JP2001094102A - Power mos transistor - Google Patents

Power mos transistor

Info

Publication number
JP2001094102A
JP2001094102A JP27037199A JP27037199A JP2001094102A JP 2001094102 A JP2001094102 A JP 2001094102A JP 27037199 A JP27037199 A JP 27037199A JP 27037199 A JP27037199 A JP 27037199A JP 2001094102 A JP2001094102 A JP 2001094102A
Authority
JP
Japan
Prior art keywords
zener diode
mos transistor
power mos
drain
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27037199A
Other languages
Japanese (ja)
Other versions
JP4389303B2 (en
Inventor
Shogo Mori
昌吾 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP27037199A priority Critical patent/JP4389303B2/en
Publication of JP2001094102A publication Critical patent/JP2001094102A/en
Application granted granted Critical
Publication of JP4389303B2 publication Critical patent/JP4389303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power MOS transistor which incorporates a bidirectional polysilicon Zener diode between its drain and gate and has a high breakdown voltage and in which the wiring layer of the Zener diode does not cross a field limit ring. SOLUTION: A bidirectional polysilicon Zener diode 16 is provided on a well 13 provided adjacent to the central part of a semiconductor substrate, on which a power MOS transistor is arranged through a field insulating film and an electrode pad 18 is provided at one end section 16a of the diode 16. In addition, a wiring layer 19 connected to a gate wiring layer provided on the outer periphery of the central part is provided on the other end section 16e of the diode 16. Since the electrode pad 18 is electrically connected to a drain D of the power MOS transistor via wires, the wiring layer 19 will not cross directly a field limit ring 14 and the occurrence of a partial breakdown voltage drop between the drain D and source S of the MOS transistor can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、双方向ポリシリコンツ
ェナーダイオードをドレイン・ゲート間に内蔵したパワ
ーMOSトランジスタに関し、特に、パワーMOSトラ
ンジスタのドレイン・ゲート間に接続される双方向ポリ
シリコンツェナーダイオードに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power MOS transistor having a built-in bidirectional polysilicon Zener diode between a drain and a gate, and more particularly to a bidirectional polysilicon Zener diode connected between a drain and a gate of a power MOS transistor. It is about.

【0002】[0002]

【従来の技術】図4は半導体集積回路を形成するチップ
30の等価回路を示し、前記チップ30はゲートが共通
に接続されると共に互いに並列接続された多数の縦型パ
ワーMOSトランジスタ31と、前記パワーMOSトラ
ンジスタ31のドレインD・ゲートG間に接続されると
共に、ポリシリコンからなり逆方向に直列接続された多
数のツェナーダイオード対からなる双方向ポリシリコン
ツェナーダイオード32とから構成され、例えば、誘導
性負荷を駆動する駆動回路に用いられている。
2. Description of the Related Art FIG. 4 shows an equivalent circuit of a chip 30 forming a semiconductor integrated circuit. The chip 30 has a number of vertical power MOS transistors 31 having gates connected in common and connected in parallel with each other. The power MOS transistor 31 is connected between the drain D and the gate G of the power MOS transistor 31 and includes a bidirectional polysilicon Zener diode 32 composed of a large number of Zener diode pairs made of polysilicon and connected in series in the reverse direction. It is used for a drive circuit for driving a conductive load.

【0003】図5は前記チップ30の平面図を模式的に
示し、図6乃至図8は図5の一部断面図を示している。
図5に示すように、前記チップ30の中央部33には前
記パワーMOSトランジスタ31が設けられ、また、前
記チップ30を構成するN型半導体基板上に形成され
たN型エピタキシャル層中には、前記中央部33を順
次取り囲むように、P型ウエル34、P型フィールドリ
ミットリング35及び前記パワーMOSトランジスタ3
1のドレインDに接続されるN型領域36とが形成さ
れ、また、後述するように、前記双方向ポリシリコンツ
ェナーダイオード32は前記P型フィールドリミットリ
ング35と前記N型領域36との間の前記N型エピ
タキシャル層上に周方向に沿いフィールド絶縁膜を介し
て設けられており、前記双方向ポリシリコンツェナーダ
イオード32の一端部は配線層37をとおして前記N
型領域36に接続され、他端部は配線層38を介して前
記中央部33の外周に設けられたゲート配線層(図示し
ない)に接続されている。
FIG. 5 schematically shows a plan view of the chip 30, and FIGS. 6 to 8 show partial sectional views of FIG.
As shown in FIG. 5, the power MOS transistor 31 is provided at a central portion 33 of the chip 30. The power MOS transistor 31 is provided in an N type epitaxial layer formed on an N + type semiconductor substrate constituting the chip 30. A P-type well 34, a P-type field limit ring 35 and the power MOS transistor 3 so as to sequentially surround the central portion 33.
An N + -type region 36 connected to the drain D is formed. As will be described later, the bidirectional polysilicon Zener diode 32 is connected between the P-type field limit ring 35 and the N + -type region 36. One end of the bidirectional polysilicon Zener diode 32 is provided on the N -type epitaxial layer between the N + -type epitaxial layers with a field insulating film interposed therebetween.
The other end is connected to a gate wiring layer (not shown) provided on the outer periphery of the central part 33 via a wiring layer 38.

【0004】図6は図5のC−C断面図を示し、前記チ
ップ30を構成するN型半導体基板41に形成された
型エピタキシャル層42上にフィールド絶縁膜43
が設けられ、前記フィールド絶縁膜43上にはN型領
域32a、P型領域32b、N型領域32c、P型領
域32d及びN型領域32eからなる前記双方向ポリ
シリコンツェナーダイオード32が設けられている。な
お、図6においては便宜のために2個のツェナーダイオ
ード対を示している。前記双方向ポリシリコンツェナー
ダイオード32の両端の前記N型領域32a、32e
には層間絶縁膜44を介して前記した配線層37、38
が設けられている。また、前記N型半導体基板41の
裏面には前記パワーMOSトランジスタ31のドレイン
Dとなるドレイン電極45が形成されている。
FIG. 6 is a sectional view taken along the line CC of FIG. 5, in which a field insulating film 43 is formed on an N type epitaxial layer 42 formed on an N + type semiconductor substrate 41 constituting the chip 30.
Is provided on the field insulating film 43. The bidirectional polysilicon Zener diode 32 including an N + type region 32a, a P type region 32b, an N + type region 32c, a P type region 32d and an N + type region 32e is provided on the field insulating film 43. Is provided. FIG. 6 shows two Zener diode pairs for convenience. The N + -type regions 32a and 32e at both ends of the bidirectional polysilicon Zener diode 32
The wiring layers 37 and 38 described above are interposed via an interlayer insulating film 44.
Is provided. A drain electrode 45 serving as a drain D of the power MOS transistor 31 is formed on the back surface of the N + type semiconductor substrate 41.

【0005】図7は図5のD−D断面図を示し、前記双
方向ポリシリコンツェナーダイオード32の前記一端
部、即ち、前記N型領域32eが前記配線層37をと
おして前記N型領域36に接続される状態を示してい
る。
FIG. 7 is a sectional view taken along the line DD of FIG. 5, in which the one end of the bidirectional polysilicon Zener diode 32, that is, the N + type region 32e is connected to the N + type through the wiring layer 37. This shows a state of being connected to the area 36.

【0006】一方、図8は図5のE−E断面図を示し、
前記双方向ポリシリコンツェナーダイオード32の前記
他端部、即ち、前記N型領域32aが前記配線層38
を介して前記中央部33の外周に設けられた前記ゲート
配線層に接続される状態を示している。
FIG. 8 is a sectional view taken along the line EE of FIG.
The other end of the bidirectional polysilicon Zener diode 32, that is, the N + type region 32a is connected to the wiring layer 38.
3 shows a state in which the semiconductor device is connected to the gate wiring layer provided on the outer periphery of the central portion 33 through the gate.

【0007】しかして、前記チップ30において前記双
方向ポリシリコンツェナーダイオード32は、図5及び
図6に示したように、前記P型フィールドリミットリン
グ35と前記N型領域36との間の前記N型エピタ
キシャル層42上に周方向に沿って前記フィールド絶縁
膜43を介して設けられ、図8に示したように、前記双
方向ポリシリコンツェナーダイオード32の他端部であ
る前記N型領域32aはその長さ方向とはほぼ垂直に
配置された前記配線層38を介して前記中央部33の外
周に設けられた前記ゲート配線層に接続されている。即
ち、前記配線層38は前記フィールド絶縁膜43を介し
て前記P型フィールドリミットリング35を横切る、或
いは跨いでしまう。それ故、前記チップ30が前記した
誘導性負荷を有する駆動回路に組み込まれて動作状態に
あるとき、前記P型フィールドリミットリング35を横
切る前記配線層38により、前記パワーMOSトランジ
スタ31において、前記P型ウエル34から前記P型フ
ィールドリミットリング35を包むように伸びる空乏層
の形状が変化して前記パワーMOSトランジスタ31の
ドレインD・ソースS間の耐圧が部分的に低下してしま
う。
As shown in FIGS. 5 and 6, the bidirectional polysilicon Zener diode 32 in the chip 30 is provided between the P-type field limit ring 35 and the N + -type region 36. The N + -type epitaxial layer 42 is provided on the N -type epitaxial layer 42 along the circumferential direction with the field insulating film 43 interposed therebetween, as shown in FIG. The region 32a is connected to the gate wiring layer provided on the outer periphery of the central portion 33 via the wiring layer 38 arranged substantially perpendicular to the length direction. That is, the wiring layer 38 crosses or straddles the P-type field limit ring 35 via the field insulating film 43. Therefore, when the chip 30 is incorporated in the driving circuit having the inductive load and is in the operating state, the wiring layer 38 traversing the P-type field limit ring 35 causes the power MOS transistor 31 The shape of the depletion layer extending from the mold well 34 so as to surround the P-type field limit ring 35 changes, and the breakdown voltage between the drain D and the source S of the power MOS transistor 31 partially decreases.

【0008】[0008]

【発明が解決しようとする課題】それ故、本発明の目的
は、双方向ポリシリコンツェナーダイオードをドレイン
・ゲート間に内蔵したパワーMOSトランジスタにおい
て、前記双方向ポリシリコンツェナーダイオードの配線
層がフィールドリミットリングを横切ることのない高耐
圧のパワーMOSトランジスタを提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a power MOS transistor having a built-in bidirectional polysilicon Zener diode between the drain and the gate, wherein the wiring layer of the bidirectional polysilicon Zener diode has a field limit. It is an object of the present invention to provide a high-voltage power MOS transistor that does not cross a ring.

【0009】[0009]

【課題を解決するための手段】本発明においては、双方
向ポリシリコンツェナーダイオードをパワーMOSトラ
ンジスタの配置された半導体基体の中央部に隣接して設
けられたウエル上にフィールド絶縁膜を介して設け、前
記双方向ポリシリコンツェナーダイオードの一端部には
電極パッドを設けると共に、他端部には前記中央部の外
周に設けられたゲート配線層に接続される配線層を有し
ている。
According to the present invention, a bidirectional polysilicon Zener diode is provided via a field insulating film on a well provided adjacent to the center of a semiconductor substrate on which a power MOS transistor is disposed. An electrode pad is provided at one end of the bidirectional polysilicon Zener diode, and the other end has a wiring layer connected to a gate wiring layer provided on the outer periphery of the central portion.

【0010】[0010]

【発明の実施の形態】第1導電型半導体基体の中央部に
配置されたパワーMOSトランジスタと、前記中央部を
順次取り囲むように、前記第1導電型半導体基体に形成
された第2導電型ウエル、第2導電型フィールドリミッ
トリング及び前記パワーMOSトランジスタのドレイン
に接続される高不純物濃度を有する第1導電型領域とを
備え、前記パワーMOSトランジスタのドレイン・ゲー
ト間に接続されて逆方向に直列接続された多数のツェナ
ーダイオード対からなる双方向ポリシリコンツェナーダ
イオードを前記第2導電型ウエルの周方向に沿ってフィ
ールド絶縁膜を介して設け、前記双方向ポリシリコンツ
ェナーダイオードの一端部には電極パッドを設けると共
に、他端部には前記中央部の外周に設けられたゲート配
線層に接続される配線層を有している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A power MOS transistor disposed at a central portion of a first conductive type semiconductor substrate, and a second conductive type well formed on the first conductive type semiconductor substrate so as to sequentially surround the central portion. A second conductivity type field limit ring and a first conductivity type region having a high impurity concentration connected to the drain of the power MOS transistor, and connected between the drain and gate of the power MOS transistor and connected in series in the reverse direction. A bidirectional polysilicon Zener diode comprising a large number of connected Zener diode pairs is provided via a field insulating film along the circumferential direction of the second conductivity type well, and an electrode is provided at one end of the bidirectional polysilicon Zener diode. A pad is provided, and the other end is connected to a gate wiring layer provided on the outer periphery of the central portion. And a line layer.

【0011】[0011]

【実施例】図1は本発明の実施例による縦型Nチャンネ
ルパワーMOSトランジスタのドレイン・ゲート間に接
続されて逆方向に直列接続された多数のツェナーダイオ
ード対からなる双方向ポリシリコンツェナーダイオード
を有するチップ10の平面図の一部を模式的に示す。な
お、この基本的な等価回路及び構造は先に示した図4及
び図5と同様である。
FIG. 1 shows a bidirectional polysilicon Zener diode consisting of a number of Zener diode pairs connected in series in the reverse direction and connected between the drain and gate of a vertical N-channel power MOS transistor according to an embodiment of the present invention. A part of a plan view of a chip 10 having the same is schematically shown. The basic equivalent circuit and structure are the same as those shown in FIGS.

【0012】図1に示すように、前記チップ10の中央
部には前記パワーMOSトランジスタ(図示しない)が
設けられ、また、前記チップ10を構成する半導体基
体、即ち、N型半導体基板11上に形成されたN
エピタキシャル層12中には、前記中央部を順次取り囲
むように、P型ウエル13、P型フィールドリミットリ
ング14及び前記パワーMOSトランジスタのドレイン
Dに接続されるN型領域15とが形成され、後述する
ように、前記双方向ポリシリコンツェナーダイオード1
6は前記P型ウエル13の周方向に沿いフィールド絶縁
膜17を介して設けられている。
As shown in FIG. 1, the power MOS transistor (not shown) is provided at a central portion of the chip 10, and a semiconductor substrate constituting the chip 10, that is, an N + type semiconductor substrate 11 is provided. In the N -type epitaxial layer 12 formed in the above, an N + -type region connected to the P-type well 13, the P-type field limit ring 14 and the drain D of the power MOS transistor so as to sequentially surround the central portion. 15 are formed, and as described later, the bidirectional polysilicon Zener diode 1 is formed.
6 is provided along the circumferential direction of the P-type well 13 with a field insulating film 17 interposed therebetween.

【0013】前記双方向ポリシリコンツェナーダイオー
ド16が位置する前記P型ウエル13は幅広に形成さ
れ、また、前記双方向ポリシリコンツェナーダイオード
16の一端部には前記チップ10のドレインにワイヤー
(図示しない)を介して接続される電極パッド18が設
けられ、他端部には前記中央部の外周に設けられたゲー
ト配線層(図示しない)に接続される配線層19が設け
られている。
The P-type well 13 where the bidirectional polysilicon Zener diode 16 is located is formed wide, and one end of the bidirectional polysilicon Zener diode 16 has a wire (not shown) connected to the drain of the chip 10. ) Is provided, and a wiring layer 19 connected to a gate wiring layer (not shown) provided on the outer periphery of the central portion is provided at the other end.

【0014】図2は図1のA−A断面図を示し、前記チ
ップ10を構成する前記N型半導体基板11に形成さ
れた前記N型エピタキシャル層12上に前記フィール
ド絶縁膜17が設けられ、前記フィールド絶縁膜17上
にはN型領域16a、P型領域16b、N型領域1
6c、P型領域16d及びN型領域16eからなる前
記双方向ポリシリコンツェナーダイオード16が設けら
れている。なお、図2においては便宜のために2個のツ
ェナーダイオード対を示している。前記双方向ポリシリ
コンツェナーダイオード16の両端の前記N型領域1
6a、16eには層間絶縁膜20を介して前記パッド1
8及び前記配線層19がそれぞれ設けられている。ま
た、前記N型半導体基板11の裏面には前記パワーM
OSトランジスタのドレインDとなるドレイン電極21
が形成されている。
FIG. 2 is a sectional view taken along the line AA of FIG. 1. The field insulating film 17 is provided on the N type epitaxial layer 12 formed on the N + type semiconductor substrate 11 constituting the chip 10. On the field insulating film 17, an N + type region 16a, a P type region 16b, and an N + type region 1
6c, a P-type region 16d and an N + -type region 16e. FIG. 2 shows two Zener diode pairs for convenience. The N + type region 1 at both ends of the bidirectional polysilicon Zener diode 16
6a and 16e are connected to the pad 1 via an interlayer insulating film 20.
8 and the wiring layer 19 are provided. The power M is provided on the back surface of the N + type semiconductor substrate 11.
Drain electrode 21 serving as drain D of OS transistor
Are formed.

【0015】図3は図1のB−B断面図を示し、前記双
方向ポリシリコンツェナーダイオード16の前記他端部
である前記N型領域16eが前記配線層19を介して
前記中央部の外周に設けられたゲート配線層に接続され
る状態を示している。
FIG. 3 is a cross-sectional view taken along the line BB of FIG. 1. The N + type region 16 e, which is the other end of the bidirectional polysilicon Zener diode 16, is located at the center of It shows a state where it is connected to a gate wiring layer provided on the outer periphery.

【0016】上記したように本発明の構成によれば、前
記双方向ポリシリコンツェナーダイオード16は前記パ
ワーMOSトランジスタの配置された前記チップ10、
即ち半導体基体の中央部に隣接して設けられた前記P型
ウエル13上にフィールド絶縁膜17を介して設けら
れ、しかも、前記双方向ポリシリコンツェナーダイオー
ド16の一端部の前記N型領域16aには前記電極パ
ッド18が設けられて、前記電極パッド18からのワイ
ヤーにより前記チップ10のドレインに電気的に接続さ
れるので、前記P型フィールドリミットリング14を直
接横切る、或いは跨ぐことがない。さらに、前記双方向
ポリシリコンツェナーダイオード16の配置に伴って、
前記双方向ポリシリコンツェナーダイオード16の他端
部である前記N型領域16eは前記配線層19を介し
て前記中央部の外周に設けられたゲート配線層に接続さ
れ、同様に、前記P型フィールドリミットリング14を
直接横切る、或いは跨ぐことがなく、空乏層に影響を与
えることがない。
As described above, according to the configuration of the present invention, the bidirectional polysilicon Zener diode 16 is connected to the chip 10 on which the power MOS transistor is disposed,
That is, the N + -type region 16a is provided on the P-type well 13 provided adjacent to the center portion of the semiconductor substrate with the field insulating film 17 interposed therebetween and at one end of the bidirectional polysilicon Zener diode 16. The electrode pad 18 is provided, and is electrically connected to the drain of the chip 10 by a wire from the electrode pad 18. Therefore, the electrode pad 18 does not directly cross or straddle the P-type field limit ring 14. Further, with the arrangement of the bidirectional polysilicon Zener diode 16,
The N + type region 16 e, which is the other end of the bidirectional polysilicon Zener diode 16, is connected to a gate wiring layer provided on the outer periphery of the central portion via the wiring layer 19, and similarly, the P + It does not directly cross or straddle the field limit ring 14 and does not affect the depletion layer.

【0017】前記実施例において縦型Nチャンネルパワ
ーMOSトランジスタについて説明したが、同様に、縦
型PチャンネルパワーMOSトランジスタだけでなく横
型のパワーMOSトランジスタにも適用できることは当
業者には明らかである。
Although a vertical N-channel power MOS transistor has been described in the above embodiment, it is apparent to those skilled in the art that the present invention can be similarly applied to a horizontal power MOS transistor as well as a vertical P-channel power MOS transistor.

【0018】[0018]

【発明の効果】本発明によれば、逆方向に直列接続され
た多数のツェナーダイオード対からなる双方向ポリシリ
コンツェナーダイオードをドレイン・ゲート間に内蔵し
たパワーMOSトランジスタにおいて、前記双方向ポリ
シリコンツェナーダイオードはパワーMOSトランジス
タの配置された半導体基体の中央部に隣接して設けられ
たウエル上にフィールド絶縁膜を介して設けられ、前記
双方向ポリシリコンツェナーダイオードの一端部には電
極パッドが設けらると共に、他端部には前記中央部の外
周に形成されたゲート配線層に接続される配線層を有し
ている。即ち、前記電極パッドはワイヤーを介してドレ
インにワイヤーを介して接続されているので、フィール
ドリミットリングを直接横切ることがなく、同様に前記
配線層も前記フィールドリミットリングを横切ることが
ない。それ故、前記パワーMOSトランジスタのドレイ
ンD・ソースS間の部分的な耐圧の低下を防止すること
ができる。
According to the present invention, there is provided a power MOS transistor in which a bidirectional polysilicon Zener diode comprising a large number of Zener diode pairs connected in series in a reverse direction is built in between a drain and a gate. The diode is provided via a field insulating film on a well provided adjacent to the center of the semiconductor substrate on which the power MOS transistor is disposed, and an electrode pad is provided at one end of the bidirectional polysilicon Zener diode. In addition, the other end has a wiring layer connected to a gate wiring layer formed on the outer periphery of the central portion. That is, since the electrode pad is connected to the drain via the wire via the wire, the electrode pad does not directly cross the field limit ring, and similarly, the wiring layer does not cross the field limit ring. Therefore, it is possible to prevent a partial decrease in withstand voltage between the drain D and the source S of the power MOS transistor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例によるパワーMOSトランジス
タのドレイン・ゲート間に接続されて逆方向に直列接続
された多数のツェナーダイオード対からなる双方向ポリ
シリコンツェナーダイオードを有するチップの平面図の
一部を模式的に示す図である。
FIG. 1 is a plan view of a chip having a bidirectional polysilicon Zener diode including a large number of Zener diode pairs connected between a drain and a gate of a power MOS transistor and connected in series in a reverse direction according to an embodiment of the present invention; It is a figure which shows a part typically.

【図2】図1のA−A断面図を示す図である。FIG. 2 is a diagram showing a cross-sectional view taken along line AA of FIG. 1;

【図3】図1のB−B断面図を示す図である。FIG. 3 is a diagram showing a BB cross-sectional view of FIG. 1;

【図4】従来のパワーMOSトランジスタのドレイン・
ゲート間に接続されて逆方向に直列接続された多数のツ
ェナーダイオード対からなる双方向ポリシリコンツェナ
ーダイオードを有するチップの等価回路を示す図であ
る。
FIG. 4 shows the drain of a conventional power MOS transistor;
It is a figure showing the equivalent circuit of a chip which has a bidirectional polysilicon Zener diode consisting of many Zener diode pairs connected between gates and connected in series in the reverse direction.

【図5】図4におけるチップの平面図を模式的に示す図
である。
FIG. 5 is a diagram schematically showing a plan view of a chip in FIG. 4;

【図6】図5のC−C断面図を示す図である。6 is a diagram showing a cross-sectional view taken along the line CC of FIG. 5;

【図7】図5のD−D断面図を示す図である。FIG. 7 is a diagram showing a cross-sectional view taken along line DD of FIG. 5;

【図8】図5のE−E断面図を示す図である。FIG. 8 is a diagram showing a cross-sectional view taken along the line EE of FIG. 5;

【符号の説明】[Explanation of symbols]

10…チップ、11…N型半導体基板、12…N
エピタキシャル層、13…P型ウエル、14…P型フィ
ールドリミットリング、15…N型領域、16…双方
向ポリシリコンツェナーダイオード、16a、16c、
16e…N型領域、16b、16d…P型領域、17
…フィールド絶縁膜、18…電極パッド、19…配線
層、20…層間絶縁膜、21…ドレイン電極
10 ... chip, 11 ... N + type semiconductor substrate, 12 ... N - type epitaxial layer, 13 ... P type well, 14 ... P type field limit ring, 15 ... N + type region, 16 ... bidirectional polysilicon Zener diode, 16a, 16c,
16e ... N + type region, 16b, 16d ... P type region, 17
... field insulating film, 18 ... electrode pad, 19 ... wiring layer, 20 ... interlayer insulating film, 21 ... drain electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型半導体基体の中央部に配置さ
れたパワーMOSトランジスタと、前記中央部を順次取
り囲むように、前記第1導電型半導体基体に形成された
第2導電型ウエル、第2導電型フィールドリミットリン
グ及び前記パワーMOSトランジスタのドレインに接続
される高不純物濃度を有する第1導電型領域とを備え、
前記パワーMOSトランジスタのドレイン・ゲート間に
接続されて逆方向に直列接続された多数のツェナーダイ
オード対からなる双方向ポリシリコンツェナーダイオー
ドを前記第2導電型ウエルの周方向に沿って設け、前記
双方向ポリシリコンツェナーダイオードの一端部には電
極パッドを設けると共に、他端部には前記中央部の外周
に設けられたゲート配線層に接続される配線層を有する
ことを特徴とする双方向ポリシリコンツェナーダイオー
ドをドレイン・ゲート間に内蔵したパワーMOSトラン
ジスタ。
A power MOS transistor disposed at a central portion of the first conductive type semiconductor substrate; a second conductive type well formed on the first conductive type semiconductor substrate so as to sequentially surround the central portion; A first conductivity type region having a high impurity concentration connected to a two conductivity type field limit ring and a drain of the power MOS transistor;
A bidirectional polysilicon Zener diode comprising a large number of Zener diode pairs connected between the drain and the gate of the power MOS transistor and connected in series in the reverse direction is provided along the circumferential direction of the second conductivity type well. Bidirectional polysilicon, characterized in that an electrode pad is provided at one end of a directional polysilicon Zener diode and a wiring layer connected to a gate wiring layer provided on an outer periphery of the center is provided at the other end. Power MOS transistor with a built-in Zener diode between drain and gate.
【請求項2】 前記電極パッドはワイヤーを介して高不
純物濃度を有する前記第1導電型領域に接続されること
を特徴とする請求項1記載の双方向ポリシリコンツェナ
ーダイオードをドレイン・ゲート間に内蔵したパワーM
OSトランジスタ。
2. The bidirectional polysilicon Zener diode according to claim 1, wherein said electrode pad is connected to said first conductivity type region having a high impurity concentration via a wire. Built-in power M
OS transistor.
JP27037199A 1999-09-24 1999-09-24 Power MOS transistor Expired - Fee Related JP4389303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27037199A JP4389303B2 (en) 1999-09-24 1999-09-24 Power MOS transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27037199A JP4389303B2 (en) 1999-09-24 1999-09-24 Power MOS transistor

Publications (2)

Publication Number Publication Date
JP2001094102A true JP2001094102A (en) 2001-04-06
JP4389303B2 JP4389303B2 (en) 2009-12-24

Family

ID=17485340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27037199A Expired - Fee Related JP4389303B2 (en) 1999-09-24 1999-09-24 Power MOS transistor

Country Status (1)

Country Link
JP (1) JP4389303B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005236224A (en) * 2004-02-23 2005-09-02 Sanken Electric Co Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005236224A (en) * 2004-02-23 2005-09-02 Sanken Electric Co Ltd Semiconductor device
JP4547934B2 (en) * 2004-02-23 2010-09-22 サンケン電気株式会社 Insulated gate field effect transistor

Also Published As

Publication number Publication date
JP4389303B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP3897801B2 (en) Horizontal double-diffused field effect transistor and integrated circuit having the same
US6084255A (en) Gate array semiconductor device
JP5147203B2 (en) Insulated gate semiconductor device
JP5214169B2 (en) Semiconductor device
US5633525A (en) Lateral field effect transistor
WO2015040662A1 (en) Semiconductor device
JP4864344B2 (en) Semiconductor device
JP2954854B2 (en) Integrated circuit chip
US20050218457A1 (en) MOSFET for an open-drain circuit and semiconductor integrated circuit device employing it
KR100449874B1 (en) Semiconductor integrated circuit device
JP5764742B2 (en) Junction field effect transistor, method of manufacturing the same, and analog circuit
US20110001196A1 (en) Semiconductor device and method for fabricating the same
JP2001094102A (en) Power mos transistor
JP2001094092A (en) Power mos transistor
JP2000286391A (en) Level shifter
JPH11214511A (en) Semiconductor device and wiring method in semiconductor device
US20060220170A1 (en) High-voltage field effect transistor having isolation structure
JP3719642B2 (en) Semiconductor device
JPH09191054A (en) Cmos transistor
JPH0412627B2 (en)
JP2001085681A (en) Power mos transistor
JP3945354B2 (en) Semiconductor device
JPH0529629A (en) Field effect semiconductor device
JP4626245B2 (en) Power MOSFET
JPH09129887A (en) Lateral power mosfet of soi structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees