JP2001094068A - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof

Info

Publication number
JP2001094068A
JP2001094068A JP26500399A JP26500399A JP2001094068A JP 2001094068 A JP2001094068 A JP 2001094068A JP 26500399 A JP26500399 A JP 26500399A JP 26500399 A JP26500399 A JP 26500399A JP 2001094068 A JP2001094068 A JP 2001094068A
Authority
JP
Japan
Prior art keywords
electrode
film
dielectric film
semiconductor substrate
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26500399A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ota
裕之 太田
Yukihiro Kumagai
幸博 熊谷
Yuzuru Oji
譲 大路
Isamu Asano
勇 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26500399A priority Critical patent/JP2001094068A/en
Priority to TW089117398A priority patent/TW460919B/en
Priority to PCT/JP2000/005784 priority patent/WO2001022486A1/en
Publication of JP2001094068A publication Critical patent/JP2001094068A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/318DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor the storage electrode having multiple segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor device which prevents the structure of a capacitor from becoming complicated, even when the semiconudctor device is integrated highly by a method where the permittivity of a BST thin film is increased. SOLUTION: A thin film, which has a compressive film stress is formed in the upper part of a BST thin film, tensile stress is loaded inside the BST thin film, and thereby, the permittivity of the BST thin film is enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置に係り、
特に集積度と信頼性を高めた半導体メモリーの構造及び
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device,
In particular, the present invention relates to a structure and a manufacturing method of a semiconductor memory with improved integration and reliability.

【0002】[0002]

【従来の技術】従来、DRAM等の半導体装置では高集
積化に伴う蓄積電荷容量の低下を防止するために、メモ
リセル構造の複雑化や、誘電体薄膜の膜厚の減少等を行
っている。しかしながら、さらなる高集積化により、こ
れらの方法だけでは十分な蓄積電荷量を得ることが難し
くなった。
2. Description of the Related Art Conventionally, in a semiconductor device such as a DRAM, a memory cell structure has been complicated and a film thickness of a dielectric thin film has been reduced in order to prevent a decrease in accumulated charge capacity due to high integration. . However, with the further increase in integration, it has become difficult to obtain a sufficient amount of accumulated charges by these methods alone.

【0003】そこで誘電率の大きな誘電体材料を用いる
ための努力がなされてきている。これら誘電率の大きな
誘電体材料の一つとしてBSTすなわち(Ba,Sr)TiO3が挙げ
られている。このBSTの比誘電率はバルク値で1500
程度であるが、半導体装置に応用するために薄膜化する
と150程度に低下することが知られており、この比誘
電率をいかに向上させるかということが適用にあたって
の課題となっている。
Therefore, efforts have been made to use a dielectric material having a large dielectric constant. As one of these dielectric materials having a large dielectric constant, BST, that is, (Ba, Sr) TiO 3 is mentioned. The relative permittivity of this BST is 1500 in bulk value.
It is known that when the thickness is reduced for application to a semiconductor device, it is reduced to about 150, and how to increase the relative permittivity is a problem in application.

【0004】[0004]

【発明が解決しようとする課題】誘電体膜の比誘電率を
上昇させることが可能となればより集積度の高いデバイ
スを信頼性高く製造することができる。すなわち、比誘
電率を高くすることにより単位面積当たりの蓄積電荷量
が大きくなるので、複雑なキャパシタ構造を用いること
なく集積度の高いデバイスが実現できる。その結果、コ
ストの低減が可能となるとともに、信頼性の向上を図る
ことができる。
If the relative dielectric constant of a dielectric film can be increased, a device with higher integration can be manufactured with high reliability. That is, by increasing the relative dielectric constant, the amount of accumulated charge per unit area increases, so that a highly integrated device can be realized without using a complicated capacitor structure. As a result, the cost can be reduced and the reliability can be improved.

【0005】すなわち、本発明の課題は、BST膜の比誘
電率を上昇させ、半導体デバイスのキャパシタの複雑な
立体構造を回避することで、歩留りや製品信頼性の向上
を図ることにある。
That is, an object of the present invention is to improve the yield and product reliability by increasing the relative dielectric constant of a BST film and avoiding a complicated three-dimensional structure of a capacitor of a semiconductor device.

【0006】[0006]

【課題を解決するための手段】本発明者は、応力を積極
的にBST膜に作用させることによって比誘電率を向上さ
せることを目的として、薄膜プロセスで製作したBSTキ
ャパシタを用いて各種の実験を行った。その結果、BST
薄膜に接する上部電極の残留応力を圧縮とし、BST膜の
応力を膜表面と平行な方向に引張りとすることにより、
本課題が解決できることが明らかとなった。すなわち、
BST膜の上層の上部電極を室温で圧縮の応力となるよう
に形成することにより、従来のBST薄膜の比誘電率の
2.5倍以上の誘電率を得ることができた。
Means for Solving the Problems The present inventor has conducted various experiments using a BST capacitor manufactured by a thin film process with the aim of improving the relative dielectric constant by positively applying a stress to the BST film. Was done. As a result, BST
By compressing the residual stress of the upper electrode in contact with the thin film and pulling the stress of the BST film in a direction parallel to the film surface,
It became clear that this problem could be solved. That is,
By forming the upper electrode in the upper layer of the BST film so as to have a compressive stress at room temperature, it was possible to obtain a dielectric constant 2.5 times or more the relative dielectric constant of the conventional BST thin film.

【0007】またこの他、上部電極に用いる薄膜が単膜
状態で引張りの残留応力を持つ場合でも、その上層に大
きな圧縮の残留応力を持つ膜を成膜することにより、同
様に比誘電率を上昇させることができることを見出し
た。
In addition, even when a thin film used for the upper electrode has a tensile residual stress in a single film state, a film having a large compressive residual stress is formed thereon to similarly increase the relative dielectric constant. I found that it can be raised.

【0008】本願発明の課題は、第1の電極とペロブス
カイト構造を有する誘電体膜と第2の電極とで構成され
たキャパシタを備えた半導体装置において、下記の構成
を備えることにより解決される。
[0008] The object of the present invention is solved by providing a semiconductor device having a capacitor comprising a first electrode, a dielectric film having a perovskite structure, and a second electrode, having the following configuration.

【0009】(A):第2の電極の格子面間隔が第2の
電極の無応力状態の格子間隔よりも小さいこと。例え
ば、第2の電極を構成する材料がルテニウムの場合、第
2の電極の格子面間隔はa軸で2.706Åよりも小さ
く、c軸で4.282Åよりも小さければ良い。
(A): The lattice spacing of the second electrode is smaller than the lattice spacing of the second electrode in the unstressed state. For example, when the material forming the second electrode is ruthenium, the lattice spacing of the second electrode may be smaller than 2.706 ° on the a-axis and smaller than 4.282 ° on the c-axis.

【0010】(B):誘電体膜の格子面間隔が前記誘電
体膜の無応力状態の格子間隔よりも大きいこと。例え
ば、誘電体膜を構成する材料が(Ba,Sr)TiO3の場合、前
記誘電体膜の格子面間隔は3.95Åよりも大きいけれ
ば良い。
(B): The lattice spacing of the dielectric film is larger than the lattice spacing of the dielectric film in a non-stress state. For example, when the material constituting the dielectric film is (Ba, Sr) TiO3, the lattice spacing of the dielectric film may be larger than 3.95 °.

【0011】これにより誘電体膜に誘電体膜表面と平行
方向に引張りの応力が働くために誘電体膜の誘電率を上
昇させることができる。
As a result, a tensile stress acts on the dielectric film in a direction parallel to the surface of the dielectric film, so that the dielectric constant of the dielectric film can be increased.

【0012】本願発明の課題は、下部電極とペロブスカ
イト構造を有する誘電体膜と上部電極とで構成されたキ
ャパシタを備えた半導体装置において、下記の構成を備
えることにより解決される。
The object of the present invention is attained by providing the following structure in a semiconductor device having a capacitor composed of a lower electrode, a dielectric film having a perovskite structure, and an upper electrode.

【0013】(C):室温において上部電極が誘電体膜
の表面に沿った方向に圧縮の残留応力を有すること。さ
らには、室温は20℃であり、上部電極が誘電体膜の表
面と平行な方向に圧縮の残留応力を有すること。
(C): The upper electrode has a compressive residual stress in the direction along the surface of the dielectric film at room temperature. Further, the room temperature is 20 ° C., and the upper electrode has a compressive residual stress in a direction parallel to the surface of the dielectric film.

【0014】(D):室温において誘電体膜が誘電体膜
の表面に沿った方向に圧縮の残留応力を有すること。さ
らには、室温は20℃であり、誘電体膜が前記誘電体膜
の表面と平行な方向に引張りの残留ひずみを有するこ
と。
(D): The dielectric film has a compressive residual stress in a direction along the surface of the dielectric film at room temperature. Further, the room temperature is 20 ° C., and the dielectric film has a tensile residual strain in a direction parallel to the surface of the dielectric film.

【0015】これにより誘電体膜に誘電体膜表面と平行
方向に引張りの応力が働くために誘電体膜の誘電率を上
昇させることができる。
Thus, a tensile stress acts on the dielectric film in a direction parallel to the surface of the dielectric film, so that the dielectric constant of the dielectric film can be increased.

【0016】本願発明の課題は、第1の電極とペロブス
カイト構造を有する誘電体膜と第2の電極とで構成され
たキャパシタを備えた半導体装置において、下記の構成
を備えることにより解決される。
The object of the present invention is attained by providing a semiconductor device having a capacitor comprising a first electrode, a dielectric film having a perovskite structure, and a second electrode, having the following configuration.

【0017】(E):第2の電極に接するように形成さ
れた絶縁膜を備え、この絶縁膜は室温において圧縮の残
留応力を有すること。
(E): An insulating film is formed so as to be in contact with the second electrode, and the insulating film has a compressive residual stress at room temperature.

【0018】これにより誘電体膜に誘電体膜表面と平行
方向に引張りの応力が働かせることができるので、誘電
体膜の誘電率を上昇させることができる。また、絶縁膜
中が圧縮の残留応力を有するため層間膜中にき裂が入る
ことを防ぐ働きもある。
Thus, a tensile stress can be applied to the dielectric film in a direction parallel to the surface of the dielectric film, so that the dielectric constant of the dielectric film can be increased. In addition, since the insulating film has a compressive residual stress, it also has a function of preventing a crack from entering the interlayer film.

【0019】(F):第2の電極を除去することにより
前記半導体基板が前記一主面側に凸となるように変形す
ること。
(F): deforming the semiconductor substrate so as to be convex toward the one main surface by removing the second electrode.

【0020】本願発明の課題は、下部電極とペロブスカ
イト構造を有する誘電体膜と上部電極とで構成されたキ
ャパシタを備えた半導体装置の製造方法において、下記
の構成を備えることにより解決される。
The object of the present invention is attained by providing the following structure in a method of manufacturing a semiconductor device having a capacitor comprising a lower electrode, a dielectric film having a perovskite structure, and an upper electrode.

【0021】(G):ペロブスカイト構造を有する誘電
体を形成する工程と、前記誘電体の表面に沿うように上
部電極を形成する工程と、を有し前記上部電極を形成す
る工程では前記上部電極が室温近傍で圧縮応力を持つよ
うに形成すること。
(G): a step of forming a dielectric having a perovskite structure; and a step of forming an upper electrode along the surface of the dielectric. In the step of forming the upper electrode, the upper electrode is formed. Should be formed to have compressive stress near room temperature.

【0022】(H):ペロブスカイト構造を有する誘電
体を形成する工程と、前記誘電体の表面に沿うように上
部電極を形成する工程と、前記上部電極の上部に層間絶
縁膜を形成する工程と、を有し前記層間絶縁膜を形成す
る工程では前記層間絶縁膜が室温近傍で圧縮応力を持つ
ように形成すること。
(H): forming a dielectric having a perovskite structure, forming an upper electrode along the surface of the dielectric, and forming an interlayer insulating film on the upper electrode. In the step of forming the interlayer insulating film, the interlayer insulating film is formed so as to have a compressive stress near room temperature.

【0023】なお、本出願人は、発明した結果に基づ
き、先行技術調査を行ったが、本願発明を開示したもの
および本願発明を示唆するものは一切見当たらなかっ
た。
The present applicant has conducted a prior art search based on the results of the invention, but has found nothing that discloses the present invention or suggests the present invention.

【0024】BSTキャパシタに応力を加えて比誘電率を
上昇させるという観点においては、下記の2つの先行技
術が抽出されたが、いづれも文献も本願発明を示唆する
ものでは無い。
From the viewpoint of increasing the relative permittivity by applying stress to the BST capacitor, the following two prior arts have been extracted, but none of the documents suggests the present invention.

【0025】(1)特開平10-270662号公報:
これはデバイス構造に起因してBST膜形成時に下部電極
が変形して誘電率が低下するのを、電極の成膜条件を変
えることによって軽減しようとするものであり、誘電率
を上昇させるという目的、電極の応力を圧縮応力にする
こと、BST膜に膜表面と平行な方向の応力を負荷するこ
と等に関しては示唆する記載もない。
(1) JP-A-10-270662:
This is intended to reduce the dielectric constant drop due to the deformation of the lower electrode during the formation of the BST film due to the device structure by changing the electrode deposition conditions. There is no suggestion about making the stress of the electrode a compressive stress or applying a stress to the BST film in a direction parallel to the film surface.

【0026】(2)特開平10-144884号公報:
これは、下部電極の取り扱いに言及したものであり、室
温で成膜されたルテニウム膜上でBST膜を結晶化させる
ことによってBST膜を膜厚方向に伸ばそうというもので
あるが、上部電極の取り扱いや電極の応力を圧縮応力と
することについては示唆する記載もない。
(2) JP-A-10-144883:
This refers to the handling of the lower electrode, and attempts to extend the BST film in the film thickness direction by crystallizing the BST film on a ruthenium film formed at room temperature. There is no description suggesting handling or making the stress of the electrode a compressive stress.

【0027】[0027]

【発明の実施の形態】以下、図面を用いて本発明におけ
る実施例について説明する。なお、本実施例中では誘電
体材料にBSTを用いたが、ペロブスカイト構造を持つ強
誘電体膜および高誘電体膜では同様な効果があることを
確認しているので、これらのBST以外の誘電体膜材料に
本発明を適用しても良い。
Embodiments of the present invention will be described below with reference to the drawings. In this example, BST was used as a dielectric material.However, it has been confirmed that a ferroelectric film having a perovskite structure and a high dielectric film have the same effect. The present invention may be applied to body film materials.

【0028】図1に本発明の第1の実施例である半導体
デバイス1の断面構造を示す。図1に示した本発明の第
一の実施例では、シリコン基板2上に素子分離膜13、
ゲート酸化膜7およびゲート電極3が形成され、トラン
ジスタとなる。その上方にキャパシタ下部電極8、誘電
体膜9、キャパシタ上部電極10が形成され、電荷を蓄
積する。さらにその周辺や上方には、層間絶縁膜4、
6、11が形成され、上部や周囲に配線5a、5bが形成
される。
FIG. 1 shows a sectional structure of a semiconductor device 1 according to a first embodiment of the present invention. In the first embodiment of the present invention shown in FIG. 1, an element isolation film 13 is formed on a silicon substrate 2.
The gate oxide film 7 and the gate electrode 3 are formed to form a transistor. Above them, a capacitor lower electrode 8, a dielectric film 9, and a capacitor upper electrode 10 are formed to accumulate charges. Further around and above the interlayer insulating film 4,
6 and 11 are formed, and wirings 5a and 5b are formed on and around the top.

【0029】図1の半導体デバイス1は、以下に示す製
造方法によって形成される。まず、各トランジスタを電
気的に絶縁分離するため、局所的にシリコン基板の熱酸
化を行い、素子分離膜13を形成する。さらにトランジ
スタを形成する領域にゲート酸化膜7を熱酸化法により
形成し、その上にゲート電極3をCVD法およびこれに
続くフォトリソグラフィ技術を用いて形成する。シリコ
ン基板2の内部にpn接合を形成するためにイオン注入
が行われ、イオン注入層が形成される。ゲート電極3の
上にゲート電極3を覆うように層間絶縁膜4がCVD法
を用いて形成される。この際、層間絶縁膜4の表面をで
きるだけ平坦化するために、アニールによって層間絶縁
膜4をリフローさせたり、層間絶縁膜を厚く堆積させて
エッチバックすることが行われる。さらに層間絶縁膜4
の上面にスパッタ法およびこれに続くフォトリソグラフ
ィ技術を用いて下層配線5aが形成される。その上方に
シリコン窒化膜やシリコン酸化膜を主成分とする層間絶
縁膜6が形成される。また、その上方にキャパシタの下
部電極8が形成され、その側壁に沿うように誘電体膜9
が形成される。さらにその上面に上部電極10が形成さ
れる。このとき、上部電極10は室温近傍で圧縮応力を
持つように成膜する。また、その周辺および上方にはフ
ォトリソグラフィおよびエッチング技術を用いて、層間
絶縁膜11や配線5b、および配線間を電気的に接続す
るスルーホールが形成される。本実施例においては上部
電極膜を圧縮応力とすることにより、BST膜に膜表面に
平行な方向に引張り応力を負荷することが可能となるの
で、誘電体膜9の比誘電率を向上させることができる。
このため、下部電極8、誘電体膜9、上電極10から構
成されるキャパシタ部の高さを低くでき、上部電極膜の
カバレッジ不足による不良を防ぐことができる。またキ
ャパシタ部の構造を複雑形状とする必要がなく、半導体
デバイス1の信頼性や歩留まりを向上させることができ
る。また、本実施例は、図2に示すような平坦型キャパ
シタ構造、図7に示すような王冠型キャパシタ構造、も
しくは図8に示すようなフィン構造にも適用可能であ
る。
The semiconductor device 1 of FIG. 1 is formed by the following manufacturing method. First, in order to electrically insulate and isolate each transistor, the silicon substrate is locally thermally oxidized to form an element isolation film 13. Further, a gate oxide film 7 is formed in a region where a transistor is to be formed by a thermal oxidation method, and a gate electrode 3 is formed thereon by a CVD method and a subsequent photolithography technique. Ion implantation is performed to form a pn junction inside the silicon substrate 2, and an ion implantation layer is formed. An interlayer insulating film 4 is formed on the gate electrode 3 so as to cover the gate electrode 3 by using a CVD method. At this time, in order to make the surface of the interlayer insulating film 4 as flat as possible, reflow of the interlayer insulating film 4 by annealing or etching back by depositing a thick interlayer insulating film is performed. Furthermore, interlayer insulating film 4
A lower wiring 5a is formed on the upper surface of the substrate by using a sputtering method and a subsequent photolithography technique. Above this, an interlayer insulating film 6 mainly composed of a silicon nitride film or a silicon oxide film is formed. Further, a lower electrode 8 of the capacitor is formed thereabove, and a dielectric film 9 is formed along the side wall thereof.
Is formed. Further, an upper electrode 10 is formed on the upper surface. At this time, the upper electrode 10 is formed to have a compressive stress near room temperature. The interlayer insulating film 11, the wirings 5b, and through holes for electrically connecting the wirings are formed in the periphery and above using photolithography and etching techniques. In the present embodiment, by making the upper electrode film have a compressive stress, it is possible to apply a tensile stress to the BST film in a direction parallel to the film surface, so that the relative dielectric constant of the dielectric film 9 can be improved. Can be.
For this reason, the height of the capacitor portion composed of the lower electrode 8, the dielectric film 9, and the upper electrode 10 can be reduced, and defects due to insufficient coverage of the upper electrode film can be prevented. In addition, it is not necessary to make the structure of the capacitor section complicated, and the reliability and yield of the semiconductor device 1 can be improved. Further, the present embodiment is also applicable to a flat capacitor structure as shown in FIG. 2, a crown capacitor structure as shown in FIG. 7, or a fin structure as shown in FIG.

【0030】図3には、上部電極の応力が変化した場合
の蓄積電荷量と印加電圧との関係を示した。上部電極1
0の応力が0MPaの場合(図中○)に比べ、-300MPa
(圧縮応力)の場合(図中●)ではグラフの傾きが大き
く、上部電極10を圧縮の応力を持つ薄膜で構成した場
合に蓄積電荷量が大幅に増加していることが明らかであ
る。これを整理して図4には上部電極の応力が変化した
場合の誘電体の比誘電率と応力との関係を示したが、上
部電極の応力が0MPaの場合に較べ、-300MPaの場合
には2.5倍以上の誘電率の増加を達成している。
FIG. 3 shows the relationship between the accumulated charge amount and the applied voltage when the stress of the upper electrode changes. Upper electrode 1
-300MPa compared to the case where 0 stress is 0MPa (○ in the figure)
In the case of (compression stress) (● in the figure), the slope of the graph is large, and it is clear that the amount of accumulated charge is significantly increased when the upper electrode 10 is formed of a thin film having compressive stress. In summarizing this, FIG. 4 shows the relationship between the relative permittivity of the dielectric and the stress when the stress of the upper electrode is changed. When the stress of the upper electrode is -300 MPa, as compared with the case of 0 MPa, Achieves an increase in dielectric constant of 2.5 times or more.

【0031】一方、上部電極10を引張りの応力を持つ
膜で形成した場合には誘電体膜9中の誘電率の低下が見
られており、本実施例の有効性は明らかである。なお、
このときの膜の応力値はX線残留応力測定法によって、
基板と平行な方向の応力成分を求めることにより得た。
また、本実施例において上部電極が繊維配向を有する場
合でも同様な効果は当然有することを確認したが、残留
応力の測定時に応力成分の分離は困難となるため、X線
回折時のピーク位置のシフトから残留応力の符号と大き
さを求めることができる。たとえば、上部電極10をル
テニウム(Ru)で形成した場合では、Ru膜の(0001)
繊維配向状態では、無応力状態での格子面間隔dはa軸
で2.706Å、c軸で4.282Åであるが、これより
小さくなる場合に本実施例に述べている効果が発現す
る。他の配向を取る場合でも同様に用いる膜の格子面間
隔が無応力状態の格子面間隔より小さくなるようにすれ
ばよい。また、このとき誘電体膜9の1種であるBST膜
のX線回折より求めた格子面間隔は無応力状態で3.9
5Åであるが、これより大きい値となる場合には本実施
例に述べている効果が発現する。
On the other hand, when the upper electrode 10 is formed of a film having a tensile stress, a decrease in the dielectric constant of the dielectric film 9 is observed, and the effectiveness of this embodiment is apparent. In addition,
The stress value of the film at this time was determined by the X-ray residual stress measurement method.
It was obtained by determining the stress component in the direction parallel to the substrate.
Further, in this example, it was confirmed that the same effect was naturally obtained even when the upper electrode had a fiber orientation, but it was difficult to separate the stress components when measuring the residual stress. The sign and magnitude of the residual stress can be obtained from the shift. For example, when the upper electrode 10 is formed of ruthenium (Ru), the Ru film (0001)
In the fiber orientation state, the lattice spacing d in the no-stress state is 2.706 ° on the a-axis and 4.282 ° on the c-axis, but if it is smaller than this, the effect described in this embodiment is exhibited. Even in the case of taking other orientations, the lattice spacing of the film used in the same manner may be smaller than the lattice spacing in the non-stress state. At this time, the lattice spacing determined by X-ray diffraction of the BST film, which is one kind of the dielectric film 9, is 3.9 in a stress-free state.
Although it is 5 °, if the value is larger than this, the effect described in the present embodiment is exhibited.

【0032】また、このときの膜応力はチップの反りか
らも概算できる。上部電極10をエッチングによって除
去する処理を行い、その前後でチップの反りの変化の方
向から応力の符号と大きさが概算できる。たとえば、上
部電極10をエッチングした後のチップの反りが、エッ
チング前と較べて、デバイス形成面を上として上に凸に
なるように変化した場合には、上部電極は引張りの応力
を持っていたことになる。またその変化量から応力の大
きさを概算できる。
The film stress at this time can be roughly estimated from the warpage of the chip. The sign of the stress and the magnitude of the stress can be roughly estimated from the direction of change in the warpage of the chip before and after the process of removing the upper electrode 10 by etching. For example, when the warpage of the chip after etching the upper electrode 10 changes so as to be convex upward with the device forming surface facing upward as compared to before the etching, the upper electrode has tensile stress. Will be. Further, the magnitude of the stress can be roughly estimated from the change amount.

【0033】また、本実施例では上部電極10にはRuを
用いたが、Pt、Pd、Ir等の白金系金属、あるいはこれら
の混合物や酸化物、およびシリサイド、TiN、WN、TaNの
いずれかならば同様な効果が期待できる。また、誘電体
膜9はBSTやSrTiO3などのペロブスカイト系高誘電体材
料で構成される。
In this embodiment, Ru is used for the upper electrode 10. However, platinum-based metals such as Pt, Pd, and Ir, or mixtures and oxides thereof, and any one of silicide, TiN, WN, and TaN are used. Then a similar effect can be expected. The dielectric film 9 is made of a perovskite-based high dielectric material such as BST or SrTiO 3 .

【0034】なお、発明者らは図5に示したように平坦
キャパシタを用いて別途、効果の確認を行い、上部電極
10の膜応力を圧縮応力にした場合に誘電率が上昇する
ことを確認している。この場合、キャパシタ上部が解放
端のため、誘電体膜9の膜厚方向には応力は負荷されて
おらず、誘電体膜9に負荷されている応力は膜表面に平
行な方向の応力のみとなっている。すなわち、上部電極
10を室温において圧縮の残留応力を有する薄膜で構成
し、誘電体膜9中に、その表面に平行な方向に引張り応
力を負荷することによって比誘電率を上昇させることが
できることが明確である。このようにBSTキャパシタを
用いた本発明における半導体装置では、室温(20℃近
傍)で圧縮の応力を持つ薄膜を上部電極として用いるこ
とによってBST膜の比誘電率を向上させることができ
る。その結果、従来のようにキャパシタを複雑形状に加
工する必要がなくなり、半導体装置の信頼性や歩留まり
を向上させることができる。
The present inventors separately confirmed the effect using a flat capacitor as shown in FIG. 5, and confirmed that the dielectric constant increased when the film stress of the upper electrode 10 was changed to a compressive stress. are doing. In this case, since the upper part of the capacitor is the open end, no stress is applied in the thickness direction of the dielectric film 9 and the stress applied to the dielectric film 9 is only the stress in the direction parallel to the film surface. Has become. In other words, the relative permittivity can be increased by forming the upper electrode 10 from a thin film having a compressive residual stress at room temperature and applying a tensile stress to the dielectric film 9 in a direction parallel to the surface thereof. It is clear. As described above, in the semiconductor device according to the present invention using the BST capacitor, the relative dielectric constant of the BST film can be improved by using a thin film having a compressive stress at room temperature (around 20 ° C.) as the upper electrode. As a result, it is not necessary to process the capacitor into a complicated shape as in the related art, and the reliability and yield of the semiconductor device can be improved.

【0035】また、参考のために従来の材料であるTa2O
5膜を誘電体材料として用いた場合についても示す。図
6に上部電極の室温での応力を0MPaとした場合と-30
0MPaとした場合における、応力と比誘電率との関係を
示す。上部電極の応力にかかわらず印加電圧と蓄積電荷
量の関係が一定であることがわかる。すなわち、従来の
誘電体材料では上部電極の応力によって比誘電率が変化
することはなく、応力によって誘電体膜の比誘電率を向
上させようとする本発明は、BST以降のペロブスカイト
系高誘電体薄膜を用いたキャパシタに適用できる新しい
現象を利用したものであると言える。
For reference, the conventional material Ta 2 O
The case where five films are used as a dielectric material is also shown. FIG. 6 shows the case where the stress of the upper electrode at room temperature is 0 MPa, and -30.
The relationship between the stress and the relative dielectric constant when the pressure is 0 MPa is shown. It can be seen that the relationship between the applied voltage and the accumulated charge is constant regardless of the stress of the upper electrode. That is, in the conventional dielectric material, the relative dielectric constant does not change due to the stress of the upper electrode, and the present invention, which attempts to improve the relative dielectric constant of the dielectric film by the stress, uses a perovskite-based high dielectric It can be said that this utilizes a new phenomenon applicable to a capacitor using a thin film.

【0036】また、本発明の第2の実施例を図9に示
す。本実施例は、キャパシタ部の上方に圧縮応力を持つ
応力負荷膜12を配した場合である。応力負荷12が圧
縮応力を持つため、誘電体膜9内では膜表面に平行な方
向に引張りの力が働き、このため誘電率を上昇させるこ
とが可能となる。その結果、従来のようにキャパシタを
複雑形状に加工する必要がなくなり、半導体装置の信頼
性や歩留まりを向上させることができる。応力負荷膜1
2は層間絶縁膜と同様な絶縁効果、バリア効果を有して
いても良い。この場合には、配線等から応力を受けた場
合においても膜中にき裂が入りにくいという利点が付加
される。
FIG. 9 shows a second embodiment of the present invention. In this embodiment, a stress load film 12 having a compressive stress is disposed above the capacitor portion. Since the stress load 12 has a compressive stress, a tensile force acts on the dielectric film 9 in a direction parallel to the film surface, so that the dielectric constant can be increased. As a result, it is not necessary to process the capacitor into a complicated shape as in the related art, and the reliability and yield of the semiconductor device can be improved. Stress loading film 1
2 may have the same insulating effect and barrier effect as the interlayer insulating film. In this case, there is an added advantage that a crack is not easily formed in the film even when stress is applied from a wiring or the like.

【0037】この場合には、応力負荷膜12と誘電体膜
9が平行している面積が大きいほど、その効果は大きく
なる。また、上部電極10と応力負荷膜12との距離が
近いほど、その効果は大きくなる。あるいは上部電極1
0と応力負荷膜12が図10のように接触していても良
い。この場合には応力負荷膜12は酸化膜、窒化膜、あ
るいは半導体膜が望ましい。
In this case, the effect becomes larger as the area where the stress load film 12 and the dielectric film 9 are parallel to each other is larger. In addition, the effect increases as the distance between the upper electrode 10 and the stress load film 12 decreases. Or upper electrode 1
0 and the stress load film 12 may be in contact with each other as shown in FIG. In this case, the stress load film 12 is preferably an oxide film, a nitride film, or a semiconductor film.

【0038】また、キャパシタの上層や周囲に存在する
層間絶縁膜11を室温で圧縮の応力となるようにしても
よい。この場合はキャパシタの誘電体膜9の誘電率を上
昇させるという利点だけでなく、また、層間絶縁膜中の
応力を圧縮とすることにより、該層間膜中にき裂が入る
ことを防ぐという効果もある。
Further, the interlayer insulating film 11 existing above or around the capacitor may be subjected to a compressive stress at room temperature. In this case, not only the advantage of increasing the dielectric constant of the dielectric film 9 of the capacitor but also the effect of preventing cracks in the interlayer film by compressing the stress in the interlayer insulating film. There is also.

【0039】このときの膜応力は、X線を用いた測定も
可能であるが、第1の実施例にも示したようにチップの
反りからも概算できる。応力負荷膜12や層間絶縁膜1
1をエッチングによって除去する処理を行い、その前後
でチップの反りの変化の方向から応力の符号と大きさが
概算できる。特に、結晶構造を持たない酸化膜や窒化膜
の応力を概算するにはこの方法が最適である。
At this time, the film stress can be measured using X-rays, but can be roughly estimated from the warpage of the chip as shown in the first embodiment. Stress load film 12 and interlayer insulating film 1
The sign and magnitude of the stress can be roughly estimated from the direction of change in the warpage of the chip before and after the process of removing 1 by etching. In particular, this method is optimal for estimating the stress of an oxide film or a nitride film having no crystal structure.

【0040】[0040]

【発明の効果】本願によって開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、下
記の通りである。
The effects obtained by typical aspects of the invention disclosed in the present application will be briefly described as follows.

【0041】本発明によれば、キャパシタの誘電体膜の
比誘電率を増加させることができるので、キャパシタを
複雑形状にする必要がなく、高集積化した場合において
も半導体デバイスの信頼性や製造歩留まりを向上させる
ことが可能である。
According to the present invention, the relative dielectric constant of the dielectric film of the capacitor can be increased, so that the capacitor does not need to have a complicated shape, and the reliability and manufacturing of the semiconductor device can be improved even when the integration is high. It is possible to improve the yield.

【0042】また、本発明によれば、キャパシタの誘電
体膜の比誘電率を増加させることができるので、キャパ
シタの高さを高くする必要がなく、成膜時のカバレッジ
不足による埋め込み不良が防止できるという利点があ
る。
Further, according to the present invention, the relative permittivity of the dielectric film of the capacitor can be increased, so that the height of the capacitor does not need to be increased, and poor filling due to insufficient coverage at the time of film formation can be prevented. There is an advantage that you can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係る半導体装置の断面
模式図。
FIG. 1 is a schematic cross-sectional view of a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例に係る半導体装置の断面
模式図。
FIG. 2 is a schematic cross-sectional view of the semiconductor device according to the first embodiment of the present invention.

【図3】誘電体材料における上部電極の応力を変化させ
た場合の本願発明に係る誘電体膜の蓄積電極量と印加電
圧との関係を示す図。
FIG. 3 is a diagram showing the relationship between the amount of storage electrode and the applied voltage of a dielectric film according to the present invention when the stress of an upper electrode in a dielectric material is changed.

【図4】上部電極の応力を変化させた場合の本願発明に
係る誘電体膜の比誘電率と応力との関係を示す図。
FIG. 4 is a diagram showing the relationship between the relative dielectric constant and the stress of the dielectric film according to the present invention when the stress of the upper electrode is changed.

【図5】本発明の第1の実施例に係る上部電極の上に膜
を形成していない状態の半導体装置の断面模式図。
FIG. 5 is a schematic cross-sectional view of the semiconductor device in a state where no film is formed on the upper electrode according to the first embodiment of the present invention.

【図6】 上部電極の応力を変化させた場合の従来の誘
電体膜の比誘電率と応力との関係を示す図。
FIG. 6 is a diagram showing the relationship between the relative dielectric constant of a conventional dielectric film and the stress when the stress of the upper electrode is changed.

【図7】本発明の第1の実施例に係る半導体装置の断面
模式図。
FIG. 7 is a schematic cross-sectional view of the semiconductor device according to the first embodiment of the present invention.

【図8】本発明の第1の実施例に係る半導体装置の断面
模式図。
FIG. 8 is a schematic sectional view of the semiconductor device according to the first embodiment of the present invention.

【図9】本発明の第1の実施例に係る半導体装置の断面
模式図。
FIG. 9 is a schematic cross-sectional view of the semiconductor device according to the first embodiment of the present invention.

【図10】本発明の第1の実施例に係る半導体装置の断
面模式図。
FIG. 10 is a schematic cross-sectional view of the semiconductor device according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…半導体装置、2…シリコン基板、3…ゲート電極、
4…層間絶縁膜、5a、5b…下層配線、6…層間絶縁
膜、7…ゲート酸化膜、8…下部電極、9…誘電体膜、
10…上部電極、 11…層間絶縁膜、12…応力負荷
膜、13…素子分離膜。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor device, 2 ... Silicon substrate, 3 ... Gate electrode,
4 interlayer insulating film, 5a, 5b lower wiring, 6 interlayer insulating film, 7 gate oxide film, 8 lower electrode, 9 dielectric film,
Reference numeral 10 denotes an upper electrode, 11 denotes an interlayer insulating film, 12 denotes a stress load film, and 13 denotes an element isolation film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大路 譲 東京都青梅市新町六丁目16番地の3 株式 会社日立製作所デバイス開発センタ内 (72)発明者 浅野 勇 東京都青梅市新町六丁目16番地の3 株式 会社日立製作所デバイス開発センタ内 Fターム(参考) 5F038 AC05 AC15 EZ20 5F083 AD14 AD23 AD24 AD56 JA13 JA14 JA38 MA06 MA17  ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Joe Yoji 6-16-16 Shinmachi, Ome-shi, Tokyo Inside the Device Development Center, Hitachi, Ltd. (72) Inventor Isamu 6-16-16 Shinmachi, Ome-shi, Tokyo 3 F-term in Hitachi, Ltd. Device Development Center (reference) 5F038 AC05 AC15 EZ20 5F083 AD14 AD23 AD24 AD56 JA13 JA14 JA38 MA06 MA17

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】半導体基板と、前記半導体基板と電気的に
接続された第1の電極と、前記第1の電極にペロブスカ
イト構造を有する誘電体膜を介して配設された第2の電
極と、を備え前記第1の電極と前記誘電体膜と前記第2
の電極とでキャパシタが構成されており、前記第2の電
極の格子面間隔が前記第2の電極の無応力状態の格子間
隔よりも小さい半導体装置。
A semiconductor substrate, a first electrode electrically connected to the semiconductor substrate, and a second electrode provided on the first electrode via a dielectric film having a perovskite structure. The first electrode, the dielectric film, and the second
A semiconductor device, wherein a capacitor is formed by the electrodes and the lattice spacing of the second electrode is smaller than the lattice spacing of the second electrode in an unstressed state.
【請求項2】前記第2の電極を構成する材料がルテニウ
ムであり、前記第2の電極の格子面間隔がa軸で2.70
6Åよりも小さく、c軸で4.282Åよりも小さい請求
項1記載の半導体装置。
2. A material forming the second electrode is ruthenium, and the lattice spacing of the second electrode is 2.70 on the a-axis.
2. The semiconductor device according to claim 1, wherein the angle is smaller than 6 ° and smaller than 4.282 ° on the c-axis.
【請求項3】半導体基板と、前記半導体基板と電気的に
接続された第1の電極と、前記第1の電極にペロブスカ
イト構造を有する誘電体膜を介して配設された第2の電
極と、を備え前記第1の電極と前記誘電体膜と前記第2
の電極とでキャパシタが構成されており、前記誘電体膜
の格子面間隔が前記誘電体膜の無応力状態の格子間隔よ
りも大きい半導体装置。
3. A semiconductor substrate, a first electrode electrically connected to the semiconductor substrate, and a second electrode provided on the first electrode via a dielectric film having a perovskite structure. The first electrode, the dielectric film, and the second
A semiconductor device in which a capacitor is formed by the electrodes and the lattice spacing of the dielectric film is larger than the lattice spacing of the dielectric film in an unstressed state.
【請求項4】前記誘電体膜を構成する材料が(Ba,Sr)TiO
3であり、前記誘電体膜の格子面間隔が3.95Åよりも
大きい請求項3記載の半導体装置。
4. The material constituting said dielectric film is (Ba, Sr) TiO.
Is 3, the lattice spacing of the dielectric film semiconductor device according to claim 3, wherein even greater than 3.95A.
【請求項5】半導体基板と、前記半導体基板と電気的に
接続された下部電極と、前記下部電極にペロブスカイト
構造を有する誘電体膜を介して配設された上部電極と、
を備え前記下部電極と前記誘電体膜と前記上部電極とで
キャパシタが構成されており、室温において前記上部電
極が前記誘電体膜の表面に沿った方向に圧縮の残留応力
を有する半導体装置。
5. A semiconductor substrate, a lower electrode electrically connected to the semiconductor substrate, and an upper electrode provided on the lower electrode via a dielectric film having a perovskite structure.
A semiconductor device comprising: a capacitor formed of the lower electrode, the dielectric film, and the upper electrode, wherein the upper electrode has a compressive residual stress in a direction along a surface of the dielectric film at room temperature.
【請求項6】前記室温は20℃であり、前記上部電極が
前記誘電体膜の表面と平行な方向に圧縮の残留応力を有
する請求項5記載の半導体装置。
6. The semiconductor device according to claim 5, wherein the room temperature is 20 ° C., and the upper electrode has a compressive residual stress in a direction parallel to a surface of the dielectric film.
【請求項7】半導体基板と、前記半導体基板と電気的に
接続された下部電極と、前記下部電極にペロブスカイト
構造を有する誘電体膜を介して配設された上部電極と、
を備え前記下部電極と前記誘電体膜と前記上部電極とで
キャパシタが構成されており、室温において前記誘電体
膜が前記誘電体膜の表面に沿った方向に圧縮の残留応力
を有する半導体装置。
7. A semiconductor substrate, a lower electrode electrically connected to the semiconductor substrate, and an upper electrode provided on the lower electrode via a dielectric film having a perovskite structure.
A semiconductor device comprising: a capacitor formed by the lower electrode, the dielectric film, and the upper electrode, wherein the dielectric film has a compressive residual stress in a direction along a surface of the dielectric film at room temperature.
【請求項8】前記室温は20℃であり、前記誘電体膜が
前記誘電体膜の表面と平行な方向に引張りの残留ひずみ
を有する請求項7記載の半導体装置。
8. The semiconductor device according to claim 7, wherein said room temperature is 20 ° C., and said dielectric film has a tensile residual strain in a direction parallel to a surface of said dielectric film.
【請求項9】半導体基板と、前記半導体基板と電気的に
接続された第1の電極と、前記第1の電極にペロブスカ
イト構造を有する誘電体膜を介して配設された第2の電
極と、前記第2の電極に接するように形成された絶縁膜
と、を備え前記絶縁膜は室温において圧縮の残留応力を
有する半導体装置。
9. A semiconductor substrate, a first electrode electrically connected to the semiconductor substrate, and a second electrode provided on the first electrode via a dielectric film having a perovskite structure. And an insulating film formed in contact with the second electrode, wherein the insulating film has a compressive residual stress at room temperature.
【請求項10】半導体基板と、前記半導体基板と電気的
に接続された第1の電極と、前記第1の電極にペロブス
カイト構造を有する誘電体膜を介して配設された第2の
電極と、を備えた半導体装置であって、前記第2の電極
を除去することにより前記半導体基板が前記一主面側に
凸となるように変形する半導体装置。
10. A semiconductor substrate, a first electrode electrically connected to the semiconductor substrate, and a second electrode provided on the first electrode via a dielectric film having a perovskite structure. Wherein the semiconductor substrate is deformed so as to be convex toward the one main surface by removing the second electrode.
【請求項11】一主面に素子分離膜とゲート絶縁膜とゲ
ート電極とが形成された半導体基板を供給する工程と、
前記半導体基板の一主面側に層間絶縁膜を形成する工程
と、前記層間絶縁膜の前記半導体基板とは反対側に下部
電極を形成する工程と、前記下部電極の表面に沿うよう
にペロブスカイト構造を有する誘電体を形成する工程
と、前記誘電体の表面に沿うように上部電極を形成する
工程と、を有し前記上部電極を形成する工程では前記上
部電極が室温近傍で圧縮応力を持つように形成する半導
体装置の製造方法。
11. A step of supplying a semiconductor substrate having an element isolation film, a gate insulating film, and a gate electrode formed on one main surface;
Forming an interlayer insulating film on one main surface side of the semiconductor substrate, forming a lower electrode on the opposite side of the interlayer insulating film from the semiconductor substrate, and forming a perovskite structure along a surface of the lower electrode. Forming a dielectric having: and forming an upper electrode along the surface of the dielectric, wherein the upper electrode has a compressive stress near room temperature in the step of forming the upper electrode. Of manufacturing a semiconductor device formed in a semiconductor device.
【請求項12】一主面に素子分離膜とゲート絶縁膜とゲ
ート電極とが形成された半導体基板を供給する工程と、
前記半導体基板の一主面側に層間絶縁膜を形成する工程
と、前記層間絶縁膜の上方に下部電極を形成する工程
と、前記下部電極の表面に沿うようにペロブスカイト構
造を有する誘電体を形成する工程と、前記誘電体の表面
に沿うように上部電極を形成する工程と、前記上部電極
の上部に層間絶縁膜を形成する工程と、を有し前記層間
絶縁膜を形成する工程では前記層間絶縁膜が室温近傍で
圧縮応力を持つように形成する半導体装置の製造方法。
12. A step of supplying a semiconductor substrate having an element isolation film, a gate insulating film, and a gate electrode formed on one main surface;
Forming an interlayer insulating film on one main surface side of the semiconductor substrate, forming a lower electrode above the interlayer insulating film, and forming a dielectric having a perovskite structure along the surface of the lower electrode Forming an upper electrode along the surface of the dielectric; and forming an interlayer insulating film on the upper electrode. A method for manufacturing a semiconductor device, wherein an insulating film is formed to have a compressive stress near room temperature.
JP26500399A 1999-09-20 1999-09-20 Semiconductor device and manufacturing method thereof Withdrawn JP2001094068A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP26500399A JP2001094068A (en) 1999-09-20 1999-09-20 Semiconductor device and manufacturing method thereof
TW089117398A TW460919B (en) 1999-09-20 2000-08-28 Semiconductor device and manufacturing method thereof
PCT/JP2000/005784 WO2001022486A1 (en) 1999-09-20 2000-08-28 Semiconductor device and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26500399A JP2001094068A (en) 1999-09-20 1999-09-20 Semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2001094068A true JP2001094068A (en) 2001-04-06

Family

ID=17411228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26500399A Withdrawn JP2001094068A (en) 1999-09-20 1999-09-20 Semiconductor device and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP2001094068A (en)
TW (1) TW460919B (en)
WO (1) WO2001022486A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015225454B4 (en) 2015-08-07 2024-02-29 Hyundai Motor Company Polyolefin resin composition having excellent expandability and properties for direct metallization, and injection molded article manufactured by foam injection molding thereof.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191133A (en) * 1994-11-10 1996-07-23 Sony Corp Capacitor structure of semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015225454B4 (en) 2015-08-07 2024-02-29 Hyundai Motor Company Polyolefin resin composition having excellent expandability and properties for direct metallization, and injection molded article manufactured by foam injection molding thereof.

Also Published As

Publication number Publication date
TW460919B (en) 2001-10-21
WO2001022486A1 (en) 2001-03-29

Similar Documents

Publication Publication Date Title
US6831323B2 (en) Semiconductor device and method for fabricating the same
JP4405710B2 (en) A ferroelectric memory device using a ferroelectric film as a planarizing film and a method for manufacturing the same.
US5656852A (en) High-dielectric-constant material electrodes comprising sidewall spacers
US6686620B2 (en) FRAM and method of fabricating the same
US20090250787A1 (en) Semiconductor storage device and manufacturing method of the same
US7888231B2 (en) Method for fabricating a three-dimensional capacitor
JPH10303395A (en) Capacitor manufacturing method
US20060124983A1 (en) Semiconductor device and method for fabricating the same
JP2001284360A (en) Semiconductor device
US11723213B2 (en) Method and structures pertaining to improved ferroelectric random-access memory (FeRAM)
US7517703B2 (en) Method for forming ferroelectric memory device
JP2000349257A (en) Thin-film capacitor and manufacture thereof
JPH1197636A (en) Ferroelectric memory and its manufacturing method
US6417101B2 (en) Method for manufacturing semiconductor memory device incorporating therein copacitor
JP2001094068A (en) Semiconductor device and manufacturing method thereof
JP2001144270A (en) Semiconductor device
US20070284642A1 (en) Dielectric memory and manufacturing method thereof
US20230337440A1 (en) METHOD AND STRUCTURES PERTAINING TO IMPROVED FERROELECTRIC RANDOM-ACCESS MEMORY (FeRAM)
US7816150B2 (en) Fabrication process of semiconductor device
JP3400218B2 (en) Dielectric capacitor
US6437968B1 (en) Capacitive element
JPH10321810A (en) Ferroelectric memory
KR19990018185A (en) Capacitor and Method of Manufacturing the Same
JP2001077326A (en) Semiconductor device and its manufacturing method
JP2003224205A (en) Semiconductor device and its fabricating method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050706