JP2001095789A - X-ray fluoroscopy photographing apparatus - Google Patents

X-ray fluoroscopy photographing apparatus

Info

Publication number
JP2001095789A
JP2001095789A JP27947099A JP27947099A JP2001095789A JP 2001095789 A JP2001095789 A JP 2001095789A JP 27947099 A JP27947099 A JP 27947099A JP 27947099 A JP27947099 A JP 27947099A JP 2001095789 A JP2001095789 A JP 2001095789A
Authority
JP
Japan
Prior art keywords
ray
spherical
ray detector
distance
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27947099A
Other languages
Japanese (ja)
Inventor
Yusuke Miura
裕介 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP27947099A priority Critical patent/JP2001095789A/en
Publication of JP2001095789A publication Critical patent/JP2001095789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray fluoroscopy photographing apparatus which can obtain fluoroscopy photographing image without image distortion in spite of the variation of distance between an X-ray tube and a photographing mechanism. SOLUTION: The spherical X-ray detector 11 is formed on the concave surface side of the concave shape flexible spherical substrate, which projects to the radiating direction of X-beam radiated from the X-ray tube 1. The spherical X-ray detector 11 is fixed and arranged on the concave surface side of memory alloy spherical supporting body 13. The spherical X-ray detector 11 can be moved to O-direction (up and down direction) of X-ray radiation axis. By the movement, the distance D between the X-ray focus F and the spherical X-ray detector 11 is detected by the distance detector 5. The curvature control circuit 3 calculates the curvature for center of X-ray to obtain the electric current to supply to the memory alloy spherical supporting body 13, and supplies electric current to the spherical supporting body 13. The electric current changes the curvature of the X-ray detector to have center point of X-ray focus F and curvature of radius of distance D between X-ray focus F and the spherical X-ray detector 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、医用診断に用いら
れるX線透視撮影装置、特に、被検体透過X線を受像
し、画像データを得る撮像機構としてX線検出素子が2
次元(マトリックス状)に配列された2次元X線検出器
を使用したX線透視撮影装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray fluoroscopic apparatus used for medical diagnosis, and more particularly, to an X-ray detecting device as an imaging mechanism for receiving X-rays transmitted through a subject and obtaining image data.
The present invention relates to an X-ray fluoroscopic apparatus using two-dimensional X-ray detectors arranged in a dimension (matrix).

【0002】[0002]

【従来の技術】この種のX線透視撮影装置は、被検体に
X線を照射するX線管と、このX線管と対向配置され
た、被検体透過X線を受像して画像データに変換する撮
像機構とを備えており、撮像機構として一般に、被検体
透過X線を受像して可視画像に変換するイメージインテ
ンシファイア(I.I.)とI.I.の出力像を映像信
号(画像データ)に変換するテレビカメラとを組み合わ
せてなるものが用いられている。
2. Description of the Related Art An X-ray fluoroscopy apparatus of this type includes an X-ray tube for irradiating an object with X-rays, an X-ray tube arranged opposite to the X-ray tube, receiving the transmitted X-rays from the object, and converting the image data into image data. And an image intensifier (II) for receiving an X-ray transmitted through the subject and converting the X-ray into a visible image. I. Is used in combination with a television camera that converts the output image of the above into a video signal (image data).

【0003】I.I.は大型の真空管で、X線管方向に
突出する凸球面状の入力面の形状、電子レンズ系等の構
成上、像歪みは避けられず、この像歪みは画像の中心よ
りも周辺に至るほど歪みが大きく、この周辺歪みを画像
処理でもって補正することも行われているが、完全では
なく、また、非常に周辺歪みの少ないI.I.も開発さ
れているが、周辺歪みを完全に解消ものではなく、画像
処理による歪み補正や周辺歪みの少ないI.I.の使用
は、装置が高価となる。また、X線検出素子が縦横にマ
トリックス状に配列された周辺歪みのない平面型X線検
出器(フラットパネルX線検出器)が開発され、実用に
供されるようになってきている。
[0003] I. Is a large vacuum tube. Due to the shape of the convex spherical input surface protruding in the X-ray tube direction and the configuration of the electron lens system, image distortion is unavoidable, and this image distortion extends to the periphery rather than the center of the image. The distortion is large, and this peripheral distortion is corrected by image processing. However, it is not perfect, and the I.V. I. However, it does not completely eliminate the peripheral distortion, and does not correct distortion by image processing or I.T. I. The use of makes the equipment expensive. Further, flat X-ray detectors (flat panel X-ray detectors) in which the X-ray detection elements are arranged in a matrix in the vertical and horizontal directions and have no peripheral distortion have been developed and are being put to practical use.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、撮像機
構として周辺歪みのないフラットパネルX線検出器を使
用しても、像歪みは避けられず、根本的な解決にはなら
ない。すなわち、フラットパネルX線検出器は平面であ
るので、X線が検出器に垂直に入射すれば像歪みは生じ
ない。しかしながら、X線は、X線管の焦点より錘状
(コーン状)に照射されるので、このコーンビームをフ
ラットパネルX線検出器の平面の撮像面で受けるので、
フラットパネルX線検出器の中央と周辺部とでX線焦点
までの距離が異なり、周辺に至るほど距離が大きくなる
ことから、周辺部程画像が拡大されるという像歪みは避
けられず、像歪みのない画像データが得られないという
問題がある。
However, even if a flat panel X-ray detector having no peripheral distortion is used as an imaging mechanism, image distortion cannot be avoided and it cannot be a fundamental solution. That is, since the flat panel X-ray detector is a flat surface, no image distortion occurs when X-rays enter the detector perpendicularly. However, since the X-rays are irradiated in a cone shape from the focal point of the X-ray tube, this cone beam is received on the flat imaging surface of the flat panel X-ray detector,
Since the distance to the X-ray focal point differs between the center and the periphery of the flat panel X-ray detector, and the distance increases toward the periphery, image distortion that the image is enlarged toward the periphery is inevitable. There is a problem that image data without distortion cannot be obtained.

【0005】また、この種X線透視撮影装置では、診断
目的、診断部位等に応じて撮像機構を被検体に密着させ
た密着撮影と、撮像機構を被検体から離した拡大撮影と
が行われ、そのためにX線管と撮像機構間の距離が変え
られるように構成されている。したがって、中央部と周
辺部とで拡大率が異なることによる像歪みは、X線管と
撮像機構間の距離により変わるので、画像上での臓器、
関心部位等の位置関係や物体の大きさ・形状等の把握、
ならびに、画像上での計測が正確に行うことができない
という問題がある。
[0005] Further, in this type of X-ray fluoroscopic apparatus, contact imaging in which an imaging mechanism is brought into close contact with a subject and magnified imaging in which the imaging mechanism is separated from the subject are performed in accordance with the purpose of diagnosis, the diagnostic site, and the like. For this purpose, the distance between the X-ray tube and the imaging mechanism can be changed. Therefore, image distortion due to the difference in magnification between the central part and the peripheral part changes depending on the distance between the X-ray tube and the imaging mechanism.
Grasping the positional relationship of the site of interest and the size and shape of the object,
In addition, there is a problem that measurement on an image cannot be performed accurately.

【0006】本発明は、このような事情に鑑みてなされ
たものであって、X線管と撮像機構間の距離の変化に関
わらず、像歪みの著しく軽減され画像、ないし、像歪み
のない画像データが得られるX線透視撮影装置を提供す
ることを目的とする。
[0006] The present invention has been made in view of such circumstances, and image distortion is remarkably reduced regardless of a change in the distance between the X-ray tube and the imaging mechanism. An object of the present invention is to provide an X-ray fluoroscopic apparatus capable of obtaining image data.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明のX線透視撮影装置は、撮像機構を撮像面が
X線放射方向に突出する凹面に多数のX線検出素子が2
次元に配列されている球面状の2次元X線検出器とし、
この球面状の2次元X線検出器の曲率を、X線管と該2
次元X線検出器間の距離に応じて変化させるようにした
ことを特徴としている。
In order to achieve the above-mentioned object, an X-ray fluoroscopic apparatus according to the present invention comprises an imaging mechanism in which a large number of X-ray detecting elements are provided on a concave surface whose imaging surface protrudes in the X-ray radiation direction.
A spherical two-dimensional X-ray detector arranged in two dimensions,
The curvature of the spherical two-dimensional X-ray detector is defined as the X-ray tube and the 2
It is characterized in that it is changed according to the distance between the dimensional X-ray detectors.

【0008】したがって、このような構成を有する本発
明のX線透視撮影台によれば、球面状の2次元X線検出
器の曲率は、X線管と球面状の2次元X線検出器間の距
離に応じて変化し、その曲率は、X線管(正確にはX線
焦点)と球面状の2次元X線検出器間の距離を半径とす
る曲率となり、X線管と2次元X線検出器間の距離に関
係なく、2次元X線検出器の中央から周辺部に至るまで
撮像面のどに位置でもX線焦点までの距離が同一とな
り、像歪みが生じない。
Therefore, according to the X-ray fluoroscopy table of the present invention having such a configuration, the curvature of the spherical two-dimensional X-ray detector is limited between the X-ray tube and the spherical two-dimensional X-ray detector. The radius of curvature changes with the radius between the X-ray tube (more precisely, the X-ray focal point) and the spherical two-dimensional X-ray detector. Irrespective of the distance between the line detectors, the distance from the center to the periphery of the two-dimensional X-ray detector to the X-ray focal point is the same at any position on the imaging surface, and no image distortion occurs.

【0009】[0009]

【発明の実施の形態】本発明のX線透視撮影台の一実施
例について図面を参照しながら説明する。図1に示すよ
うに被検体(患者)MがテーブルB上に載置されてお
り、その下方にX線管1が、上方にX線管1と対向して
撮像機構11が配置されている。撮像機構10は、X線
検出素子が2次元(縦横)に配列された球面状2次元X
線検出器10で、この実施例では、X線検出素子がX線
管1より放射されるX線ビームの放射方向に突出する凹
面状の可撓性の球面状基体12の凹面側に形成され球面
状の2次元X線検出器とされている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the X-ray fluoroscopic table according to the present invention will be described with reference to the drawings. As shown in FIG. 1, a subject (patient) M is placed on a table B, and an X-ray tube 1 is disposed below the subject M, and an imaging mechanism 11 is disposed above the X-ray tube 1 so as to face the X-ray tube 1. . The imaging mechanism 10 has a spherical two-dimensional X-ray in which X-ray detection elements are two-dimensionally (vertically and horizontally) arranged.
In this embodiment, in the X-ray detector 10, an X-ray detecting element is formed on the concave side of a concave flexible spherical base 12 protruding in the radiation direction of the X-ray beam emitted from the X-ray tube 1. It is a spherical two-dimensional X-ray detector.

【0010】この球面状2次元X線検出器(以下、球面
X線検出器と称する)11は、例えば、銅基形態の形状
記憶合金製で球形状に形成された球面状支持体13の凹
面側に固定されており、この形状記憶合金製の球面状支
持体(以下、記憶合金球面支持体と称する)13は、そ
れに供給される電流に応じて球面の曲率半径が変化す
る。
The spherical two-dimensional X-ray detector (hereinafter referred to as a spherical X-ray detector) 11 is, for example, a concave surface of a spherical support 13 made of a copper-based shape memory alloy and formed in a spherical shape. The spherical support 13 made of a shape memory alloy (hereinafter referred to as a memory alloy spherical support) 13 has a radius of curvature of a spherical surface which changes in accordance with a current supplied to the support.

【0011】また、記憶合金球面支持体13は、管状の
支持アーム14を介してケース15に保持されており、
そのアーム14内を、記憶合金球面支持体13に接続す
るリード線2と、球面X線検出器11のX線検出素子よ
りの信号線4′が貫通してケース15外に導出されてお
り、導出された一端が記憶合金球面支持体13に接続す
るリード線2の他端は曲率制御回路3に、球面X線検出
器11の信号線3は画像処理回路4にそれぞれ接続され
ている。
The memory alloy spherical support 13 is held by a case 15 via a tubular support arm 14.
The lead wire 2 connected to the memory alloy spherical support 13 and the signal line 4 ′ from the X-ray detecting element of the spherical X-ray detector 11 pass through the inside of the arm 14 and are led out of the case 15. The other end of the lead wire 2 whose one end is connected to the memory alloy spherical support 13 is connected to the curvature control circuit 3, and the signal line 3 of the spherical X-ray detector 11 is connected to the image processing circuit 4.

【0012】さらに、X線管1と球面X線検出器11よ
りなる撮像機構10は、図示しないフレームに取り付け
られており、対向配置するX線管1と撮像機構10と
は、テーブルに対して図において、少なくとも紙面に垂
直方向に移動できるようになっていると共に、撮像機構
10は不図示のフレームに対して図中矢印で示すように
X線放射軸O方向(上下方向)に移動できるようになっ
ており、また、フレーム、ないし、撮像機構10のケー
ス15には、撮像機構10が上下移動した際のX線管1
の焦点Fと、球面X線検出器11間の距離Dを検出する
距離検出器5が設けられており、この距離検出器5の出
力信号は、曲率制御回路3に供給される。なお、図中、
6はモニタ、7は画像メモリである。
Further, an imaging mechanism 10 composed of the X-ray tube 1 and the spherical X-ray detector 11 is mounted on a frame (not shown). In the drawing, at least a direction perpendicular to the paper surface can be moved, and the imaging mechanism 10 can move in a direction (up-down direction) of the X-ray emission axis O with respect to a frame (not shown) as shown by an arrow in the figure. In addition, the X-ray tube 1 when the imaging mechanism 10 moves up and down is provided in the frame or the case 15 of the imaging mechanism 10.
A distance detector 5 for detecting a distance D between the focal point F of the lens and the spherical X-ray detector 11 is provided. An output signal of the distance detector 5 is supplied to the curvature control circuit 3. In the figure,
Reference numeral 6 denotes a monitor, and 7 denotes an image memory.

【0013】つぎに、球面X線検出器について説明す
る。図1における球面X線検出器11は、基本的構成、
機能は、フラットパネルX線検出器と同じであり、この
種の固体操作方式のフラットパネルX線検出器は、特開
平4−212456号公報、特開平4−212458号
公報で知られているように、X線、ないし、X線より変
換された光を感知し電荷に変換する半導体層と、薄膜ト
ランジスタ、電界効果トランジスタ等のスイッチング素
子で構成されたスイッチング素子マトリックスとを一体
化し、スイッチング素子を2次元的に走査して画像信号
を得るようにしたもので、その構成を図2、図3に示す。
Next, the spherical X-ray detector will be described. The spherical X-ray detector 11 in FIG.
The function is the same as that of the flat panel X-ray detector, and this type of solid operation type flat panel X-ray detector is known from JP-A-4-212456 and JP-A-4-212458. In addition, an X-ray or a semiconductor layer that senses light converted from the X-ray and converts it into a charge and a switching element matrix composed of switching elements such as thin film transistors and field effect transistors are integrated, and the switching elements are integrated into two. An image signal is obtained by dimensional scanning, and the configuration is shown in FIGS. 2 and 3.

【0014】図2において、20は半導体層で、一方の
面にバイアス電源21に接続されるバイアス電極22
が、他方面に検出素子(画素)が2次元(縦横)に配列
するように形成されたマトリックス状の信号電極23が
形成されている。24は薄膜トランジスタ(TFT)等
のスイッチング素子25で構成されたスイッチング素子
マトリックスで、各スイッチング素子25は半導体層2
0のそれぞれの信号電極23に接続されており、半導体
層20とスイッチング素子マトリックス24とは不図示
の基体上に薄膜技術で製造される。なお、図中、26は
電荷を蓄積するコンデンサで、半導体層20、スイッチ
ング素子マトリックス25と同様に薄膜技術で製造され
る。
In FIG. 2, reference numeral 20 denotes a semiconductor layer, and a bias electrode 22 connected to a bias power source 21 is provided on one surface.
However, a matrix-like signal electrode 23 in which detection elements (pixels) are arranged two-dimensionally (vertically and horizontally) is formed on the other surface. Reference numeral 24 denotes a switching element matrix composed of switching elements 25 such as thin film transistors (TFTs).
The semiconductor layer 20 and the switching element matrix 24, which are connected to the respective signal electrodes 23, are manufactured on a base (not shown) by a thin film technique. In the drawing, reference numeral 26 denotes a capacitor for storing electric charges, which is manufactured by a thin-film technology similarly to the semiconductor layer 20 and the switching element matrix 25.

【0015】この構成において、被検体を透過したX線
がバイアス電極22を透過し半導体層20に入射する
と、X線は半導体層20で吸収され電子−正孔対(電
荷)を生成する。生成された電荷は、バイアス電源21
よりバイアス電極22に印加された電圧により電荷シフ
トが起こり、この電荷がコンデンサ26に蓄積され、こ
のコンデンサ26に蓄積される電荷の量は、半導体層2
0に入射するX線量に依存する。
In this configuration, when the X-ray transmitted through the subject passes through the bias electrode 22 and enters the semiconductor layer 20, the X-ray is absorbed by the semiconductor layer 20 to generate an electron-hole pair (charge). The generated charge is supplied to a bias power supply 21.
The electric charge shift occurs due to the voltage applied to the bias electrode 22, and the electric charge is accumulated in the capacitor 26. The amount of the electric charge accumulated in the capacitor 26 depends on the semiconductor layer 2.
Depends on the X-ray dose incident on zero.

【0016】スイッチング素子マトリックス24を構成
するスイッチング素子25のスイッチングライン27
は、図3の等価回路に示すようにスイッチング素子駆動
回路28に、読み出しライン29は増幅器30を介して
マルチプレクサ31に接続されており、スイッチング素
子駆動回路28でスイッチング素子25が駆動される
と、スイッチング素子25がオンされた1ラインの各検
出素子(画素)のコンデンサ26に蓄積された電荷が同
時に読み出しライン29に出力され、スイッチング素子
駆動回路28がスイッチング素子25を順次駆動するこ
とにより、画素が2次元的に走査され、読み出しライン
29に出力された信号は、マルチプレクサ31で画素ご
との画像信号とされてA/D変換器32に入力され、A
/D変換器32より各画素ごとのデジタル画像信号が得
られ、このデジタル画像信号を処理することによりX線
2次元画像が得られる。
The switching lines 27 of the switching elements 25 constituting the switching element matrix 24
Is connected to the switching element driving circuit 28 as shown in the equivalent circuit of FIG. 3, and the readout line 29 is connected to the multiplexer 31 via the amplifier 30. When the switching element 25 is driven by the switching element driving circuit 28, The charge accumulated in the capacitor 26 of each detection element (pixel) of one line in which the switching element 25 is turned on is simultaneously output to the readout line 29, and the switching element drive circuit 28 sequentially drives the switching element 25, so that the pixel Are two-dimensionally scanned, and the signal output to the readout line 29 is converted into an image signal for each pixel by the multiplexer 31 and input to the A / D converter 32, where A
A digital image signal for each pixel is obtained from the / D converter 32, and a two-dimensional X-ray image is obtained by processing the digital image signal.

【0017】なお、図2、図3に示したものは、入射X
線を半導体層で直接電荷(電気信号)に変換する直接変
換タイプのフラットパネルX線検出器であるが、入射X
線を光に変換するシンチレータ層と、そのシンチレータ
層の表面に光検出素子としてマトリックス状に形成され
たフォトダイオードアレイと、各フォトダイオードアレ
イに接続されたTFTとで構成され、X線照射後、各T
FTスィッチを順次ONすることで、各画素に蓄積され
た信号電荷を読み出して画像信号を得る間接変換タイプ
のフラットパネルX線検出器であってもよい。フラット
パネルX線検出器では、平板の基体に半導体層20、ス
イッチング素子マトリックス24、コンデンサ26等が
薄膜技術で製造されるが、本願発明において用いられる
球面状2次元X線検出器11は、球面状の可撓性の基体
の凹面側に薄膜技術で製造される。
FIGS. 2 and 3 show incident X
It is a direct conversion type flat panel X-ray detector that directly converts a line into an electric charge (electric signal) in the semiconductor layer.
A scintillator layer for converting light into light, a photodiode array formed in a matrix on the surface of the scintillator layer as a photodetector, and a TFT connected to each photodiode array. Each T
An indirect conversion type flat panel X-ray detector that obtains an image signal by reading signal charges accumulated in each pixel by sequentially turning on the FT switch may be used. In the flat panel X-ray detector, the semiconductor layer 20, the switching element matrix 24, the capacitor 26, and the like are manufactured by a thin film technology on a flat base. The spherical two-dimensional X-ray detector 11 used in the present invention has a spherical surface. Fabricated on the concave side of a flexible substrate by thin film technology.

【0018】続いて、上記した構成を有する実施例装置
でX線透視撮影を行うには、まず、X線管1で発生され
たX線をベッドBに載置された被検体Mに向けて照射す
る。被検体Mを透過した透過X線は、球面X線検出器1
1の半導体層20により電荷に変換され、スイッチング
素子25にて電気信号に変換されてデジタルビデオ信号
(画像データ)として出力され、画像処理回路4で画像
強調等の画像処理が施されてモニタ6に透視画像が映し
出される。
Subsequently, in order to perform X-ray fluoroscopy with the embodiment apparatus having the above-described configuration, first, the X-rays generated by the X-ray tube 1 are directed toward the subject M placed on the bed B. Irradiate. The transmitted X-rays transmitted through the subject M are transmitted to the spherical X-ray detector 1
The first semiconductor layer 20 converts the charges into electric charges, the switching elements 25 convert the electric signals into electric signals, and output the digital signals as image data (image data). A fluoroscopic image is projected on the screen.

【0019】術者は、モニタ6に映し出された透視画像
を観察しながらX線管1と撮像機構10を対向保持する
フレーム、および/または、ベッドBの移動、ないし、
撮像機構10を上下に移動(密着撮影の場合には被検体
の体表に撮像機構を密着、拡大撮影に際しては被検体体
表より撮像機構を遠ざける)して目的画像が観察できる
ように位置決めし、適当なタイミングで撮影を行なって
撮影部位を静止画像、ないし、動御画像として画像メモ
リ7に記録する。撮影時の画像メモリ7への記録画像は
モニタ6で確認できる。
The operator, while observing the fluoroscopic image projected on the monitor 6, moves the frame for holding the X-ray tube 1 and the imaging mechanism 10 facing each other and / or moves the bed B, or
The imaging mechanism 10 is moved up and down (in the case of close contact imaging, the imaging mechanism is brought into close contact with the body surface of the subject, and in the case of enlarged imaging, the imaging mechanism is moved away from the surface of the subject body) so that the target image can be observed. Then, the radiographing is performed at an appropriate timing, and the radiographed part is recorded in the image memory 7 as a still image or a moving image. The image recorded in the image memory 7 at the time of shooting can be confirmed on the monitor 6.

【0020】位置決め時の撮像機構10の上下移動によ
るX線焦点Fと球面X線検出器11間の距離Dは、距離
検出器5で検出され、その検出信号は曲率制御回路3に
供給される。曲率制御回路3は、距離検出器5で検出さ
れたX線管焦点Fと球面X線検出器11間の距離Dに基
づき、それに対応する曲率を計算し、球面X線検出器1
1の曲率を、計算した曲率にするための記憶合金球面支
持体13に供給する電流を求めて、その電流を記憶合金
球面支持体13に供給し、球面X線検出器11の曲率
を、X線焦点Fと球面X線検出器11間の距離Dを半径
とする曲率に変化させる。
The distance D between the X-ray focal point F and the spherical X-ray detector 11 due to the vertical movement of the imaging mechanism 10 during positioning is detected by the distance detector 5, and the detection signal is supplied to the curvature control circuit 3. . The curvature control circuit 3 calculates a curvature corresponding to the distance D between the focal point F of the X-ray tube detected by the distance detector 5 and the spherical X-ray detector 11, and calculates the spherical X-ray detector 1.
A current to be supplied to the memory alloy spherical support 13 for converting the curvature of the first curve into the calculated curvature is obtained, and the current is supplied to the memory alloy spherical support 13 to change the curvature of the spherical X-ray detector 11 to X. The curvature is changed to a radius having a distance D between the line focus F and the spherical X-ray detector 11 as a radius.

【0021】この状態を模式的に示した図4で説明す
る。図において、X線焦点Fと球面X線検出器11間の
距離がD1にあるときの球面X線検出器11の曲率は、
X線管焦点Fを中心とする距離D1を半径とする曲率の
球面KIにされているが、球面X線検出器11が上方に
移動してX線焦点Fと球面X線検出器11間の距離がD
2に変化すると、その距離D2が距離検出器5で検出さ
れて曲率制御回路3に供給される。曲率制御回路3は、
検出された距離D2に基づいて、X線焦点Fを中心とす
る距離D2を半径とする曲率を計算し、球面X線検出器
11を計算した曲率に湾曲するための記憶合金球面支持
体13に供給する電流を求め、その求めた電流を記憶合
金球面状支持体13に供給して、球面X線検出器11の
曲率を、X線焦点Fと球面X線検出器11間の距離D2
を半径とする曲率の球面K2に変化させる。
FIG. 4 schematically shows this state. In the figure, the curvature of the spherical X-ray detector 11 when the distance between the X-ray focal point F and the spherical X-ray detector 11 is D1 is:
Although the spherical surface KI has a curvature having a radius of a distance D1 about the focal point F of the X-ray tube, the spherical X-ray detector 11 moves upward to move between the X-ray focal point F and the spherical X-ray detector 11. Distance is D
When the distance changes to 2, the distance D2 is detected by the distance detector 5 and supplied to the curvature control circuit 3. The curvature control circuit 3
Based on the detected distance D2, a curvature having a radius of the distance D2 about the X-ray focal point F is calculated, and the spherical X-ray detector 11 is provided with a memory alloy spherical support 13 for bending to the calculated curvature. The current to be supplied is obtained, and the obtained current is supplied to the memory alloy spherical support 13, and the curvature of the spherical X-ray detector 11 is determined by the distance D2 between the X-ray focal point F and the spherical X-ray detector 11.
Is changed to a spherical surface K2 having a radius of curvature.

【0022】このように、移動によるX線焦点Fと球面
X線検出器11間の距離Dに応じて、球面X線検出器1
1の曲率が、X線焦点Fを中心とする、X線焦点Fと球
面X線検出器11間の距離Dを半径とする曲率の球面と
されるので、球面X線検出器11の中心からそれの周縁
部に至る球面X線検出器11の撮像面のどの位置におい
てもX線焦点Fまでの距離は、撮像面のどの位置でも等
しく、X線焦点Fと球面X線検出器11間の距離Dとな
り、球面X線検出器11の中心部と周縁部の撮像面とX
線焦点Fとの距離が異なることによる拡大率の相違に起
因する像歪みが生ぜず、像歪みのない透視撮影画像が得
られる。
As described above, the spherical X-ray detector 1 is changed according to the distance D between the X-ray focal point F due to the movement and the spherical X-ray detector 11.
1 is a sphere having a radius centered on the X-ray focal point F and having a radius equal to the distance D between the X-ray focal point F and the spherical X-ray detector 11, so that the center of the spherical X-ray detector 11 At any position on the imaging surface of the spherical X-ray detector 11 reaching the periphery thereof, the distance to the X-ray focal point F is equal at any position on the imaging surface, and the distance between the X-ray focal point F and the spherical X-ray detector 11 is The distance becomes D, and X and the imaging planes at the center and the periphery of the spherical X-ray detector 11
Image distortion due to a difference in magnification ratio due to a difference in distance from the line focal point F does not occur, and a fluoroscopic image without image distortion is obtained.

【0023】図5は、ケース(図示せず)に固定された
固定部41と可動部42からなる複数本の伸縮腕(アク
チュエータ)40でもって、球面X線検出器11の曲率
を調整するよにした他の実施例を示すのもで、この実施
例では、曲率制御回路は、距離検出器で検出されたX線
焦点Fと球面X線検出器11間の距離に基づいて、各伸
縮腕40の長さ(伸縮量)を調整して、球面X線検出器
11の曲率を、X線焦点Fと球面X線検出器11間の距
離Dを半径とする曲率に変化させる。なお、図中、図1
と同一構成品には同一符号が付されており、また、各伸
縮腕40の各可動部42と球面X線検出器11の球面状
基体12との連結は、不図示の自在(ピボット)継ぎ手
を介してなされる。
FIG. 5 shows a case in which the curvature of the spherical X-ray detector 11 is adjusted by a plurality of telescopic arms (actuators) 40 comprising a fixed part 41 and a movable part 42 fixed to a case (not shown). In this embodiment, the curvature control circuit determines the length of each telescopic arm based on the distance between the X-ray focal point F and the spherical X-ray detector 11 detected by the distance detector. By adjusting the length (the amount of expansion or contraction) of the forty, the curvature of the spherical X-ray detector 11 is changed to a curvature having a radius equal to the distance D between the X-ray focal point F and the spherical X-ray detector 11. In FIG. 1, FIG.
The same reference numerals are given to the same components as those described above, and the connection between each movable part 42 of each telescopic arm 40 and the spherical base 12 of the spherical X-ray detector 11 is performed by a free (pivot) joint (not shown). Made through.

【0024】なお、上記の実施例では、球面状基体にX
線検出素子を薄膜技術で形成して球面2次元X線検出器
としたが、小さな平面上のフラットパネルX線検出器を
多数枚使用し、各フラットパネルX線検出器の多数の平
面の組み合わせでもって擬似球面の球面X線検出器(以
下、擬似球面X線検出器と称する)を形成し、隣接する
各フラットパネルX線検出器の傾斜角度の調整でもって
曲率を変えるようにしてもよい。
In the above-described embodiment, the spherical substrate is
The two-dimensional spherical X-ray detector is formed by forming the line detecting element by the thin film technology. However, a large number of flat panel X-ray detectors on a small plane are used, and a combination of many planes of each flat panel X-ray detector is used. Thus, a pseudo-spherical spherical X-ray detector (hereinafter, referred to as pseudo-spherical X-ray detector) may be formed, and the curvature may be changed by adjusting the inclination angle of each adjacent flat panel X-ray detector. .

【0025】図6はこのように構成した擬似球面X線検
出器とそれの曲率調整の説明用の模式図で、複数枚の小
さなフラットパネルX線検出器11′が、伸縮性支持体
43に固定されて大面積の2次元検出器とされ、各フラ
ットパネルX線検出器11′は、例えば、図5に示した
ようなケースに固定された固定部と可動部42とよりな
る伸縮腕に連結されて、球面を平面で近似した擬似球面
状のX線検出器とされている。このような構成において
は、距離検出器で擬似球面X線検出器とX線焦点F間の
距離Dが検出されると、曲率制御回路は、距離検出器で
検出された距離Dを半径とする曲率を計算し、各フラッ
トパネルX線検出器11′で計算された曲率の球形面に
外接、または、内接する擬似球面を形成するための、各
隣接検出器との傾斜角度θ1、θ2、θ3…を求め、そ
の角度になるように各伸縮腕の長さを調整することで、
擬似球面X線検出器の曲率が変えられる。
FIG. 6 is a schematic diagram for explaining the pseudo-spherical X-ray detector thus configured and its curvature adjustment. A plurality of small flat panel X-ray detectors 11 ′ are attached to the elastic support 43. The flat panel X-ray detector 11 ′ is fixed to a large-area two-dimensional detector, and each flat panel X-ray detector 11 ′ is attached to a telescopic arm including a fixed part and a movable part 42 fixed to a case as shown in FIG. The linked X-ray detector is a pseudo-spherical X-ray detector whose spherical surface is approximated by a plane. In such a configuration, when the distance detector detects the distance D between the pseudo spherical X-ray detector and the X-ray focal point F, the curvature control circuit sets the distance D detected by the distance detector as a radius. The curvatures are calculated, and the inclination angles θ1, θ2, θ3 with the adjacent detectors for forming a pseudo spherical surface circumscribed or inscribed on the spherical surface of the curvature calculated by each flat panel X-ray detector 11 '. ... and by adjusting the length of each telescopic arm so that it is at that angle,
The curvature of the pseudo spherical X-ray detector is changed.

【0026】この図6の実施例では、曲率をX線焦点と
撮像機構(擬似球面X線検出器)間の距離を半径とする
曲率の球面を平面で近似するので、図1の実施例のよう
に像歪みを完全になくすことはできないが、大面積のフ
ラットパネルX線検出器で撮像するよりも周辺歪みは著
しく改善でき、特に、各フラットパネルX線検出器の大
きさを小さくすればする程、曲率を、X線焦点と撮像機
構間の距離を半径とするの曲率の球面に近づけることが
でき、より像歪みのない透視撮影画像が得られる。
In the embodiment shown in FIG. 6, a spherical surface having a radius of curvature equal to the distance between the X-ray focal point and the imaging mechanism (pseudo spherical X-ray detector) is approximated by a plane. Although image distortion cannot be completely eliminated as described above, peripheral distortion can be remarkably improved as compared with imaging with a large-area flat panel X-ray detector. In particular, if the size of each flat panel X-ray detector is reduced, As the distance increases, the curvature can be made closer to a spherical surface having a curvature whose radius is the distance between the X-ray focal point and the imaging mechanism, and a fluoroscopic image with less image distortion can be obtained.

【0027】また、現在の技術では、大面積のフラット
パネルX線検出器、特に、球面状2次元X線検出器の作
成は、歩留まりが悪く、高価であるので、図6のよう
に、小さなフラットパネルX線検出器の組み合わせでも
って球面を形成するようにすれば、安価に2次元検出器
が構成できる。なお、図1はアンダーチューブ型X線透
視撮影装置に本発明を適用した実施例であるが、本発明
は、X線管を上方に、下方に撮像機構を配置したオーバ
ーチューブ型X線透視撮影装置、X線管と撮像機構とを
端部に対向保持するCアーム形X線透視撮影装置等にも
適用可能である。
In the current technology, the production of a large-area flat panel X-ray detector, particularly, a spherical two-dimensional X-ray detector has a low yield and is expensive. If a spherical surface is formed by a combination of flat panel X-ray detectors, a two-dimensional detector can be configured at low cost. FIG. 1 shows an embodiment in which the present invention is applied to an under-tube type X-ray fluoroscopic apparatus. However, the present invention relates to an over-tube type X-ray fluoroscopic apparatus in which an X-ray tube is arranged above and an imaging mechanism is arranged below. The present invention can also be applied to a device, a C-arm type X-ray fluoroscopic apparatus that holds an X-ray tube and an imaging mechanism at opposite ends, and the like.

【0028】[0028]

【発明の効果】本発明のX線透視撮影装置によれば、球
面状2次元X線検出器の曲率が可変できるので、X線管
と撮像機構間の距離の変化に関わらず、像歪みの著しく
軽減された透視撮影画像、ないし、像歪みのない透視撮
影画像が得られる。その結果、画像上での臓器、関心部
位等の位置関係、物体の大きさ・形状の把握や計測が正
確に行うことができ、的確な診断や治療が可能となる。
According to the X-ray fluoroscopic apparatus of the present invention, since the curvature of the spherical two-dimensional X-ray detector can be changed, the image distortion can be reduced regardless of the change in the distance between the X-ray tube and the imaging mechanism. A significantly reduced fluoroscopic image or a fluoroscopic image without image distortion is obtained. As a result, it is possible to accurately grasp and measure the positional relationship of an organ, a site of interest, and the like on an image, and the size and shape of an object, and to perform accurate diagnosis and treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のX線透視撮影装置の一実施例を示す
図である。
FIG. 1 is a diagram showing an embodiment of an X-ray fluoroscopic apparatus according to the present invention.

【図2】 フラットパネルX線検出機の構成を示す模式
図である。
FIG. 2 is a schematic diagram showing a configuration of a flat panel X-ray detector.

【図3】 図2の等価回路図である。FIG. 3 is an equivalent circuit diagram of FIG.

【図4】 図1に用いられている球面状2次元X線検出
器の曲率の変化説明用の模式図である。
FIG. 4 is a schematic diagram for explaining a change in curvature of the spherical two-dimensional X-ray detector used in FIG. 1;

【図5】 球面状2次元X線検出器の曲率の調整機構の
他の実施例を示す図である。
FIG. 5 is a view showing another embodiment of a curvature adjusting mechanism of the spherical two-dimensional X-ray detector.

【図6】 他の球面状2次元X線検出器の構成、ならび
に、曲率調整の説明用の模式略図である。
FIG. 6 is a schematic diagram for explaining the configuration of another spherical two-dimensional X-ray detector and curvature adjustment.

【符号の説明】[Explanation of symbols]

1:X線管 3:曲率制御回路 4:画像処理回路 5:距離検出回路 6:モニタ 7:画像メモリ 10:撮像機構 11…球面状2次元X線検出器(球面X線検出器) 11′…フラットパネルX線検出器 12…球面状基体 13…形状記憶合金製球面状支持体(記憶合金球面支持
体) 14…支持アーム 15…ケース 40:伸縮腕 41…固定部 42…可動部 F:X線焦点 O:X線放射軸
1: X-ray tube 3: Curvature control circuit 4: Image processing circuit 5: Distance detection circuit 6: Monitor 7: Image memory 10: Imaging mechanism 11: Spherical two-dimensional X-ray detector (spherical X-ray detector) 11 ' ... Flat panel X-ray detector 12 ... Spherical base 13 ... Spherical support made of shape memory alloy (memory alloy spherical support) 14 ... Support arm 15 ... Case 40: Telescopic arm 41 ... Fixed part 42 ... Movable part F: X-ray focus O: X-ray emission axis

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被検体を挟んで被検体にX線を照射する
X線管と、被検体を透過した透過X線を受像する撮像機
構とが対向配置されており、前記X線管と撮像機構間の
距離が可変できるX線透視撮影装置であって、前記撮像
機構がX線放射方向に突出する凹面に多数のX線検出素
子が2次元に配列されている球面状2次元X線検出器で
あると共に、前記2次元X線検出器の曲率が、X線管と
2次元X線検出器間の距離に応じて変化することを特徴
とするX線透視撮影装置。
1. An X-ray tube for irradiating an X-ray to a subject with the subject interposed therebetween, and an imaging mechanism for receiving transmitted X-rays transmitted through the subject are arranged to face each other. An X-ray fluoroscopic apparatus capable of changing a distance between mechanisms, wherein said imaging mechanism has a plurality of X-ray detection elements arranged two-dimensionally on a concave surface protruding in an X-ray radiation direction. An X-ray fluoroscopic apparatus, wherein the curvature of the two-dimensional X-ray detector changes according to the distance between the X-ray tube and the two-dimensional X-ray detector.
【請求項2】 被検体にX線を照射するX線管と、被検
体を透過した透過X線を受像する撮像面がX線放射方向
に突出する凹面に多数のX線検出素子が2次元に配列さ
れている球面状の2次元X線検出器と、前記X線管と球
面状2次元X線検出器間の距離を検出する距離検出手段
と、前記距離検出手段の検出信号に応じて前記2次元X
線検出器の曲率を可変する制御手段とを備えていること
を特徴とするX線透視撮影装置。
2. An X-ray tube for irradiating an object with X-rays, and an imaging surface for receiving transmitted X-rays transmitted through the object, a concave surface protruding in the X-ray radiation direction, and a large number of X-ray detecting elements are two-dimensionally arranged. A two-dimensional spherical X-ray detector, a distance detecting means for detecting a distance between the X-ray tube and the spherical two-dimensional X-ray detector, and a detecting signal from the distance detecting means. The two-dimensional X
An X-ray fluoroscopic apparatus, comprising: control means for changing a curvature of a line detector.
JP27947099A 1999-09-30 1999-09-30 X-ray fluoroscopy photographing apparatus Pending JP2001095789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27947099A JP2001095789A (en) 1999-09-30 1999-09-30 X-ray fluoroscopy photographing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27947099A JP2001095789A (en) 1999-09-30 1999-09-30 X-ray fluoroscopy photographing apparatus

Publications (1)

Publication Number Publication Date
JP2001095789A true JP2001095789A (en) 2001-04-10

Family

ID=17611518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27947099A Pending JP2001095789A (en) 1999-09-30 1999-09-30 X-ray fluoroscopy photographing apparatus

Country Status (1)

Country Link
JP (1) JP2001095789A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010164A (en) * 2001-07-03 2003-01-14 Hitachi Medical Corp X-ray equipment
WO2006005246A1 (en) * 2004-07-14 2006-01-19 Southwest Technology & Engineering Institute Of China A measuring device for the shortwavelength x ray diffraction and a method thereof
JP2006105982A (en) * 2004-09-30 2006-04-20 General Electric Co <Ge> Linear array detector system and inspection method
JP2010078542A (en) * 2008-09-29 2010-04-08 Fujifilm Corp Radiation detector
JP2010078551A (en) * 2008-09-29 2010-04-08 Fujifilm Corp Radiation detection device
US8212219B2 (en) 2008-09-26 2012-07-03 Fujifilm Corporation Radiation detecting apparatus and radiation image capturing system
WO2012115039A1 (en) * 2011-02-21 2012-08-30 富士フイルム株式会社 Radiological image detection apparatus and radiography apparatus
JP2012231898A (en) * 2011-04-28 2012-11-29 Toshiba Corp X-ray ct apparatus
WO2014104763A1 (en) * 2012-12-27 2014-07-03 주식회사 레이언스 Apparatus and system for detecting x-rays
JP2019015725A (en) * 2017-07-05 2019-01-31 株式会社リガク X-ray detector and control method of x-ray detector
WO2019207831A1 (en) * 2018-04-26 2019-10-31 株式会社ジャパンディスプレイ X-ray inspection device
US11112509B2 (en) 2016-05-26 2021-09-07 Koninklijke Philips N.V. Multifunctional radiation detector
WO2021251397A1 (en) * 2020-06-09 2021-12-16 義弘 岸上 X-ray image-capturing device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010164A (en) * 2001-07-03 2003-01-14 Hitachi Medical Corp X-ray equipment
WO2006005246A1 (en) * 2004-07-14 2006-01-19 Southwest Technology & Engineering Institute Of China A measuring device for the shortwavelength x ray diffraction and a method thereof
US7583788B2 (en) 2004-07-14 2009-09-01 South West Technology & Engineering Institute Of China Measuring device for the shortwavelength x ray diffraction and a method thereof
JP2006105982A (en) * 2004-09-30 2006-04-20 General Electric Co <Ge> Linear array detector system and inspection method
US8212219B2 (en) 2008-09-26 2012-07-03 Fujifilm Corporation Radiation detecting apparatus and radiation image capturing system
JP2010078542A (en) * 2008-09-29 2010-04-08 Fujifilm Corp Radiation detector
JP2010078551A (en) * 2008-09-29 2010-04-08 Fujifilm Corp Radiation detection device
JP2012173128A (en) * 2011-02-21 2012-09-10 Fujifilm Corp Radiographic image detector and radiographic apparatus
WO2012115039A1 (en) * 2011-02-21 2012-08-30 富士フイルム株式会社 Radiological image detection apparatus and radiography apparatus
US8803101B2 (en) 2011-02-21 2014-08-12 Fujifilm Corporation Radiological image detection apparatus and radiation imaging apparatus
JP2012231898A (en) * 2011-04-28 2012-11-29 Toshiba Corp X-ray ct apparatus
WO2014104763A1 (en) * 2012-12-27 2014-07-03 주식회사 레이언스 Apparatus and system for detecting x-rays
US11112509B2 (en) 2016-05-26 2021-09-07 Koninklijke Philips N.V. Multifunctional radiation detector
JP2019015725A (en) * 2017-07-05 2019-01-31 株式会社リガク X-ray detector and control method of x-ray detector
JP7129624B2 (en) 2017-07-05 2022-09-02 株式会社リガク X-ray detector and control method for the X-ray detector
WO2019207831A1 (en) * 2018-04-26 2019-10-31 株式会社ジャパンディスプレイ X-ray inspection device
WO2021251397A1 (en) * 2020-06-09 2021-12-16 義弘 岸上 X-ray image-capturing device

Similar Documents

Publication Publication Date Title
US7672425B2 (en) Real-time digital X-ray imaging apparatus
US6412978B1 (en) X-ray diagnostic apparatus
JP3319905B2 (en) Digital X-ray equipment
US6630676B2 (en) X-ray image taking apparatus with plane type radiation detector unit
US6292534B1 (en) X-ray examination apparatus
US11612367B2 (en) Digital radiography detector for long-length imaging
US20110286582A1 (en) Imaging system and control method therefor
JP2001095789A (en) X-ray fluoroscopy photographing apparatus
US10499863B2 (en) Tiled digital radiography detectors for long-length imaging
US10959690B2 (en) Overlapping stepped standard DR detector for long length imaging
WO2006109806A1 (en) X-ray image sensor and x-ray imaging device using the same
KR20110004839A (en) Medical x-ray imaging system
WO1996024047A1 (en) Digital imaging using a scanning mirror apparatus_xxxxxxx
US6604855B2 (en) Fluoroscopic radiographing carrier apparatus
JP2001095790A (en) X-ray fluoroscopy photographing apparatus
JP2000046760A (en) X-ray tomographic surface inspection apparatus
JP2006508722A (en) Digital photography method and apparatus for mammography
JP3805107B2 (en) Measuring device using X-ray
JPH11290307A (en) X-ray diagnostic system
EP0129938A1 (en) Dental X-ray examination apparatus
WO2013001917A1 (en) Radiation output device, radiation imaging system and radiation imaging method
JP3369441B2 (en) Multi-directional X-ray fluoroscope
JPH11188024A (en) X ray diagnostic device
JP2009183334A (en) X-ray fluoroscopic system
JP4474761B2 (en) X-ray fluoroscopy table

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623