。
The sixth means is to change the elastic body as the urging means for obtaining the electrode pressing force by changing the part number of the elastic body, the pressure constant for the expansion and contraction of the elastic body, and the electrode pressing force. By the step of inputting the pressure correction value to the operation unit, an operation that an electrode pressing force corresponding to the type of the workpiece can be obtained.

【0030】第7の手段は、電極が被溶接物を加圧する
工程と、溶接中に駆動手段をマイナス方向に駆動させて
電極の加圧を減圧、または駆動手段をプラス方向に駆動
させて電極の加圧を増圧する工程と、電極加圧力ととも
に電極の昇降速度を操作部に入力する工程とを備えたた
め、電極加圧力の設定をデジタル管理できるという作用
が得られる。
The seventh means is a step in which the electrode presses the workpiece, and a step in which the driving means is driven in the minus direction during welding to reduce the pressure of the electrode, or the method in which the driving means is driven in the plus direction. Since the method includes the step of increasing the pressurizing force of the electrode and the step of inputting the electrode lifting and lowering speed to the operation unit together with the electrode pressing force, an operation of digitally managing the setting of the electrode pressing force is obtained.

【0031】第8の手段は、電極の先端が被溶接物に当
接した位置を制御部に記憶する工程と、その位置をデジ
タル座標値で表示する工程とを備えたため、電極の先端
が被溶接物に当接した位置をデジタル管理できるという
作用が得られる。
The eighth means includes a step of storing, in the control unit, a position where the tip of the electrode is in contact with the workpiece, and a step of displaying the position in digital coordinate values. The effect that the position in contact with the welded object can be digitally managed can be obtained.

【0032】第9の手段は、被溶接物検出兼変位量計測
手段の「入〜切」選択工程において入を選択した場合、
被溶接物検出兼変位量計測手段のセンサが有効となり、
切を選択した場合は前記センサが無効になりプリセット
位置入力手段で任意の被溶接物検出位置データを入力す
る工程と、その入力された位置を被溶接物に当接した位
置と同位置にみなして記憶する工程とを備えたため、被
溶接物検出兼変位量計測手段が無い場合の抵抗溶接装置
においても対応ができるという作用が得られる。 第1
0の手段は、被溶接物検出兼変位量計測手段の「入〜
切」選択工程において入を選択した場合、プリセット位
置入力手段で電極の下降を高速から低速に速度切替えす
る位置データを入力する工程と、電極を高速下降開始し
てから低速に切替えるまでは駆動手段を位置決め運転す
る工程と、低速下降から任意の位置での被溶接物を検出
するまでは駆動手段をジョグ運転する工程と、被溶接物
を検出してから溶接終了し電極が原点に上昇するまで駆
動手段を位置決め運転する工程とを備えたため、抵抗溶
接装置の運転時間を短縮ができるという作用が得られ
る。
The ninth means is that when “ON” is selected in the “ON-OFF” selection step of the workpiece detection and displacement amount measuring means,
The sensor of the work piece detection and displacement amount measurement means becomes effective,
If "OFF" is selected, the sensor becomes invalid and the preset position input means inputs arbitrary workpiece detection position data, and the input position is regarded as the same position as the position in contact with the workpiece. And the step of storing the information, the operation can be obtained in a resistance welding apparatus in the case where there is no means for detecting and measuring the amount of displacement of the workpiece. First
0 means “input to
When "On" is selected in the "Off" selection step, a step of inputting position data for switching the electrode descent speed from high speed to low speed by the preset position input means, and a driving means until the electrode is switched from low speed to low speed after the start of high speed descent. The step of positioning operation, the step of jog operation of the driving means from the low speed descent to the detection of an object at any position, and the step of detecting the object to be welded until the welding is completed and the electrode rises to the origin. Since the method includes the step of positioning the drive means, the operation time of the resistance welding apparatus can be shortened.

【0033】第11の手段は、被溶接物検出兼変位量計
測手段の「入〜切」選択工程において切を選択した場
合、被溶接物に当接した位置と同位置にみなして記憶さ
れた位置を常時デジタル座標値で表示する工程とを備え
たため、被溶接物検出兼変位量計測手段が無い場合の抵
抗溶接装置においても、被溶接物に当接した位置と同位
置にみなして記憶された位置を常時デジタル管理対応が
できるという作用が得られる。
In the eleventh means, when "OFF" is selected in the "ON-OFF" selection step of the workpiece detection / displacement measuring means, the workpiece is stored as being in the same position as the position in contact with the workpiece. And a step of always displaying the position in digital coordinate values, so that even in a resistance welding apparatus in which there is no workpiece detection and displacement amount measuring means, the position is regarded as the same as the position in contact with the workpiece and stored. The effect that digital management can always be performed at the position where the camera is located can be obtained.

【0034】第12の手段は、被溶接物検出兼変位量計
測手段の「入〜切」選択工程において切を選択した場
合、プリセット位置入力手段で任意の被溶接物検出位置
データを入力した位置を基準とし、その位置に対して手
前の位置で電極下降を高速から低速に切替える位置を入
力する工程とを備えたため、被溶接物検出兼変位量計測
手段が無い場合の抵抗溶接装置においても、抵抗溶接装
置の運転時間の短縮ができるという作用が得られる。
The twelfth means is that, when "OFF" is selected in the "ON-OFF" selection step of the workpiece detection and displacement amount measuring means, the position at which arbitrary workpiece detection position data is inputted by the preset position input means. And a step of inputting a position at which the electrode descent is switched from high speed to low speed at a position in front of the position, so that even in a resistance welding apparatus having no workpiece detection and displacement amount measuring means, The effect of shortening the operation time of the resistance welding device can be obtained.

【0035】第13の手段は、予め設定しておいた本発
明の第13の手段は、予め設定しておいた被溶接物の厚
さの変位量に対して、溶接中の被溶接物の厚さが小、す
なわち変位量が大のときは自動的に電極加圧を減圧し、
溶接中の被溶接物の厚さが大、すなわち変位量が小のと
きは自動的に電極加圧を増圧する自動増圧工程を有する
ため、被溶接物の溶接結果が安定するという作用が得ら
れる。
According to a thirteenth aspect, the thirteenth means of the present invention, which has been set in advance, is arranged such that a predetermined displacement amount of the thickness of the workpiece is changed with respect to a predetermined displacement amount of the workpiece during welding. When the thickness is small, that is, when the displacement is large, the electrode pressure is automatically reduced,
When the thickness of the workpiece during welding is large, that is, when the amount of displacement is small, there is an automatic pressure increasing step that automatically increases the electrode pressure, so that the effect of stabilizing the welding result of the workpiece is obtained. Can be

【0036】第14の手段は、電極に溶接電流を通電す
る工程の初めに、通電を遅らせる溶接開始遅延区間を有
するため、被溶接物の溶接結果が安定するという作用が
得られる。
Since the fourteenth means has a welding start delay section for delaying the application of electricity at the beginning of the step of applying the welding current to the electrode, the effect of stabilizing the welding result of the workpiece is obtained.

【0037】第15の手段は、溶接中に電極の加圧を減
圧または増圧に遅らせる減圧または増圧開始遅延区間を
有するため、被溶接物の溶接結果が安定するという作用
が得られる。
The fifteenth means has a pressure reduction or pressure increase start delay section in which the pressure of the electrode is delayed to a pressure reduction or pressure increase during welding, so that the effect of stabilizing the welding result of the workpiece can be obtained.

【0038】第16の手段は、溶接終了後に電極の加圧
を減圧または増圧値で、一定時間被溶接物を保持する保
持区間を有するため、被溶接物の溶接結果が安定すると
いう作用が得られる。
The sixteenth means has a holding section for holding the object to be welded for a certain period of time at a reduced or increased pressure of the electrode after the welding is completed, so that the welding result of the object to be welded is stabilized. can get.

【0039】第17の手段は、電極が被溶接物に当接し
たときから溶接終了して電極の加圧を減圧または増圧で
保持するまでの区間に、電極加圧力値をデジタル数値で
表示する工程と、電極が被溶接物に当接したときと、電
極を加圧したときおよび電極の加圧を減圧または増圧し
たときの各々に電極加圧力値の上限値と下限値の設定を
設け、電極加圧力値がその範囲外ならば異常信号を出力
し抵抗溶接装置の動作終了後に異常警報する工程とを備
えたため、電極加圧力のデジタル管理ができるという作
用が得られる。
The seventeenth means is to display the electrode pressing force digitally in a section from the time when the electrode comes into contact with the work to be welded to the time when the welding is completed and the pressure applied to the electrode is reduced or increased. And setting the upper and lower limits of the electrode pressing force value when the electrode comes into contact with the workpiece, when the electrode is pressurized, and when the pressure of the electrode is reduced or increased. A step of outputting an abnormal signal if the electrode pressure value is out of the range and issuing an alarm after the operation of the resistance welding apparatus is completed, so that an operation of digitally managing the electrode pressure can be obtained.

【0040】第18の手段は、被溶接物を生産するごと
に電極研磨プリセットカウンターにて電極研磨回数をカ
ウントする工程と、前記電極研磨プリセットカウンター
がプリセット設定値に到達してから電極研磨装置により
電極を自動研磨する工程とを備えたため、被溶接物の溶
接結果の品質安定と電極の寿命を長くできるという作用
が得られる。
The eighteenth means includes a step of counting the number of times of electrode polishing by an electrode polishing preset counter each time a workpiece is produced, and an operation of the electrode polishing apparatus after the electrode polishing preset counter reaches a preset set value. Since the step of automatically polishing the electrode is provided, the effect of stabilizing the quality of the welding result of the workpiece and extending the life of the electrode is obtained.

【0041】(実施の形態1)以下本発明の第1の実施
の形態について、図1、図2、図3のそれぞれを用いて
説明する。図1は抵抗溶接方法の概略図で制御部18と
操作部19の制御により被溶接物12a,12bを3が
加圧し溶接23にて溶接電流を流して抵抗溶接を行うも
ので、図2は本発明の抵抗溶接方法を使用した抵抗溶接
装置の斜視図、そして図3は溶接動作図である。
(Embodiment 1) A first embodiment of the present invention will be described below with reference to FIGS. 1, 2 and 3. FIG. FIG. 1 is a schematic view of the resistance welding method, in which the control unit 18 and the operation unit 19 control the pressure of the workpieces 12a and 12b by 3 and apply a welding current by the welding 23 to perform the resistance welding. FIG. 3 is a perspective view of a resistance welding apparatus using the resistance welding method of the present invention, and FIG. 3 is a welding operation diagram.

【0042】図2の抵抗溶接装置の斜視図の構成を説明
すると、被溶接物12a,12b方向に対して駆動され
る上部スライダー1と、上部スライダー1に対して摺動
自在に保持される下部スライダー2と、下部スライダー
2に取付けられ、被溶接物12a,12bに当接させる
電極3と、上部スライダー1と下部スライダー2の間に
設けた下部スライダー2を被溶接物方向12a,12b
へ付勢する付勢手段4と、下部スライダー2に設けた係
止部5と、下部スライダー2の移動に際して電極3が被
溶接物12a,12bに当接するまでに係止部5と当接
し、かつ下部スライダー2を被溶接物12a,12bと
は反対方向に付勢する付勢力制御手段6を構成する。
The configuration of a perspective view of the resistance welding apparatus shown in FIG. 2 will be described. The upper slider 1 is driven in the direction of the workpieces 12a and 12b, and the lower slider is slidably held with respect to the upper slider 1. The slider 2, an electrode 3 attached to the lower slider 2 and brought into contact with the workpieces 12 a and 12 b, and the lower slider 2 provided between the upper slider 1 and the lower slider 2 are connected to the workpieces 12 a and 12 b.
A biasing means 4 for biasing the lower slider 2, a locking portion 5 provided on the lower slider 2, and a contact with the locking portion 5 until the electrode 3 comes into contact with the workpieces 12a and 12b when the lower slider 2 moves. Further, an urging force control means 6 for urging the lower slider 2 in a direction opposite to the workpieces 12a and 12b is provided.

【0043】図1の抵抗溶接方法の概略図と図2の抵抗
溶接装置の斜視図の動作を、図3の溶接動作図で説明す
る。図3の動作工程の概要は、電極下降区間L1、電極
加圧および据込み区間L2(電極加圧を減圧または増圧
することを鍛圧と称す)、鍛圧区間L3、電極上昇区間
L4からなる。最初に図3の電極下降区間L1におい
て、図1の電極移動工程101により図3の電極3が原
点P0点にあり、図1の駆動手段13としてのモータ1
3が正転方向に回転すると、モータ13により回転され
るねじ14と、ねじ14に螺合し、上部スライダー1に
保持された螺合部15により被溶接物12a,12b方
向に対して駆動される上部スライダー1と、上部スライ
ダー1に対して摺動自在に抜け防止部7で保持される下
部スライダー2と、図1の電極位置決運転工程124に
て下部スライダー2に取付けられた電極3が図3の原点
P0点から低速点P1まで高速で下降する(図3の〜
)。
The operation of the schematic diagram of the resistance welding method of FIG. 1 and the perspective view of the resistance welding apparatus of FIG. 2 will be described with reference to the welding operation diagram of FIG. The outline of the operation process in FIG. 3 includes an electrode descending section L1, an electrode pressurizing and upsetting section L2 (decreasing or increasing the electrode pressurizing is referred to as forging pressure), a forging pressure section L3, and an electrode rising section L4. First, in the electrode descending section L1 in FIG. 3, the electrode 3 in FIG. 3 is at the origin P0 by the electrode moving step 101 in FIG.
When 3 rotates in the normal rotation direction, the screw 14 is rotated by the motor 13 and screwed to the screw 14, and is driven in the direction of the workpieces 12 a and 12 b by the screwing portion 15 held by the upper slider 1. The upper slider 1, the lower slider 2 slidably held by the upper slider 1 with respect to the upper slider 1, and the electrode 3 attached to the lower slider 2 in the electrode positioning operation step 124 of FIG. It descends at a high speed from the point of origin P0 in FIG.
).

【0044】図1の電極速度切替工程123により図3
の電極3が低速点P1点に到達すると、電極3は図1の
電極ジョグ運転工程125にて電極3は低速点P1点か
ら被溶接物当接点P2点まで低速で下降する(図3の
〜)。低速で下降するのは被溶接物を変形させたり、
傷を与えないようにするためである。
3 by the electrode speed switching step 123 of FIG.
When the electrode 3 reaches the low-speed point P1, the electrode 3 descends at a low speed from the low-speed point P1 to the workpiece contact point P2 in the electrode jog operation step 125 in FIG. ). Lowering at a low speed can deform the workpiece,
This is so as not to cause any damage.

【0045】付勢手段4である弾性体4の実施例として
コイル状バネ、板状バネ、伸縮ゴムなど、駆動手段13
であるモータ13の実施例として、サーボモータ、ステ
ッピングモータ、インバータモータ、インダクションモ
ータなどがある。
Examples of the elastic body 4 as the urging means 4 include a driving means 13 such as a coil spring, a plate spring, or an elastic rubber.
Examples of the motor 13 include a servo motor, a stepping motor, an inverter motor, and an induction motor.

【0046】図3の電極3が原点P0点から被溶接物当
接点P2点に到達するまでは、上部スライダー1と下部
スライダー2を接続している抜け防止部7によって、上
部スライダー1が下降すれば下部スライダー2も下降す
る。そして、図1の被溶接物当接検出工程102によ
り、電極3が被溶接物12a,12bに当接すると、下
部スライダー2は被溶接物12a,12bに当接したま
まで下部スライダー2は下降せずに、係止部5がてこ部
24の当接端8に当接する。
Until the electrode 3 in FIG. 3 reaches the point P2 from the point of origin P0 to the point of contact P2, the upper slider 1 is lowered by the slip-off preventing unit 7 connecting the upper slider 1 and the lower slider 2. For example, the lower slider 2 also descends. When the electrode 3 comes into contact with the workpieces 12a and 12b in the workpiece contact detection step 102 in FIG. 1, the lower slider 2 descends while the lower slider 2 remains in contact with the workpieces 12a and 12b. Instead, the locking portion 5 contacts the contact end 8 of the lever portion 24.

【0047】そして、駆動手段13のモータ13が正回
転すると上部スライダー1のみが下降して、上部スライ
ダー1と下部スライダー2を接続している抜け防止部7
が上部スライダー1から外れて、上部スライダー1だけ
が下降して抜け防止部7が被溶接物検出手段27である
変位センサ16を押圧する。そして、変位センサ16が
作動してその信号を変位量計測部17に送信する。これ
によって変位量計測部17が変位量に演算して、電極3
は図3の被溶接物当接点P2点に到達したことになり
(図3の)、被溶接物12a,12bを検出したこと
になる。そして、電極3が被溶接物12a,12bに当
接した図3の被溶接物当接点P2点を図1の中の被溶接
物位置記憶工程119にて記憶するとともに、被溶接物
位置表示工程120にて、その位置をデジタル座標値で
表示する。
When the motor 13 of the driving means 13 rotates forward, only the upper slider 1 is lowered, and the slip-off preventing portion 7 connecting the upper slider 1 and the lower slider 2 is formed.
Is disengaged from the upper slider 1, and only the upper slider 1 descends, and the slip-out preventing portion 7 presses the displacement sensor 16 which is the workpiece detection means 27. Then, the displacement sensor 16 operates to transmit the signal to the displacement measuring unit 17. Accordingly, the displacement measuring unit 17 calculates the displacement and calculates the electrode 3
Has reached the contact point P2 of the workpiece to be welded in FIG. 3 (in FIG. 3), which means that the workpieces 12a and 12b have been detected. The point P2 of FIG. 3 where the electrode 3 abuts on the workpieces 12a and 12b is stored in the workpiece position storage step 119 in FIG. At 120, the position is displayed in digital coordinate values.

【0048】次に図3の電極加圧および据込み区間L2
において、図2の付勢力制御手段6としてのてこ部24
は係止部5に当接させる当接端8と、被溶接物12a,
12b方向に付勢する付勢端9の上に接続したウエイト
11と、当接端8と付勢端9とウエイト11の間に支点
10で構成され、電極3と下部スライダー2と抜け防止
部7の合計重量に対し、被溶接物12a,12bとは反
対方向に付勢力制御手段6によって付勢する。
Next, the electrode pressurization and upsetting section L2 of FIG.
In FIG. 2, the lever 24 as the urging force control means 6 in FIG.
Is a contact end 8 to be brought into contact with the locking portion 5, and a workpiece 12a,
A weight 11 connected to the biasing end 9 for biasing in the direction 12b, and a fulcrum 10 between the contacting end 8, the biasing end 9 and the weight 11, the electrode 3, the lower slider 2, and the slip-off preventing portion. 7 is urged by the urging force control means 6 in a direction opposite to the workpieces 12a and 12b.

【0049】例えば、電極3と下部スライダー2と抜け
防止部7の合計重量が300グラムとした場合にこれを
W1とし、付勢力制御手段6による重量が300グラム
とするとこれをW2とし、この差をW3とする。これを
式で表すとW1−W2=W3、数値を代入すると300
グラム−300グラム=0グラム。
For example, if the total weight of the electrode 3, the lower slider 2, and the slip-off preventing portion 7 is 300 grams, this is W1, and if the weight by the biasing force control means 6 is 300 grams, this is W2. Is W3. When this is represented by an equation, W1−W2 = W3, and when a numerical value is substituted, 300 is obtained.
Grams-300 grams = 0 grams.

【0050】これは、電極3が被溶接物12a,12b
に当接したときの初期重量、つまり加圧量が0グラムと
いうことである。
The reason is that the electrodes 3 are connected to the workpieces 12a and 12b.
Means the initial weight, ie, the amount of pressure applied, is 0 grams.

【0051】もし、付勢端9の上に接続したウエイト1
1の重量を変えて250グラムとすると、W1−W2=
W3、数値を代入すると300グラム−250グラム=
50グラム。
If the weight 1 connected on the biasing end 9
If the weight of 1 is changed to 250 grams, W1-W2 =
When W3 is substituted, 300 grams-250 grams =
50 grams.

【0052】これは、電極3が被溶接物12a,12b
に当接したときの初期重量、つまり加圧力が50グラム
ということである。ウエイト11の重量と変えることに
より、初期重量、つまり加圧力の初期値を変えることが
できるのである。この状態から、駆動手段13としての
モータ13が正回転方向に回転して、被溶接物12a,
12b方向に対して印加される加圧力は付勢駆動手段1
3としてのモータ13が正転方向に回転しても、下部ス
ライダー2は被溶接物12a,12bに当接したままの
ため、下部スライダー2は被溶接物12a,12b方向
には下降せず停止した状態となり、上部スライダー1の
み被溶接物12a,12b方向に対して下降する。
The reason is that the electrodes 3 are connected to the workpieces 12a and 12b.
Means that the initial weight, ie, the pressing force, is 50 grams. By changing the weight of the weight 11, the initial weight, that is, the initial value of the pressing force can be changed. From this state, the motor 13 as the driving means 13 rotates in the forward rotation direction, and the workpieces 12a,
The pressing force applied in the direction 12b
Even if the motor 13 rotates in the forward direction, the lower slider 2 stops without descending in the direction of the workpieces 12a and 12b because the lower slider 2 remains in contact with the workpieces 12a and 12b. And only the upper slider 1 descends in the direction of the workpieces 12a and 12b.

【0053】つまり、被溶接物12a,12bに印加さ
れる電極3の加圧力は付勢手段4である弾性体4の伸縮
だけになり、電極3と下部スライダー2と抜け防止部7
の合計重量は被溶接物12a,12bに印加されないこ
とになる。さらに上部スライダー1は下降するが下部ス
ライダー2は被溶接物12a,12bに当接したままで
下部スライダー2は下降せず、図1の弾性体品番定数入
力工程116にて入力された図2の弾性体4の定数(1
mm当たりの弾性体4の加圧力)に応じて上部スライダ
ー1の移動距離に比例して、電極3の被溶接物12a,
12bに当接した加圧力が比例して大きくなる。
That is, the pressing force of the electrode 3 applied to the workpieces 12a and 12b is only the expansion and contraction of the elastic body 4 which is the urging means 4, and the electrode 3, the lower slider 2 and the disengagement preventing portion 7
Is not applied to the workpieces 12a and 12b. Further, the upper slider 1 descends, but the lower slider 2 does not descend while the lower slider 2 remains in contact with the workpieces 12a and 12b, and the lower slider 2 does not descend as shown in FIG. The constant of the elastic body 4 (1
The pressing force of the elastic body 4 per mm) is proportional to the moving distance of the upper slider 1, and the workpieces 12a,
The pressing force in contact with 12b increases proportionally.

【0054】そして、電極3が図3の被溶接物当接点P
2点から電極加圧開始遅延時間(ゼロも含む)経過後
に、図1の操作部19の中の電極加圧力入力工程111
にて電極加圧力と加圧速度を入力した値により、被溶接
物12a,12b方向に電極加圧する。この電極加圧力
は図1の駆動手段移動算出工程112にて図2の駆動手
段13であるモータ13の移動量に算出する。例えば、
弾性体4の定数を0.1kg/mm(弾性体4が1mm
縮まると加圧力が100グラムになり、弾性体4が2m
m縮まると加圧力が200グラムになる)とすると、電
極加圧力を150グラムと入力した場合の駆動手段13
であるモータ13の移動量算出は、電極加圧力÷弾性体
4の定数=移動距離、0.15÷0.1kg/mm=
1.5mmとなり、上部スライダー1を1.5mm下降
させる。上部スライダー1が1.5mm下降すると弾性
体4が1.5mm縮まり、結果的に電極加圧出力工程1
13にて電極加圧力が150グラムになって被溶接物1
2a,12bを加圧することになる。
The electrode 3 is connected to the contact point P of the work to be welded in FIG.
After an electrode pressing start delay time (including zero) has elapsed from two points, an electrode pressing force input step 111 in the operation unit 19 in FIG.
The electrode pressure is applied in the direction of the workpieces 12a and 12b according to the input values of the electrode pressing force and the pressing speed. This electrode pressing force is calculated as the amount of movement of the motor 13 as the driving means 13 in FIG. 2 in the driving means movement calculating step 112 in FIG. For example,
The constant of the elastic body 4 is 0.1 kg / mm (1 mm for the elastic body 4
When it shrinks, the pressing force becomes 100 grams and the elastic body 4 is 2m
m, the pressing force becomes 200 grams), and the driving means 13 when the electrode pressing force is input as 150 grams
The calculation of the moving amount of the motor 13 is: electrode pressing force ÷ constant of the elastic body 4 = moving distance, 0.15 ÷ 0.1 kg / mm =
1.5 mm, and the upper slider 1 is lowered by 1.5 mm. When the upper slider 1 is lowered by 1.5 mm, the elastic body 4 is contracted by 1.5 mm.
At 13, the electrode pressure becomes 150 g and the workpiece 1
2a and 12b will be pressurized.

【0055】電極加圧が経過すると、図1の電極通電工
程104にて溶接開始遅延時(ゼロも含む)が経過して
図1の溶接電源23が起動され溶接開始する。これによ
り、電極3に溶接電流が流れて被溶接物12a,12b
が熱圧着またはスポット溶接される。図1の変位量計測
工程105にて溶接中に被溶接物12a,12bの厚さ
の変位量を変位量計測手段27で計測する。変位量計測
手段27として、電極3の昇降に連動する抜け防止部7
と上部スライダー1との間隙を検知する上部スライダー
1に保持した変位センサ16と、その変位センサ16の
信号を変位量に演算する変位量計測部17とからなる。
When the electrode pressurization elapses, a welding start delay time (including zero) elapses in the electrode energizing step 104 in FIG. 1, and the welding power source 23 in FIG. 1 is activated to start welding. As a result, a welding current flows through the electrode 3 and the workpieces 12a and 12b
Are thermocompression bonded or spot welded. In the displacement measuring step 105 of FIG. 1, the displacement of the thickness of the workpieces 12a and 12b is measured by the displacement measuring means 27 during welding. As the displacement amount measuring means 27, the detachment preventing unit 7 linked to the elevation of the electrode 3
A displacement sensor 16 held by the upper slider 1 for detecting a gap between the upper slider 1 and a displacement sensor 16 for calculating a signal of the displacement sensor 16 into a displacement.

【0056】なお、図1の被溶接物当接兼変位量計測工
程121にて被溶接物検出手段兼変位量計測手段27で
ある変位センサ16を1個で兼用して、溶接前の被溶接
物12a,12bに電極3が当接時の変位センサ16か
らの変位量信号と、溶接中の被溶接物12a,12bに
電極3が当接時の変位センサ16からの変位量信号とを
変位量計測部17が分離出力する。
In the step 121 for measuring the amount of contact and displacement of the workpiece to be welded shown in FIG. The displacement signal from the displacement sensor 16 when the electrode 3 contacts the objects 12a and 12b and the displacement signal from the displacement sensor 16 when the electrode 3 contacts the workpieces 12a and 12b being welded are displaced. The quantity measuring unit 17 separates and outputs.

【0057】図3の電極加圧および据込み区間L2が終
了すると、鍛圧区間L3において溶接中に被溶接物12
a,12bの厚さの変位量が図3の電極加圧力の減圧開
始点または増圧開始点P3点において変位量計測部17
から出力されると(図3の)、制御部18に変位量信
号が入力され、電極加圧力の減圧開始点または増圧開始
点P3点から電極加圧力を鍛圧させる鍛圧開始遅延時間
(ゼロも含む)と図1の変位量溶接終了遅延工程107
にて溶接終了遅延時間(ゼロも含む)がカウントされ
る。鍛圧開始遅延時間が経過すると図1の操作部19の
中の変位量鍛圧工程106に入力した鍛圧加圧力が電極
加圧力値よりも小さいときは減圧点P4となり、電極3
が鍛圧速度で減圧点P4点(図3の)まで上部スライ
ダー1が上昇して電極加圧力が減圧する。
When the electrode pressurizing and upsetting section L2 of FIG. 3 is completed, the work piece 12 is welded during the welding in the forging section L3.
The displacement amounts of the thicknesses a and 12b are the displacement amount measuring units 17 at the point P3 at which the electrode pressing force starts decreasing or increasing the pressure in FIG.
(FIG. 3), a displacement amount signal is input to the control unit 18, and the forging start delay time (for which zero is also applied) for forging the electrode pressing force from the pressure reduction start point or the pressure increase start point P3 of the electrode pressing force. 1) and the displacement amount welding end delay step 107 in FIG.
, The welding end delay time (including zero) is counted. After the elapse of the forging start delay time, when the forging pressure applied to the displacement amount forging step 106 in the operation unit 19 in FIG.
At the forging speed, the upper slider 1 rises to the pressure reduction point P4 (FIG. 3), and the electrode pressing force is reduced.

【0058】もし、図1の操作部19の中の変位量鍛圧
工程106に入力した鍛圧加圧力が電極加圧値よりも大
きいときは図3の増圧点P4’となり、電極3が鍛圧速
度で増圧点P4’(図3の)まで上部スライダー1が
下降して、電極加圧力が増圧する。電極3が上昇すると
きは、モータ13をマイナス方向に逆回転させ、電極3
を下降するときはモータ13をプラス方向に正回転させ
る。そして、溶接終了遅延時間が経過すると、溶接電源
23が起動OFFされ溶接停止する。
If the forging pressure applied to the displacement forging step 106 in the operation section 19 of FIG. 1 is larger than the electrode pressing value, the pressure is increased to the pressure increasing point P4 'in FIG. , The upper slider 1 descends to the pressure increasing point P4 '(FIG. 3), and the electrode pressing force increases. When the electrode 3 rises, the motor 13 is reversely rotated in the negative direction,
, The motor 13 is positively rotated in the positive direction. Then, when the welding end delay time has elapsed, the welding power source 23 is turned off and the welding is stopped.

【0059】溶接中に鍛圧する目的は、熱圧着またはス
ポット溶接時の被溶接者12a,12bの溶融状態が減
圧または増圧することにより、減圧開始点または増圧開
始点P3点において被溶接物の溶融が過大のときは減圧
することにより溶融過大が軽減され、溶融不足のときは
減圧することにより溶融不足が改善されて品質向上する
ためである。
The purpose of forging during welding is to reduce or increase the melting state of the welded members 12a and 12b during thermocompression bonding or spot welding, so that the work to be welded is started at the pressure reduction start point or the pressure increase start point P3. When the melting is excessive, the excessive melting is reduced by reducing the pressure, and when the melting is insufficient, the insufficient melting is improved by reducing the pressure to improve the quality.

【0060】図3の鍛圧区間が経過すると電極3を保持
するための保持時間がカウントされ、被溶接物12a,
12bを鍛圧で加圧保持する。そして、保持時間が経過
すると電極上昇区間L4において、電極3が減圧点P4
点または増圧点P4から低速点P1まで低速で上昇し
(図3の〜)、低速点P1点(図3の)になると
電極3が高速で上昇して、原点P0点に到達して電極3
の上昇が停止する。(図3の〜)。
After the elapse of the forging section in FIG. 3, the holding time for holding the electrode 3 is counted, and the workpieces 12a, 12a,
12b is held under pressure by forging. After the elapse of the holding time, in the electrode ascending section L4, the electrode 3 moves to the decompression point P4.
The electrode 3 rises at a low speed from the point or the pressure increasing point P4 to the low speed point P1 (in FIG. 3), and at the low speed point P1 (FIG. 3), the electrode 3 rises at a high speed to reach the origin P0 point and reach the electrode P0. 3
Stops rising. (~ In FIG. 3).

【0061】(実施の形態2)図3の電極加圧および据
込み区間L2が終了して、溶接中に図2の電極3の温度
が図3の電極加圧力の減圧開始点または増圧開始点P3
点において温度計測部21から出力されると(図3の
)、図1の制御部18の中の電極温度鍛圧工程109
にて電極温度信号が入力され、図3の電極加圧力の減圧
点または増圧点P3点から電極加圧力を鍛圧させる図3
の鍛圧開始遅延時間(ゼロも含む)と図1の電極温度溶
接終了遅延工程110にて図3の溶接終了遅延時間(ゼ
ロも含む)がカウントされる。図3の鍛圧開始遅延時間
が経過すると図1の操作部19の中の電極温度鍛圧工程
109に入力した鍛圧加圧力が電極加圧力値よりも小さ
いときは減圧点P4となり、電極3が鍛圧速度で減圧点
P4点(図3の)まで図2の上部スライダー1が上昇
して(図3の鍛圧区間L3)、電極加圧力が減圧する。
(Embodiment 2) After the electrode pressurizing and upsetting section L2 in FIG. 3 is completed, the temperature of the electrode 3 in FIG. Point P3
When output from the temperature measuring unit 21 at the point (of FIG. 3), the electrode temperature forging step 109 in the control unit 18 of FIG.
The electrode temperature signal is input at the point, and the electrode pressing force is forged from the pressure reducing point or the pressure increasing point P3 of the electrode pressing force in FIG.
The forging start delay time (including zero) and the welding end delay time (including zero) of FIG. 3 are counted in the electrode temperature welding end delay step 110 of FIG. When the forging start delay time in FIG. 3 elapses, when the forging pressure applied to the electrode temperature forging step 109 in the operation unit 19 in FIG. 1 is smaller than the electrode pressing value, the pressure becomes the decompression point P4, and the electrode 3 becomes the forging speed. Then, the upper slider 1 in FIG. 2 rises to the pressure reduction point P4 (in FIG. 3) (forging pressure section L3 in FIG. 3), and the electrode pressing force is reduced.

【0062】もし、図1の操作部19の中の電極温度鍛
圧工程109に入力した鍛圧加圧力が電極加圧力値より
も大きいときは図1の駆動手段電極鍛圧工程117にて
図3の増圧点P4’となり、電極3が鍛圧速度で増圧点
P4’(図3の)まで上部スライダー1が下降して
(図3の鍛圧区間L5)、電極加圧力が増圧する。図2
の電極3が上昇するときは、モータ13をマイナス方向
に逆回転させ、図2の電極3を下降するときはモータ1
3をプラス方向に正回転させる。また、図3の溶接終了
遅延時間が経過すると、図1の溶接電源23が起動OF
Fされ溶接停止する。
If the forging pressure applied to the electrode temperature forging step 109 in the operating section 19 in FIG. 1 is larger than the electrode pressing value, the driving means electrode forging step 117 in FIG. The pressure point P4 'is reached, and the upper slider 1 is lowered at the forging speed to the pressure increasing point P4' (FIG. 3) (forging pressure section L5 in FIG. 3), and the electrode pressing force is increased. FIG.
When the electrode 3 of FIG. 2 rises, the motor 13 is reversely rotated in the negative direction, and when the electrode 3 of FIG.
3 is positively rotated in the plus direction. When the welding end delay time in FIG. 3 elapses, the welding power source 23 in FIG.
F stops welding.

【0063】溶接中に鍛圧する目的は、実施の形態1と
同様に熱圧着またはスポット溶接時の図1の被溶接物1
2a,12bの溶融状態が減圧または増圧することによ
り品質向上するためである。
The purpose of forging during welding is the same as in the first embodiment.
This is because the quality is improved by reducing or increasing the pressure of the molten state of 2a and 12b.

【0064】(実施の形態3)図3の電極加圧および据
込み区間L2が終了すると、鍛圧区間L3において溶接
中に被溶接物12a,12bの厚さの変位量が図3の電
極加圧力の減圧開始点または増圧開始点P3点において
変位量計測部17から出力されると(図3の)、制御
部18に変位量信号が入力され、電極加圧力の減圧開始
点または増圧開始点P3点から電極加圧力を鍛圧させる
鍛圧開始遅延時間(ゼロも含む)と図1の変位量溶接終
了遅延工程107にて溶接終了遅延時間(ゼロも含む)
がカウントされる。
(Embodiment 3) When the electrode pressurizing and upsetting section L2 of FIG. 3 is completed, the displacement of the thickness of the workpieces 12a and 12b during welding in the forging section L3 is reduced by the electrode pressing force of FIG. When the displacement amount is output from the displacement measuring unit 17 at the pressure reduction start point or the pressure increase start point P3 (see FIG. 3), the displacement amount signal is input to the control unit 18 and the pressure reduction start point or the pressure increase start of the electrode pressing force is started. A forging start delay time (including zero) for forging the electrode pressing force from point P3 and a welding end delay time (including zero) in the displacement amount welding end delay step 107 in FIG.
Is counted.

【0065】鍛圧開始遅延時間が経過すると図1の自動
増減圧工程132と、減圧点P4と増圧点P4’の鍛圧
を図1の操作部19の中の変位量鍛圧工程106に両方
を入力しておくとにより、予め設定しておいた被溶接物
12a,12bの厚さの変位量に対して、溶接中の被溶
接物の厚さが小、すなわち変位量が大のときは自動的に
駆動手段13にて電極3を上昇させて電極加圧を減圧点
P4まで減圧し、溶接中の被溶接物12a,12bの厚
さが大、すなわち変位量が小のときは自動的に駆動手段
13にて電極3を下降させて電極加圧を増圧点P4’ま
で増圧させる。
When the forging start delay time elapses, both the automatic pressure increasing / decreasing step 132 in FIG. 1 and the forging pressure at the pressure reducing point P4 and the pressure increasing point P4 ′ are input to the displacement amount forging step 106 in the operation section 19 in FIG. By doing so, when the thickness of the workpiece to be welded is small, that is, when the displacement is large, the thickness is automatically changed with respect to the preset displacement of the thickness of the workpieces 12a and 12b. The electrode 3 is raised by the driving means 13 to reduce the electrode pressurization to the decompression point P4. When the thickness of the workpieces 12a and 12b being welded is large, that is, when the displacement is small, the electrode is automatically driven. The electrode 3 is lowered by the means 13 to increase the electrode pressure to the pressure increasing point P4 '.

【0066】実施の形態1は、鍛圧を減圧するか増圧す
るかは電極加圧力値に対して、鍛圧入力値の大小によっ
て決まっているが、実際の形態3は溶接時の変位量に対
して自動的に判別して、減圧または増圧の動作を行うも
のである。
In the first embodiment, whether to reduce or increase the forging pressure is determined by the magnitude of the forging pressure input value with respect to the electrode pressing force value, but the actual form 3 is determined by the displacement amount during welding. This is automatically determined, and the operation of reducing or increasing the pressure is performed.

【0067】(実施の形態4)図4は付勢手段4である
弾性体が伸縮したときの、電極移動量に対する電極加圧
力比例関係を示す。横軸のLは電極移動(mm)、縦軸
のWは電極加圧力(g)である。図4のグラフ140
は、図2の電極3被溶接物12a,12bに当接したと
きの初期重量、つまり加圧力が0グラムのときのグラフ
である。図4のグラフ141は、図2の電極3が被溶接
物12a,12bに当接したときの初期重量、つまり加
圧力が0グラムのときで、付勢手段4である弾性体の種
類を変えるとともに、図1の弾性体品番定数入力工程1
16にて弾性体の品番と定数(1mm当たりの弾性体4
の加圧力)を入力したときのグラフである。
(Embodiment 4) FIG. 4 shows the proportionality of the electrode pressing force to the amount of electrode movement when the elastic body as the urging means 4 expands and contracts. L on the horizontal axis represents the electrode movement (mm), and W on the vertical axis represents the electrode pressing force (g). Graph 140 of FIG.
3 is a graph when the initial weight when the electrode 3 comes into contact with the workpieces 12a and 12b in FIG. 2, that is, when the pressing force is 0 g. The graph 141 in FIG. 4 shows that the type of the elastic body as the urging means 4 is changed when the electrode 3 in FIG. 2 is in the initial weight when the electrode 3 comes into contact with the workpieces 12a and 12b, that is, when the pressing force is 0 g. At the same time, elastic part number constant input step 1 in FIG.
The number and constant of the elastic body at 16 (elastic body 4 per 1 mm
FIG. 6 is a graph when a pressure is input.

【0068】図4のグラフ142は初期重量が50グラ
ムのときであり(W3)、図4のグラフ143は初期重
量が50グラムのときの付勢手段4である弾性体の種類
を変えるとともに、図1の弾性体品番定数入力工程11
6にて弾性体の品番と定数(1mm当たりの弾性体4の
加圧力)を入力したときのグラフである。
The graph 142 in FIG. 4 shows the case where the initial weight is 50 grams (W3), and the graph 143 in FIG. 4 changes the type of the elastic body as the urging means 4 when the initial weight is 50 grams. Elastic body part number constant input step 11 in FIG.
6 is a graph when an article number and a constant (pressing force of the elastic body 4 per 1 mm) of the elastic body are input at 6.

【0069】例えば図4のグラフ142において、図1
の電極加圧入力工程111にて電極加圧力を300グラ
ムと入力した場合、図1の電極加圧力補正値入力工程1
14にて初期重量と同一値の補正値を50グラムと入力
する。図1の電極加圧力補正値減算工程115にて弾性
体が縮まる量を求めると、電極加圧力の入力値300グ
ラム−初期重量が50グラム=250グラムとなる。弾
性体の定数0.1kg/mmとすると、図2の駆動手段
13であるモータの移動量の算出は、弾性体が縮まる量
÷弾性体の定数=移動距離、0.25kg÷0.1kg
/mm=2.5mmとなり、上部スライダー1を2.5
mm下降させる。
For example, in the graph 142 of FIG.
When the electrode pressing force is input as 300 grams in the electrode pressing input step 111 of FIG.
At 14, a correction value equal to the initial weight is input as 50 grams. When the amount of contraction of the elastic body is determined in the electrode pressure correction value subtraction step 115 in FIG. 1, the input value of the electrode pressure is 300 grams−the initial weight is 50 grams = 250 grams. Assuming that the constant of the elastic body is 0.1 kg / mm, the calculation of the moving amount of the motor which is the driving means 13 in FIG. 2 is based on the amount of contraction of the elastic body ÷ the constant of the elastic body = moving distance, 0.25 kg ÷ 0.1 kg
/Mm=2.5 mm, and the upper slider 1
mm.

【0070】(実施の形態5)図2の被溶接物検出兼変
位量計測手段27の「入〜切」選択工程において入を選
択した場合、被溶接物検出兼変位量計測手段27のセン
サ16が有効となり、切を選択した場合は前記センサ1
6が無効になりプリセット位置入力手段(図示せず)で
任意の被溶接物検出位置データを図1の被溶接物当接同
位置工程122で入力し、その入力された位置を被溶接
物に当接した位置と同位置にみなして記憶するととも
に、図1の被溶接物当接同位置表示工程126でデジタ
ル座標値を表示する。
(Embodiment 5) When "ON" is selected in the "ON-OFF" selection step of the workpiece detection / displacement measuring means 27 in FIG. 2, the sensor 16 of the workpiece detection / displacement measuring means 27 is selected. Becomes effective, and when the off is selected, the sensor 1
6 is invalidated, and arbitrary workpiece detection position data is inputted by the preset position input means (not shown) in the workpiece contact and same position step 122 of FIG. 1, and the input position is set to the workpiece. The position is regarded as the same position as the contacted position and stored, and the digital coordinate value is displayed in the welding object contact position display step 126 in FIG.

【0071】(実施の形態6)図2の被溶接物検出兼変
位量計測手段27の「入〜切」選択工程において切を選
択した場合、プリセット位置入力手段(図示せず)で任
意の被溶接物検出位置データを入力した位置を基準と
し、その位置に対して手前の位置で電極下降を高速から
低速に切替える位置を入力する工程、つまり、図1の手
前低速位置入力工程127で入力した値によって電極3
が高速から低速になって下降する。
(Embodiment 6) If "OFF" is selected in the "ON-OFF" selection step of the workpiece detection / displacement amount measuring means 27 in FIG. A step of inputting a position for switching the electrode descent from a high speed to a low speed at a position before the position based on the position where the welding object detection position data is input, that is, the position input in the near low speed position input step 127 in FIG. Electrode 3 by value
Descends from high speed to low speed.

【0072】例えば、プリセット位置を16mmと入力
したとき、図1の手前低速位置入力工程127で入力し
た値を1mmとすると、電極3が高速から低速に切り替
わるときは、16mm−1mm=15mmとなって図3
の原点P0から電極3が高速で下降して、15mm下降
したときに低速に切り替わる。
For example, when the preset position is input as 16 mm, and the value input in the near low-speed position input step 127 in FIG. 1 is 1 mm, when the electrode 3 switches from high speed to low speed, 16 mm-1 mm = 15 mm. FIG.
The electrode 3 descends from the origin P0 at a high speed, and switches to a low speed when it descends by 15 mm.

【0073】(実施の形態7)電極3が被溶接物12
a,12bに当接したときから溶接終了して電極3の加
圧を減圧または増圧で保持するまでの区間に図1の電極
加圧力表示工程128で電極加圧力値をデジタル表示す
るとともに、電極3が被溶接物12a,12bに当接し
たときと、電極3を加圧したときおよび電極3の加圧を
減圧または増圧したときの各々に、図1の電極加圧力上
下限判定工程129にて電極加圧力値の上限値と下限値
の設定を設け、電極加圧力値がその範囲外ならば異常信
号を出力し、図2の抵抗溶接装置の動作終了後に異常警
報する工程(図示せず)によって、警報して装置を停止
させる。
(Embodiment 7) The electrode 3 is
The electrode pressure value is digitally displayed in an electrode pressure display step 128 of FIG. 1 in a section from the time when the electrodes 3a and 12b come into contact with each other until the pressure of the electrode 3 is reduced or increased while the welding is completed. The electrode pressing upper / lower limit determination process of FIG. 1 is performed when the electrode 3 contacts the workpieces 12a and 12b, when the electrode 3 is pressurized, and when the pressure of the electrode 3 is reduced or increased. At 129, an upper limit value and a lower limit value of the electrode pressure value are set, and if the electrode pressure value is out of the range, an abnormal signal is output, and an abnormal alarm is performed after the operation of the resistance welding apparatus in FIG. (Not shown), an alarm is issued to stop the apparatus.

【0074】(実施の形態8)被溶接物12a,12b
を生産するごとに電極研磨プリセットカウンター(図示
せず)にて図1の電極研磨回数カウントする工程130
と、電極研磨プリセットカウンターがプリセット設定値
に到達してから電極研磨装置(図示せず)と、図1の電
極自動研磨工程131とによって、定期的に電極3を自
動研磨する。
(Eighth Embodiment) Workpieces 12a and 12b
1 is counted by an electrode polishing preset counter (not shown) every time the electrode is produced.
After the electrode polishing preset counter reaches the preset set value, the electrode 3 is automatically polished periodically by an electrode polishing apparatus (not shown) and the electrode automatic polishing step 131 of FIG.

【0075】[0075]

【発明の効果】以上のように、本発明によれば電極が被
溶接物に当接してから通電終了して、鍛圧で保持するま
での電極加圧力は、電極加圧力供給機構そのものの重量
が付加されず、付勢手段の弾性体の伸縮のみの加圧力が
数値管理できるので極小の電極加圧力が得られるため、
極小の導体線または導体部品を熱圧着あるいはスポット
溶接を行うことができる。
As described above, according to the present invention, the electrode pressing force from the time when the electrode comes into contact with the workpiece to the end of energization to the time when the electrode is maintained at the forging pressure is reduced by the weight of the electrode pressing force supply mechanism itself. Since the pressing force of only the expansion and contraction of the elastic body of the urging means can be numerically managed without being added, a minimal electrode pressing force is obtained,
It is possible to perform thermocompression bonding or spot welding on a very small conductor wire or conductor part.

【0076】また、溶接時に変位センサまたは温度セン
サの検出により、被溶接物の電極加圧を鍛圧で加圧する
ので被溶接物の熱圧着あるいはスポット溶接結果を品質
安定化することができる。そして、被溶接物の厚さを測
定することと、電極の温度管理を行うので、品質の高い
熱圧着あるいはスポット溶接結果の被溶接物を得ること
ができる。
Further, by detecting the displacement sensor or the temperature sensor at the time of welding, the electrode to be welded is pressurized by forging pressure, so that the quality of the thermocompression bonding or spot welding result of the workpiece can be stabilized. Since the thickness of the workpiece is measured and the temperature of the electrode is controlled, a workpiece of high quality thermocompression or spot welding can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1から8の実施の形態における抵抗
溶接方法の概略図
FIG. 1 is a schematic view of a resistance welding method according to first to eighth embodiments of the present invention.

【図2】本発明の第1から8の実施の形態における本発
明の抵抗溶接方法を使用した抵抗溶接装置の斜視図
FIG. 2 is a perspective view of a resistance welding apparatus using the resistance welding method of the present invention in the first to eighth embodiments of the present invention.

【図3】本発明の第1から8の実施の形態における溶接
動作図
FIG. 3 is a welding operation diagram according to the first to eighth embodiments of the present invention.

【図4】本発明の第4の実施の形態における電極移動量
に対する電極加圧力比例関係図
FIG. 4 is a diagram showing a proportional relationship between an electrode moving amount and an electrode pressing force according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 上部スライダー 2 下部スライダー 3 電極 4 付勢手段 5 係止部 6 付勢力制御手段 7 抜け防止部 8 当接端 9 付勢端 10 支点 11 ウエイト 12a 被溶接物 12b 被溶接物 13 駆動手段 14 ねじ 15 螺合部 16 変位センサ 17 変位量計測部 18 制御部 19 操作部 20 温度センサ 21 温度計測部 22 冷却手段 23 溶接電源 24 てこ部 27 被溶接物検出手段、変位量計測手段 28 溶接電流計測部 L1 電極下降区間 L2 電極加圧および据込み区間 L3 鍛圧区間 L4 電極上昇区間 P0 原点 P1 低速点 P2 被溶接物当接点 P3 電極加圧力の減圧開始点または増圧開始点 P4 減圧点 P4’ 増圧点 101 電極移動工程 102 被溶接物当接検出工程 103 電極加圧工程 104 電極通電工程 105 変位量計測工程 106 変位量鍛圧工程 107 変位量溶接終了遅延工程 108 電極保持工程 109 電極温度鍛圧工程 110 電極温度溶接終了遅延工程 111 電極加圧力入力工程 112 駆動手段移動算出工程 113 電極加圧力出力工程 114 電極加圧力補正値入力工程 115 電極加圧力補正値減算工程 116 弾性体品番定数入力工程 117 駆動手段電極鍛圧工程 118 電極昇降速度入力工程 119 被溶接物当接位置記憶工程 120 被溶接物当接位置表示工程 121 被溶接物当接検出兼変位量計測工程 122 被溶接物当接同位置工程 123 電極速度切替工程 124 電極位置決運転工程 125 電極ジョグ運転工程 126 被溶接物当接同位置表示工程 127 手前低速位置入力工程 128 電極加圧力表示工程 129 電極加圧力上下限判定工程 130 電極研磨回数カウント工程 131 電極自動研磨運転工程 132 自動増減圧工程 140 電極3が被溶接物12a,12bに当接したと
きの初期重量のグラフ 141 グラフ140に対し弾性体の品番と定数を変え
たときのグラフ 142 初期重量が50グラムのときのグラフ 143 グラフ142に対し弾性体の品番と定数を変え
たときのグラフ
REFERENCE SIGNS LIST 1 upper slider 2 lower slider 3 electrode 4 urging means 5 locking part 6 urging force control means 7 pull-out prevention part 8 contact end 9 urging end 10 fulcrum 11 weight 12a welded object 12b welded object 13 drive means 14 screw Reference Signs List 15 screw portion 16 displacement sensor 17 displacement amount measurement unit 18 control unit 19 operation unit 20 temperature sensor 21 temperature measurement unit 22 cooling unit 23 welding power supply 24 lever unit 27 welding object detection unit, displacement amount measurement unit 28 welding current measurement unit L1 Electrode falling section L2 Electrode pressurizing and upsetting section L3 Forging section L4 Electrode rising section P0 Origin P1 Low speed point P2 Contact point of workpiece P3 Start point of pressure reduction or pressure increase of electrode pressure P4 Pressure reduction point P4 'Pressure increase Point 101 Electrode moving process 102 Workpiece contact detection process 103 Electrode pressing process 104 Electrode energizing process 105 Displacement measurement Step 106 Displacement forging step 107 Displacement welding end delay step 108 Electrode holding step 109 Electrode temperature forging step 110 Electrode temperature welding end delay step 111 Electrode force input step 112 Driving means movement calculation step 113 Electrode force output step 114 Electrode force Pressure correction value input step 115 Electrode pressure correction value subtraction step 116 Elastic body part number constant input step 117 Drive means electrode forging step 118 Electrode elevating speed input step 119 Workpiece contact position storage step 120 Workpiece contact position display step 121 Workpiece contact detection and displacement amount measurement process 122 Workpiece contact contact and same position process 123 Electrode speed switching process 124 Electrode positioning operation process 125 Electrode jog operation process 126 Workpiece workpiece contact and same position display process 127 Position input process 128 Electrode pressing force display process 129 Electrode pressing force up / down Judgment process 130 Electrode polishing frequency counting process 131 Electrode automatic polishing operation process 132 Automatic pressure increasing / decreasing process 140 Graph of initial weight when electrode 3 abuts on workpieces 12a and 12b 141 Part number and constant of elastic body for graph 140 143 Graph when the initial weight is 50 grams 143 Graph when the part number and constant of the elastic body are changed with respect to the graph 142

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 11/30 350 B23K 11/30 350 // B23K 101:38 101:38 (72)発明者 嶋谷 義行 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4E065 EA00 EA06 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B23K 11/30 350 B23K 11/30 350 // B23K 101: 38 101: 38 (72) Inventor Yoshiyuki Shimatani Osaka 1006 Kadoma, Kamon, Fumonma-shi Matsushita Electric Industrial Co., Ltd. F term (reference) 4E065 EA00 EA06

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 電極を被溶接物に接近および離脱させる
工程と、電極が被溶接物に当接したことを検出する工程
と、電極が被溶接物を加圧する工程と、電極に溶接電流
を通電する工程と、溶接中に被溶接物の厚さの変位量を
計測する工程と、溶接中の被溶接物の変位量が所定の値
に達したときに電極の加圧を減圧または増圧する工程
と、溶接中の被溶接物の変位量が所定の値に達したとき
に通電を一定時間後に停止させる溶接終了遅延時間を計
測する工程と、溶接終了後に電極により被溶接物を一定
時間、加圧を前記の減圧または増圧で保持させる工程と
からなる抵抗溶接方法。
A step of causing the electrode to approach and separate from the workpiece; a step of detecting that the electrode is in contact with the workpiece; a step of pressing the workpiece with the electrode; Energizing step, measuring the displacement of the thickness of the workpiece during welding, and reducing or increasing the pressure of the electrode when the displacement of the workpiece during welding reaches a predetermined value A step of measuring a welding end delay time for stopping the energization after a certain time when the displacement amount of the work being welded reaches a predetermined value during welding, and a certain time for the work to be welded by the electrode after the welding is completed, Maintaining the pressurization by the above-described reduced pressure or increased pressure.
【請求項2】 電極を被溶接物に接近および離脱させる
工程と、電極が被溶接物に当接したことを検出する工程
と、電極が被溶接物を加圧する工程と、電極に溶接電流
を通電する工程と、溶接中に被溶接物の厚さの変位量を
計測する工程と、溶接中の電極の温度が所定の値に達し
たときに電極の加圧を減圧または増圧する工程と、溶接
中の電極の温度が所定の値に達したときに通電を一定時
間後に停止させる溶接終了遅延時間を計測する工程と、
溶接終了後に電極により被溶接物を一定時間、加圧を前
記の減圧または増圧で保持させる工程とからなる抵抗溶
接方法。
2. A step of causing an electrode to approach and leave an object to be welded, a step of detecting that the electrode abuts on the object to be welded, a step of pressing the electrode by an electrode, and a step of applying a welding current to the electrode. Energizing step, measuring the amount of displacement of the thickness of the workpiece during welding, and reducing or increasing the pressure of the electrode when the temperature of the electrode during welding reaches a predetermined value, A step of measuring a welding end delay time for stopping the energization after a certain time when the temperature of the electrode during welding reaches a predetermined value,
Maintaining the pressurization at a reduced or increased pressure for a certain period of time with an electrode after welding is completed by an electrode.
【請求項3】 操作部に被溶接物への付勢力を電極加圧
力として入力する工程と、制御部により電極加圧力を駆
動手段の移動量に算出する工程と、駆動手段に連結した
付勢手段である弾性体の伸縮により電極加圧力を得る工
程とからなる請求項1または2記載の抵抗溶接方法。
3. A step of inputting an urging force to an object to be welded to an operation section as an electrode pressing force, a step of calculating the electrode pressing force to a moving amount of the driving means by a control section, and an urging means connected to the driving means. 3. The resistance welding method according to claim 1, further comprising a step of obtaining an electrode pressing force by expansion and contraction of the elastic body.
【請求項4】 電極が被溶接物を加圧する工程におい
て、電極が被溶接物に当接したときの被溶接物に対する
当接重量が、電極加圧力供給機構の重量よりも小さい電
極加圧力を得ることができる請求項1から3の何れかに
記載の抵抗溶接方法。
4. In the step of pressurizing an object to be welded by an electrode, when the electrode comes into contact with the object to be welded, the contact weight of the electrode with respect to the object to be welded is smaller than the weight of the electrode force supply mechanism. The resistance welding method according to any one of claims 1 to 3, which can be obtained.
【請求項5】 電極が被溶接物を加圧する工程におい
て、電極が被溶接物に当接したときの被溶接物に対する
電極加圧力供給機構の当接重量と同一値、または少なく
ともその値よりも小さい値を操作部に電極加圧力補正値
として入力する工程と、操作部に被溶接物への付勢力を
電極加圧力として入力した値から、前記の電極加圧力補
正値を差し引いた電極加圧力を駆動手段の移動量に算出
する工程とからなる請求項1から4の何れかに記載の抵
抗溶接方法。
5. In the step of applying pressure to an object to be welded by an electrode, the electrode has the same value as the contact weight of the electrode pressing force supply mechanism with respect to the object to be welded when the electrode comes into contact with the object to be welded, or at least more than that value A step of inputting a small value to the operation unit as an electrode pressing force correction value, and an electrode pressing force obtained by subtracting the electrode pressing force correction value from the value obtained by inputting the urging force to the workpiece to the operation unit as the electrode pressing force. Calculating the amount of movement of the driving means.
【請求項6】 電極加圧力を得る付勢手段としての弾性
体を取り替え変更することに合わせて、弾性体の品番と
弾性体の伸縮に対する加圧力定数および電極加圧力補正
値を操作部に入力する工程とによって、被溶接物の種類
に応じた電極加圧力を得る請求項1から5の何れかに記
載の抵抗溶接方法。
6. A part number of the elastic body, a pressure constant for the expansion and contraction of the elastic body, and a correction value of the electrode pressing force are input to the operation unit in accordance with replacement of the elastic body as the urging means for obtaining the electrode pressing force. The resistance welding method according to any one of claims 1 to 5, wherein an electrode pressing force corresponding to the type of the workpiece is obtained by the step of performing.
【請求項7】 電極が被溶接物を加圧する工程と、溶接
中に駆動手段をマイナス方向に駆動させて電極の加圧を
減圧、または駆動手段をプラス方向に駆動させて電極の
加圧を増圧する工程と、電極加圧力とともに電極の昇降
速度を操作部に入力する工程とからなる請求項1から6
の何れかに記載の抵抗溶接方法。
7. A step in which an electrode presses an object to be welded, and a step of driving a driving means in a minus direction to reduce the pressure of the electrode during welding, or a step of driving the driving means in a plus direction to reduce the pressure of the electrode. 7. The method according to claim 1, further comprising a step of increasing the pressure and a step of inputting an electrode lifting / lowering speed together with the electrode pressing force to the operation unit.
The resistance welding method according to any one of the above.
【請求項8】 電極の先端が被溶接物に当接した位置を
制御部に記憶する工程と、その位置をデジタル座標値で
表示する工程とからなる請求項1から7の何れかに記載
の抵抗溶接方法。
8. The method according to claim 1, further comprising a step of storing, in the control unit, a position at which the tip of the electrode abuts on the workpiece, and a step of displaying the position in digital coordinate values. Resistance welding method.
【請求項9】 被溶接物検出兼変位量計測手段の「入〜
切」選択工程において入を選択した場合、被溶接物検出
兼変位量計測手段のセンサが有効となり、切を選択した
場合は前記センサが無効になりプリセット位置入力手段
で任意の被溶接物検出位置データを入力する工程と、そ
の入力された位置を被溶接物に当接した位置と同位置に
みなして記憶する工程とからなる請求項1から8の何れ
かに記載の抵抗溶接方法。
9. A method of detecting an object to be welded and measuring an amount of displacement, comprising:
If "On" is selected in the "off" selection step, the sensor of the workpiece detection and displacement amount measuring means is enabled, and if "off" is selected, the sensor is disabled and the preset position input means detects any workpiece detection position. The resistance welding method according to any one of claims 1 to 8, comprising a step of inputting data and a step of storing the input position as the same position as the position in contact with the workpiece.
【請求項10】 被溶接物検出兼変位量計測手段の「入
〜切」選択工程において入を選択した場合、プリセット
位置入力手段で電極の下降を高速から低速に速度切替え
する位置データを入力する工程と、電極を高速下降開始
してから低速に切替えるまでは駆動手段を位置決め運転
する工程と、低速下降から任意の位置での被溶接物を検
出するまでは駆動手段をジョグ運転する工程と、被溶接
物を検出してから溶接終了し電極が原点に上昇するまで
駆動手段を位置決め運転する工程とからなる請求項1か
ら9の何れかに記載の抵抗溶接方法。
10. When "ON" is selected in the "ON-OFF" selection step of the workpiece detection and displacement amount measuring means, the preset position input means inputs position data for switching the speed of electrode lowering from high speed to low speed. A step of performing a positioning operation of the driving means until the electrode is switched to a low speed after starting the high-speed descent of the electrode, and a step of performing a jog operation of the driving means from the low-speed descent to detecting an object to be welded at an arbitrary position, The resistance welding method according to any one of claims 1 to 9, comprising a step of positioning the drive means until the electrode is raised to the origin after welding is detected after detecting the workpiece.
【請求項11】 被溶接物検出兼変位量計測手段の「入
〜切」選択工程において切を選択した場合、被溶接物に
当接した位置と同位置にみなして記憶された位置を常時
デジタル座標値で表示する工程とからなる請求項1から
10の何れかに記載の抵抗溶接方法。
11. When “OFF” is selected in the “ON-OFF” selection step of the workpiece detection and displacement amount measuring means, the stored position is regarded as the same position as the position in contact with the workpiece, and the stored position is always digitally displayed. The resistance welding method according to any one of claims 1 to 10, comprising a step of displaying the coordinates by a coordinate value.
【請求項12】 被溶接物検出兼変位量計測手段の「入
〜切」選択工程において切を選択した場合、プリセット
位置入力手段で任意の被溶接物検出位置データを入力し
た位置を基準とし、その位置に対して手前の位置で電極
下降を高速から低速に切替える位置を入力する工程とか
らなる請求項1から11の何れかに記載の抵抗溶接方
法。
12. When "OFF" is selected in the "ON-OFF" selection step of the workpiece detection and displacement amount measuring means, a position at which arbitrary workpiece detection position data is input by the preset position input means is used as a reference. Inputting a position at which the electrode descent is switched from high speed to low speed at a position in front of the position.
【請求項13】 予め設定しておいた被溶接物の厚さの
変位量に対して、溶接中の被溶接物の厚さが小、すなわ
ち変位量が大のときは自動的に電極加圧を減圧し、溶接
中の被溶接物の厚さが大、すなわち変位量が小のときは
自動的に電極加圧を増圧する自動増減圧工程を有する請
求項1から12の何れかに記載の抵抗溶接方法。
13. When the thickness of the workpiece to be welded is small, ie, the displacement is large, with respect to the preset displacement of the thickness of the workpiece, the electrode pressure is automatically increased. 13. The method according to claim 1, further comprising an automatic pressure increasing / decreasing step of automatically increasing the electrode pressure when the thickness of the workpiece to be welded during welding is large, that is, when the displacement is small. Resistance welding method.
【請求項14】 電極に溶接電流を通電する工程の初め
に、通電を遅らせる溶接開始遅延区間を有することを特
徴とする請求項1から13の何れかに記載の抵抗溶接方
法。
14. The resistance welding method according to claim 1, further comprising, at the beginning of the step of applying a welding current to the electrode, a welding start delay section for delaying the application of electricity.
【請求項15】 溶接中に電極の加圧を減圧または増圧
に遅らせる減圧または増圧開始遅延区間を有することを
特徴とする請求項1から14の何れかに記載の抵抗溶接
方法。
15. The resistance welding method according to claim 1, further comprising a pressure reduction or pressure increase start delay section in which the pressure of the electrode is delayed to a pressure reduction or pressure increase during welding.
【請求項16】 溶接終了後に電極の加圧を減圧または
増圧値で、一定時間被溶接物を保持する保持区間を有す
ることを特徴とする請求項1から15の何れかに記載の
抵抗溶接方法。
16. The resistance welding according to claim 1, further comprising a holding section for holding the work to be welded at a reduced or increased pressure value for a predetermined time after the welding is completed. Method.
【請求項17】 電極が被溶接物に当接したときから溶
接終了して電極の加圧を減圧または増圧で保持するまで
の区間に、電極加圧力値をデジタル数値で表示する工程
と、電極が被溶接物に当接したときと、電極を加圧した
ときおよび電極の加圧を減圧または増圧したときの各々
に電極加圧力値の上限値と下限値の設定を設け、電極加
圧力値がその範囲外ならば異常信号を出力し抵抗溶接装
置の動作終了後に異常警報する工程とからなる請求項1
から16の何れかに記載の抵抗溶接方法。
17. A step of displaying an electrode pressure value as a digital value in a section from the time when the electrode comes into contact with the workpiece to the time when welding is completed and the pressure of the electrode is reduced or increased. The upper and lower electrode pressure values are set when the electrode contacts the workpiece, when the electrode is pressurized, and when the pressure of the electrode is reduced or increased. 2. A step of outputting an abnormal signal if the pressure value is out of the range, and performing an abnormal alarm after the operation of the resistance welding apparatus is completed.
17. The resistance welding method according to any one of claims to 16.
【請求項18】 被溶接物を生産するごとに電極研磨プ
リセットカウンターにて電極研磨回数をカウントする工
程と、前記電極研磨プリセットカウンターがプリセット
設定値に到達してから電極研磨装置により電極を自動研
磨する工程とからなる請求項1から17の何れかに記載
の抵抗溶接方法。
18. A step of counting the number of times of electrode polishing with an electrode polishing preset counter each time a workpiece is produced, and automatically polishing an electrode by an electrode polishing apparatus after the electrode polishing preset counter reaches a preset set value. 18. The resistance welding method according to claim 1, comprising the steps of:
JP27419599A 1999-09-28 1999-09-28 Method of resistance welding Pending JP2001096372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27419599A JP2001096372A (en) 1999-09-28 1999-09-28 Method of resistance welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27419599A JP2001096372A (en) 1999-09-28 1999-09-28 Method of resistance welding

Publications (1)

Publication Number Publication Date
JP2001096372A true JP2001096372A (en) 2001-04-10

Family

ID=17538368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27419599A Pending JP2001096372A (en) 1999-09-28 1999-09-28 Method of resistance welding

Country Status (1)

Country Link
JP (1) JP2001096372A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110578A (en) * 2009-11-26 2011-06-09 Fanuc Ltd Spot welding system
JP2018523581A (en) * 2015-08-17 2018-08-23 グレンツェバッハ・マシーネンバウ・ゲーエムベーハー Apparatus and method for low resistance welding of metal sheets at high cycle rates
JP2020181841A (en) * 2019-04-23 2020-11-05 ハイメカ株式会社 Capacitor manufacturing device and power supply control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110578A (en) * 2009-11-26 2011-06-09 Fanuc Ltd Spot welding system
JP2018523581A (en) * 2015-08-17 2018-08-23 グレンツェバッハ・マシーネンバウ・ゲーエムベーハー Apparatus and method for low resistance welding of metal sheets at high cycle rates
US10792753B2 (en) 2015-08-17 2020-10-06 Grenzebach Maschinenbau Gmbh Device and method for the low-resistance welding of metal sheets with a high cycle rate
JP2020181841A (en) * 2019-04-23 2020-11-05 ハイメカ株式会社 Capacitor manufacturing device and power supply control method thereof

Similar Documents

Publication Publication Date Title
JP2003500213A (en) Determination of resistance spot welding system status
EP1570940B1 (en) Arc stud welding device and method
JPS591073A (en) Method and device for controlling resistance spot welding process
JP2011152574A (en) Resistance welding method
JP2007173522A (en) Reflow soldering method and equipment
JP2000288743A (en) Controller for resistance welding equipment
JP2011104628A (en) Resistance welding method, resistance welding material, resistance welding device and control device for the same, control method and program for resistance welding device, and evaluation method and program for resistance welding
US20210053142A1 (en) Expulsion sensing method and expulsion sensing device in electric resistance welding
JP2019155389A (en) Resistance spot welding method and resistance spot welding device
JP5334250B2 (en) Reflow soldering method and apparatus
JP3603564B2 (en) Welding control device for spot welding equipment
JP2001096372A (en) Method of resistance welding
WO2017068767A1 (en) Friction stir spot welding device and friction stir spot welding method
JP3680728B2 (en) Resistance welding apparatus and resistance welding method
JP5159083B2 (en) Resistance welding method
JP2006205197A (en) Method and device for controlling electrode pressurization
JPH11768A (en) Spot welding controller
JPH06312273A (en) Method for controlling pressurizing force of welding gun
JPWO2010110316A1 (en) Electric pressure resistance welding machine
JP4112665B2 (en) Defect cause removal method of stud welding
JP2001096370A (en) Resistance welder
JP7468418B2 (en) Welding determination method and spot welding device
JP4993765B2 (en) Method and apparatus for soldering coated wire
JP3161315B2 (en) Control device of resistance welding machine
JP2919816B2 (en) Pulse heating type bonding apparatus and its control method