JP2001094088A - Thermal semiconductor infrared imaging device - Google Patents

Thermal semiconductor infrared imaging device

Info

Publication number
JP2001094088A
JP2001094088A JP27111799A JP27111799A JP2001094088A JP 2001094088 A JP2001094088 A JP 2001094088A JP 27111799 A JP27111799 A JP 27111799A JP 27111799 A JP27111799 A JP 27111799A JP 2001094088 A JP2001094088 A JP 2001094088A
Authority
JP
Japan
Prior art keywords
infrared imaging
imaging device
insulating layer
heat
semiconductor infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27111799A
Other languages
Japanese (ja)
Inventor
Keitaro Shigenaka
圭太郎 重中
Yoshinori Iida
義典 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27111799A priority Critical patent/JP2001094088A/en
Priority to US09/624,996 priority patent/US6504153B1/en
Publication of JP2001094088A publication Critical patent/JP2001094088A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high sensitivity thermal semiconductor infrared imaging device having excellent mechanical strength. SOLUTION: A cavity 11 is made in the cross-section of a supporting leg for thermally isolating a heat sensitive part 1 from a silicon substrate from the side face thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は冷却装置を必要とし
ない熱型半導体赤外線撮像素子の構造とその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a thermal semiconductor infrared imaging device which does not require a cooling device and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、冷却装置を必要としない熱型赤外
線センサとしてマイクロマシニング技術を用いた酸化バ
ナジウムボロメータ型や、BST(Barium−St
rontium−Titanium)の焦電型のものが
製品化されている。これらの製品は赤外線を吸収して温
度を上昇させる感熱部とこの感熱部をシリコン基板と熱
的に分離するための支持脚によって構成されている。こ
のうち感熱部の温度分布を少なくするためにアルミニウ
ム薄膜で感熱部全体あるいは一部を覆う場合がある。し
かし、支持脚にこのアルミニウム薄膜を積層すると熱伝
導が増加し、センサの感度が低下する。そこで支持脚に
アルミニウム薄膜を積層せず、代わりに酸化膜を積層し
ていた。しかし、この場合でも、酸化膜の厚さが厚くい
ため熱伝導率が大きく、感度向上が望めなかった。従っ
て、感熱部の温度分布を少なくするためのアルミニウム
層を積層した効果が現れなかった。
2. Description of the Related Art In recent years, vanadium oxide bolometer type using micromachining technology and BST (Barium-St) have been used as thermal infrared sensors that do not require a cooling device.
(Rotium-Titanium) has been commercialized. These products are composed of a heat-sensitive part that absorbs infrared rays and raises the temperature, and support legs for thermally separating the heat-sensitive part from the silicon substrate. Of these, in order to reduce the temperature distribution of the heat-sensitive part, the whole or part of the heat-sensitive part may be covered with an aluminum thin film. However, when this aluminum thin film is laminated on the support legs, heat conduction increases, and the sensitivity of the sensor decreases. Therefore, instead of laminating the aluminum thin film on the support legs, an oxide film was laminated instead. However, even in this case, since the thickness of the oxide film was large, the thermal conductivity was large, and improvement in sensitivity could not be expected. Therefore, the effect of laminating the aluminum layer for reducing the temperature distribution in the heat-sensitive portion did not appear.

【0003】また、上記センサの感熱材料は完全にシリ
コンLSI製造ラインに適合するものではなく、シリコ
ンの転送部や読み出し回路を汎用のシリコンLSI製造
ラインで作製後、専用の製造ラインで感熱材料を積層パ
ターンニングしなければならなかった。そこで完全にシ
リコンLSI製造ラインで製造できる熱型赤外線センサ
としてSOI(Silicon on Insulat
or)基板を使用した単結晶シリコン上のpn接合を用
いた物が開発された。このpn接合を用いた熱型赤外線
撮像素子の1例として、PH09−166497とPr
oc. ofSPIE 3563 (1999) p.
556で示されているように、微細加工技術を用いて1
つの感熱部の中にpn接合を複数個直列に接続して形成
することによって信号電圧を大きくして、感熱部自体で
生じる雑音より十分大きくすることが考えられている。
しかし、pn接合間の配線で電圧降下を最小限にするた
めにはアルミニウムを使う必要がある。しかし、先に説
明したようにアルミニウムを使用することによって絶縁
膜の厚さが厚くなり、支持脚の断面積が増加、支持脚の
熱伝導度が増加、センサ感度が低下する問題点があっ
た。
Further, the heat-sensitive material of the above-mentioned sensor is not completely compatible with a silicon LSI production line. Laminated patterning had to be done. Therefore, SOI (Silicon on Insulat) is used as a thermal infrared sensor that can be completely manufactured on a silicon LSI manufacturing line.
or) An object using a pn junction on single crystal silicon using a substrate was developed. As an example of a thermal infrared imaging device using this pn junction, PH09-166497 and Pr
oc. of SPIE 3563 (1999) p.
As shown at 556, 1
It has been considered that the signal voltage is increased by forming a plurality of pn junctions in series in one heat-sensitive portion so as to be sufficiently higher than noise generated in the heat-sensitive portion itself.
However, it is necessary to use aluminum to minimize the voltage drop in the wiring between the pn junctions. However, as described above, the use of aluminum increases the thickness of the insulating film, increases the cross-sectional area of the support legs, increases the thermal conductivity of the support legs, and decreases the sensor sensitivity. .

【0004】一方、感熱部とシリコン基板の間の熱伝導
を減少しようと支持脚の厚さを薄くすると強度が弱くな
り、支持脚が折れたり、支持脚がたわみ感熱部がシリコ
ン基板に接してしまう問題もあった。
On the other hand, if the thickness of the support leg is reduced to reduce the heat conduction between the heat-sensitive portion and the silicon substrate, the strength becomes weak, and the support leg is bent or the support leg is bent and the heat-sensitive portion contacts the silicon substrate. There was also a problem.

【0005】[0005]

【発明が解決しようとする課題】従来は高感度で機械強
度も十分な熱型赤外線撮像装置はなかった。
Conventionally, there has been no thermal infrared imaging apparatus having high sensitivity and sufficient mechanical strength.

【0006】[0006]

【課題を解決するための手段】本発明に係る半導体赤外
線撮像素子は、感熱部をシリコン基板から熱的に分離す
るための支持脚の断面に中空構造が形成されている。
In the semiconductor infrared imaging device according to the present invention, a hollow structure is formed in a section of a support leg for thermally separating a heat-sensitive portion from a silicon substrate.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施例についてに
説明する。
Embodiments of the present invention will be described below.

【0008】図1は本発明の第一の実施例に係る熱型半
導体赤外線撮像素子の感熱部1を示す図である。厚さ1
00nmの絶縁層2上に膜厚400nmのボロメータ層
3と絶縁層4が200nm積層されている。この絶縁層
4の上に感熱部全体の温度分布を少なくするためのアル
ミニウム層5が60nm形成され、その上に再び絶縁層
6が500nm形成されている。支持脚上では厚さ10
0nmの絶縁層2上に膜厚100nmのチタン配線層7
が積層され、その上に厚さ700nmの絶縁層8の側面
に厚さ60nmの溝9が形成されている。絶縁層8の最
狭部の幅は100nmになっている。この支持脚の熱伝
導率は側面からの溝を開ける前と比較して約10%減少
し、感度も10%向上した。機械強度は受光面と垂直方
向で200Gの加速度に耐えられるようになった。
FIG. 1 is a view showing a heat-sensitive portion 1 of a thermal semiconductor infrared imaging device according to a first embodiment of the present invention. Thickness 1
A bolometer layer 3 having a thickness of 400 nm and an insulating layer 4 are stacked on a 200 nm insulating layer 2 to have a thickness of 200 nm. On this insulating layer 4, an aluminum layer 5 for reducing the temperature distribution of the entire heat-sensitive portion is formed to a thickness of 60 nm, and an insulating layer 6 is formed thereon again to a thickness of 500 nm. 10 thickness on the support legs
100 nm thick titanium wiring layer 7 on 0 nm insulating layer 2
Are laminated, and a groove 9 having a thickness of 60 nm is formed on a side surface of the insulating layer 8 having a thickness of 700 nm. The width of the narrowest part of the insulating layer 8 is 100 nm. The thermal conductivity of this support leg was reduced by about 10% as compared to before the groove was opened from the side, and the sensitivity was improved by 10%. The mechanical strength can withstand an acceleration of 200 G in a direction perpendicular to the light receiving surface.

【0009】図3は本発明の他の実施例の感熱部31を
示す図である。厚さ400nmの酸化膜層32上の厚さ
400nmの単結晶シリコン層33にイオン注入等によ
って不純物を拡散pn接合34を複数個形成する。シリ
コン層33を保護する厚さ200nmの絶縁層35を形
成する。この複数個のpn接合はそれぞれ素子分離され
ており、それぞれのpn接合を直列に接合するよう厚さ
400nmの2層のアルミニウム36、37で配線す
る。その際、アルミニウム上の絶縁膜38の膜厚は50
0nmとする。支持脚上では厚さ400nmの絶縁層3
2上に単結晶シリコン層をエッチングして形成された4
00nmの中空39を挟み、膜厚2500nmの絶縁層
40がある。この絶縁層40の側面に厚さ400nmの
溝41と溝42が形成されている。
FIG. 3 is a view showing a heat sensitive portion 31 according to another embodiment of the present invention. A plurality of pn junctions 34 are formed by diffusing impurities into the single-crystal silicon layer 33 having a thickness of 400 nm on the oxide film layer 32 having a thickness of 400 nm by ion implantation or the like. An insulating layer 35 having a thickness of 200 nm for protecting the silicon layer 33 is formed. The plurality of pn junctions are separated from each other, and are interconnected by two layers of aluminum 36 and 37 having a thickness of 400 nm so as to join the respective pn junctions in series. At this time, the thickness of the insulating film 38 on aluminum is 50
It is set to 0 nm. 400 nm thick insulating layer 3 on the support legs
4 formed by etching a single crystal silicon layer on 2
There is an insulating layer 40 having a thickness of 2500 nm sandwiching the hollow 39 of 00 nm. A groove 41 and a groove 42 having a thickness of 400 nm are formed on the side surface of the insulating layer 40.

【0010】絶縁層40の最狭部の厚さは100nmに
なっている。この支持脚の熱伝導率は側面からの溝を開
ける前と比較して約40%減少し、感度も40%向上し
た。機械強度は受光面と垂直方向で300Gの加速度に
耐えられるようになった。
The thickness of the narrowest part of the insulating layer 40 is 100 nm. The thermal conductivity of this support leg was reduced by about 40% and the sensitivity was improved by 40% as compared to before the groove was opened from the side. The mechanical strength can withstand an acceleration of 300 G in a direction perpendicular to the light receiving surface.

【0011】上記2つの実施例の中で溝を形成するのに
一旦積層したアルミニウムのエッチングによって形成し
ているが、これは意識的にアルミニウムのパターンを2
00nmずらして形成するものであるが、このパターン
合わせずれを100nm以下にした場合、感熱部の下の
中空構造を形成するためのエッチング工程でこの絶縁層
の最狭部もエッチングオフされそれぞれ平行な複数個の
薄膜層が形成される。こうなった場合、支持脚の熱伝導
率はさらに減少し感度は増加する。強度に関しては支持
脚が1本で構成されている図2の場合と比較して約10
%の強度向上が見られた。
In the above-mentioned two embodiments, the grooves are formed by etching the aluminum layer which has been laminated once.
When the pattern misalignment is set to 100 nm or less, the narrowest portion of the insulating layer is also etched off in an etching process for forming a hollow structure below the heat-sensitive portion, and the pattern is formed in parallel. A plurality of thin film layers are formed. In this case, the thermal conductivity of the support leg is further reduced and the sensitivity is increased. The strength is about 10 times as compared with the case of FIG.
% Improvement in strength was observed.

【0012】[0012]

【発明の効果】以上述べたように本発明により、従来の
技術では得られなかった高感度で機械強度の十分な熱型
半導体赤外線撮像素子の作製が可能になる。
As described above, according to the present invention, it is possible to manufacture a thermal semiconductor infrared imaging device having high sensitivity and sufficient mechanical strength, which cannot be obtained by the prior art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す図。FIG. 1 is a diagram showing one embodiment of the present invention.

【図2】従来の熱型赤外線撮像素子を示す図。FIG. 2 is a diagram showing a conventional thermal infrared imaging device.

【図3】本発明の他の一実施例を示す図。FIG. 3 is a diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…感熱部 2…絶縁層 3…ボロメータ層 4…絶縁層 5…アルミニウム層 6…絶縁層 7…チタン配線層 8…絶縁層 9…溝 10…アドレス線 11…中空 21…感熱部 22…絶縁層 23…ボロメータ層 24…絶縁層 25…アルミニウム層 26…絶縁層 27…チタン配線層 28…絶縁層 29…アドレス線 30…中空 31…感熱部 32…絶縁層 33…単結晶シリコン層 34…pn接合 35…絶縁層 36…アルミニウム配線層 37…アルミニウム配線層 38…絶縁層 39…中空 40…絶縁層 41…溝 42…溝 43…絶縁層 44…チタン配線 45…アドレス配線 46…中空 DESCRIPTION OF SYMBOLS 1 ... Thermal part 2 ... Insulating layer 3 ... Bolometer layer 4 ... Insulating layer 5 ... Aluminum layer 6 ... Insulating layer 7 ... Titanium wiring layer 8 ... Insulating layer 9 ... Groove 10 ... Address line 11 ... Hollow 21 ... Heat sensitive part 22 ... Insulation Layer 23 Bolometer layer 24 Insulating layer 25 Aluminum layer 26 Insulating layer 27 Titanium wiring layer 28 Insulating layer 29 Address line 30 Hollow 31 Heat sensitive part 32 Insulating layer 33 Single crystal silicon layer 34 pn Bonding 35 ... Insulating layer 36 ... Aluminum wiring layer 37 ... Aluminum wiring layer 38 ... Insulating layer 39 ... Hollow 40 ... Insulating layer 41 ... Groove 42 ... Groove 43 ... Insulating layer 44 ... Titanium wiring 45 ... Address wiring 46 ... Hollow

フロントページの続き Fターム(参考) 2G065 AB02 BA02 CA13 CA27 4M118 AA01 AA08 AB01 BA06 CA15 CA35 CB12 CB13 GA10 5C024 AA06 CA12 FA01 FA09 FA11Continued on the front page F term (reference) 2G065 AB02 BA02 CA13 CA27 4M118 AA01 AA08 AB01 BA06 CA15 CA35 CB12 CB13 GA10 5C024 AA06 CA12 FA01 FA09 FA11

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 温度センサが形成されている感熱部とシ
リコン基板とを熱的に分離するための支持脚の側面から
溝を形成することを特徴とする熱型半導体赤外線撮像素
子。
1. A thermal semiconductor infrared imaging device, wherein a groove is formed from a side surface of a supporting leg for thermally separating a silicon substrate from a heat-sensitive portion on which a temperature sensor is formed.
【請求項2】 上記支持脚側面から形成した溝の間隔を
700nm以下とすることを特徴とする請求項1記載の
熱型半導体赤外線撮像素子。
2. The thermal semiconductor infrared imaging device according to claim 1, wherein the distance between the grooves formed from the side surfaces of the support leg is set to 700 nm or less.
【請求項3】 温度センサが形成されている感熱部とシ
リコン基板とを熱的に分離するための支持脚をそれぞれ
平行な複数個の薄膜層で形成することを特徴とする熱型
半導体赤外線撮像素子。
3. A thermal semiconductor infrared imaging apparatus, wherein a support leg for thermally separating a silicon substrate from a heat-sensitive portion on which a temperature sensor is formed is formed by a plurality of thin film layers parallel to each other. element.
【請求項4】 上記それぞれ平行な複数個の薄膜層の膜
厚を1層あたり700nm以下とすることを特徴とする
請求項1記載の熱型半導体赤外線撮像素子。
4. The thermal semiconductor infrared imaging device according to claim 1, wherein the thickness of each of the plurality of parallel thin film layers is 700 nm or less per layer.
JP27111799A 1999-07-26 1999-09-24 Thermal semiconductor infrared imaging device Pending JP2001094088A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27111799A JP2001094088A (en) 1999-09-24 1999-09-24 Thermal semiconductor infrared imaging device
US09/624,996 US6504153B1 (en) 1999-07-26 2000-07-25 Semiconductor infrared detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27111799A JP2001094088A (en) 1999-09-24 1999-09-24 Thermal semiconductor infrared imaging device

Publications (1)

Publication Number Publication Date
JP2001094088A true JP2001094088A (en) 2001-04-06

Family

ID=17495580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27111799A Pending JP2001094088A (en) 1999-07-26 1999-09-24 Thermal semiconductor infrared imaging device

Country Status (1)

Country Link
JP (1) JP2001094088A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215032A (en) * 2010-03-31 2011-10-27 Toshiba Corp Infrared image pickup device and method of manufacturing the same
JP2012149893A (en) * 2011-01-17 2012-08-09 Mitsubishi Electric Corp Infrared detector and infrared solid-state imaging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215032A (en) * 2010-03-31 2011-10-27 Toshiba Corp Infrared image pickup device and method of manufacturing the same
JP2012149893A (en) * 2011-01-17 2012-08-09 Mitsubishi Electric Corp Infrared detector and infrared solid-state imaging device

Similar Documents

Publication Publication Date Title
CA1296814C (en) Single wafer moated signal processor
TW488081B (en) Infrared sensor and its manufacturing method
JP3605487B2 (en) Method for manufacturing a floating microstructure and a floating microstructure processing assembly
US6803250B1 (en) Image sensor with complementary concave and convex lens layers and method for fabrication thereof
US7989249B2 (en) Method of manufacturing a micro-electrical-mechanical system with thermally isolated active elements
JPH08271344A (en) Monolithic thermal detector having pyroelectric film and manufacture thereof
CA2290541A1 (en) A thermal detector array
JP2001094088A (en) Thermal semiconductor infrared imaging device
JPH11148861A (en) Microbidge structure
EP1209455A2 (en) Infrared detecting device
JP3435997B2 (en) Infrared detector
JPH03124047A (en) Integrated circuit device
JPS62229855A (en) Manufacture of semiconductor device
JP3086958B2 (en) Method for manufacturing semiconductor device
JP3235361B2 (en) Infrared detector
JP3269200B2 (en) Pyroelectric infrared detecting element and method of manufacturing the same
JPH0555534A (en) Production of laminated semiconductor device
JP3269199B2 (en) Pyroelectric infrared detector
JPH07107938B2 (en) Method for manufacturing semiconductor pressure sensor
JP2004004095A (en) Infrared sensor
JP2000356546A (en) Infrared detection element and its manufacture
JP3016512B2 (en) Method for manufacturing dielectric-separated semiconductor substrate
KR970063578A (en) Manufacturing method of wiring
JP2775845B2 (en) Method for manufacturing semiconductor device
JPH04116871A (en) Infrared radiation detecting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107