JP2001087881A - Structure of welded part between vessel body and cover plate or bottom plate, and welding method - Google Patents

Structure of welded part between vessel body and cover plate or bottom plate, and welding method

Info

Publication number
JP2001087881A
JP2001087881A JP27020099A JP27020099A JP2001087881A JP 2001087881 A JP2001087881 A JP 2001087881A JP 27020099 A JP27020099 A JP 27020099A JP 27020099 A JP27020099 A JP 27020099A JP 2001087881 A JP2001087881 A JP 2001087881A
Authority
JP
Japan
Prior art keywords
welding
container body
thickness
depth
bottom plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27020099A
Other languages
Japanese (ja)
Inventor
Hisashi Hori
久司 堀
Shigehisa Kabuki
茂久 株木
Motoji Hotta
元司 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP27020099A priority Critical patent/JP2001087881A/en
Publication of JP2001087881A publication Critical patent/JP2001087881A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)
  • Laser Beam Processing (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a pressure vessel excellent in fatigure breakage resistance by executing corner-joint welding of a cover plate or a bottom plate to a vessel body under the condition that the pre-calculated welding depth W is obtained. SOLUTION: The cover plate 2 or the bottom plate is corner-joint welded to the cylindrical vessel body 1 and the thickness t(m) of the vessel body 1 decided from a required tensile strength is made to a value T2 higher than the lower limit value t0 of the thickness and the lower limit value of a welding depth is made to W0. On the other hand, a stress intensity factor K(N/m3/2) is calculated according to the equation (1) from a fatigue breaking load P1(N) obtained from the fatigue test of a vessel testing body having the suitable thickness t1 and the welding depth W1, and the welding depth W2 is obtained by substituting the breaking load P(N) and the thickness t2 needed according to the calculated value of the stress intensity factor K for the equation (2). Then the thickness t of the actually welded vessel body is made to >=t2 thickness and the cover plate or the bottom plate is welded to the vessel body with the welding depth W having the value not smaller than the larger value of either of the welding depth W2 or the welding depth lower limit value W0. K=(P1/2t1).(π/W1)1/2... (1), K=(P/2t2).(π/W2)1/2... (2).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、容器本体に蓋板や底板
等を溶接する際、内圧等の荷重に対して十分な強度及び
疲労強度の継手部をもつ溶接部構造及びその溶接方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welded structure having a joint having sufficient strength and fatigue strength against loads such as internal pressure when welding a lid plate or a bottom plate to a container body, and a welding method therefor. .

【0002】[0002]

【従来の技術】圧力容器等の容器本体に蓋板や底板を溶
接する際、単純な円筒形状にした容器本体に蓋板や底板
が溶接により固定される。蓋板や底板としては、容器本
体の円周状断面と同じ断面の縁部をつけた形状に成形し
た部材が考えられる。縁部を成形した蓋板や底板では、
容器本体の円周状断面に一致する形状の縁部を成形する
ことが難しく、容器本体の周壁に縁部を位置合せするこ
とも容易でない。また、移動体を内蔵する容器では、発
生した裏ビードによって円滑な移動が妨げられる虞れも
ある。そこで、図1に示すように容器本体1に嵌まり込
む蓋板2又は底板を用意し、容器本体1と蓋板2との間
に溶接ビード3を設ける角継手溶接が実際的に採用され
ている。ストラットダンパの底板,ビスカスダンパの蓋
等のように内圧が繰り返し加えられる容器では、継手強
度が十分でないと溶接部の破断や亀裂が発生する。この
場合、繰返し過重によって生じる疲労破壊は容器本体部
に発生すること,疲労試験には多大な時間や費用がかか
ること等から、安全を見込んで厚肉の容器本体1が使用
されている。
2. Description of the Related Art When a lid plate and a bottom plate are welded to a container body such as a pressure vessel, the lid plate and the bottom plate are fixed to a simple cylindrical container body by welding. As the cover plate or the bottom plate, a member formed into a shape with an edge having the same cross section as the circumferential cross section of the container body can be considered. In the lid plate and bottom plate with molded edges,
It is difficult to form an edge having a shape corresponding to the circumferential cross section of the container body, and it is not easy to align the edge with the peripheral wall of the container body. Further, in a container containing a moving body, smooth movement may be hindered by the generated back bead. Therefore, as shown in FIG. 1, a cover plate 2 or a bottom plate that fits into the container body 1 is prepared, and a square joint welding in which a welding bead 3 is provided between the container body 1 and the cover plate 2 is actually employed. I have. In a container to which internal pressure is repeatedly applied, such as a bottom plate of a strut damper, a lid of a viscous damper, or the like, if the joint strength is not sufficient, breakage or cracking of the welded portion occurs. In this case, the thick container body 1 is used in consideration of safety, since fatigue fracture caused by repeated overloading occurs in the container body, and the fatigue test requires a lot of time and cost.

【0003】[0003]

【発明が解決しようとする課題】ストラットダンパ,ビ
スカスダンパ等の圧力容器は、軽量化の要求が厳しい車
輌搭載用部品として使用されることから、軽量で強度的
にも優れたアルミニウム合金押出材で容器本体1を作
り、アルミニウム合金製の蓋板2又は底板を容器本体1
に溶接したものが使用されるようになってきた。この
点、厚肉の容器本体1の使用は、軽量化のメリットを小
さくし、素材コストを上昇させる原因でもあるが、必要
強度を保証するために余儀なくされている。また、熱処
理型のアルミニウム合金を容器材料に使用する場合、溶
接時の加熱で生じた熱影響部による継手強度の低下を補
償するためにも厚肉の容器本体1が使用されており、ア
ルミニウム合金の軽量性が十分に活かされていない。更
に、静的荷重に耐える溶接継手の形状は従来法によって
も決定可能であったが、疲労強度に対しては感に頼らざ
るを得なかった。この点も、必要以上に厚肉の容器本体
1が使用される一因であった。
Since pressure vessels such as strut dampers and viscous dampers are used as parts for mounting on vehicles for which weight reduction is strict, they are made of extruded aluminum alloy which is lightweight and excellent in strength. The container body 1 is made, and the lid plate 2 or the bottom plate made of aluminum alloy is
Welding has come to be used. In this regard, the use of the thick container body 1 is a cause of reducing the advantage of weight reduction and increasing the material cost, but is forced to guarantee necessary strength. When a heat-treatable aluminum alloy is used for the container material, the thick container body 1 is used to compensate for a decrease in joint strength due to a heat-affected zone caused by heating during welding. Is not fully utilized. Furthermore, the shape of a welded joint that can withstand a static load can be determined by a conventional method, but the fatigue strength has to be relied on for feeling. This point was also one of the reasons why the unnecessarily thick container body 1 was used.

【0004】[0004]

【課題を解決するための手段】容器本体部の肉厚を通常
考えられる値に設定した場合、容器本体に疲労破壊が発
生するが、内圧が繰り返し加えられる継手部の疲労破壊
原因を詳細に調査した結果、深い溶接ビードの形成が耐
疲労破壊性に有効であるとの知見を得た。本発明は、該
知見に基づき完成されたものであり、容器本体を不必要
に厚肉化することなく、溶接ビードを深くすることによ
って必要な疲労強度を確保し、引張強さ及び耐疲労強度
の双方に優れた溶接継手で容器本体に蓋板又は底板が溶
接された容器を提供することを目的とする。なお、本件
明細書では、次に定義される荷重振幅を疲労荷重Pとし
て使用した。すなわち、疲労試験に際して加える繰返し
荷重の平均値〔(最大荷重+最小荷重)/2〕を要求さ
れる特定値とし、荷重振幅〔(最大荷重−最小荷重)/
2〕を疲労荷重とする。また、疲労破壊荷重Pは、所定
繰返し数(通常107回以上)でも破壊しない疲労荷重
をいう。本発明の溶接構造は、その目的を達成するた
め、筒状の容器本体に蓋板又は底板が角継手溶接され、
要求引張強さから定まる容器本体の肉厚t(m)を肉厚
下限値t0以上の値t2とし、溶接深さ下限値をW0
し、一方適宜肉厚t1及び溶接深さW1の容器試験体の疲
労試験で得られた疲労破壊荷重P1(N)から式(1)
に従って応力拡大係数K(N/m3/2)を算出し、応力
拡大係数Kの算出値に応じて要求される破壊荷重P
(N)及び肉厚t2を式(2)に代入して溶接深さW2
求め、実際に溶接される容器本体の肉厚tを肉厚t2
上とし、溶接深さW2又は溶接深さ下限値W0のうち大き
い方の値以上の溶接深さWで容器本体に蓋板又は底板が
溶接されていることを特徴とする。 K=(P1/2t1)・(π/W11/2 ・・・・(1) K=(P/2t2)・(π/W21/2 ・・・・(2)
Means for Solving the Problems When the thickness of the container body is set to a normally conceivable value, fatigue failure occurs in the container body, but the cause of the fatigue failure of the joint where internal pressure is repeatedly applied is investigated in detail. As a result, it was found that formation of a deep weld bead is effective for fatigue fracture resistance. The present invention has been completed on the basis of the above findings, and secures the necessary fatigue strength by making the weld bead deep without unnecessarily increasing the thickness of the container body, thereby achieving tensile strength and fatigue strength. It is an object of the present invention to provide a container in which a lid plate or a bottom plate is welded to a container main body with a welded joint excellent in both. In the present specification, the load amplitude defined below is used as the fatigue load P. That is, the average value of the repeated loads applied during the fatigue test [(maximum load + minimum load) / 2] is set as the required specific value, and the load amplitude [(maximum load−minimum load) /
Let 2] be the fatigue load. The fatigue fracture load P refers to a fatigue load that does not break even at a predetermined number of repetitions (usually 10 7 times or more). The welding structure of the present invention, in order to achieve the object, a lid plate or a bottom plate is square joint welded to a cylindrical container body,
Request tensile strength thickness of the container body which is determined from, t (m) is the thickness lower limit value t 0 or more values t 2, the weld depth lower limit and W 0, whereas appropriate thickness t 1 and the welding depth W 1 container specimen fatigue fracture load P 1 obtained in the fatigue test (N) from equation (1)
The stress intensity factor K (N / m 3/2 ) is calculated according to the following formula, and the breaking load P required according to the calculated value of the stress intensity factor K
(N) and the thickness t 2 are substituted into the equation (2) to determine the welding depth W 2 , the thickness t of the container body to be actually welded is set to the thickness t 2 or more, and the welding depth W 2 or the cover plate or the bottom plate to the container body in a larger value than the welding depth W of the welding depth lower limit W 0 is characterized in that it is welded. K = (P 1 / 2t 1 ) · (π / W 1) 1/2 ···· (1) K = (P / 2t 2) · (π / W 2) 1/2 ···· (2 )

【0005】筒状の容器本体に蓋板又は底板を角継手溶
接する際、要求引張強さから定まる容器本体の肉厚t
(m)を肉厚下限値t0以上の値t2とし、溶接深さ下限
値をW 0とし、一方適宜肉厚t1及び溶接深さW1の容器
試験体の疲労試験で得られた疲労破壊荷重P1(N)か
ら式(1)に従って応力拡大係数K(N/m3/2)を算
出し、応力拡大係数Kの算出値に応じて要求される破壊
荷重P(N)及び肉厚t2を式(2)に代入して溶接深
さW2を求め、実際に溶接する容器本体の肉厚tを肉厚
2以上とし、溶接深さW2又は溶接深さ下限値W0のう
ち大きい方の値以上の溶接深さWが得られる条件下で容
器本体に蓋板又は底板を溶接することにより、容器本体
に蓋板又は底板が溶接される。更に、蓋板又は底板は、
肉厚下限値t0に等しい肉厚tの容器本体に、肉厚下限
値t0を式(2)に代入して求められる深さW2又は溶接
深さ下限値W0のうち大きい方の値より深い溶接ビード
が形成される条件下で容器本体に角継手溶接されること
が好ましい。
A lid plate or a bottom plate is attached to a cylindrical container body by a square joint welding.
When contacting, the wall thickness t of the container body determined from the required tensile strength
(M) is the thickness lower limit value t0Above value tTwoAnd the welding depth lower limit
Value W 0And the thickness t1And welding depth W1Container
Fatigue fracture load P obtained by fatigue test of test specimen1(N)
According to the equation (1), the stress intensity factor K (N / m3/2)
And fracture required according to the calculated value of stress intensity factor K
Load P (N) and wall thickness tTwoInto the equation (2)
WTwoAnd the thickness t of the container body to be actually welded is
tTwoAnd the welding depth WTwoOr welding depth lower limit W0Horse
Under conditions where a welding depth W greater than the larger value is obtained,
By welding the lid plate or bottom plate to the container body, the container body
The lid plate or bottom plate is welded. Further, the lid plate or the bottom plate is
Wall thickness lower limit value t0The lower limit of the wall thickness for a container body with a wall thickness t equal to
Value t0Into the equation (2)TwoOr welding
Depth lower limit value W0Weld bead deeper than the larger value of
Is welded to the container body under the condition that
Is preferred.

【0006】要求引張強さに対する肉厚下限値t0は、
溶接ビード部よりも容器本体又は容器本体の溶接熱影響
部が破壊されるほどの深い溶接深さで溶接ビードが形成
された容器試験体を引張試験に供し、得られた容器本体
の破壊荷重P(N)又は引張強さσ(N/mm2)から
算出できる。要求引張強さに対する溶接深さ下限値W0
は、溶接ワイヤの材質等から定まる既知の溶接ビード部
の剪断強さτW(N/mm2)から算出できる。また、肉
厚tを肉厚t2以上,溶接深さWを深さW2以上とし、容
器本体のコーナ部の溶落ちを防止するように溶接深さW
との関係で肉厚tを大きく設定することが好ましい。容
器本体及び蓋板又は底板としては、溶接可能な金属また
は合金である限り種類に制約を受けることはないが、軽
量化のためにはアルミニウム合金が好ましい。なかで
も、Al−Mg−Si系アルミニウム合金は、押出性等
の成形性が良く,容器本体部分を容易に且つ低コストで
製造できることから好適な材料である。
The thickness lower limit value t 0 for the required tensile strength is:
A container specimen having a weld bead formed at a welding depth deep enough to break the container body or the weld heat-affected zone of the container body than the weld bead portion is subjected to a tensile test, and the obtained breaking load P of the container body is obtained. (N) or the tensile strength σ (N / mm 2 ). Lower limit of welding depth W 0 for required tensile strength
Can be calculated from the known shear strength τ W (N / mm 2 ) of the weld bead determined from the material of the welding wire and the like. Further, the thickness t the thickness t 2 or more, the weld depth W and the depth W 2 or more, the container body of the corner portion of the burn-welding depth W to prevent
It is preferable to set the thickness t to be large in relation to the above. The type of the container body and the lid plate or the bottom plate is not limited as long as it is a weldable metal or alloy, but an aluminum alloy is preferable for weight reduction. Among them, an Al-Mg-Si-based aluminum alloy is a suitable material because it has good formability such as extrudability, and can easily produce the container body at low cost.

【0007】[0007]

【作用】角継手溶接では、図2に模式的に示すように容
器本体1に蓋板2を固着する溶接ビード3の下方に材料
間の突合せ面4がある。繰返し応力が加わると溶接部下
端6に大きな応力集中が発生し、応力集中個所が疲労破
壊の起点となって容器本体1の外側に向けて亀裂5が入
り、容器本体1の疲労破壊に至る。一方、圧力容器に要
求される引張強さから容器本体1の肉厚下限値t0及び
溶接ビード3の溶接深さ下限値W0は、容器本体1の強
度(溶接時の熱影響によって強度が低下している部分H
AZがある場合には、その強度)及び溶接ビード3の剪
断強度から通常の強度計算で求められるが、疲労強度に
関しては実際の疲労試験で容器本体1の肉厚t及び溶接
ビード3の深さWを定めて確認のために測定しているに
過ぎない。繰返し応力に起因する疲労破壊の形態は、本
発明者等による調査結果から、レーザ溶接で形成した板
材の重ね継手の疲労破壊とほぼ同じであることが判っ
た。すなわち、図3(a)に示すように重ねレーザ溶接
された板材A,Bに引張り剪断力Fを繰り返し加える
と、レーザ溶接部LWからボンドに沿って亀裂Xが発生
する。容器本体1に蓋板2が溶接された容器の疲労破壊
は,板材A,Bの内部への亀裂Xの伝播に起因する破壊
とメカニズムが一致する。
In the corner joint welding, as schematically shown in FIG. 2, there is a butt surface 4 between the materials below a welding bead 3 for fixing the cover plate 2 to the container body 1. When repeated stress is applied, large stress concentration occurs at the lower end 6 of the welded portion, and the stress concentration point becomes a starting point of fatigue failure, and a crack 5 is formed toward the outside of the container body 1, leading to fatigue failure of the container body 1. On the other hand, the welding depth lower limit W 0 of the wall thickness lower limit t 0 and the weld bead 3 of the container body 1 from the tensile strength required for the pressure vessel, strength by heat influence upon the strength of the container body 1 (welded Decreasing part H
If there is AZ, the strength can be obtained by ordinary strength calculation from the shear strength of the weld bead 3 and the shear strength of the weld bead 3. It is merely determined for confirmation with W being set. From the results of the investigation by the present inventors, it was found that the form of the fatigue fracture caused by the repeated stress was almost the same as the fatigue fracture of the lap joint of the sheet material formed by laser welding. That is, FIGS. 3 (a) are shown as superimposed laser welded sheet A, the addition repeated tensile shear force F to B, the crack X occurs along the laser weld L W to the bond. The mechanism of the fatigue fracture of the container in which the lid plate 2 is welded to the container body 1 is the same as that of the fracture caused by the propagation of the crack X into the plate materials A and B.

【0008】レーザ溶接による重ね継手に関しては、応
力拡大係数の概念及び式が第34回レーザ熱加工研究会
論文集(1995年3月)第93〜100頁に報告され
ている。そこで、本発明者等は、応力拡大係数の概念及
び式が圧力容器の角継手溶接にも応用できると推定し
た。応力拡大係数は、引張り剪断力Fを加えた場合,図
3(b)に示すように板材A,Bに生じる変形の結果、
応力集中部における亀裂の生じ易さを示す指標である。
応力拡大係数は、材質,板厚T,溶接長さw等で定ま
り、小さい値ほど耐疲労強度に優れた継手といえる。圧
力容器の角継手溶接に応力拡大係数の概念を適用する
と、応力拡大係数K(N/m3/2)は、内圧等によって
容器本体1の肉厚t(m),蓋板2に加わる荷重P
(N)及び溶接ビード3の深さW(m)を因子として前
掲の式(1)又は(2)で表わされる。
[0008] Regarding lap joints formed by laser welding, the concept and formula of the stress intensity factor are reported in the 34th Laser Thermal Processing Research Society Transactions (March 1995), pp. 93-100. Therefore, the present inventors have estimated that the concept and formula of the stress intensity factor can be applied to corner joint welding of a pressure vessel. As shown in FIG. 3 (b), the stress intensity factor is the result of deformation occurring in the plate materials A and B when a tensile shear force F is applied.
This is an index indicating the likelihood of crack generation at the stress concentration portion.
The stress intensity factor is determined by the material, the plate thickness T, the welding length w, and the like, and the smaller the value, the better the fatigue resistance. When the concept of the stress intensity factor is applied to the corner joint welding of the pressure vessel, the stress intensity factor K (N / m 3/2 ) is calculated by the load applied to the thickness t (m) of the container body 1 and the cover plate 2 due to the internal pressure or the like. P
(N) and the depth W (m) of the weld bead 3 are expressed by the above formula (1) or (2) using the factors as factors.

【0009】そこで、適宜の肉厚t1をもつ容器本体1
と蓋板2とを溶接深さW1で角継手溶接した予備試験用
圧力容器の疲労破壊荷重P1を測定する。疲労破壊荷重
1の測定値を前掲の式(1)に代入して応力拡大係数
Kを求める。次いで,前述の肉厚下限値t0又は容器本
体1に他の部品を固定する場合等、他の要因を考慮して
定められる肉厚下限値t0より大きな肉厚等により肉厚
2と目標疲労破壊荷重Pを式(2)に代入し、応力拡
大係数Kとして前述の算出値を与えると、使用する容器
本体1の肉厚t2に応じて溶接ビード3の要求疲労強度
を満足する溶接深さW2が定まる。これにより、圧力容
器に要求される強度を満足する肉厚tは最小値を肉厚下
限値t0とし、引張強さ上で必要な溶接深さ下限値W0
は疲労強度上で必要な溶接深さW2の何れか大きい方の
値より深い値に溶接深さWを定める。該深さの溶接深さ
Wをもつ溶接ビード3を形成すると、必要強度を満足す
る溶接継ぎ手が得られることになる。求められた溶接深
さWよりも深い溶接ビード3が形成される溶接条件を決
定し、容器本体1と蓋板2とを角継手溶接する。たとえ
ば、MIG溶接等のアーク溶接では、開先深さ,溶接電
流,溶接電圧,溶接速度等によって溶接ビード3の深さ
Wを制御できる。また、電子ビーム溶接,レーザ溶接等
では,パワー密度や溶接速度を制御することにより溶接
ビー度3の深さWを制御できる。
Therefore, the container body 1 having an appropriate thickness t 1 is provided.
And measuring the fatigue fracture load P 1 of the corner joints welded preliminary test pressure vessel and a cover plate 2 by welding depth W 1. The measurement of fatigue fracture load P 1 by substituting in the above-formula (1) determine the stress intensity factor K. Then, like the case of fixing other components to the wall thickness lower limit value t 0 or container main body 1 described above, the thickness t 2 by a large wall thickness and the like than a thickness lower limit t 0 which is determined in consideration of other factors a target fatigue fracture load P into equation (2), given a calculated value mentioned above as the stress intensity factor K, which satisfy the requirements fatigue strength of the weld bead 3 in accordance with the thickness t 2 of the container body 1 to be used welding depth W 2 is determined. As a result, the minimum thickness t that satisfies the strength required for the pressure vessel is set to the minimum wall thickness t 0, and the welding depth lower limit W 0 required for tensile strength or the required welding depth required for fatigue strength. determining the depth W or greater weld depth W deeper than the value of 2,. When the welding bead 3 having the welding depth W of the above depth is formed, a welding joint satisfying the required strength can be obtained. The welding conditions for forming the weld bead 3 deeper than the obtained welding depth W are determined, and the container main body 1 and the cover plate 2 are subjected to corner joint welding. For example, in arc welding such as MIG welding, the depth W of the weld bead 3 can be controlled by the groove depth, welding current, welding voltage, welding speed, and the like. Further, in electron beam welding, laser welding, and the like, the depth W of the weld bead degree 3 can be controlled by controlling the power density and the welding speed.

【0010】このようにして、予備試験用容器を用いて
一つの接合部形状についてのみ測定することにより、溶
接部の形状から要求疲労強度を満足する容器本体1の肉
厚t及び溶接ビード3の深さWが求められるので、長時
間を要した疲労試験を大幅に短縮化でき、設計,設計変
更等を低コストで行える。また、不必要に厚肉の容器本
体1を使用する必要がないため、圧力容器の軽量化が図
られ、材料コストの上昇も抑制される。なかでも、外径
に比較して容器本体1が長く、容器本体1の重量が大き
くなり、繰返し応力が加わるストラットダンパ,ビスカ
スダンパ等の圧力容器の形状を容易に決定でき、裏ビー
ドの発生なく容器本体1に蓋板2や底板を角継手溶接す
ることが可能となり、またその重量も小さくなる。
In this way, by measuring only one joint shape using the preliminary test container, the thickness t of the container body 1 and the weld bead 3 satisfying the required fatigue strength are determined from the shape of the welded portion. Since the depth W is required, the fatigue test that requires a long time can be greatly shortened, and design and design change can be performed at low cost. Further, since it is not necessary to use the thick container body 1 unnecessarily, the pressure vessel can be reduced in weight and the increase in material cost can be suppressed. Above all, the container body 1 is longer than the outer diameter, the weight of the container body 1 increases, and the shape of a pressure vessel such as a strut damper or a viscous damper to which repeated stress is applied can be easily determined, and no back bead occurs. The lid plate 2 and the bottom plate can be welded to the container body 1 by square joint, and the weight thereof can be reduced.

【0011】要求引張強さに応じた容器本体1の肉厚下
限値t0及び溶接ビード3の溶接深さ下限値W0は、既知
の値があればこれを利用できるが、次のように決定する
こともできる。先ず、容器本体1又はHAZ(熱影響
部)が先に破壊するほど深い溶接深さの試験体を作製す
る。なお、以下の説明では、HAZ破壊が生じる場合に
は,この部分を単に容器本体1という。容器本体1を引
張試験に供し、容器本体1の強度を測定する。容器本体
1の破壊荷重Pは、容器本体1の外径R1(mm)及び
内径R2(mm)と式(3)の関係にある。また、外径
1又は内径R2は、容器本体1の要求形状から定まる値
である。したがって、引張試験で得られた容器本体1の
破壊荷重P(N)及び引張強さσ(N/mm2)から、
要求特性を満足する肉厚下限値t0[t=(R1−R2
/2]が算出される。他方、溶接ビード3の深さWはビ
ード破壊荷重PW(N),ビード剪断強さτW(N/mm
2)及び容器本体1の外径R1と式(4)の関係にあるの
で、溶接ワイヤの材質等から定まる既知の値又は容器本
体1よりも溶接ビード3が先に剪断破壊される溶接深さ
又は肉厚の容器を用いた引張試験の測定値から溶接深さ
下限値W0が求められる。 P=σ×(πR1 2−πR2 2) ・・・・(3) PW=W×τW×2πR1 ・・・・(4)
The lower limit value t 0 of the wall thickness of the container body 1 and the lower limit value W 0 of the welding depth of the weld bead 3 according to the required tensile strength can be used if they have known values. You can also decide. First, a specimen having a welding depth so deep that the container body 1 or the HAZ (heat affected zone) is broken first is prepared. In the following description, when HAZ destruction occurs, this portion is simply referred to as a container body 1. The container body 1 is subjected to a tensile test, and the strength of the container body 1 is measured. The breaking load P of the container body 1 is related to the outer diameter R 1 (mm) and the inner diameter R 2 (mm) of the container body 1 by the formula (3). The outer diameter R 1 or the inner diameter R 2 is a value determined from the required shape of the container body 1. Therefore, from the breaking load P (N) and the tensile strength σ (N / mm 2 ) of the container body 1 obtained in the tensile test,
Thickness lower limit value t 0 [t = (R 1 −R 2 ) satisfying required characteristics]
/ 2] is calculated. On the other hand, the depth W of the weld bead 3 is determined by the bead breaking load P W (N) and the bead shear strength τ W (N / mm
2) and therefore the relationship of the vessel outer diameter R 1 of formula (4 of the body 1), the welding depth is weld bead 3 is shear failure earlier than the known value or the container body 1 which is determined from the material of the welding wire welding depth lower limit W 0 determined from of or measurements of the tensile test using a container wall thickness. P = σ × (πR 1 2 -πR 2 2) ···· (3) P W = W × τ W × 2πR 1 ···· (4)

【0012】本発明に従って溶接深さWを大きくすると
き、接合部の材料に多量の熱が加えられ、熱変形や溶落
ち等が発生する虞れがある。熱変形や溶落ち等の欠陥
は、溶接深さWに応じて容器本体1の肉厚tを大きく設
定することにより防止できる。たとえば、溶接ビード3
の最深部6と容器本体1のコーナ部7とを結ぶ直線と容
器本体1の内周面との間の角度θが15度以上となるよ
うに、容器本体1の肉厚t及び溶接深さWを設定する。
角度θが15度未満ではアークが被溶接材料の内部に十
分に入らず、強度のある溶接継手が得られない。更に、
溶接時の熱が容器本体1の肉厚方向全域に伝播され、コ
ーナ部7等に溶落ちが発生し易くなる。
When the welding depth W is increased in accordance with the present invention, a large amount of heat is applied to the material of the joint, and there is a possibility that thermal deformation, burnout, etc. may occur. Defects such as thermal deformation and burnout can be prevented by setting the thickness t of the container body 1 large according to the welding depth W. For example, weld bead 3
The thickness t and the welding depth of the container body 1 are set so that the angle θ between the straight line connecting the deepest portion 6 of the container body 1 and the corner portion 7 of the container body 1 and the inner peripheral surface of the container body 1 is 15 degrees or more. Set W.
When the angle θ is less than 15 degrees, the arc does not sufficiently enter the inside of the material to be welded, and a strong welded joint cannot be obtained. Furthermore,
The heat at the time of welding is transmitted to the entire area of the container body 1 in the thickness direction, and burn-through easily occurs in the corner portions 7 and the like.

【0013】[0013]

【実施例1】容器本体1として外径60mm,内径50
mm長さ300mmのJIS A6061−T6アルミ
ニウム合金押出材(肉厚t=5mm)を、蓋板2として
外径50mm,板厚14.5mmのJIS A6061
アルミニウム合金円盤を使用した。容器本体1の内周面
と蓋板2の縁部との間に開先角度50〜60度のV型継
手を形成し、蓋板2を容器本体1に嵌め込んで角継手溶
接した。JIS A6061アルミニウム合金は、溶接
部近傍にHAZが生じる熱処理型アルミニウム合金であ
る。溶加材としてJIS A5356の溶接ワイヤを用
いてMIG溶接し、開先深さ,溶接速度及びパス回数に
よって溶接深さWを制御した。溶接部を蓋板2の板厚方
向に切断して溶接部を観察したところ、開先深さ4m
m,溶接電流230A,溶接電圧27V,溶接速度1m
/分の条件で溶接深さWが4mmとなり、開先深さ6m
m,溶接電流230A,溶接電圧27V,溶接速度0.
6m/分の条件で溶接深さWが6mmとなり、開先深さ
10mm,溶接電流230A,溶接電圧27V,溶接速
度0.6m/分の条件で溶接深さWが10mmとなっ
た。
Embodiment 1 An outer diameter of 60 mm and an inner diameter of 50 were used as the container body 1.
A JIS A6061-T6 aluminum alloy extruded material (thickness t = 5 mm) having a length of 300 mm and a length of 300 mm was used as the cover plate 2 in a JIS A6061 having an outer diameter of 50 mm and a plate thickness of 14.5 mm.
An aluminum alloy disk was used. A V-shaped joint having a groove angle of 50 to 60 degrees was formed between the inner peripheral surface of the container main body 1 and the edge of the lid plate 2, and the lid plate 2 was fitted into the container main body 1 and subjected to corner joint welding. JIS A6061 aluminum alloy is a heat treatment type aluminum alloy in which HAZ is generated near a welded portion. MIG welding was performed using a JIS A5356 welding wire as a filler material, and the welding depth W was controlled by the groove depth, welding speed, and number of passes. When the welded portion was cut in the thickness direction of the lid plate 2 and the welded portion was observed, the groove depth was 4 m.
m, welding current 230A, welding voltage 27V, welding speed 1m
/ Min condition, welding depth W is 4mm, groove depth 6m
m, welding current 230A, welding voltage 27V, welding speed 0.
The welding depth W was 6 mm under the condition of 6 m / min, and the welding depth W was 10 mm under the conditions of a groove depth of 10 mm, a welding current of 230 A, a welding voltage of 27 V, and a welding speed of 0.6 m / min.

【0014】容器本体1に溶接された蓋板2の中央部に
工具挿入用の開口部を開け、容器本体1の他端を固定
し、開口部に挿入した工具を電気油圧式サーボパルサに
接続し、平均荷重17.4kNで荷重振幅を変化させて
繰返し荷重を加える疲労試験を行った。表1の試験結果
にみられるように、溶接深さW=4mmの溶接部をもつ
容器では、107回の疲労破壊荷重が約3kNであっ
た。溶接深さWが6mm及び10mmの場合に式(1)
及び式(2)から疲労破壊荷重Pを算出すると、溶接深
さW=4mmの疲労破壊荷重Pに比較してそれぞれ約
1.22倍及び1・58倍高い値になる。他方、疲労試
験による実測値では、溶接深さW=6mmで疲労破壊荷
重Pが3.5kN(1.2倍)、溶接深さW=10mm
で疲労破壊荷重Pが5.0kN(1.7倍)となってお
り、計算結果と高い一致性を示していた。
An opening for tool insertion is opened at the center of the lid plate 2 welded to the container body 1, the other end of the container body 1 is fixed, and the tool inserted into the opening is connected to an electro-hydraulic servo pulser. A fatigue test was conducted in which the load amplitude was changed at an average load of 17.4 kN and the load was repeatedly applied. As seen in Table 1 of test results, the container having a welded portion of the welded depth W = 4 mm, the fatigue breaking load of 10 7 times was about 3 kN. Formula (1) when the welding depth W is 6 mm and 10 mm
When the fatigue fracture load P is calculated from Equation (2), the values are about 1.22 times and 1.58 times higher than the fatigue fracture load P at a welding depth W of 4 mm. On the other hand, the actual values measured by the fatigue test indicate that the fatigue fracture load P is 3.5 kN (1.2 times) at the welding depth W = 6 mm and the welding depth W = 10 mm.
, The fatigue fracture load P was 5.0 kN (1.7 times), showing high consistency with the calculation results.

【0015】 [0015]

【0016】[0016]

【実施例2】実施例1と同様にして容器本体1に蓋板2
を角継手溶接し、軸方向の荷重を容器に加える引張試験
に供した。表2の試験結果にみられるように、溶接深さ
Wの増加に応じて破壊荷重も増加した。また、上記した
溶接ワイヤの材質において、溶接ビード3の剪断強度τ
W=145kN/mm2を用いて式(4)に従って容器本
体1の破壊荷重P及びビード破壊荷重PWを計算した結
果をビード破壊荷重として表2に併せ示す。実施例で使
用した材質は、HAZ部を持つものであり、溶接深さを
大きくするとビード部より容器本体1側のHAZ部が破
壊するが、溶接深さW=9.1mmの場合にはHAZ部
で破壊した。この破壊荷重からHAZ部の強度を求め、
HAZ部破壊荷重を計算した値を表2に掲げた。P<P
Wのときには破壊位置がHAZにあり、P>PWのときに
は破壊位置が溶接ビード3にあった。また、溶接深さW
と破壊荷重Pとの関係を整理したところ、図4に示すよ
うに溶接深さWの増加に応じてビード破壊からHAZ破
壊に移行することが判った。ビード破壊がHAZ破壊に
変わる境界は、溶接深さWと直線的な関係にあり、この
境界線以上に溶接深さWを深くしてもHAZで破壊する
ため破壊荷重Pは増加しないと考えられる。したがっ
て、最大破壊荷重を得るためには、6.8mmの溶接深
さWが必要と推定される。
[Embodiment 2] The lid plate 2 is attached to the container body 1 in the same manner as in Embodiment 1.
Was subjected to a tensile test in which a load in the axial direction was applied to the container. As can be seen from the test results in Table 2, the breaking load increased as the welding depth W increased. Further, in the above-mentioned material of the welding wire, the shear strength τ of the welding bead 3 is determined.
Table 2 also shows the results of calculating the breaking load P and the bead breaking load PW of the container body 1 according to the equation (4) using W = 145 kN / mm 2 . The material used in the embodiment has a HAZ portion. When the welding depth is increased, the HAZ portion on the container body 1 side is broken from the bead portion. However, when the welding depth W is 9.1 mm, the HAZ portion is broken. Destroyed in part. From the breaking load, the strength of the HAZ part is obtained,
Table 2 shows the calculated values of the HAZ breaking load. P <P
When W, the fracture position was in the HAZ, and when P> PW , the fracture position was in the weld bead 3. Also, the welding depth W
When the relationship between the welding depth W and the fracture load P was arranged, it was found that as shown in FIG. The boundary where the bead fracture changes to the HAZ fracture has a linear relationship with the welding depth W. Even if the welding depth W is increased beyond this boundary, the fracture load P is considered not to increase because the HAZ fracture occurs. . Therefore, in order to obtain the maximum breaking load, it is estimated that a welding depth W of 6.8 mm is necessary.

【0017】 [0017]

【0018】[0018]

【発明の効果】以上に説明したように、本発明において
は、容器本体の肉厚に応じて予め計算で求められた溶接
深さが得られる条件下で容器本体に蓋板又は底板を角継
手溶接しているので、疲労破壊強度の高い溶接部が形成
される。そのため、従来では長時間をかかっていた疲労
試験試験が大幅に短縮化され、信頼性の高い溶接部をも
つ容器が得られる。得られた容器は、不必要に厚い容器
本体の必要なく耐疲労破壊性に優れていることから、軽
量性が要求されるストラットダンパ,ビスカスダンパ等
の圧力容器として使用される。
As described above, according to the present invention, the cover plate or the bottom plate is attached to the container body under the condition that the welding depth calculated in advance according to the thickness of the container body can be obtained. Since welding is performed, a weld having high fatigue fracture strength is formed. Therefore, the fatigue test, which conventionally took a long time, is greatly reduced, and a container having a highly reliable welded portion can be obtained. The obtained container has excellent fatigue fracture resistance without the need for an unnecessarily thick container body, and is therefore used as a pressure container such as a strut damper or a viscous damper that requires light weight.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 容器本体に蓋板を角継手溶接した容器の一部
断面図
FIG. 1 is a partial sectional view of a container in which a lid plate is welded to a container body by a square joint.

【図2】 溶接部の断面図FIG. 2 is a sectional view of a welded portion.

【図3】 レーザ溶接で形成した板材の重ね継手(a)
及び板材に引張り剪断力を加えたときに生じる板材の変
形(b)を説明する図
FIG. 3 is a lap joint of a plate material formed by laser welding (a).
For explaining the deformation (b) of the plate material generated when a tensile shear force is applied to the plate material

【図4】 ビード破壊からHAZ破壊に変わる境界が溶
接深さに比例して変わることを示したグラフ
FIG. 4 is a graph showing that the boundary from bead fracture to HAZ fracture changes in proportion to welding depth.

【符号の説明】[Explanation of symbols]

1:容器本体 2:蓋板 3:溶接ビード 4:
突合せ面 5:亀裂 6:溶接ビードの最深部 7:容器本体のコーナ部 t:容器本体の肉厚 W:溶接ビードの溶接深さ
P:荷重
1: container body 2: lid plate 3: weld bead 4:
Butt surface 5: Crack 6: Deepest part of weld bead 7: Corner part of container body t: Wall thickness of container body W: Weld depth of weld bead
P: Load

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 103:10 B23K 103:10 (72)発明者 堀田 元司 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 Fターム(参考) 3E072 AA01 CA06 3J046 AA01 BC13 CA01 DA10 EA03 4E068 BA03 DA06 DB04 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B23K 103: 10 B23K 103: 10 (72) Inventor Motoshi Hotta 1-34-1 Kambara, Kambara-cho, Abara-gun, Shizuoka Prefecture No. Nippon Light Metal Co., Ltd. Group Technology Center F term (reference) 3E072 AA01 CA06 3J046 AA01 BC13 CA01 DA10 EA03 4E068 BA03 DA06 DB04

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 筒状の容器本体に蓋板又は底板が角継手
溶接され、要求引張強さから定まる容器本体の肉厚t
(m)を肉厚下限値t0以上の値t2とし、溶接深さ下限
値をW0とし、 一方適宜の肉厚t1及び溶接深さW1の容器試験体の疲労
試験で得られた疲労破壊荷重P1(N)から式(1)に従
って応力拡大係数K(N/m3/2)を算出し、 応力拡大係数Kの算出値に応じて要求される疲労破壊荷
重P(N)及び肉厚t2を式(2)に代入して溶接深さW
2を求め、 実際に溶接される容器本体の肉厚tを肉厚t2以上と
し、溶接深さW2又は溶接深さ下限値W0のうち大きい方
の値以上の溶接深さWで容器本体に蓋板又は底板が溶接
されていることを特徴とする容器本体と蓋板又は底板と
の溶接構造。 K=(P1/2t1)・(π/W11/2 ・・・・(1) K=(P/2t2)・(π/W21/2 ・・・・(2)
A cover plate or a bottom plate is welded to a cylindrical container body by a square joint, and the thickness t of the container body determined from a required tensile strength.
(M) is the thickness lower limit value t 0 or more values t 2, the weld depth lower limit and W 0, whereas obtained in the fatigue tests of appropriate thickness t 1 and the welding depth W 1 of the vessel specimens The stress intensity factor K (N / m 3/2 ) is calculated from the fatigue fracture load P 1 (N) according to the equation (1), and the required fatigue intensity P (N ) And the wall thickness t 2 into equation (2) to obtain the welding depth W
2 calculated, container actually the thickness t of the container body to be welded to the wall thickness t 2 or more, the weld depth W 2 or welding depth limit value W larger value than the welding depth W of the 0 A welded structure between a container body and a lid plate or a bottom plate, wherein a lid plate or a bottom plate is welded to the main body. K = (P 1 / 2t 1 ) · (π / W 1) 1/2 ···· (1) K = (P / 2t 2) · (π / W 2) 1/2 ···· (2 )
【請求項2】 筒状の容器本体に蓋板又は底板を角継手
溶接する際、要求引張強さから定まる容器本体の肉厚t
(m)を肉厚下限値t0以上の値t2とし、溶接深さ下限
値をW0とし、 一方適宜肉厚t1及び溶接深さW1の容器試験体の疲労試
験で得られた疲労破壊荷重P1(N)から式(1)に従っ
て応力拡大係数K(N/m3/2)を算出し、 応力拡大係数Kの算出値に応じて要求される疲労破壊荷
重P(N)及び肉厚t2を式(2)に代入して溶接深さW
2を求め、 実際に溶接する容器本体の肉厚tを肉厚t2以上とし、
溶接深さW2又は溶接深さ下限値W0のうち大きい方の値
以上の溶接深さWが得られる条件下で容器本体に蓋板又
は底板を溶接することを特徴とする容器本体と蓋板又は
底板との溶接方法。 K=(P1/2t1)・(π/W11/2 ・・・・(1) K=(P/2t2)・(π/W21/2 ・・・・(2)
2. The thickness t of the container body determined from the required tensile strength when the lid plate or the bottom plate is welded to the cylindrical container body by corner joint welding.
(M) is the thickness lower limit value t 0 or more values t 2, the weld depth lower limit and W 0, whereas obtained in the fatigue tests of appropriate thickness t 1 and the welding depth W 1 of the vessel specimens Calculate the stress intensity factor K (N / m 3/2 ) from the fatigue fracture load P 1 (N) according to equation (1), and calculate the required fatigue fracture load P (N) according to the calculated value of the stress intensity factor K. And the thickness t 2 into equation (2) to obtain the welding depth W
2 calculated, actually the thickness t of the welded to the container body and the wall thickness t 2 or more,
Container body and a lid, characterized in that welding the cover plate or the bottom plate to the container body under conditions in which the value or more weld depth W of the larger of the welding depth W 2 or welding depth lower limit W 0 is obtained Welding method with plate or bottom plate. K = (P 1 / 2t 1 ) · (π / W 1) 1/2 ···· (1) K = (P / 2t 2) · (π / W 2) 1/2 ···· (2 )
【請求項3】 肉厚下限値t0に等しい肉厚tの容器本
体に、肉厚下限値t0=t2として式(2)に代入して求
められる深さW2又は溶接深さ下限値W0のうち大きい方
の値より深い溶接ビードが形成される条件下で蓋板又は
底板を角継手溶接する請求項2記載の容器本体と蓋板又
は底板との溶接方法。
Wherein the container body of the same thickness t thicker lower limit t 0, the thickness lower limit t 0 = by substituting the depth obtained equation (2) as t 2 W 2 or welding depth limit welding method of claim 2 container body and the cover plate according or bottom plate for angular joint welding the cover plate or the bottom plate under the conditions deep weld bead from the larger value is formed of the values W 0.
【請求項4】 溶接ビード部よりも容器本体又は容器本
体の溶接熱影響部が破壊される深い溶接深さで溶接ビー
ドが形成された容器試験体を引張試験に供し、得られた
容器本体の破壊荷重P(N)又は引張強さσ(N/mm
2)から要求引張強さに対する肉厚下限値t0を算出し、 既知の溶接ビード部の剪断強さτW(N/mm2)から要
求引張強さに対する溶接深さ下限値W0を算出し、 算出結果の肉厚下限値t0及び溶接深さ下限値W0を要求
引張強さから定まる肉厚下限値及び溶接深さ下限値とし
て使用する請求項2記載の容器本体と蓋板又は底板との
溶接方法。
4. A container specimen having a weld bead formed at a deeper welding depth at which the container body or the weld heat affected zone of the container body is destroyed than the weld bead portion is subjected to a tensile test. Breaking load P (N) or tensile strength σ (N / mm
2 ) Calculate the lower wall thickness t 0 for the required tensile strength, and calculate the lower limit W 0 of the welding depth for the required tensile strength from the known shear strength τ W (N / mm 2 ) of the weld bead. The container body and the lid plate according to claim 2, wherein the lower thickness limit value t 0 and the lower weld depth value W 0 of the calculation result are used as the lower thickness limit value and the lower weld depth value determined from the required tensile strength. Welding method with bottom plate.
【請求項5】 肉厚tを肉厚t2以上,溶接深さWを深
さW2以上とし、容器本体のコーナ部の溶落ちを防止す
るように溶接深さWとの関係で肉厚tを大きく設定する
請求項2記載の容器本体と蓋板又は底板との溶接方法。
5. The thickness t is not less than the thickness t 2 and the welding depth W is not less than the depth W 2, and the thickness is determined in relation to the welding depth W so as to prevent burn-through of the corner portion of the container body. 3. The method for welding a container body and a lid plate or a bottom plate according to claim 2, wherein t is set to be large.
【請求項6】 容器本体及び蓋板又は底板に熱処理型ア
ルミニウム合金を使用する請求項1〜4の何れかに記載
の容器本体と蓋板又は底板との溶接方法。
6. The method according to claim 1, wherein a heat-treatable aluminum alloy is used for the container body and the lid plate or the bottom plate.
【請求項7】 請求項1〜5の何れかに記載の溶接方法
で容器本体に底板を角継手溶接したストラットダンパ。
7. A strut damper obtained by welding a bottom plate to a container body by a square joint using the welding method according to claim 1.
【請求項8】 請求項1〜5の何れかに記載の溶接方法
で容器本体に蓋板を角継手溶接したビスカスダンパ。
8. A viscous damper in which a lid plate is corner-joint-welded to a container body by the welding method according to claim 1.
JP27020099A 1999-09-24 1999-09-24 Structure of welded part between vessel body and cover plate or bottom plate, and welding method Pending JP2001087881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27020099A JP2001087881A (en) 1999-09-24 1999-09-24 Structure of welded part between vessel body and cover plate or bottom plate, and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27020099A JP2001087881A (en) 1999-09-24 1999-09-24 Structure of welded part between vessel body and cover plate or bottom plate, and welding method

Publications (1)

Publication Number Publication Date
JP2001087881A true JP2001087881A (en) 2001-04-03

Family

ID=17482934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27020099A Pending JP2001087881A (en) 1999-09-24 1999-09-24 Structure of welded part between vessel body and cover plate or bottom plate, and welding method

Country Status (1)

Country Link
JP (1) JP2001087881A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056302A (en) * 2011-09-08 2013-03-28 Nagaoka Univ Of Technology High pressure processing apparatus
CN115430980A (en) * 2022-09-28 2022-12-06 深圳市丰瑞钢构工程有限公司 Welding process for super-long span steel structure beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056302A (en) * 2011-09-08 2013-03-28 Nagaoka Univ Of Technology High pressure processing apparatus
CN115430980A (en) * 2022-09-28 2022-12-06 深圳市丰瑞钢构工程有限公司 Welding process for super-long span steel structure beam
CN115430980B (en) * 2022-09-28 2024-05-28 深圳市丰瑞钢构工程有限公司 Welding process for ultra-long span steel structure beam

Similar Documents

Publication Publication Date Title
AU760996B2 (en) Weldable aluminium alloy structural component
US10722976B2 (en) Laser welded joint and laser welding method
US5233149A (en) Reprocessing weld and method
Gemme et al. Effect of welding parameters on microstructure and mechanical properties of AA7075‐T6 friction stir welded joints
Padmanaban et al. Effect of process parameters on the tensile strength of friction stir welded dissimilar aluminum joints
Fowler et al. Fatigue and bending behaviour of friction stir welded DH36 steel
Polezhayeva et al. Fatigue performance of friction stir welded marine grade steel
JP2006198675A (en) Mounting structure of steel-made member for car and aluminum alloy-made member
JP2008106324A (en) High strength steel sheet for lap resistance welding, and lap welding joint
JP2001087881A (en) Structure of welded part between vessel body and cover plate or bottom plate, and welding method
JP6693205B2 (en) Welding method and ship manufacturing method
JPH11104865A (en) Welding and welding structure
Meneghetti et al. Fatigue properties of austempered ductile iron-to-steel dissimilar arc-welded joints
JP6380672B2 (en) Welded joint and its manufacturing method
Lertora et al. Comparison between FSW and bonded lap joints–A preliminary investigation
Han et al. Effects of expulsion in spot welding of cold rolled sheet steels
Baskutis et al. Experimental study of welded joints of aluminium alloy AW6082
Sayer et al. The influence of friction stir welding parameters on the mechanical properties and low cycle fatigue in AA 6063 (AlMgSi0. 5) alloy
Katayama et al. Evaluation of mechanical properties of laser-welded aluminum alloy
CN105945409B (en) The welding method of hatch coaming
JPS61219484A (en) Method for one side welding
JP2023081555A (en) Method for evaluating fatigue strength of steel plate with spot weld zone, and steel plate with spot weld zone
CN112399903B (en) Method for thermally connecting two workpiece sections
JP2001079673A (en) Method for welding diaphragm to box column
JP4465055B2 (en) Welding method for structural steel