JP2001085691A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2001085691A
JP2001085691A JP26374299A JP26374299A JP2001085691A JP 2001085691 A JP2001085691 A JP 2001085691A JP 26374299 A JP26374299 A JP 26374299A JP 26374299 A JP26374299 A JP 26374299A JP 2001085691 A JP2001085691 A JP 2001085691A
Authority
JP
Japan
Prior art keywords
channel
region
semiconductor device
channel region
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26374299A
Other languages
Japanese (ja)
Inventor
Yasushi Akasaka
泰志 赤坂
Tsunetoshi Arikado
経敏 有門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26374299A priority Critical patent/JP2001085691A/en
Priority to US09/609,107 priority patent/US6617226B1/en
Publication of JP2001085691A publication Critical patent/JP2001085691A/en
Priority to US10/406,281 priority patent/US6989316B2/en
Priority to US10/623,732 priority patent/US20040070045A1/en
Priority to US12/068,635 priority patent/US7772671B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase a current driving capability even when a channel length is identical. SOLUTION: The channel region of a MIS-type semiconductor element is divided into at least two sections in a channel width direction by an isolating and insulating film 12 whose surface is situated in a position lower than the surface of protruding parts. In addition, first regions near steps between recessed parts and the protruding parts are provided, and second regions which correspond to the protruding parts in the first regions are provided. A virtual semiconductor element is assumed in such a way that the total sum of widths in the channel width direction of the recessed parts is designated as Gt, that the total sum of widths in the channel width direction of the protruding parts is designated as Wt, that the current density of a current flowing to the channel region is equal to the current density of a current flowing to the second regions of the MIS-type semiconductor element and that the total current flowing to the channel region is equal to the total current flowing to the channel region of the MIS-type semiconductor element. When the virtual channel width of the virtual semiconductor element is designated as Wi, it is arranged that Wi-Wt> Gt is established.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置、特に
MIS型半導体素子の電流を増加させることが可能な半
導体装置に関する。
The present invention relates to a semiconductor device, and more particularly to a semiconductor device capable of increasing the current of a MIS type semiconductor device.

【0002】[0002]

【従来の技術】LSIの高集積化に伴い、配線等の負荷
が増大するため、MISトランジスタの電流駆動能力の
向上が望まれている。電流駆動能力を増大させるために
は、MISトランジスタのチャネル長Lを短くする、或
いはMISトランジスタのチャネル幅Wを長くすればよ
い。
2. Description of the Related Art As the integration of LSIs increases, the load on wiring and the like increases. Therefore, it is desired to improve the current driving capability of MIS transistors. In order to increase the current driving capability, the channel length L of the MIS transistor may be reduced, or the channel width W of the MIS transistor may be increased.

【0003】しかしながら、チャネル長を縮小するため
には、高性能のリソグラフィ技術、低加速イオン注入技
術、高度に制御された不純物活性化技術等の開発が必要
であり、これらの技術の開発に莫大な費用が必要とな
る。また、チャネル幅を増大させた場合には、トランジ
スタの占有面積が増大するため、チップ面積の増大につ
ながる。
However, in order to reduce the channel length, it is necessary to develop high-performance lithography technology, low-acceleration ion implantation technology, highly controlled impurity activation technology, and the like. Cost is required. Further, when the channel width is increased, the area occupied by the transistor increases, which leads to an increase in the chip area.

【0004】[0004]

【発明が解決しようとする課題】このように、LSIの
高集積化に伴い、MISトランジスタの電流駆動能力の
向上が望まれているが、トランジスタのチャネル長を縮
小するためには高度の技術開発が必要であり、トランジ
スタのチャネル長を増大させた場合にはトランジスタの
占有面積が増大するという問題がある。
As described above, with the increasing integration of LSIs, it is desired to improve the current driving capability of the MIS transistor. However, in order to reduce the channel length of the transistor, advanced technical development has been required. However, when the channel length of the transistor is increased, there is a problem that the area occupied by the transistor increases.

【0005】本発明は上記従来の課題に対してなされた
ものであり、チャネル長が同一であっても電流駆動能力
を増大させることが可能な半導体素子を提供することを
目的としている。
The present invention has been made to solve the above-mentioned conventional problems, and has as its object to provide a semiconductor device capable of increasing the current driving capability even when the channel length is the same.

【0006】[0006]

【課題を解決するための手段】本発明は、表面に凹部及
び前記凹部内に形成された凸部を有する半導体基板上の
前記凸部のチャネル領域上にゲート絶縁膜を介して形成
されたゲート電極と、前記チャネル領域を挟むように形
成されたソース及びドレイン領域と、を有するMIS型
半導体素子を備えた半導体装置であって、前記MIS型
半導体素子のチャネル領域は、前記凹部を挟んで前記M
IS型半導体素子のチャネル幅方向に隣接する凸部にわ
たって形成され、前記凸部の上面は前記凹部に形成され
た分離絶縁膜の上面よりも高い位置に位置することを特
徴とする。
According to the present invention, there is provided a semiconductor substrate having a concave portion on a surface and a convex portion formed in the concave portion, a gate formed on a channel region of the convex portion via a gate insulating film. A semiconductor device including an MIS type semiconductor element having an electrode and source and drain regions formed so as to sandwich the channel region, wherein a channel region of the MIS type semiconductor element has the M
The IS-type semiconductor device is formed over a protrusion adjacent to the IS-type semiconductor element in the channel width direction, and the upper surface of the protrusion is located higher than the upper surface of the isolation insulating film formed in the recess.

【0007】本発明は、表面に凹部及び凸部が形成され
た半導体基板のチャネル領域上にゲート絶縁膜を介して
形成されたゲート電極と、前記チャネル領域を挟むよう
に形成されたソース及びドレイン領域と、を有するMI
S型半導体素子を備えた半導体装置であって、前記MI
S型半導体素子のチャネル領域は、前記凹部内に形成さ
れ前記凸部の上面よりも低い位置に上面が位置する分離
絶縁膜によってチャネル幅方向に少なくとも2以上の区
間に分割され、かつ、前記凹部と凸部との段差近傍の第
1の領域と第1の領域間の凸部に対応する第2の領域と
を有し、前記凹部のチャネル幅方向の幅の総計をGt、
前記凸部のチャネル幅方向の幅の総計をWtとし、チャ
ネル長が前記MIS型半導体素子のチャネル長に等し
く、かつチャネル領域に流れる電流の電流密度が前記M
IS型半導体素子の第2の領域に流れる電流の電流密度
と同等で、かつチャネル領域に流れる総電流が前記MI
S型半導体素子のチャネル領域に流れる総電流と同等の
仮想的な半導体素子を想定し、該仮想的な半導体素子の
仮想的なチャネル幅をWiとしたときに、Wi−Wt>G
tとなるように構成したことを特徴とする。
According to the present invention, there is provided a gate electrode formed via a gate insulating film on a channel region of a semiconductor substrate having a concave portion and a convex portion formed on a surface thereof, and a source and a drain formed so as to sandwich the channel region. MI having a region
A semiconductor device having an S-type semiconductor element, wherein the MI
The channel region of the S-type semiconductor element is divided into at least two or more sections in the channel width direction by an isolation insulating film formed in the concave portion and having an upper surface located at a position lower than the upper surface of the convex portion. A first region in the vicinity of a step between the first region and the second region, and a second region corresponding to the first region. The total width of the concave portions in the channel width direction is Gt,
The total width of the protrusions in the channel width direction is Wt, the channel length is equal to the channel length of the MIS type semiconductor device, and the current density of the current flowing through the channel region is Mt.
The total current flowing in the channel region is equal to the current density of the current flowing in the second region of the IS-type semiconductor device and is equal to the MI.
Assuming a virtual semiconductor element equivalent to the total current flowing in the channel region of the S-type semiconductor element, and Wi is the virtual channel width of the virtual semiconductor element, Wi−Wt> G
It is characterized in that it is configured to be t.

【0008】前記分離絶縁膜の上面は、前記ソース及び
ドレイン領域の前記ゲート電極近傍における深さよりも
深くなる位置に形成されていることが好ましい。
It is preferable that the upper surface of the isolation insulating film is formed at a position deeper than the depth of the source and drain regions near the gate electrode.

【0009】本発明によれば、チャネル領域が凸部の上
面よりも低い位置に上面が位置する分離絶縁膜によって
分割されているため、凹部と凸部との段差近傍において
チャネル領域に流れる電流の電流密度が増加する。段差
近傍における電流の増加分を考慮した仮想的な半導体素
子を想定し、この仮想的な半導体素子の仮想的なチャネ
ル幅をWi、凹部のチャネル幅方向の幅の総計をGt、
凸部のチャネル幅方向の幅の総計をWtとしたときに、
Wi−Wt>Gtとなるように構成することにより、素子
占有面積を増加させることなく、従来の素子よりも電流
駆動能力を増大させることができる。
According to the present invention, since the channel region is divided by the isolation insulating film whose upper surface is located at a position lower than the upper surface of the protrusion, the current flowing through the channel region near the step between the recess and the protrusion is reduced. The current density increases. Assuming a virtual semiconductor element in consideration of an increase in current near the step, the virtual channel width of the virtual semiconductor element is Wi, the total width of the recess in the channel width direction is Gt,
When the total width of the protrusions in the channel width direction is Wt,
By configuring so that Wi−Wt> Gt, the current driving capability can be increased as compared with the conventional element without increasing the element occupation area.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】まず、図1等を参照して、本発明の基本的
な原理について説明する。図1(A)はMISトランジ
スタ及びその周囲の平面構成を示した平面図、図1
(B)は図1(A)のB−Bに沿った断面図である。
First, the basic principle of the present invention will be described with reference to FIG. FIG. 1A is a plan view showing a MIS transistor and a planar configuration around the MIS transistor.
FIG. 2B is a cross-sectional view along the line BB in FIG.

【0012】図1(A)及び(B)において、11は半
導体基板(シリコン基板等)、12はSTI構造の素子
分離絶縁膜、13はゲート絶縁膜、14はゲート電極、
15及び16はソース及びドレイン領域を示している。
1A and 1B, 11 is a semiconductor substrate (silicon substrate or the like), 12 is an element isolation insulating film having an STI structure, 13 is a gate insulating film, 14 is a gate electrode,
Reference numerals 15 and 16 indicate source and drain regions.

【0013】図に示すように、MISトランジスタの素
子領域は半導体基板11表面の凸部(凸部のチャネル幅
方向の幅はW)に形成され、素子領域周囲の凹部に形成
された素子分離絶縁膜12は、その上面が凸部の上面よ
りも低くなるように形成されている。
As shown in the figure, the element region of the MIS transistor is formed in a convex portion (the width of the convex portion in the channel width direction is W) on the surface of the semiconductor substrate 11, and is formed in a concave portion around the element region. The film 12 is formed such that its upper surface is lower than the upper surface of the projection.

【0014】素子分離絶縁膜12の上面が凸部の上面よ
りも低いため、凸部と凹部との段差領域にもチャネルが
形成され、凸部のコーナー近傍では電界集中によって電
流密度が増大する。このようにコーナー近傍で電流密度
が増大する現象は従来より知られている。
Since the upper surface of the element isolation insulating film 12 is lower than the upper surface of the convex portion, a channel is also formed in the step region between the convex portion and the concave portion, and the current density increases near the corner of the convex portion due to electric field concentration. Such a phenomenon that the current density increases near the corner is conventionally known.

【0015】図1(C)は、上述したMISトランジス
タのソース及びドレイン間における単位チャネル幅あた
りの電流密度Idを示したものである。段差部近傍にお
いて単位チャネル幅あたりの電流密度が増加している領
域(第1の領域)の幅をWcとしている。また、第1の
領域に挟まれた電流密度の増加がない領域(第2の領
域)での単位チャネル幅あたりの電流密度をIdfとして
いる。
FIG. 1C shows the current density Id per unit channel width between the source and the drain of the MIS transistor described above. The width of the region (first region) where the current density per unit channel width is increased in the vicinity of the step is Wc. Further, the current density per unit channel width in a region (second region) between the first regions where there is no increase in current density is defined as Idf.

【0016】ここで、段差部近傍の第1の領域の電流量
Icは、
Here, the current amount Ic in the first region near the step is:

【0017】[0017]

【数1】 (Equation 1)

【0018】と表すことにする。つまり、第1の領域を
第2の領域と同等の構造に置き換えた場合に、実効的
(仮想的)なチャネル幅がどれだけ増加するか、という
形で表現する。
## EQU1 ## That is, when the first region is replaced with a structure equivalent to that of the second region, it is expressed in terms of how much the effective (virtual) channel width increases.

【0019】図2は、上式の概念を図示したものであ
る。図2(A)に示すように、第1の領域における電流
量の増加分ΔIは、ΔI=αWc・Idfであり、第2の
領域と同等の構造のみでチャネル領域が構成される仮想
的なトランジスタ(図2(B))では、チャネル幅が2
αWc増加していることになる。
FIG. 2 illustrates the concept of the above equation. As shown in FIG. 2A, the increase ΔI in the amount of current in the first region is ΔI = αWc · Idf, and a virtual region in which a channel region is formed only by a structure equivalent to that in the second region. In the transistor (FIG. 2B), the channel width is 2
This means that αWc has increased.

【0020】したがって、図1に示したMISトランジ
スタの総電流量(図2に示した仮想的なトランジスタの
総電流量に等しい)Iは、 I=2Ic+(W−2Wc)Idf =(2αWc+W)Idf と表される。
Therefore, the total current I of the MIS transistor shown in FIG. 1 (equal to the total current of the virtual transistor shown in FIG. 2) is I = 2Ic + (W−2Wc) Idf = (2αWc + W) Idf It is expressed as

【0021】上述した事項を踏まえて、以下、図3等を
参照して本発明の好適な実施形態を説明する。
Based on the above, a preferred embodiment of the present invention will be described below with reference to FIG.

【0022】図3(A)は本実施形態におけるMIS型
半導体素子及びその周囲の平面構成を示した平面図、図
3(B)は図3(A)のB−Bに沿った断面図、図3
(C)は図3(A)のC−Cに沿った断面図である。
FIG. 3A is a plan view showing a MIS type semiconductor device according to the present embodiment and a plan view of the periphery thereof, FIG. 3B is a sectional view taken along the line BB of FIG. FIG.
FIG. 3C is a cross-sectional view taken along the line CC of FIG.

【0023】図3において、11は半導体基板(シリコ
ン基板等)、12はSTI構造の素子分離絶縁膜、13
はゲート絶縁膜、14はゲート電極、15a及び16a
は相対的に低濃度の不純物を含有するソース及びドレイ
ン領域(エクステンション領域)、15b及び16bは
相対的に高濃度の不純物を含有するソース及びドレイン
領域、17はゲート電極14の側壁に形成された側壁絶
縁膜を示している。
In FIG. 3, reference numeral 11 denotes a semiconductor substrate (silicon substrate or the like), 12 denotes an element isolation insulating film having an STI structure,
Is a gate insulating film, 14 is a gate electrode, 15a and 16a
Are source and drain regions (extension regions) containing relatively low concentration impurities, 15b and 16b are source and drain regions containing relatively high concentration impurities, and 17 is formed on the side wall of the gate electrode 14. 4 shows a side wall insulating film.

【0024】図3に示すように、半導体基板11表面に
は複数の凸部(凸部の個数はn、各凸部のチャネル幅方
向の幅はW)が形成されている。凸部周囲の凹部(凹部
のチャネル幅方向の幅はG)には素子分離絶縁膜12が
形成されており、素子分離絶縁膜12の上面は凸部の上
面よりも低くなっている。また、素子分離絶縁膜12
は、段差領域のコーナー部における電流密度を最大にす
るため、その上面がソース及びドレイン領域15a及び
16aのゲート電極14近傍での深さよりも深くなる位
置に形成されている。すなわち、素子分離絶縁膜12
は、その上面がエクステンション領域の深さよりも深く
なるように形成されている。
As shown in FIG. 3, a plurality of protrusions (the number of protrusions is n and the width in the channel width direction of each protrusion is W) are formed on the surface of the semiconductor substrate 11. An element isolation insulating film 12 is formed in a concave portion around the convex portion (the width of the concave portion in the channel width direction is G), and the upper surface of the element isolating insulating film 12 is lower than the upper surface of the convex portion. Further, the element isolation insulating film 12
In order to maximize the current density at the corner of the step region, the upper surface is formed at a position where the upper surface is deeper than the depth near the gate electrode 14 of the source and drain regions 15a and 16a. That is, the element isolation insulating film 12
Is formed such that its upper surface is deeper than the depth of the extension region.

【0025】このように、図3に示した例は、図1に示
した構造をチャネル幅方向に複数個並べたような構造と
なっており、凸部の上面領域及び凸部と凹部との段差部
領域にチャネルが形成され、各チャネルは凹部に形成さ
れた素子分離絶縁膜12によってチャネル幅方向にn分
割されている。
Thus, the example shown in FIG. 3 has a structure in which a plurality of the structures shown in FIG. 1 are arranged in the channel width direction. A channel is formed in the step portion region, and each channel is divided into n in the channel width direction by an element isolation insulating film 12 formed in a concave portion.

【0026】なお、上記及び下記の説明では、便宜上、
凸部を囲む絶縁膜全体を素子分離絶縁膜12と記載して
いるが、隣接する凸部間の領域では、同一素子内のチャ
ネル領域を分離する絶縁膜として機能する。
In the above description and the following description, for convenience,
Although the entire insulating film surrounding the convex portion is described as an element isolation insulating film 12, a region between adjacent convex portions functions as an insulating film for separating a channel region in the same device.

【0027】素子分離絶縁膜12によって分割された各
チャネル領域の各電流密度は、先に示した例と同様、図
2(A)のようになる。したがって、先に示した例と同
様、段差部近傍において単位チャネル幅あたりの電流密
度が増加している領域(第1の領域)の幅をWc とし、
第1の領域に挟まれた電流密度の増加がない領域(第2
の領域)での単位チャネル幅あたりの電流密度をIdfと
すると、各チャネル領域の各電流量Iは、 I=(2αWc+W)Idf と表される。したがって、図3に示したMIS型半導体
素子のソース及びドレイン間に流れる総電流量Itは、 It=n(2αWc+W)Idf と表される。
The respective current densities of the respective channel regions divided by the element isolation insulating film 12 are as shown in FIG. Therefore, similarly to the example described above, the width of the region (first region) where the current density per unit channel width is increased near the step portion is Wc,
A region between the first regions where the current density does not increase (second region
Assuming that the current density per unit channel width in the region (I) is Idf, each current amount I in each channel region is expressed as I = (2αWc + W) Idf. Therefore, the total current It flowing between the source and the drain of the MIS type semiconductor device shown in FIG. 3 is expressed as It = n (2αWc + W) Idf.

【0028】ここで、凹部のチャネル幅方向の幅の総計
をGt(=(n−1)G)、凸部のチャネル幅方向の幅
の総計をWt(=nW)とする。また、チャネル長Lが
図3に示したMIS型半導体素子のチャネル長に等し
く、かつチャネル領域に流れる電流の電流密度(電流密
度はチャネル幅方向で一定)が図3に示したMIS型半
導体素子の第2の領域に流れる電流の電流密度(Idf)
と同等で、かつチャネル領域に流れる総電流が図3に示
したMIS型半導体素子のチャネル領域に流れる総電流
と同等の仮想的な半導体素子(仮想半導体素子)を想定
し、この仮想半導体素子の仮想的なチャネル幅をWiと
する。
Here, the total width of the concave portions in the channel width direction is Gt (= (n-1) G), and the total width of the convex portions in the channel width direction is Wt (= nW). The channel length L is equal to the channel length of the MIS semiconductor device shown in FIG. 3, and the current density of the current flowing in the channel region (current density is constant in the channel width direction) shown in FIG. Density (Idf) of the current flowing in the second region of
Assuming a virtual semiconductor device (virtual semiconductor device) having the same total current and flowing in the channel region as the total current flowing in the channel region of the MIS type semiconductor device shown in FIG. Let Wi be the virtual channel width.

【0029】このとき、仮想半導体素子のチャネル領域
に流れる総電流量(すなわち、図3に示したMIS型半
導体素子のチャネル領域に流れる総電流It)は、 It=Wi・Idf=n(2αWc+W)Idf となる。
At this time, the total amount of current flowing through the channel region of the virtual semiconductor device (ie, the total current It flowing through the channel region of the MIS type semiconductor device shown in FIG. 3) is: It = Wi · Idf = n (2αWc + W) Idf.

【0030】一方、図3に示したMIS型半導体素子と
比較すべき半導体素子(比較半導体素子)として、チャ
ネル長が図3に示したMIS型半導体素子のチャネル長
に等しく、かつチャネル領域が図3に示したMIS型半
導体素子の第2の領域と同等の領域のみからなり(すな
わち、凹部によってチャネル領域が分割されていな
い)、かつチャネル幅が図3に示したMIS型半導体素
子のチャネル幅方向の素子幅Wr(=Wt+Gt)に等しい
半導体素子を想定する。
On the other hand, as a semiconductor element (comparative semiconductor element) to be compared with the MIS semiconductor element shown in FIG. 3, the channel length is equal to the channel length of the MIS semiconductor element shown in FIG. 3 (only the channel region is not divided by the concave portion), and the channel width of the MIS semiconductor device shown in FIG. 3 is equal to the second region of the MIS semiconductor device shown in FIG. Assume a semiconductor element equal to the element width Wr (= Wt + Gt) in the direction.

【0031】このとき、比較半導体素子のチャネル領域
に流れる総電流量Irは、 Ir=Wr・Idf=(Wt+Gt)Idf となる。
At this time, the total amount of current Ir flowing through the channel region of the comparative semiconductor device is as follows: Ir = Wr · Idf = (Wt + Gt) Idf

【0032】図3に示したMIS型半導体素子のチャネ
ル領域に流れる総電流量が比較半導体素子のチャネル領
域に流れる総電流量よりも多くなる条件、 It(=Wi・Idf)>Ir(=(Wt+Gt)Idf) である。したがって、 Wi・Idf>(Wt+Gt)Idf となり、上記の条件は、 Wi−Wt>Gt と表される。
The condition that the total amount of current flowing in the channel region of the MIS type semiconductor device shown in FIG. 3 is larger than the total amount of current flowing in the channel region of the comparative semiconductor device, It (= Wi · Idf)> Ir (= ( Wt + Gt) Idf). Therefore, Wi · Idf> (Wt + Gt) Idf, and the above condition is expressed as Wi−Wt> Gt.

【0033】また、Wi、Wt及びGtは、 Wi=n(2αWc+W) Wt=nW Gt=(n−1)G であることから、上述した条件は、 n・2αWc>(n−1)G と表される。Further, Wi, Wt and Gt are as follows: Wi = n (2αWc + W) Wt = nW Gt = (n−1) G Therefore, the above-mentioned condition is as follows: n · 2αWc> (n−1) G expressed.

【0034】本願発明者は、α及びWcの典型的な値を
シミュレーションによって求めた。チャネル長L=0.
1μm、ゲート絶縁膜厚Tox=2.7nm、段差部にお
けるコーナーの丸みを半径30nmとした。このとき、
αの値は4程度、Wcの値は30nm程度であった。し
たがって、分割数nが多い場合には、凹部の幅Gを24
0nm程度以下とすることで、同等の素子占有面積を有
する比較半導体素子に比べて電流量を増大させることが
できる。
The inventor of the present application obtained typical values of α and Wc by simulation. Channel length L = 0.
1 μm, the gate insulating film thickness Tox = 2.7 nm, and the roundness of the corner at the step was 30 nm in radius. At this time,
The value of α was about 4 and the value of Wc was about 30 nm. Therefore, when the number of divisions n is large, the width G of the concave portion is set to 24
By setting the thickness to about 0 nm or less, the amount of current can be increased as compared with a comparative semiconductor element having the same element occupation area.

【0035】なお、図3に示した例では、各凸部20が
分離絶縁膜12によって互いに分離されているが、隣接
する凸部どおしが1以上の箇所で繋がっているようにし
てもよい。すなわち、隣接する凸部に形成されたそれぞ
れのチャネル領域が凹部に形成された分離絶縁膜によっ
て分離されていればよく、必ずしも各凸部20が完全に
分離されている必要はない。隣接するチャネル領域間以
外の適当な領域で隣接する凸部どおしを繋げることによ
り、図3の例では分離して形成されている各ソース領域
15どおし及び各ドレイン領域どおしを、それぞれ共通
のソース領域及びドレイン領域とすることができる。ソ
ース領域及びドレイン領域をそれぞれ共通化することに
より、これらの領域からの電極の引き出しを容易にする
ことが可能となる。
In the example shown in FIG. 3, the respective convex portions 20 are separated from each other by the isolation insulating film 12, but the adjacent convex portions may be connected at one or more locations. Good. That is, it is only necessary that the respective channel regions formed in the adjacent protrusions are separated by the separation insulating film formed in the recesses, and the respective protrusions 20 do not necessarily need to be completely separated. In the example of FIG. 3, each of the source regions 15 and each of the drain regions that are separately formed in the example of FIG. 3 are connected to each other by connecting the adjacent convex portions in an appropriate region other than between the adjacent channel regions. , A common source region and a common drain region. By making the source region and the drain region common, it is possible to easily draw out the electrodes from these regions.

【0036】以上、本発明の実施形態を説明したが、本
発明は上記実施形態に限定されるものではなく、その趣
旨を逸脱しない範囲内において種々変形して実施するこ
とが可能である。
Although the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and can be variously modified and implemented without departing from the gist thereof.

【0037】[0037]

【発明の効果】本発明によれば、分離絶縁膜によってチ
ャネル領域を複数の区間に分割し、分離絶縁膜が形成さ
れている凹部のチャネル幅方向の幅を一定値以下にする
ことにより、素子占有面積を増加させることなく、従来
の素子よりも電流駆動能力を増大させることが可能とな
る。
According to the present invention, the channel region is divided into a plurality of sections by the isolation insulating film, and the width of the recess in which the isolation insulating film is formed in the channel width direction is set to a certain value or less. Without increasing the occupied area, the current driving capability can be increased as compared with the conventional device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本的な原理について示した図。FIG. 1 is a diagram showing a basic principle of the present invention.

【図2】図1に示した素子における実効的なチャネル幅
の増加について示した図。
FIG. 2 is a diagram showing an increase in an effective channel width in the device shown in FIG. 1;

【図3】本発明の好適な実施形態について示した図。FIG. 3 is a diagram showing a preferred embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…半導体基板 12…素子分離絶縁膜 13…ゲート絶縁膜 14…ゲート電極 15、15a、15b…ソース領域 16、16a、16b…ドレイン領域 17…側壁絶縁膜 20…凸部 DESCRIPTION OF SYMBOLS 11 ... Semiconductor substrate 12 ... Element isolation insulating film 13 ... Gate insulating film 14 ... Gate electrode 15, 15a, 15b ... Source region 16, 16a, 16b ... Drain region 17 ... Side wall insulating film 20 ... Convex part

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F040 EC19 EC22 EC24 EE03 EE04 EF02 EK05 FA03 5F048 AA08 AC01 BA01 BB01 BB20 BC06 BD07 BG14  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F040 EC19 EC22 EC24 EE03 EE04 EF02 EK05 FA03 5F048 AA08 AC01 BA01 BB01 BB20 BC06 BD07 BG14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】表面に凹部及び前記凹部内に形成された凸
部を有する半導体基板上の前記凸部のチャネル領域上に
ゲート絶縁膜を介して形成されたゲート電極と、前記チ
ャネル領域を挟むように形成されたソース及びドレイン
領域と、を有するMIS型半導体素子を備えた半導体装
置であって、 前記MIS型半導体素子のチャネル領域は、前記凹部を
挟んで前記MIS型半導体素子のチャネル幅方向に隣接
する凸部にわたって形成され、前記凸部の上面は前記凹
部に形成された分離絶縁膜の上面よりも高い位置に位置
することを特徴とする半導体装置。
1. A semiconductor device having a concave portion on a surface and a convex portion formed in the concave portion, a gate electrode formed on a channel region of the convex portion via a gate insulating film on a semiconductor substrate, and sandwiching the channel region. And a source and drain region formed as described above, wherein a channel region of the MIS semiconductor device has a channel region in a channel width direction of the MIS semiconductor device with the recess interposed therebetween. A semiconductor device, wherein the upper surface of the protrusion is formed at a position higher than the upper surface of the isolation insulating film formed in the recess.
【請求項2】表面に凹部及び凸部が形成された半導体基
板のチャネル領域上にゲート絶縁膜を介して形成された
ゲート電極と、前記チャネル領域を挟むように形成され
たソース及びドレイン領域と、を有するMIS型半導体
素子を備えた半導体装置であって、 前記MIS型半導体素子のチャネル領域は、前記凹部内
に形成され前記凸部の上面よりも低い位置に上面が位置
する分離絶縁膜によってチャネル幅方向に少なくとも2
以上の区間に分割され、かつ、前記凹部と凸部との段差
近傍の第1の領域と第1の領域間の凸部に対応する第2
の領域とを有し、 前記凹部のチャネル幅方向の幅の総計をGt、前記凸部
のチャネル幅方向の幅の総計をWtとし、チャネル長が
前記MIS型半導体素子のチャネル長に等しく、かつチ
ャネル領域に流れる電流の電流密度が前記MIS型半導
体素子の第2の領域に流れる電流の電流密度と同等で、
かつチャネル領域に流れる総電流が前記MIS型半導体
素子のチャネル領域に流れる総電流と同等の仮想的な半
導体素子を想定し、該仮想的な半導体素子の仮想的なチ
ャネル幅をWiとしたときに、 Wi−Wt>Gt となるように構成したことを特徴とする半導体装置。
2. A gate electrode formed on a channel region of a semiconductor substrate having a concave portion and a convex portion formed on a surface thereof via a gate insulating film, and source and drain regions formed to sandwich the channel region. Wherein the channel region of the MIS semiconductor element is formed by an isolation insulating film formed in the recess and having an upper surface located at a position lower than the upper surface of the projection. At least 2 in channel width direction
A second region divided into the above sections and corresponding to the first region near the step between the concave portion and the convex portion and the convex portion between the first regions.
The total length of the concave portions in the channel width direction is Gt, the total width of the convex portions in the channel width direction is Wt, the channel length is equal to the channel length of the MIS type semiconductor element, and The current density of the current flowing in the channel region is equal to the current density of the current flowing in the second region of the MIS type semiconductor device;
Further, assuming a virtual semiconductor device in which the total current flowing in the channel region is equal to the total current flowing in the channel region of the MIS type semiconductor device, and when the virtual channel width of the virtual semiconductor device is Wi, , Wi-Wt> Gt.
【請求項3】前記分離絶縁膜の上面は、前記ソース及び
ドレイン領域の前記ゲート電極近傍における深さよりも
深くなる位置に形成されていることを特徴とする請求項
1又は2のいずれかに記載の半導体装置。
3. The device according to claim 1, wherein an upper surface of the isolation insulating film is formed at a position deeper than a depth of the source and drain regions near the gate electrode. Semiconductor device.
JP26374299A 1999-06-30 1999-09-17 Semiconductor device Pending JP2001085691A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP26374299A JP2001085691A (en) 1999-09-17 1999-09-17 Semiconductor device
US09/609,107 US6617226B1 (en) 1999-06-30 2000-06-30 Semiconductor device and method for manufacturing the same
US10/406,281 US6989316B2 (en) 1999-06-30 2003-04-04 Semiconductor device and method for manufacturing
US10/623,732 US20040070045A1 (en) 1999-06-30 2003-07-22 Semiconductor device and method for manufacturing the same
US12/068,635 US7772671B2 (en) 1999-06-30 2008-02-08 Semiconductor device having an element isolating insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26374299A JP2001085691A (en) 1999-09-17 1999-09-17 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2001085691A true JP2001085691A (en) 2001-03-30

Family

ID=17393668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26374299A Pending JP2001085691A (en) 1999-06-30 1999-09-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2001085691A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057293A (en) * 2003-08-05 2005-03-03 Samsung Electronics Co Ltd Mos transistor having three-dimensional structure channel, and manufacturing method therefor
JP2007531323A (en) * 2004-03-31 2007-11-01 インテル コーポレイション Strain device with multiple narrow compartment layouts
JP2008004894A (en) * 2006-06-26 2008-01-10 Elpida Memory Inc Semiconductor device and method of manufacturing the same
US7741185B2 (en) 2005-03-29 2010-06-22 Fujitsu Semiconductor Limited Method of manufacturing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057293A (en) * 2003-08-05 2005-03-03 Samsung Electronics Co Ltd Mos transistor having three-dimensional structure channel, and manufacturing method therefor
JP2007531323A (en) * 2004-03-31 2007-11-01 インテル コーポレイション Strain device with multiple narrow compartment layouts
US7741185B2 (en) 2005-03-29 2010-06-22 Fujitsu Semiconductor Limited Method of manufacturing semiconductor device
JP2008004894A (en) * 2006-06-26 2008-01-10 Elpida Memory Inc Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7932153B2 (en) Semiconductor device and method for fabricating the same
KR20050008476A (en) Semiconductor device
KR970024239A (en) SEMICONDUCTOR MEMORY DEVICE AND METHOD OF MANUFACTURING THE SAME
JPH11284174A (en) Field connection-type power mosfet bus architecture using trench technology
JP2007335887A (en) Semiconductor device and its manufacturing method
JPH1092950A (en) Semiconductor device and manufacture thereof
JPS61187362A (en) Semiconductor integrated circuit device
US5563437A (en) Semiconductor device having a large sense voltage
JP3457539B2 (en) Semiconductor device
JP2001085691A (en) Semiconductor device
JP2001274336A (en) Semiconductor device
US20020145170A1 (en) Power MOS transistor
JP2001127174A5 (en)
JP2867948B2 (en) Semiconductor memory device and manufacturing method thereof
US6842886B2 (en) Basic cell of gate array semiconductor device, gate array semiconductor device, and layout method for gate array semiconductor device
US20040181386A1 (en) Method of designing semiconductor device allowing control of current driving capability depending on shape of element forming region
JP3076248B2 (en) Semiconductor memory circuit
JP2000323660A (en) Semiconductor device, manufacture thereof and manufacture of wafer
JP2000114536A (en) Soi semiconductor device
JPH0457363A (en) Semiconductor memory device
JPS5944787B2 (en) MOS type ROM
JPH10261781A (en) Semiconductor device and system
JPS6386467A (en) Semiconductor device
CN116632050A (en) Semiconductor device, forming method thereof and memory
JPH09260590A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040921