JP2001092518A - Method of controlling acceleration/deceleration of fast forwarding speed - Google Patents

Method of controlling acceleration/deceleration of fast forwarding speed

Info

Publication number
JP2001092518A
JP2001092518A JP26413999A JP26413999A JP2001092518A JP 2001092518 A JP2001092518 A JP 2001092518A JP 26413999 A JP26413999 A JP 26413999A JP 26413999 A JP26413999 A JP 26413999A JP 2001092518 A JP2001092518 A JP 2001092518A
Authority
JP
Japan
Prior art keywords
deceleration
acceleration
dtb
movement distance
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26413999A
Other languages
Japanese (ja)
Inventor
Masayuki Sugie
正行 杉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP26413999A priority Critical patent/JP2001092518A/en
Publication of JP2001092518A publication Critical patent/JP2001092518A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fast forwarding speed acceleration/deceleration controlling method capable of suppressing a sudden acceleration change on the way of decelerating a feed shaft motor which becomes a vibration generation factor in a machine driving system and executing drive control at stable decelerating acceleration even when fast forwarding is executed at a high speed. SOLUTION: The first control method for dividing a current speed FC by prescribed decelerating acceleration dTb at the time of judging that a decelerated moving distance Ld exceeds a remaining moving distance Le and executing decelerating operation control by changing the acceleration dTb on the basis of the divided result or the second control method for calculating decelerating acceleration dTc on the basis of a deceleration fraction distance L to be a difference between the decelerated moving distance Ld and the remaining moving distance Le and the prescribed decelerating acceleration dTb, executing the first decelerating operation control by the decelerating acceleration dTc and executing succeeding decelerating operation control by the decelerating acceleration dTb is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】数値制御工作機械の位置決め
補間制御に用いられる早送り速度の加減速制御方法に関
する。
[0001] 1. Field of the Invention [0002] The present invention relates to a rapid traverse speed acceleration / deceleration control method used for positioning interpolation control of a numerically controlled machine tool.

【0002】[0002]

【従来の技術】従来、数値制御工作機械における早送り
速度の加減速制御方法においては、図6の従来技術にお
ける加減速制御の速度線図に示すように、所定の加速度
dTaに基づき目標速度Fmaxに加速制御する加速演
算制御部と、現在の速度Fcと所定の減速用加速度dT
bとから停止までに必要な減速移動距離Ldを演算する
減速移動距離演算制御部と、現在の位置から目標位置ま
での残移動距離Leを演算する残移動距離演算部と、上
記減速移動距離Ldが残移動距離Leを超えると判定さ
れる時、減速用加速度dTbを用いて現在速度の減速演
算制御を実行する減速演算制御部とを備え、早送り補間
制御の際に、補間速度を目標速度Fmaxに対して加減
速制御し、算出された補間速度を用いて目標位置までの
補間制御を行なう方法が用いられていた。
2. Description of the Related Art Conventionally, in a method for controlling acceleration and deceleration of a rapid traverse speed in a numerically controlled machine tool, as shown in a speed diagram of acceleration and deceleration control in the prior art shown in FIG. 6, a target speed Fmax is determined based on a predetermined acceleration dTa. An acceleration calculation control unit for controlling acceleration, a current speed Fc and a predetermined deceleration dT
b, a deceleration movement distance calculation control unit for calculating a deceleration movement distance Ld required from the stop to a stop, a remaining movement distance calculation unit for calculating a remaining movement distance Le from a current position to a target position, and the deceleration movement distance Ld Is determined to exceed the remaining travel distance Le, a deceleration calculation control unit that executes deceleration calculation control of the current speed using the deceleration dTb, and sets the interpolation speed to the target speed Fmax during fast-forward interpolation control. In this method, acceleration / deceleration control is performed on the target position, and interpolation control to a target position is performed using the calculated interpolation speed.

【0003】[0003]

【発明が解決しようとする課題】昨今、稼働時間短縮に
向け非切削時間である早送り移動時間についても短縮化
が望まれており、そのために加減速制御の高加減速化を
図り加減速時間の一層の短縮を進めている。しかし、上
述した従来の加減速制御方法によれば、現在の位置から
目標位置までの残移動距離Leが停止までに必要な減速
移動距離Ldが一致する場合は少なく、図6中の速度線
La’の区間Tsに示すように、減速演算制御の途中に
おいて一時的に減速演算を中断する場合が存在し、減速
途中に一時的に減速加速度がゼロとなる時が発生してい
た。その結果、数値制御工作機械の送り軸モータを制御
する減速トルクが減速途中で著しく変動してしまうこと
になり、機械駆動系の振動発生要因となり高加減速化の
阻害要因となっていた。
In recent years, it has been desired to reduce the rapid traverse movement time, which is a non-cutting time, in order to shorten the operation time. We are working on further shortening. However, according to the conventional acceleration / deceleration control method described above, there are few cases where the remaining movement distance Le from the current position to the target position coincides with the deceleration movement distance Ld required for stopping, and the speed line La in FIG. As shown in the section Ts, the deceleration calculation may be temporarily interrupted during the deceleration calculation control, and the deceleration temporarily becomes zero during the deceleration. As a result, the deceleration torque for controlling the feed shaft motor of the numerically controlled machine tool fluctuates remarkably during the deceleration, causing a vibration of the mechanical drive system and a hindrance to high acceleration / deceleration.

【0004】本発明は上述した事情により成されたもの
であり、本発明の目的は、機械駆動系の振動発生要因と
なる送り軸モータの減速途中における急激な加速度変動
を抑制し、高速で早送りしても安定した減速加速度で駆
動制御することができる早送り速度の加減速制御方法を
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made under the above circumstances, and an object of the present invention is to suppress rapid acceleration fluctuation during the deceleration of a feed shaft motor, which causes vibration of a mechanical drive system, and to perform rapid traverse at high speed. It is an object of the present invention to provide a rapid traverse speed acceleration / deceleration control method capable of performing drive control with stable deceleration.

【0005】[0005]

【課題を解決するための手段】本発明は、送り軸の現在
の速度Fcと所定の減速用加速度dTbとから停止まで
に必要な減速移動距離Ldを演算する減速移動距離演算
制御部と、現在の位置から目標位置までの残移動距離L
eを演算する残移動距離演算部と、前記現在の速度Fc
で移動演算すると前記減速移動距離Ldが前記残移動距
離Leを超えると判定される時、減速演算制御を実行す
る減速演算制御部とを備えた数値制御工作機械の早送り
速度の加減速制御方法に関するものであり、本発明の上
記目的は、第1の方法として前記減速移動距離Ldが残
移動距離Leを超えると判定される時、前記現在の速度
Fcを前記減速用加速度dTbで除算し、該除算結果N
に余りがあると判定された時、前記減速用加速度dTb
を下記数1により算出した減速用変更加速度dTb’に
変更して減速演算制御を実行することにより達成され
る。
According to the present invention, there is provided a deceleration movement distance calculation control unit for calculating a deceleration movement distance Ld required from a current speed Fc of a feed shaft and a predetermined deceleration dTb to a stop, and Moving distance L from the position to the target position
e, the remaining travel distance calculation unit for calculating the current speed Fc
And a deceleration calculation control unit for executing deceleration calculation control when it is determined that the deceleration movement distance Ld exceeds the remaining movement distance Le when the movement calculation is performed. The first object of the present invention is to divide the current speed Fc by the deceleration dTb when it is determined that the deceleration travel distance Ld exceeds the remaining travel distance Le. Division result N
When it is determined that there is a surplus, the deceleration dTb
Is changed to the deceleration change acceleration dTb ′ calculated by the following equation (1), and the deceleration calculation control is executed.

【0006】[0006]

【数1】dTb’=Fc/(N+1) あるいは第2の方法として、前記減速演算制御を実行す
る際、前記減速移動距離Ldと前記残移動距離Leとの
差分である減速端数距離L及び前記減速加速度dTbに
基づいて減速加速度dTcを算出し該減速加速度dTc
によって最初の減速演算制御を実行し、以降の減速演算
制御は前記減速用加速度dTbにより実行することによ
り達成される。
DTb '= Fc / (N + 1) Alternatively, as a second method, when executing the deceleration calculation control, the deceleration fraction distance L, which is the difference between the deceleration movement distance Ld and the remaining movement distance Le, and the The deceleration dTc is calculated based on the deceleration dTb, and the deceleration dTc is calculated.
Performs the first deceleration calculation control, and the subsequent deceleration calculation control is achieved by executing the deceleration calculation dTb.

【0007】[0007]

【発明の実施の形態】本発明の好適な実施の形態を図面
を使用して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described with reference to the drawings.

【0008】図1は、本発明を適用した数値制御装置の
一例を示すブロック図であり、加工プログラムによって
指令される送り軸の早送り指令は、プログラム解析部1
で解析され、補間制御部2と速度単位量演算部5によっ
て送出される。速度単位量演算部5では、早送り指令に
従い、目標位置への補間速度を加減速制御するために移
動速度単位量の加減速演算をする。
FIG. 1 is a block diagram showing an example of a numerical control device to which the present invention is applied.
And transmitted by the interpolation control unit 2 and the speed unit amount calculation unit 5. The speed unit amount calculation unit 5 performs acceleration / deceleration calculation of the moving speed unit amount in accordance with the fast-forward command to perform acceleration / deceleration control of the interpolation speed to the target position.

【0009】減速移動距離演算部6は、速度単位量演算
部5にて演算された現在の移動速度単位量と図示しない
パラメータ等によって設定された減速単位量(減速用加
速度の単位量)dTbとから、減速に必要な減速移動距
離Ldを演算する。残移動距離演算部7は、プログラム
解析部1で指令された目標位置と補間制御部2によって
演算された補間位置との差である残移動距離Lcを算出
する。比較演算部8は、前記算出された減速移動距離L
dと残移動距離Lcとを比較し、減速タイミングを検出
し、減速が必要と判定されると減速単位量演算部9で後
述する方法により減速単位量(減速用変更加速度)dT
b’を演算し、減速制御のための減速単位量として速度
単位量演算部5に送出する。補間制御部2では、速度単
位量演算部5にて演算された速度単位量の加減速演算結
果に基づき、指令された目標位置に向かって早送り速度
を補間制御し、軸駆動制御部3を介して駆動軸モータ4
を駆動することによって送り軸を位置制御する。
The deceleration moving distance calculating section 6 calculates a current moving speed unit amount calculated by the speed unit amount calculating section 5, a deceleration unit amount (unit amount of deceleration for acceleration) dTb set by parameters (not shown) and the like. Then, the deceleration moving distance Ld required for deceleration is calculated. The remaining movement distance calculation unit 7 calculates a remaining movement distance Lc that is a difference between the target position commanded by the program analysis unit 1 and the interpolation position calculated by the interpolation control unit 2. The comparison operation unit 8 calculates the calculated deceleration moving distance L
By comparing d with the remaining travel distance Lc, the deceleration timing is detected, and when it is determined that deceleration is necessary, the deceleration unit amount calculation unit 9 uses a method described later to change the deceleration unit amount (deceleration change acceleration) dT.
b ′ is calculated and sent to the speed unit amount calculation unit 5 as a deceleration unit amount for deceleration control. The interpolation control unit 2 performs interpolation control of the rapid traverse speed toward the instructed target position based on the acceleration / deceleration calculation result of the speed unit amount calculated by the speed unit amount calculation unit 5, and via the axis drive control unit 3. Drive shaft motor 4
To control the position of the feed shaft.

【0010】上述した数値制御工作機械における早送り
速度の減速制御について、その詳細の制御方法を図2、
図3のフローチャートを用いて説明する。図2のフロー
チャートは、本発明の第1の制御方法であり図3のフロ
ーチャートは、第2の制御方法を示している。
FIG. 2 shows a detailed control method for the deceleration control of the rapid traverse speed in the numerically controlled machine tool described above.
This will be described with reference to the flowchart of FIG. The flowchart of FIG. 2 shows the first control method of the present invention, and the flowchart of FIG. 3 shows the second control method.

【0011】先ず、第1の制御方法を図2のフローチャ
ートを用いて説明する。
First, the first control method will be described with reference to the flowchart of FIG.

【0012】補間制御部2では、初期設定処理として、
プログラム解析部1で解析された目標値Pcと現在の位
置決め速度指令Fcをそれぞれセットする(ステップS
1,S2)。続いて目標値Pcまでの残移動距離Lc
を、下記数2により算出し(ステップS3)、減速移動
距離Ldを下記数3により算出する(ステップS4)。
In the interpolation control unit 2, as an initial setting process,
The target value Pc analyzed by the program analysis unit 1 and the current positioning speed command Fc are set (step S).
1, S2). Subsequently, the remaining movement distance Lc up to the target value Pc
Is calculated by the following equation 2 (step S3), and the deceleration moving distance Ld is calculated by the following equation 3 (step S4).

【0013】[0013]

【数2】残移動距離Lc=Pc−Pa−Fc 但し、Pa=現在値(補間位置)## EQU2 ## Remaining moving distance Lc = Pc-Pa-Fc where Pa = current value (interpolated position)

【数3】減速移動距離Ld=Fc×Fc/dTb 次に、残移動距離Lcと減速移動距離Ldとを比較し
(ステップS5)、残移動距離Lcが大きい時は、まだ
減速の必要がないと判定してステップS11に進む。残
移動距離Lcが減速単位量Ldよりも小さくなると減速
が必要と判定し、現在の速度Fcを前記減速用加速度d
Tbで除算し、該除算結果Nに余りがないと判定された
時には、該除算結果Nを減速演算回数Nと決定し、該除
算結果Nに余りがあると判定された時には、除算結果N
に+1して、減速演算回数Nを決定する(ステップS6
〜S8)。続いて、前記数1に示したように、現在の速
度指令Fcを上記減速演算回数Nで除算し、単位演算毎
の減速単位量dTb’を減速用加速度として算出し(ス
テップS9)、現在の速度Fcから減速単位量dTb’
を減算する(ステップS10)。そして、補間位置Pa
に上記演算された現在の速度Fcを加算し(ステップS
11)、補間位置Paが目標値Pcと一致するまで(ス
テップS12)、上記ステップS3〜S11の動作を繰
り返し、目標値Pcに向かって、速度制御あるいは補間
制御を行なう。
## EQU3 ## Next, the remaining movement distance Lc is compared with the deceleration movement distance Ld (step S5). If the remaining movement distance Lc is large, there is no need to decelerate yet. And the process proceeds to step S11. When the remaining movement distance Lc becomes smaller than the deceleration unit amount Ld, it is determined that deceleration is necessary, and the current speed Fc is changed to the deceleration d.
Tb, when it is determined that there is no remainder in the division result N, the division result N is determined as the number of deceleration operations N, and when it is determined that there is a remainder in the division result N, the division result N
Is incremented by 1 to determine the number N of deceleration calculations (step S6).
~ S8). Subsequently, as shown in Equation 1, the current speed command Fc is divided by the number of deceleration calculations N to calculate a deceleration unit amount dTb ′ for each unit calculation as a deceleration acceleration (step S9). From the speed Fc, the deceleration unit amount dTb '
Is subtracted (step S10). Then, the interpolation position Pa
Is added to the calculated current speed Fc (step S
11) Until the interpolation position Pa matches the target value Pc (step S12), the operations of steps S3 to S11 are repeated, and speed control or interpolation control is performed toward the target value Pc.

【0014】図4は、上述した第1の制御方法を適用し
た場合の早送り補間時の速度状態を図6の従来例に対応
させて示している。図4中の速度線Laに示されるよう
に、上記第1の制御方法を適用すれば、一定の減速加速
度dTb’で軸送りモータを速度制御することで、従来
のような一時的な減速演算の中断に伴う急激な加速度変
動を無くし、機械駆動系の振動発生を抑制することが可
能となる。
FIG. 4 shows a speed state at the time of fast-forward interpolation when the above-described first control method is applied, corresponding to the conventional example of FIG. As shown by the speed line La in FIG. 4, if the first control method is applied, the speed of the axis feed motor is controlled at a constant deceleration dTb ′, so that the conventional temporary deceleration calculation is performed. Abrupt acceleration fluctuations due to the interruption of the operation can be eliminated, and the occurrence of vibration of the mechanical drive system can be suppressed.

【0015】次に、第2の制御方法を図3のフローチャ
ートを用いて説明する。
Next, the second control method will be described with reference to the flowchart of FIG.

【0016】補間制御部2では、初期設定処理として、
プログラム解析部1で解析された目標値Pcと現在の位
置決め速度指令Fcをそれぞれセットする(ステップS
21,S22)。続いて目標値Pcまでの残移動距離L
cを、前記数2により算出し(ステップS23)、減速
移動距離Ldを前記数3により算出する(ステップS2
4)。
In the interpolation control unit 2, as an initial setting process,
The target value Pc analyzed by the program analysis unit 1 and the current positioning speed command Fc are set (step S).
21, S22). Subsequently, the remaining movement distance L up to the target value Pc
c is calculated by the above equation 2 (step S23), and the deceleration moving distance Ld is calculated by the above equation 3 (step S2).
4).

【0017】次に、残移動距離Lcと減速移動距離Ld
とを比較し(ステップS25)、残移動距離Lcが大き
い時は、まだ減速の必要がないと判定してステップS3
1に進む。残移動動距離Lcが減速移動距離Ldよりも
小さくなると減速が必要と判定し、後のステップS27
でセットされる減速開始フラッグを判定し(ステップS
26)、減速開始フラッグがONしていない時は、減速
開始のタイミングであるからステップS27へすすむ。
減速開始フラッグがONしていなければ、既に減速を開
始しているのでステップS30進む。上記ステップS2
6において減速の開始と判定されると、減速開始フラッ
グをONし(ステップS27)、最初の減速加速度dT
cを下記数4により算出する(ステップS28)。
Next, the remaining movement distance Lc and the deceleration movement distance Ld
(Step S25), and when the remaining movement distance Lc is large, it is determined that deceleration is not necessary yet, and Step S3 is performed.
Proceed to 1. If the remaining movement distance Lc is smaller than the deceleration movement distance Ld, it is determined that deceleration is necessary, and the subsequent step S27
Judge the deceleration start flag set in step (step S
26) If the deceleration start flag is not ON, it is time to start deceleration, and the process proceeds to step S27.
If the deceleration start flag is not ON, the deceleration has already been started, and the process proceeds to step S30. Step S2 above
If it is determined in step 6 that deceleration has started, the deceleration start flag is turned on (step S27), and the first deceleration dT
c is calculated by the following equation 4 (step S28).

【0018】[0018]

【数4】最初の減速加速度dTc=(減速加速度dT
b)−(減速端数距離L)/(減速制御回数T) 但し、 減速端数距離L=残移動距離Lc+現在の速度Fc−減
速移動距離Ld 減速制御回数T=現在の速度Fc/減速用加速度dTb そして、上記ステップS28で求めた最初の減速加速度
dTcを用いて、現在の速度Fcから減速加速度dTc
を減算して、減速開始時の最初の減速演算を実行する
(ステップ29)。
## EQU4 ## Initial deceleration dTc = (deceleration dT
b)-(deceleration fraction distance L) / (deceleration control frequency T) where deceleration fraction distance L = remaining travel distance Lc + current speed Fc-deceleration travel distance Ld deceleration control frequency T = current speed Fc / deceleration dTb Then, using the initial deceleration dTc obtained in step S28, the deceleration dTc from the current speed Fc is calculated.
Is subtracted to execute the first deceleration calculation at the start of deceleration (step 29).

【0019】既に減速を開始している場合は、減速用加
速度dTbを用いて、現在の速度から減速加速度dTb
を減算して、減速演算を実行する(ステップ30)。
If the deceleration has already started, the deceleration dTb is calculated from the current speed using the deceleration dTb.
Is subtracted to perform a deceleration calculation (step 30).

【0020】そして、補間位置Paに上記減速演算され
た現在の速度Fcを加算し(ステップS31)、補間位
置Paが目標値Pcと一致するまで(ステップS3
2)、上記ステップS23〜S31の動作を繰り返し、
目標値Pcに向かって、速度制御あるいは補間制御を行
なう。
Then, the current speed Fc calculated as described above is added to the interpolation position Pa (step S31). Until the interpolation position Pa matches the target value Pc (step S3).
2), the operations of steps S23 to S31 are repeated,
Speed control or interpolation control is performed toward the target value Pc.

【0021】図5は、上述した第2の制御方法を適用し
た場合の早送り補間時の速度状態を図6の従来例に対応
させて示している。図5中の速度線Laに示されるよう
に、上記第2の制御方法を適用すれば、最初は減速加速
度dTcで減速制御し、以降は一定の減速加速度dTb
で減速制御することで、従来のような一時的な減速演算
の中断に伴う急激な加速度変動を無くし、機械駆動系の
振動発生を抑制することが可能となる。
FIG. 5 shows a speed state at the time of fast-forward interpolation when the above-mentioned second control method is applied, corresponding to the conventional example of FIG. As shown by the speed line La in FIG. 5, if the second control method is applied, the deceleration control is first performed with the deceleration dTc, and thereafter, the deceleration dTb is constant.
By performing the deceleration control in this manner, it is possible to eliminate sudden acceleration fluctuations caused by temporary interruption of the deceleration calculation as in the related art, and to suppress the occurrence of vibration of the mechanical drive system.

【0022】[0022]

【発明の効果】以上のように本発明によれば、減速時に
減速用加速度dTbを上回らず、停止まで一定の減速加
速度で減速制御するようにしたから、減速途中での減速
トルクの変動を抑制し、機械駆動系の振動発生要因を除
去することができる。そのため、高加減速化を行なって
も安定した加減速制御が行なえるため非切削時間である
早送り移動時間の短縮が実現され、しいては機械稼働時
間短縮に効果がある。
As described above, according to the present invention, the deceleration control is performed at a constant deceleration until deceleration without exceeding the deceleration dTb during deceleration, so that the fluctuation of the deceleration torque during deceleration is suppressed. In addition, it is possible to eliminate the vibration generation factor of the mechanical drive system. Therefore, even if high acceleration / deceleration is performed, stable acceleration / deceleration control can be performed, so that the rapid traverse movement time, which is a non-cutting time, can be reduced, which is effective in reducing the machine operation time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した数値制御装置の一例を示すブ
ロック図である。
FIG. 1 is a block diagram illustrating an example of a numerical control device to which the present invention has been applied.

【図2】本発明の第1の制御方法を説明するためのフロ
ーチャートである。
FIG. 2 is a flowchart for explaining a first control method of the present invention.

【図3】本発明の第2の制御方法を説明するためのフロ
ーチャートである。
FIG. 3 is a flowchart illustrating a second control method according to the present invention.

【図4】本発明における第1の制御方法を用いた加減速
制御の速度線図である。
FIG. 4 is a velocity diagram of acceleration / deceleration control using a first control method according to the present invention.

【図5】本発明における第2の制御方法を用いた加減速
制御の速度線図である。
FIG. 5 is a velocity diagram of acceleration / deceleration control using a second control method according to the present invention.

【図6】従来技術における加減速制御の速度線図であ
る。
FIG. 6 is a velocity diagram of acceleration / deceleration control in the related art.

【符号の説明】[Explanation of symbols]

1 プログラム解析部 2 補間制御部 3 軸駆動制御部 5 速度単位量演算部 6 減速移動距離演算部 7 残移動距離演算部 8 比較演算部 9 減速単位量演算部 DESCRIPTION OF SYMBOLS 1 Program analysis part 2 Interpolation control part 3 Axis drive control part 5 Speed unit amount calculation part 6 Deceleration movement distance calculation part 7 Remaining movement distance calculation part 8 Comparison calculation part 9 Deceleration unit amount calculation part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】送り軸の現在の速度Fcと所定の減速用加
速度dTbとから停止までに必要な減速移動距離Ldを
演算する減速移動距離演算制御部と、現在の位置から目
標位置までの残移動距離Leを演算する残移動距離演算
部と、前記現在の速度Fcで移動演算すると前記減速移
動距離Ldが前記残移動距離Leを超えると判定される
時、減速演算制御を実行する減速演算制御部とを備えた
数値制御工作機械の早送り速度の加減速制御方法におい
て、 前記減速移動距離Ldが前記残移動距離Leを超えると
判定される時、前記現在の速度Fcを前記減速用加速度
dTbで除算し、該除算結果Nに余りがあると判定され
た時、前記減速用加速度dTbを下記式により算出した
減速用変更加速度dTb’に変更して減速演算制御を実
行するようにしたことを特徴とする早送り速度の加減速
制御方法。 dTb’=Fc/(N+1)
1. A deceleration movement distance calculation control unit for calculating a deceleration movement distance Ld required for stopping from a current speed Fc of a feed axis and a predetermined deceleration acceleration dTb, and a remaining distance from a current position to a target position. A remaining movement distance calculation unit that calculates the movement distance Le; and a deceleration calculation control that executes deceleration calculation control when it is determined that the deceleration movement distance Ld exceeds the remaining movement distance Le when the movement is calculated at the current speed Fc. The acceleration / deceleration control method of the rapid traverse speed of the numerically controlled machine tool comprising the following steps: when the deceleration moving distance Ld is determined to exceed the remaining moving distance Le, the current speed Fc is calculated by the deceleration dTb. When it is determined that there is a remainder in the division result N, the deceleration acceleration dTb is changed to a deceleration change acceleration dTb ′ calculated by the following equation to execute deceleration calculation control. Deceleration control method for a fast-forward speed, characterized in that the. dTb '= Fc / (N + 1)
【請求項2】送り軸の現在の速度Fcと所定の減速用加
速度dTbとから停止までに必要な減速移動距離Ldを
演算する減速移動距離演算制御部と、現在の位置から目
標位置までの残移動距離Leを演算する残移動距離演算
部と、前記現在の速度Fcで移動演算すると前記減速移
動距離Ldが前記残移動距離Leを超えると判定される
時、減速演算制御を実行する減速演算制御部とを備えた
数値制御工作機械の早送り速度の加減速制御方法におい
て、 前記減速演算制御を実行する際、前記減速移動距離Ld
と前記残移動距離Leとの差分である減速端数距離L及
び前記減速加速度dTbに基づいて最初の減速加速度d
Tcを算出し該減速加速度dTcによって最初の減速演
算制御を実行し、以降の減速演算制御は前記減速用加速
度dTbにより実行するようにしたことを特徴とする早
送り速度の加減速制御方法。
2. A deceleration movement distance calculation control unit for calculating a deceleration movement distance Ld required for stopping from a current speed Fc of the feed shaft and a predetermined deceleration acceleration dTb, and a remaining distance from the current position to a target position. A remaining movement distance calculation unit that calculates the movement distance Le; and a deceleration calculation control that executes deceleration calculation control when it is determined that the deceleration movement distance Ld exceeds the remaining movement distance Le when the movement is calculated at the current speed Fc. The acceleration / deceleration control method for the rapid traverse speed of a numerically controlled machine tool comprising: a deceleration movement distance Ld when the deceleration calculation control is executed.
The first deceleration d based on the deceleration fraction distance L, which is the difference between the deceleration fraction Le and the remaining travel distance Le, and the deceleration dTb.
An acceleration / deceleration control method for a rapid traverse speed, wherein Tc is calculated, first deceleration calculation control is executed by the deceleration dTc, and subsequent deceleration calculation control is executed by the deceleration dTb.
JP26413999A 1999-09-17 1999-09-17 Method of controlling acceleration/deceleration of fast forwarding speed Pending JP2001092518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26413999A JP2001092518A (en) 1999-09-17 1999-09-17 Method of controlling acceleration/deceleration of fast forwarding speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26413999A JP2001092518A (en) 1999-09-17 1999-09-17 Method of controlling acceleration/deceleration of fast forwarding speed

Publications (1)

Publication Number Publication Date
JP2001092518A true JP2001092518A (en) 2001-04-06

Family

ID=17399012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26413999A Pending JP2001092518A (en) 1999-09-17 1999-09-17 Method of controlling acceleration/deceleration of fast forwarding speed

Country Status (1)

Country Link
JP (1) JP2001092518A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110977610A (en) * 2019-12-26 2020-04-10 西京学院 Rapid turning acceleration compensation system and method in high-speed machining process
WO2023058153A1 (en) * 2021-10-06 2023-04-13 ファナック株式会社 Numerical control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110977610A (en) * 2019-12-26 2020-04-10 西京学院 Rapid turning acceleration compensation system and method in high-speed machining process
WO2023058153A1 (en) * 2021-10-06 2023-04-13 ファナック株式会社 Numerical control device

Similar Documents

Publication Publication Date Title
JPS61157909A (en) System for correcting route error of robot
JP3681972B2 (en) Acceleration / deceleration control method
US20130123968A1 (en) Numerical control apparatus
US10514681B2 (en) Numerical controller including overlap function between arbitrary blocks by common acceleration/deceleration control unit
JP4578732B2 (en) Machine tool feed system controller
US11126163B2 (en) Numerical controller
US20170153629A1 (en) Numerical controller for controlling feed rate based on spindle load
US9519280B2 (en) Numerical control device for machine tool
JP2008046899A (en) Numerical control device
US9256213B2 (en) Numerical control unit having function to smoothly change feed speed when override is changed
JP2001092518A (en) Method of controlling acceleration/deceleration of fast forwarding speed
KR100319785B1 (en) Numerical control system of machine tool
US9740196B2 (en) Numerical controller for controlling drilling operation
JP6105548B2 (en) Numerical control device with interference avoidance positioning function
JPH07210225A (en) Numerical controller
JP2925414B2 (en) Speed control method and apparatus for numerically controlled machine tool
JP3242190B2 (en) Numerical control unit
JPH06180606A (en) Controller for object to be driven
JPH07134608A (en) Quickest fast forward control method
JP2001154719A (en) Method for interpolating free curve
CN109308050B (en) Numerical controller
JPH0642166B2 (en) Servo control method
JPH08116688A (en) Detecting method for oscillation of servomotor and adjusting method for speed gain of servomotor
JP2003260636A (en) Adjustable speed control method of controller
JP3513840B2 (en) Feed rate control method for numerical controller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116