JP2001093707A - Pressure-sensitive conductive composition and pressure- sensitive conducting sensor - Google Patents

Pressure-sensitive conductive composition and pressure- sensitive conducting sensor

Info

Publication number
JP2001093707A
JP2001093707A JP26774299A JP26774299A JP2001093707A JP 2001093707 A JP2001093707 A JP 2001093707A JP 26774299 A JP26774299 A JP 26774299A JP 26774299 A JP26774299 A JP 26774299A JP 2001093707 A JP2001093707 A JP 2001093707A
Authority
JP
Japan
Prior art keywords
pressure
sensitive
sensitive conductive
conductive composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26774299A
Other languages
Japanese (ja)
Inventor
Masao Yasuda
正男 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
Original Assignee
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd filed Critical Polymatech Co Ltd
Priority to JP26774299A priority Critical patent/JP2001093707A/en
Publication of JP2001093707A publication Critical patent/JP2001093707A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a pressure-sensitive conductive composition, where increase of resistance caused by increase of temperature can be compensated and temperature dependence on pressure-sensing characteristic is reduced. SOLUTION: This pressure-sensitive conductive component is composed of three components where organic polymer as matrix, conductive particles, and electric resistance powder which has NTC characteristic and electric resistivity of 100 Ωcm to 500 MΩ cm which is measured by applying a pressure of 5 kgf/cm2 at 25 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧力を加えること
により電気抵抗値が変化する特性を持つ感圧導電性組成
物および感圧導電センサーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure-sensitive conductive composition and a pressure-sensitive conductive sensor having a property of changing an electric resistance value by applying a pressure.

【0002】[0002]

【従来の技術】圧力を加えることにより電気抵抗値が変
化する特性を持つ感圧導電性組成物は広く知られてい
る。例えば、特公昭56−187号公報には有機可とう
性材料から成る基材と角を落とした人造黒鉛粒子から構
成される感圧導電性弾性体組成物が記載されている。さ
らに、特開昭59−98164号公報にはシリコーンゴ
ム組成物100重量部に対して白金化合物を用いて表面
処理した導電性金属粒子を100〜2000重量部配合
した感圧導電性シリコーンゴム組成物が開示されてい
る。
2. Description of the Related Art Pressure-sensitive conductive compositions having the property of changing the electric resistance value by applying pressure are widely known. For example, Japanese Patent Publication No. 56-187 discloses a pressure-sensitive conductive elastic composition composed of a base material made of an organic flexible material and artificial graphite particles whose corners are dropped. JP-A-59-98164 discloses a pressure-sensitive conductive silicone rubber composition containing 100 to 2000 parts by weight of conductive metal particles surface-treated with a platinum compound per 100 parts by weight of a silicone rubber composition. Is disclosed.

【0003】また、マトリックスとしての有機高分子、
導電性粒子、電気抵抗粉体の少なくとも3成分からなる
感圧導電性組成物については、例えば、特開平2−18
6604号公報には有機高分子材料と導電性材料及びそ
の導電性材料の1/100以下の電気伝導度を有する半
導体材料及び絶縁性材料を含有してなる感圧抵抗変化型
導電性組成物が公知である。
[0003] Further, an organic polymer as a matrix,
A pressure-sensitive conductive composition comprising at least three components of conductive particles and electric resistance powder is described in, for example, JP-A No. 2-18.
No. 6604 discloses a pressure-sensitive resistance-change-type conductive composition containing an organic polymer material, a conductive material, a semiconductor material having an electrical conductivity of 1/100 or less of the conductive material, and an insulating material. It is known.

【0004】さらに、特公平7−87123号公報には
塩化ビニル樹脂、酢酸ビニル樹脂、塩化ビニル、酢酸ビ
ニル供重合体樹脂並びにこれらの変性体樹脂から選択さ
れる1種以上の樹脂から成るバインダ100重量部に対
し鱗片状のグラファイトを30〜180重量部と前記グ
ラファイトの1/100以下の電気伝導度を有する半導
体材料及び絶縁材料から選ばれる1種以上の材料を50
〜340重量部と有機溶媒とを含有してなるスイッチ素
子として用いる感圧抵抗変化型導電性と膜形成性組成物
がある。
Further, Japanese Patent Publication No. 7-87123 discloses a binder 100 made of at least one resin selected from vinyl chloride resin, vinyl acetate resin, vinyl chloride, vinyl acetate copolymer resin, and modified resins thereof. 30 to 180 parts by weight of flaky graphite with respect to parts by weight, and 50 or more of one or more materials selected from a semiconductor material and an insulating material having an electrical conductivity of 1/100 or less of the graphite.
There is a pressure-sensitive resistance-change-type conductive and film-forming composition used as a switch element containing about 340 parts by weight and an organic solvent.

【0005】また、本出願人による特願平10−640
11号には、液状ゴム100重量部に対し平均粒子径が
2μm〜50μmのカーボン粒子を50〜200重量部
と、4.9×10Pa(5kg/cm)で加圧した
圧粉体の比電気抵抗が10Ω・cm〜200MΩ・cm
で、かつ平均粒子径が0.05μm〜5μmである高抵
抗粉体を0.1〜5重量部含む感圧抵抗変化型導電性組
成物の記載がある。 高抵抗粉体を配合することによっ
て無圧時と最大荷重印加時の抵抗値比率を10以上
(600Ω〜>100MΩ)にする例が開示されてい
る。
Also, Japanese Patent Application No. Hei 10-640 filed by the present applicant.
No. 11 discloses a green compact obtained by pressing 50 to 200 parts by weight of carbon particles having an average particle diameter of 2 to 50 μm with respect to 100 parts by weight of liquid rubber at 4.9 × 10 5 Pa (5 kg / cm 2 ). Has a specific electrical resistance of 10Ω · cm to 200MΩ · cm
And 0.1 to 5 parts by weight of a high-resistance powder having an average particle diameter of 0.05 μm to 5 μm. Examples to the resistance value ratio under no pressure time and the maximum load applied 10 5 or more by incorporating a high-resistance powder (600Ω~> 100MΩ) is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかし従来の感圧導電
性組成物を用いた感圧導電センサーは感圧特性の温度依
存性が大きく、例えば20℃から60℃において抵抗値は5
桁ほど変化したため、取扱いが困難であった。この従来
の感圧導電センサーは、温度が低下すると抵抗値も下が
り無荷重から最大荷重にわたる抵抗値の変化範囲が小さ
くなり、逆に温度が高くなると抵抗値も上がり無荷重か
ら最大荷重にわたる抵抗値の変化範囲が大きくなる。こ
れは、導電体の分散媒であるマトリックスポリマーの熱
による膨張収縮が原因である。すなわち、温度が高くな
るとマトリックスポリマーが膨張し導電体同士の間隔が
大きくなり電気抵抗値は高くなり、温度が低くなると逆
の現象が起こり電気抵抗値は低くなるからである。
However, a conventional pressure-sensitive conductive sensor using a pressure-sensitive conductive composition has a large temperature-dependent pressure-sensitive characteristic. For example, a resistance value of 5 to 20 ° C. to 60 ° C.
The handling was difficult due to the change in the order of magnitude. In this conventional pressure-sensitive conductive sensor, when the temperature decreases, the resistance value decreases and the change range of the resistance value from no load to the maximum load decreases, and conversely, as the temperature increases, the resistance value increases and the resistance value increases from no load to the maximum load. Becomes larger. This is due to expansion and contraction of the matrix polymer, which is a dispersion medium of the conductor, due to heat. That is, when the temperature increases, the matrix polymer expands, the interval between the conductors increases, and the electric resistance increases. On the other hand, when the temperature decreases, the opposite phenomenon occurs and the electric resistance decreases.

【0007】[0007]

【課題を解決するための手段】本発明は感圧導電性組成
物にNTC特性(Negative Temperature Coefficient:
温度が高くなると電気抵抗値が小さくなる)を有する電
気抵抗粉体を配合することによって、温度の上昇による
抵抗値の上昇を補償し、感圧特性の温度依存性を小さく
しようとするものである。
The present invention provides a pressure-sensitive conductive composition having NTC characteristics (Negative Temperature Coefficient:
By blending an electric resistance powder having an electric resistance value that decreases as the temperature increases, the increase in resistance value due to an increase in temperature is compensated for, and the temperature dependence of pressure-sensitive characteristics is reduced. .

【0008】[0008]

【発明の実施の形態】すなわち本発明は、マトリックス
としての有機高分子、導電性粒子、および電気抵抗粉体
の少なくとも3成分からなる感圧導電性組成物におい
て、電気抵抗粉体が下記の3条件を満たすことを特徴と
する感圧導電性組成物である。 (1)配合量が有機高分子100重量部に対し0.1〜
10重量部であること。 (2)25℃において5kgf/cmの圧力をかけて
測定した比電気抵抗が、100Ω・cm〜500MΩ・c
mであること。 (3)NTC特性を有すること。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a pressure-sensitive conductive composition comprising at least three components of an organic polymer as a matrix, conductive particles, and an electric resistance powder. It is a pressure-sensitive conductive composition characterized by satisfying the conditions. (1) The compounding amount is 0.1 to 100 parts by weight of the organic polymer.
10 parts by weight. (2) The specific electric resistance measured under a pressure of 5 kgf / cm 2 at 25 ° C. is 100 Ω · cm to 500 MΩ · c.
m. (3) Having NTC characteristics.

【0009】さらに、有機高分子が付加型液状シリコー
ンゴムであることを特徴とする感圧導電性組成物であ
る。さらに、マトリックスとしての有機高分子、導電性
粒子、および電気抵抗粉体の少なくとも3成分からな
り、電気抵抗粉体が上記の3条件を満たすことを特徴と
する感圧導電性組成物を、電極上に設けたことを特徴と
する感圧導電センサーである。
Further, there is provided a pressure-sensitive conductive composition wherein the organic polymer is an addition type liquid silicone rubber. Further, a pressure-sensitive conductive composition comprising at least three components of an organic polymer as a matrix, conductive particles, and electric resistance powder, wherein the electric resistance powder satisfies the above three conditions, A pressure-sensitive conductive sensor provided above.

【0010】本発明の感圧導電性組成物に用いる電気抵
抗粉体は、温度により抵抗値が変化する(負の温度係
数)というNTC特性を有する粉体である。さらに、マ
トリックスである有機高分子100重量部に対し0.1
重量部〜10重量部配合することが好ましい。0.1重
量部未満では、配合量が少ないためNTC特性の効果が
発現せず、また10重量部より多いと圧力を加えても抵
抗値が下がらず、また感圧特性も滑らかにならないので
好ましくない。
The electric resistance powder used in the pressure-sensitive conductive composition of the present invention is a powder having an NTC characteristic that a resistance value changes with temperature (negative temperature coefficient). Further, 0.1 parts by weight of the organic polymer as the matrix is 0.1 part by weight.
It is preferable to mix 10 parts by weight to 10 parts by weight. When the amount is less than 0.1 part by weight, the effect of NTC characteristics is not exhibited due to a small amount of compounding. Absent.

【0011】さらに、25℃において5kgf/cm
の圧力をかけて測定した比電気抵抗が100Ω・cm〜
500MΩ・cmであるのが好ましい。100Ω・cm未
満では抵抗値変化比率を変える効果が十分でなく、また
500MΩ・cmより大きいと感圧特性が滑らかでなく
なるため好ましくない。さらに好ましい配合量や比電気
抵抗値の範囲は電気抵抗粉体の粒径にもよるが、例え
ば、0.01μm〜2μmの粒径の場合、配合量は0.2
重量部〜3重量部が好ましく、比電気抵抗値は100k
Ω・cm〜100MΩ・cmが好ましい。
Further, at 25 ° C., 5 kgf / cm 2
The specific electrical resistance measured under pressure of 100Ω · cm ~
It is preferably 500 MΩ · cm. If it is less than 100 Ω · cm, the effect of changing the resistance value change ratio is not sufficient, and if it is more than 500 MΩ · cm, the pressure-sensitive characteristics are not smooth, which is not preferable. A more preferable range of the compounding amount and the specific electric resistance value depends on the particle size of the electric resistance powder. For example, when the particle size is 0.01 μm to 2 μm, the compounding amount is 0.2.
Parts by weight to 3 parts by weight are preferable, and the specific electric resistance value is 100 k.
Ω · cm to 100 MΩ · cm is preferable.

【0012】本発明の有機高分子は、SBR、NBR、
BR、CR、ウレタンゴム、シリコーンゴム、塩化ビニ
ル樹脂、酢酸ビニル樹脂等のゴム状弾性体や軟質合成樹
脂を用いることができるが、耐寒性と耐熱性を有し、塗
布可能な感圧導電性組成物とすることが可能であるこ
と、架橋硬化時間が短いこと等から付加型液状シリコー
ンゴムが最も好ましい。本発明で用いる導電性粒子は、
グラファイト粒子、金属粒子等を用いることができる
が、硬度が高く摩耗に強いこと、化学的安定性に優れて
いること等を考えるとガラス状カーボン粒子が最も好ま
しい。
The organic polymer of the present invention comprises SBR, NBR,
Rubber-like elastic materials such as BR, CR, urethane rubber, silicone rubber, vinyl chloride resin, vinyl acetate resin and soft synthetic resins can be used, but they have cold resistance and heat resistance, and are applicable to pressure-sensitive conductive materials. The addition type liquid silicone rubber is most preferable because it can be used as a composition and the crosslinking curing time is short. The conductive particles used in the present invention,
Graphite particles, metal particles, and the like can be used, but glassy carbon particles are most preferable in consideration of high hardness, high wear resistance, excellent chemical stability, and the like.

【0013】以下、実施例を示し本発明をさらに詳細に
説明する。実施例及び比較例で作成した感圧導電センサ
ーには、加圧減圧時の感圧特性のヒステリシスと温度依
存性を共により小さくするために、高剛性のフイルムを
巻き付けてあるが、本発明はこの形態に限定されること
はない。
Now, the present invention will be described in further detail with reference to Examples. The pressure-sensitive conductive sensors prepared in Examples and Comparative Examples are wound with a high-rigidity film in order to reduce both the hysteresis and the temperature dependency of the pressure-sensitive characteristics at the time of pressurization and decompression. It is not limited to this mode.

【実施例1】NTC粉体を次の方法で作製した。純度9
9.9%の炭酸マンガン4gと純度99.95%の酸化コ
バルト1gをアルミナるつぼに入れ、空気雰囲気の電気
炉中400℃で2時間加熱保持した後1200℃に昇温
し2時間加熱保持する。徐冷後、炉から取り出した焼成
粉体をすりつぶした後、メタノール中で沈降分級し、粒
子径が2μm以下の粒子からなるNTC粉体を得た。
Example 1 An NTC powder was produced by the following method. Purity 9
4 g of 9.9% manganese carbonate and 1 g of cobalt oxide having a purity of 99.95% are placed in an alumina crucible, heated and maintained at 400 ° C. for 2 hours in an electric furnace in an air atmosphere, and then heated to 1200 ° C. and maintained for 2 hours. . After slow cooling, the calcined powder taken out of the furnace was ground and then sedimented and classified in methanol to obtain an NTC powder having a particle diameter of 2 μm or less.

【0014】作製したNTC粉体に5kgf/cm
圧力をかけて電気抵抗値とその温度依存性を測定したと
ころ、電気抵抗値は26℃において30MΩ・cmで、
温度依存性は、B定数値(NTCサーミスタの特性表示
で常用される)で5700であった(26℃:30M
Ω、40℃:14MΩ、60℃:4.3MΩ)。
When a pressure of 5 kgf / cm 2 was applied to the produced NTC powder and the electric resistance and its temperature dependency were measured, the electric resistance was 30 MΩ · cm at 26 ° C.
The temperature dependency was 5700 as a B constant value (commonly used in NTC thermistor characteristic display) (26 ° C .: 30 M).
Ω, 40 ° C .: 14 MΩ, 60 ° C .: 4.3 MΩ).

【0015】感圧導電性組成物を次の方法で調製した。
マトリックスとして付加型液状シリコーンゴム(東レダ
ウコーニングシリコーン(株)製 SE1740)を1
00重量部(20g)と、導電性粒子として平均粒子径
10μmの球状ガラス状カーボン粒子(日本カーボン
(株)製 ICB1020)を120重量部(24
g)、さらに上記NTC粉体を1重量部(0.2g)を
攪拌混合した。この混合物を約0.05mmに間隙を調
整した直径35mmのインキロール(独Otto He
rmann社製 Model−35)に2回通し、感圧
導電性組成物を得た。
A pressure-sensitive conductive composition was prepared in the following manner.
Addition type liquid silicone rubber (SE1740, manufactured by Toray Dow Corning Silicone Co., Ltd.) was used as the matrix.
00 parts by weight (20 g) and 120 parts by weight of spherical glassy carbon particles (ICB1020 manufactured by Nippon Carbon Co., Ltd.) having an average particle diameter of 10 μm as conductive particles.
g), and 1 part by weight (0.2 g) of the NTC powder was mixed with stirring. This mixture was rolled with an ink roll (Otto He He, Germany) having a diameter of 35 mm and a gap adjusted to about 0.05 mm.
The product was passed twice through Model-35 (manufactured by Rmann) to obtain a pressure-sensitive conductive composition.

【0016】感圧導電センサーを以下の方法で作製し
た。図1に本実施例の感圧導電センサーの構成を示す。
上記の感圧導電性組成物を、中央に5.5mm×5.5m
mの大きさのくし状電極1の領域を設けた幅9mm長さ
50mmの基板2に塗布し、100℃で1時間加熱し硬
化させた後、曲率半径5mmの円弧状断面を有するかま
ぼこ形状に削り、さらにくし状電極領域に厚さ12.5
μm幅15mmのポリイミドフィルム(宇部興産(株)
製 ユーピレックス12.5S)4を巻き付け、感圧導電
センサーを得た。図2に、作製した感圧導電センサーを
直径5.5mmの底が平らな硬質プラスチックの押し子
で加圧し、9℃、26℃、45℃、61℃での感圧特性
を測定して得られた感圧特性を示した。
A pressure-sensitive conductive sensor was manufactured by the following method. FIG. 1 shows the configuration of the pressure-sensitive conductive sensor of the present embodiment.
The above pressure-sensitive conductive composition is placed at the center at 5.5 mm × 5.5 m.
After coating on a substrate 2 having a width of 9 mm and a length of 50 mm provided with an area of a comb-shaped electrode 1 having a size of m, and curing by heating at 100 ° C. for 1 hour, a semi-cylindrical shape having an arc-shaped cross section with a radius of curvature of 5 mm is formed. Shaving, and a thickness of 12.5 in the comb electrode area
15 mm wide polyimide film (Ube Industries, Ltd.)
(UPILEX 12.5S) 4 was wound to obtain a pressure-sensitive conductive sensor. In FIG. 2, the pressure-sensitive conductive sensor produced is pressed with a 5.5 mm-diameter hard plastic presser having a flat bottom, and the pressure-sensitive characteristics at 9 ° C., 26 ° C., 45 ° C., and 61 ° C. are measured. The resulting pressure-sensitive properties were shown.

【0017】[0017]

【比較例1】感圧導電性組成物を次の方法で調製した。
マトリックスとして付加型液状シリコーンゴム(東レダ
ウコーニングシリコーン(株)製 SE1740)を1
00重量部(20g)と、導電粒子として平均粒子径1
0μmの球状ガラス状カーボン粒子(日本カーボン
(株)製 ICB1020)を120重量部(24
g)、さらに単位付加荷重当りの抵抗値変化範囲を大き
くするために、酸化チタン(石原産業(株)製 A−1
00)を0.5重量部(0.1g)を攪拌混合した。こ
の混合物を約0.05mmに間隙を調整した直径35m
mのインキロール(独Otto Hermann社製
Model−35)に2回通し、感圧導電性組成物を得
た。実施例1と同様にして感圧導電センサーを作製し
た。図3に、作製した感圧導電センサーを直径5.5m
mの底が平らな硬質プラスチックの押し子で加圧し、9
℃、27℃、44℃、62℃での感圧特性を測定して得
られた感圧特性を示した。
Comparative Example 1 A pressure-sensitive conductive composition was prepared by the following method.
Addition type liquid silicone rubber (SE1740, manufactured by Toray Dow Corning Silicone Co., Ltd.) was used as the matrix.
00 parts by weight (20 g) and an average particle diameter of 1 as conductive particles
120 parts by weight of 24 μm spherical glassy carbon particles (ICB1020 manufactured by Nippon Carbon Co., Ltd.)
g) and titanium oxide (A-1 manufactured by Ishihara Sangyo Co., Ltd.) in order to further increase the resistance value change range per unit additional load.
0.5) (0.1 g) was stirred and mixed. This mixture is adjusted to a gap of about 0.05 mm and has a diameter of 35 m.
m ink roll (Otto Hermann, Germany)
Model-35) twice to obtain a pressure-sensitive conductive composition. A pressure-sensitive conductive sensor was produced in the same manner as in Example 1. FIG. 3 shows the prepared pressure-sensitive conductive sensor with a diameter of 5.5 m.
m with a flat hard plastic presser.
The measured pressure-sensitive characteristics at 27 ° C., 27 ° C., 44 ° C., and 62 ° C. showed the obtained pressure-sensitive characteristics.

【0018】[0018]

【発明の効果】本発明のNTC特性を持つ電気抵抗粉体
を配合した感圧導電性組成物を用いることによって、感
圧導電性組成物を用いた感圧導電センサーの感圧特性の
温度依存性をきわめて小さくすることが出来る。本発明
の感圧導電性組成物は、マルチメディア機器の入力装
置、産業用圧力センサー等に幅広く利用可能である。
By using the pressure-sensitive conductive composition containing the electric resistance powder having NTC characteristics of the present invention, the temperature dependence of the pressure-sensitive property of the pressure-sensitive conductive sensor using the pressure-sensitive conductive composition is improved. Sex can be made extremely small. The pressure-sensitive conductive composition of the present invention can be widely used for input devices of multimedia equipment, industrial pressure sensors, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)実施例1の感圧導電性組成物を用いた感
圧導電センサー (b)くし状電極基板
FIG. 1 (a) A pressure-sensitive conductive sensor using the pressure-sensitive conductive composition of Example 1 (b) Comb-shaped electrode substrate

【図2】実施例1の感圧特性FIG. 2 is a pressure-sensitive characteristic of Example 1.

【図3】比較例1の感圧特性FIG. 3 shows pressure-sensitive characteristics of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 くし状電極 2 基板 3 感圧導電性弾性体 4 フィルム DESCRIPTION OF SYMBOLS 1 Comb-shaped electrode 2 Substrate 3 Pressure-sensitive conductive elastic body 4 Film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】マトリックスとしての有機高分子、導電性
粒子、および電気抵抗粉体の少なくとも3成分からなる
感圧導電性組成物において、電気抵抗粉体が、下記の3
条件を満たすことを特徴とする感圧導電性組成物。 (1)配合量が有機高分子100重量部に対し0.1〜
10重量部であること。 (2)25℃において5kgf/cmの圧力をかけて
測定した比電気抵抗が、100Ω・cm〜500MΩ・c
mであること。 (3)NTC特性を有すること。
1. A pressure-sensitive conductive composition comprising at least three components of an organic polymer as a matrix, conductive particles, and an electric resistance powder, wherein the electric resistance powder comprises the following 3
A pressure-sensitive conductive composition satisfying the conditions. (1) The compounding amount is 0.1 to 100 parts by weight of the organic polymer.
10 parts by weight. (2) The specific electric resistance measured under a pressure of 5 kgf / cm 2 at 25 ° C. is 100 Ω · cm to 500 MΩ · c.
m. (3) Having NTC characteristics.
【請求項2】有機高分子が、付加型液状シリコーンゴム
であることを特徴とする請求項1に記載の感圧導電性組
成物。
2. The pressure-sensitive conductive composition according to claim 1, wherein the organic polymer is an addition-type liquid silicone rubber.
【請求項3】請求項1あるいは2に記載の感圧導電性組
成物を、電極上に設けたことを特徴とする感圧導電セン
サー。
3. A pressure-sensitive conductive sensor, wherein the pressure-sensitive conductive composition according to claim 1 is provided on an electrode.
JP26774299A 1999-09-21 1999-09-21 Pressure-sensitive conductive composition and pressure- sensitive conducting sensor Pending JP2001093707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26774299A JP2001093707A (en) 1999-09-21 1999-09-21 Pressure-sensitive conductive composition and pressure- sensitive conducting sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26774299A JP2001093707A (en) 1999-09-21 1999-09-21 Pressure-sensitive conductive composition and pressure- sensitive conducting sensor

Publications (1)

Publication Number Publication Date
JP2001093707A true JP2001093707A (en) 2001-04-06

Family

ID=17448951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26774299A Pending JP2001093707A (en) 1999-09-21 1999-09-21 Pressure-sensitive conductive composition and pressure- sensitive conducting sensor

Country Status (1)

Country Link
JP (1) JP2001093707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017100275A (en) * 2015-11-20 2017-06-08 マックス株式会社 tool
US11154975B2 (en) 2015-11-20 2021-10-26 Max Co., Ltd. Tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017100275A (en) * 2015-11-20 2017-06-08 マックス株式会社 tool
US11154975B2 (en) 2015-11-20 2021-10-26 Max Co., Ltd. Tool
JP7017022B2 (en) 2015-11-20 2022-02-08 マックス株式会社 tool

Similar Documents

Publication Publication Date Title
US5510174A (en) Thermally conductive materials containing titanium diboride filler
US5221575A (en) Thermally conductive sheet
US4910389A (en) Conductive polymer compositions
JP3499877B2 (en) Force detection ink
US5344591A (en) Self-regulating laminar heating device and method of forming same
US5206482A (en) Self regulating laminar heating device and method of forming same
JPS6265401A (en) Regulating method for ordinary heating temperature in thermosensitive electric resistance compositiion
JPH08339904A (en) Positive temperature coefficient composition
JP3882622B2 (en) PTC resistor
US4076652A (en) Elastic resistor compositions containing metallic-conductive particles and conductive lubricant particles
JP2001093707A (en) Pressure-sensitive conductive composition and pressure- sensitive conducting sensor
JPS63215745A (en) Pressure-sensitive electroconductive elastomer composition
TW200834612A (en) Polymeric positive temperature coefficient thermistor and process for preparing the same
JP3191825B2 (en) PTC composition
JP2001011354A (en) Printing ink for self-temperature control heater
JPH0316387B2 (en)
JP2001067971A (en) Pressure sensitive conductive sensor
JP2852778B2 (en) Heat-sensitive electrical resistance composition
JP4701932B2 (en) Resistor
KR960022851A (en) Composition of Polymer PTC (Constant Temperature Coefficient)
JP3541264B2 (en) Positive temperature characteristic element
JPH04149906A (en) Conductive rubber composition and rubber connector
JPH11251112A (en) Pressure-sensitive resistance change type conductive composition
JPS59126465A (en) Pressure-sensitive electrically conductive silicone rubber composition
Gao et al. Flexible self-assembly carbon nanotube/polyimide thermal film endowed adjustable temperature coefficient of resistance