JP2001085223A - Method for demolishing magnetic field generating device and method for recycling the same - Google Patents

Method for demolishing magnetic field generating device and method for recycling the same

Info

Publication number
JP2001085223A
JP2001085223A JP2000213823A JP2000213823A JP2001085223A JP 2001085223 A JP2001085223 A JP 2001085223A JP 2000213823 A JP2000213823 A JP 2000213823A JP 2000213823 A JP2000213823 A JP 2000213823A JP 2001085223 A JP2001085223 A JP 2001085223A
Authority
JP
Japan
Prior art keywords
magnetic field
field generator
neodymium magnet
adhesive
neodymium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000213823A
Other languages
Japanese (ja)
Other versions
JP3180331B2 (en
Inventor
Masaaki Aoki
雅昭 青木
Shigeo Hashimoto
重生 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2000213823A priority Critical patent/JP3180331B2/en
Publication of JP2001085223A publication Critical patent/JP2001085223A/en
Application granted granted Critical
Publication of JP3180331B2 publication Critical patent/JP3180331B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide methods for demolishing and recycling a magnetic field generating device by which the device can be demolished and recycled safely and inexpensively. SOLUTION: A magnetic field generating device 10 incorporates a pair of platy yokes 12a and 12b which are connected to each other through a columnar yoke 24. On the surfaces of the yokes 12a and 12b facing each other, permanent magnets 14a and 14b respectively containing pluralities of neodymium magnets (22) are provided. In a method in which the neodymium magnets (22) are degaussed and an adhesive is shaved, the neodymium magnets (22) are recovered from the generator 10 by eliminating the adhesive after the magnets (22) are degaussed by heating the generator 10 to 200-350 deg.C. In a method in which the adhesive is carbonized, the magnets (22) are recovered after the adhesive is carbonized by heating the generator 10 to 350-1,000 deg.C. The recovered neodymium magnets (22) are reused by polishing the surfaces of the magnets (22). Alternatively, the recovered magnets (22) are reused by aging the magnets (22) again.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は磁界発生装置の解
体方法およびリサイクル方法に関し、より特定的には、
ネオジム磁石を用い人体の診断等に使用できる大型のM
RI用磁界発生装置の解体方法およびリサイクル方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for disassembling and recycling a magnetic field generator, and more particularly, to a method for disassembling a magnetic field generator.
Large M that can be used for diagnosis of human body using neodymium magnet
The present invention relates to a disassembly method and a recycling method of a magnetic field generator for RI.

【従来の技術】この種の大型の磁界発生装置では、焼結
体であるネオジム磁石の大きさに限界があるため、通
常、一つの板状継鉄に複数のネオジム磁石を接着剤で固
定していた。このような磁界発生装置を解体する方法と
しては、次のようなものが考えられる。まず、板状継鉄
と柱状継鉄とを接続しているネジをゆるめた後、磁界発
生装置をクレーンで吊り上げて分解する。そして、接着
剤を溶融するための溶媒が満たされた槽に板状継鉄を浸
漬して、板状継鉄に固定されているネオジム磁石を取り
出す。
2. Description of the Related Art In a large-sized magnetic field generator of this kind, since the size of a neodymium magnet as a sintered body is limited, a plurality of neodymium magnets are usually fixed to one plate yoke with an adhesive. I was The following can be considered as a method for disassembling such a magnetic field generator. First, after loosening the screw connecting the plate yoke and the column yoke, the magnetic field generator is lifted by a crane and disassembled. Then, the plate yoke is immersed in a tank filled with a solvent for melting the adhesive, and the neodymium magnet fixed to the plate yoke is taken out.

【0002】[0002]

【発明が解決しようとする課題】しかし、着磁されたま
まのネオジム磁石は磁力が非常に強いので、この方法で
は、接着剤がはずれた瞬間にネオジム磁石間の反発力に
よってネオジム磁石が槽から飛び出して危険である。ま
た、はずれたネオジム磁石を取り出すときにも強い吸引
力によって手が挟まれたりする可能性がある。また、ネ
オジム磁石は、焼結体であり割れやすいので、接着剤が
はずれた瞬間にネオジム磁石間の反発力によってどこか
にぶつかると欠けてしまう。さらに、ネオジム磁石どう
しもしくはネオジム磁石と板状継鉄とがぶつかると火花
が出て、火災もしくは爆発の危険性があるという問題点
があった。また、磁界発生装置の解体時に脱磁用磁界を
印加することによってネオジム磁石を脱磁する方法も考
えられるが、MRI用磁界発生装置は大きいので脱磁す
るには広範囲に強力な磁界を発生させなければならずそ
のような脱磁は困難であり、大きな脱磁用の装置は高コ
ストになり現実的ではない。
However, since the magnetized neodymium magnet has a very strong magnetic force, in this method, the neodymium magnet is removed from the tank by the repulsive force between the neodymium magnets at the moment when the adhesive comes off. It is dangerous to jump out. Also, when taking out the detached neodymium magnet, the hand may be pinched by a strong attractive force. In addition, since the neodymium magnet is a sintered body and is easily broken, if the adhesive comes off at any moment due to repulsion between the neodymium magnets, it will be chipped. Further, when the neodymium magnets or the neodymium magnets collide with the plate-like yoke, sparks are generated, and there is a problem that there is a risk of fire or explosion. A method of demagnetizing a neodymium magnet by applying a demagnetizing magnetic field when disassembling the magnetic field generator is also conceivable. However, since a magnetic field generator for MRI is large, a strong magnetic field must be generated over a wide range to demagnetize it. Such demagnetization must be difficult, and large demagnetizing devices are expensive and impractical.

【0003】特公平3−20045号において、各永久
磁石を着磁して各々磁気特性を測定し、その後各永久磁
石を加熱脱磁し、組立に際して各永久磁石を磁気特性測
定値に応じて再着磁して磁石体に組み立てる方法が開示
されている。しかし、この方法は永久磁石を適正配置す
るためのものであり、大型の磁界発生装置を解体あるい
はリサイクルする方法については何ら開示されていな
い。それゆえに、この発明の主たる目的は、安全かつ低
コストで解体、リサイクルできる、磁界発生装置の解体
方法およびリサイクル方法を提供することである。
[0003] In Japanese Patent Publication No. 3-20045, each permanent magnet is magnetized and its magnetic properties are measured, and then each permanent magnet is demagnetized by heating. A method of magnetizing and assembling a magnet body is disclosed. However, this method is for properly disposing permanent magnets, and does not disclose or disassemble a large-sized magnetic field generator. Therefore, a main object of the present invention is to provide a disassembly method and a recycling method of a magnetic field generator that can be disassembled and recycled at a safe and low cost.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の磁界発生装置の解体方法は、板状
継鉄と、接着剤によって結合される複数のネオジム磁石
を含みかつ板状継鉄上に設けられる永久磁石とを有する
磁界発生装置の解体方法であって、磁界発生装置を20
0゜C〜1000゜Cで加熱するものである。請求項2
に記載の磁界発生装置の解体方法は、請求項1に記載の
磁界発生装置の解体方法において、磁界発生装置は、板
状継鉄に接続される柱状継鉄をさらに含むものである。
請求項3に記載の磁界発生装置の解体方法は、請求項1
または2に記載の磁界発生装置の解体方法において、磁
界発生装置の加熱温度が200゜C〜400゜Cである
ものである。
According to a first aspect of the present invention, there is provided a method for disassembling a magnetic field generator, comprising: a plate yoke; and a plurality of neodymium magnets connected by an adhesive. A method for disassembling a magnetic field generator having a permanent magnet provided on a plate yoke, comprising:
Heating is performed at 0 ° C to 1000 ° C. Claim 2
The disassembly method of the magnetic field generator according to the first aspect of the present invention is the disassembly method of the magnetic field generator according to the first aspect, wherein the magnetic field generator further includes a columnar yoke connected to the plate yoke.
According to a third aspect of the present invention, there is provided a method for disassembling a magnetic field generator.
Alternatively, in the disassembling method of the magnetic field generator described in 2, the heating temperature of the magnetic field generator is 200 ° C. to 400 ° C.

【0005】請求項4に記載の磁界発生装置の解体方法
は、請求項1または2に記載の磁界発生装置の解体方法
において、磁界発生装置の加熱温度が200゜C〜35
0゜Cであり、ネオジム磁石を減磁させた後、接着剤を
除去してネオジム磁石を回収するものである。請求項5
に記載の磁界発生装置の解体方法は、請求項1または2
に記載の磁界発生装置の解体方法において、磁界発生装
置の加熱温度が350゜C〜1000゜Cであり、接着
剤を炭化させてネオジム磁石を回収するものである。請
求項6に記載の磁界発生装置の解体方法は、請求項1に
記載の磁界発生装置の解体方法において、接着剤がアク
リル系接着剤であるものである。
According to a fourth aspect of the present invention, there is provided a method for disassembling a magnetic field generator according to the first or second aspect, wherein the heating temperature of the magnetic field generator is 200 ° C. to 35 ° C.
The temperature is 0 ° C, and after the neodymium magnet is demagnetized, the adhesive is removed and the neodymium magnet is recovered. Claim 5
The disassembling method of the magnetic field generating device according to claim 1 or 2,
Wherein the heating temperature of the magnetic field generator is 350 ° C. to 1000 ° C., and the neodymium magnet is recovered by carbonizing the adhesive. According to a sixth aspect of the present invention, in the method of disassembling the magnetic field generator according to the first aspect, the adhesive is an acrylic adhesive.

【0006】請求項7に記載の磁界発生装置の解体方法
は、請求項1に記載の磁界発生装置の解体方法におい
て、ネオジム磁石がR−Fe−Bの三元系ネオジム磁石
であるものである。請求項8に記載の磁界発生装置の解
体方法は、請求項1に記載の磁界発生装置の解体方法に
おいて、同一極が板状継鉄の主面と平行方向に並ぶよう
に複数のネオジム磁石が配置されるものである。請求項
9に記載の磁界発生装置のリサイクル方法は、板状継鉄
と、接着剤によって結合される複数のネオジム磁石を含
みかつ板状継鉄上に設けられる永久磁石とを有する磁界
発生装置のリサイクル方法であって、磁界発生装置を2
00゜C〜1000゜Cで加熱した後にネオジム磁石を
回収し、回収されたネオジム磁石の表面を研磨してネオ
ジム磁石を再利用するものである。
According to a seventh aspect of the present invention, there is provided a method of disassembling a magnetic field generator according to the first aspect, wherein the neodymium magnet is an R-Fe-B ternary neodymium magnet. . The disassembly method of the magnetic field generator according to claim 8 is the disassembly method of the magnetic field generator according to claim 1, wherein a plurality of neodymium magnets are arranged such that the same pole is arranged in a direction parallel to the main surface of the plate-like yoke. Is to be placed. A method for recycling a magnetic field generator according to claim 9, wherein the magnetic field generator includes a plate yoke and a permanent magnet including a plurality of neodymium magnets bonded by an adhesive and provided on the plate yoke. A recycling method, comprising:
The neodymium magnet is recovered after heating at 00 ° C. to 1000 ° C., and the surface of the recovered neodymium magnet is polished to reuse the neodymium magnet.

【0007】請求項10に記載の磁界発生装置のリサイ
クル方法は、請求項9に記載の磁界発生装置のリサイク
ル方法において、回収されたネオジム磁石を再度時効処
理するものである。請求項11に記載の磁界発生装置の
リサイクル方法は、板状継鉄と、接着剤によって結合さ
れる複数のネオジム磁石を含みかつ板状継鉄上に設けら
れる永久磁石とを有する磁界発生装置のリサイクル方法
であって、磁界発生装置を200゜C〜1000゜Cで
加熱した後にネオジム磁石を回収し、回収されたネオジ
ム磁石を再度時効処理して再利用するものである。
A method for recycling a magnetic field generator according to a tenth aspect is the method for recycling a magnetic field generator according to the ninth aspect, wherein the recovered neodymium magnet is subjected to aging treatment again. A method of recycling a magnetic field generator according to claim 11, wherein the magnetic field generator includes a plate yoke and a permanent magnet including a plurality of neodymium magnets bonded by an adhesive and provided on the plate yoke. In a recycling method, a neodymium magnet is recovered after heating a magnetic field generator at 200 ° C. to 1000 ° C., and the recovered neodymium magnet is re-aged and reused.

【0008】磁界発生装置の加熱温度が200゜C未満
であれば、ネオジム磁石を十分に減磁できず安全に取り
出すことができない。また、接着剤は200゜Cまでは
可逆性があるので、加熱温度が200゜C未満であれ
ば、その後冷却すると接着剤は再び接着強度を回復して
しまう。一方、加熱温度が1000゜Cを超えるとネオ
ジム磁石自体の組織が変化し磁気特性が劣化するため、
ネオジム磁石を回収しても再利用が難しくなる。したが
って、請求項1に記載の磁界発生装置の解体方法では、
磁界発生装置を200゜C〜1000゜Cで加熱するこ
とによって、ネオジム磁石を十分に減磁させかつ接着剤
の接着力を低下させる。その結果、ネオジム磁石を安全
に取り出すことができ、磁界発生装置も安全に解体でき
る。また、加熱すればよいので、コストを抑えることが
できる。
If the heating temperature of the magnetic field generator is lower than 200 ° C., the neodymium magnet cannot be sufficiently demagnetized and cannot be safely taken out. Further, since the adhesive is reversible up to 200 ° C., if the heating temperature is lower than 200 ° C., when the adhesive is cooled thereafter, the adhesive recovers the adhesive strength again. On the other hand, if the heating temperature exceeds 1000 ° C., the structure of the neodymium magnet itself changes and the magnetic properties deteriorate, so that
Even if the neodymium magnet is collected, it is difficult to reuse it. Therefore, in the disassembly method of the magnetic field generator according to claim 1,
By heating the magnetic field generator at 200 ° C. to 1000 ° C., the neodymium magnet is sufficiently demagnetized and the adhesive strength of the adhesive is reduced. As a result, the neodymium magnet can be safely taken out, and the magnetic field generator can be safely disassembled. Further, since heating may be performed, cost can be reduced.

【0009】着磁されたままのネオジム磁石は非常に危
険であるが、請求項2に記載のように、柱状継鉄が板状
継鉄に接続された状態で磁界発生装置を加熱することに
よって、解体時における磁界発生装置の取り扱いがさら
に容易になる。ネオジム磁石の特性により、加熱温度が
400゜Cを超えたとき時効処理が必要になるが、請求
項3に記載の磁界発生装置の解体方法では、磁界発生装
置を400゜C以下で加熱するので、加熱後のネオジム
磁石に対して時効処理を施すことなく再着磁するだけ
で、ネオジム磁石を再利用できる。
[0009] Neodymium magnets that are magnetized are extremely dangerous, but by heating the magnetic field generator with the column-shaped yoke connected to the plate-shaped yoke as described in claim 2. In addition, handling of the magnetic field generator during disassembly is further facilitated. Due to the characteristics of the neodymium magnet, aging treatment is required when the heating temperature exceeds 400 ° C. However, in the disassembly method of the magnetic field generator according to claim 3, the magnetic field generator is heated at 400 ° C. or less. The neodymium magnet can be reused simply by re-magnetizing the heated neodymium magnet without aging.

【0010】請求項4に記載の磁界発生装置の解体方法
では、磁界発生装置を200゜C〜350゜Cで加熱す
ることによって、ネオジム磁石を減磁させ、接着剤を変
質させて接着力を弱める。したがって、変質した接着剤
を除去するだけで、ネオジム磁石を安全に取り出すこと
ができる。また、ネオジム磁石の表面の劣化が少ないた
め、ネオジム磁石の再利用が容易になる。請求項5に記
載の磁界発生装置の解体方法では、磁界発生装置を35
0゜C以上で加熱することによって、接着剤が炭化して
接着力を失い、かつネオジム磁石がほとんど磁力を失
う。したがって、ネオジム磁石の回収および取扱が容易
になる。
In the method for disassembling the magnetic field generator according to the present invention, the neodymium magnet is demagnetized by heating the magnetic field generator at 200 ° C. to 350 ° C., and the adhesive is altered to reduce the adhesive force. Weaken. Therefore, the neodymium magnet can be safely taken out only by removing the deteriorated adhesive. Further, since the surface of the neodymium magnet is less deteriorated, it is easy to reuse the neodymium magnet. In the disassembly method of the magnetic field generating device according to the fifth aspect, the magnetic field generating device is set to 35
By heating at 0 ° C. or higher, the adhesive carbonizes and loses adhesive strength, and the neodymium magnet loses almost all magnetic force. Therefore, collection and handling of the neodymium magnet is facilitated.

【0011】アクリル系接着剤は、常温で強い接着力を
有する一方、200゜C以上で加熱すれば熱変性もしく
は炭化を起こし接着力が弱まる。したがって、請求項6
に記載の磁界発生装置の解体方法のように、接着剤とし
てアクリル系接着剤を用いれば、ネオジム磁石の回収が
容易になる。三元系ネオジム磁石は、Coが含まれてい
る四元系にくらべ、そもそも高温で磁束密度および保磁
力が小さく、低い温度から熱減磁が発生し、減磁率も大
きくなる。したがって、請求項7に記載の磁界発生装置
の解体方法のように、R−Fe−B(Rは希土類元素)
の三元系ネオジム磁石を用いれば、ネオジム磁石に対し
て所望の減磁を容易に行うことができ、加熱によるリサ
イクルに適する。
The acrylic adhesive has a strong adhesive strength at room temperature, but when heated at 200 ° C. or higher, it undergoes thermal denaturation or carbonization, and the adhesive strength is weakened. Therefore, claim 6
When an acrylic adhesive is used as the adhesive as in the disassembly method of the magnetic field generator described in (1), the recovery of the neodymium magnet becomes easy. Compared with a quaternary system containing Co, a ternary neodymium magnet has a small magnetic flux density and a low coercive force at a high temperature, thermal demagnetization occurs from a low temperature, and a large demagnetization rate. Therefore, R-Fe-B (R is a rare earth element) as in the disassembly method of the magnetic field generator according to claim 7.
When the ternary neodymium magnet is used, desired demagnetization can be easily performed on the neodymium magnet, and the neodymium magnet is suitable for recycling by heating.

【0012】同一極が板状継鉄の主面と平行方向に並ぶ
ように複数のネオジム磁石が配置される場合、減磁させ
ずに磁界発生装置を解体しようとすれば、ネオジム磁石
間の反発力により解体作業が危険となるが、請求項8に
記載の磁界発生装置の解体方法によれば、このような場
合であっても安全にネオジム磁石を回収できる。請求項
9に記載の磁界発生装置のリサイクル方法では、回収さ
れたネオジム磁石の表面を研磨することによって、表面
が浄化されネオジム磁石を再度接着させるときの接着力
を回復させることができ、ネオジム磁石のリサイクルが
可能となる。請求項10、11に記載の磁界発生装置の
リサイクル方法では、回収されたネオジム磁石を再度時
効処理することによって、ネオジム磁石の特性を確実に
復活させることができ、ネオジム磁石のリサイクルを良
好に行える。
When a plurality of neodymium magnets are arranged so that the same poles are arranged in a direction parallel to the main surface of the plate-like yoke, if the magnetic field generator is to be dismantled without demagnetization, repulsion between the neodymium magnets is caused. The disassembly work is dangerous due to the force, but according to the disassembly method of the magnetic field generator according to claim 8, the neodymium magnet can be safely recovered even in such a case. In the method for recycling a magnetic field generator according to claim 9, the surface of the recovered neodymium magnet is polished, whereby the surface is purified and the adhesive force when the neodymium magnet is bonded again can be recovered. Can be recycled. In the method for recycling a magnetic field generator according to claims 10 and 11, the properties of the neodymium magnet can be reliably restored by aging the collected neodymium magnet again, and the neodymium magnet can be recycled well. .

【0013】[0013]

【発明の実施の形態】以下、図面を参照して、この発明
の実施形態について説明する。図1および図2に、この
発明が適用されるMRI用の磁界発生装置10の一例を
示す。磁界発生装置10は、MRI装置から電気回路部
分を取り外したものであり、ほぼ磁気回路部分だけで構
成される。磁界発生装置10は、空隙を形成して対向配
置される一対の板状継鉄12aおよび12bを含む。板
状継鉄12aおよび12bの互いに対向する表面には、
それぞれ永久磁石14aおよび14bが配置され、さら
にその表面に磁極片16aおよび16bが配置される。
磁極片16aおよび16bは、それぞれ板状継鉄12a
および12bを貫通する複数の磁極片固定用ボルト18
aおよび18bによって、永久磁石14aおよび14b
上に固定される。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show an example of a magnetic field generator 10 for MRI to which the present invention is applied. The magnetic field generator 10 is obtained by removing an electric circuit part from an MRI apparatus, and is substantially composed of only a magnetic circuit part. The magnetic field generator 10 includes a pair of plate yokes 12a and 12b which are arranged to face each other with a gap. On the surfaces of the plate yokes 12a and 12b facing each other,
Permanent magnets 14a and 14b are arranged, respectively, and pole pieces 16a and 16b are arranged on the surface thereof.
The pole pieces 16a and 16b each have a plate yoke 12a.
Pole piece fixing bolts 18 penetrating through
a and 18b, the permanent magnets 14a and 14b
Fixed on top.

【0014】永久磁石14aおよび14bは、それぞれ
複数の磁石ブロック20で構成される。磁石ブロック2
0は、図3に示すように、たとえば55×50×50m
mの直方体状の複数のネオジム磁石22を、磁極を同一
方向に向けてキュービック状に固着して形成される。こ
のように均質に焼結可能な大きさのネオジム磁石22を
用いることによって、磁気特性のばらつきが少ない永久
磁石14aおよび14bが得られる。また、磁極を同一
方向に向けて各ネオジム磁石22を固着することによっ
て、磁極片16aおよび16b間において0.2T〜
0.3Tという強い磁界が得られる。図3からもわかる
ように、ネオジム磁石22どうしは垂直方向には吸引し
あうが、水平方向には同一の極がならぶことになるため
互いに反発しあう。
Each of the permanent magnets 14a and 14b is composed of a plurality of magnet blocks 20. Magnet block 2
0 is, for example, 55 × 50 × 50 m as shown in FIG.
It is formed by fixing a plurality of neodymium magnets 22 in a cubic shape with the magnetic poles facing in the same direction. By using the neodymium magnet 22 having such a size that it can be homogeneously sintered, the permanent magnets 14a and 14b with little variation in magnetic properties can be obtained. Further, by fixing the neodymium magnets 22 with the magnetic poles facing in the same direction, 0.2T or less is applied between the pole pieces 16a and 16b.
A strong magnetic field of 0.3T is obtained. As can be seen from FIG. 3, the neodymium magnets 22 attract each other in the vertical direction, but repel each other because the same poles are arranged in the horizontal direction.

【0015】ネオジム磁石22としては、米国特許第
4,770,723号に記載されているたとえばR−F
e−B(組成Nd:31wt%、B:1.0wt%、残
部Feに、Al、Cu等の元素が0.3wt%以下で含
まれている)から構成される三元系ネオジム磁石が使用
される。この三元系ネオジム磁石の熱減磁曲線を、図4
に線Aで示す。なお、さらにCoを0.9wt%含んで
構成される四元系ネオジム磁石の熱減磁曲線を、図4に
線Bで示す。線Aと線Bとを比較してわかるように、三
元系ネオジム磁石は、四元系ネオジム磁石より耐熱性が
低く、低い温度から熱減磁(磁束密度および保磁力の低
下)が発生し、減磁率も大きくなる。したがって、三元
系ネオジム磁石を用いれば、ネオジム磁石22に対して
所望の減磁を容易に行うことができる。たとえば、三元
系ネオジム磁石を200゜Cに加熱すれば、減磁率は7
0%となる。
As the neodymium magnet 22, for example, R-F described in US Pat. No. 4,770,723 is used.
Uses a ternary neodymium magnet composed of e-B (composition Nd: 31 wt%, B: 1.0 wt%, and the balance Fe contains elements such as Al and Cu at 0.3 wt% or less). Is done. The thermal demagnetization curve of this ternary neodymium magnet is shown in FIG.
Is shown by line A in FIG. A thermal demagnetization curve of a quaternary neodymium magnet further containing Co at 0.9 wt% is shown by a line B in FIG. As can be seen by comparing the line A and the line B, the ternary neodymium magnet has lower heat resistance than the quaternary neodymium magnet, and thermal demagnetization (reduction in magnetic flux density and coercive force) occurs from a low temperature. The demagnetization rate also increases. Therefore, if a ternary neodymium magnet is used, desired demagnetization of the neodymium magnet 22 can be easily performed. For example, if a ternary neodymium magnet is heated to 200 ° C., the demagnetization rate becomes 7
0%.

【0016】図2に戻って、永久磁石14aの各磁石ブ
ロック20は、同一の磁極(たとえばN極)を上面に向
けて密着して配置され、永久磁石14bの各磁石ブロッ
ク20は、永久磁石14aの場合とは異なる磁極(たと
えばS極)を下面に向けて密着して配置される。このよ
うに永久磁石14aと永久磁石14bとは、互いに異な
る磁極面が対向されるため、均一な磁界が形成される。
なお、永久磁石14aおよび14bは、それぞれ、各磁
石ブロック20の側面間が接着剤で接着される。
Returning to FIG. 2, each magnet block 20 of the permanent magnet 14a is disposed in close contact with the same magnetic pole (eg, N pole) facing the upper surface, and each magnet block 20 of the permanent magnet 14b is A magnetic pole (for example, S-pole) different from that of 14a is closely attached to the lower surface. As described above, since the permanent magnets 14a and 14b face different magnetic pole surfaces, a uniform magnetic field is formed.
The permanent magnets 14a and 14b are respectively bonded between the side surfaces of each magnet block 20 with an adhesive.

【0017】ここで、各ネオジム磁石22間、各磁石ブ
ロック20間をそれぞれ接着するために使用される接着
剤としては、アクリル系接着剤が用いられる。たとえば
エポキシ系接着剤は素早く硬化させるには加熱する必要
があるが、アクリル系接着剤であれば常温で素早く硬化
するので、ネオジム磁石22の接着に適する。したがっ
て、アクリル系接着剤を用いることによって、強い磁力
を有し互いに反発しあうネオジム磁石22を板状継鉄1
2a、12b上に容易に固定できる。一方、アクリル系
接着剤は、200゜C以上で加熱すれば熱変性を起こ
し、さらに350゜C以上で炭化し、420゜C以上で
発火し、接着力が弱まるので、ネオジム磁石22の回収
が容易になる。アクリル系接着剤としては、たとえば、
図5に示すような熱時引張剪断強度を有する、電気化学
工業社製ハードロックC−323−03が用いられる。
Here, an acrylic adhesive is used as an adhesive used for bonding the neodymium magnets 22 and the magnet blocks 20 respectively. For example, an epoxy-based adhesive needs to be heated to be quickly cured, whereas an acrylic-based adhesive is quickly cured at room temperature, and is suitable for bonding the neodymium magnet 22. Therefore, by using an acrylic adhesive, the neodymium magnets 22 having a strong magnetic force and repelling each other can be converted to the plate-like yoke 1.
It can be easily fixed on 2a, 12b. On the other hand, the acrylic adhesive undergoes thermal denaturation when heated at 200 ° C. or higher, further carbonizes at 350 ° C. or higher, ignites at 420 ° C. or higher, and weakens the adhesive force. It will be easier. As an acrylic adhesive, for example,
Hard Rock C-323-03 manufactured by Denki Kagaku Kogyo Co., Ltd., which has a tensile shear strength under heat as shown in FIG. 5, is used.

【0018】そして、一対の板状継鉄12aおよび12
bは、断面円形の4本の柱状継鉄24によって、所定の
間隔で対向するように支持され磁気的に接続される。こ
のようにして磁界発生装置10は、一対の磁極片16a
および16b間の空間部に均一な磁界が形成されるよう
に構成される。なお、板状継鉄12aおよび12bと柱
状継鉄24とは、ネジ26によって接続される。磁界発
生装置10のサイズは、長さ220cm、幅120c
m、高さ170cmである。磁極片16a、16b間の
距離は40cm〜50cmである。図3に示すキュービ
ック状ネオジム磁石22を、各板状継鉄12a、12b
に2段あるいは3段に積み重ねることにより、磁極片1
6a、16b間に直径30cm〜40cmの球状均一磁
界空間が形成される。磁界空間の強度は0.2T〜0.
3Tである。
A pair of plate yokes 12a and 12a
b is magnetically connected and supported by four columnar yokes 24 having a circular cross section so as to face each other at a predetermined interval. In this manner, the magnetic field generator 10 includes the pair of pole pieces 16a.
It is configured such that a uniform magnetic field is formed in a space between the first and second electrodes 16b. The plate-shaped yokes 12 a and 12 b and the column-shaped yoke 24 are connected by screws 26. The size of the magnetic field generator 10 is 220 cm long and 120 c wide.
m, height 170 cm. The distance between the pole pieces 16a, 16b is between 40 cm and 50 cm. The cubic neodymium magnet 22 shown in FIG.
Pole piece 1 by stacking two or three
A spherical uniform magnetic field space having a diameter of 30 cm to 40 cm is formed between 6a and 16b. The strength of the magnetic field space is 0.2T to 0.2T.
3T.

【0019】このように構成される磁界発生装置10を
解体し、ネオジム磁石22をリサイクルする工程につい
て説明する。まず、病院等からMRI装置を回収し、図
6に示すような加熱炉28のある工場に搬入する。つい
で、断熱材、配線材等の電気部品、すなわち非金属部材
を取り外し、磁界発生装置10のみとする。この磁界発
生装置10を図6に示すように台車30上に載せ、加熱
炉28内部に搬入する。加熱炉28は、組み立てられた
ままの磁界発生装置10全体が収容可能な大きさを必要
とする。磁界発生装置10の寸法が、たとえば長さ×幅
×高さ=1.9×1.1×1.5m程度のとき、加熱炉
28の寸法は、間口2×2m、奥行き5m程度に設定さ
れることが望ましい。加熱炉28としては、電気炉、重
油炉が用いられるが、電気炉の方が温度調節が容易とな
る。
A process of disassembling the magnetic field generator 10 thus configured and recycling the neodymium magnet 22 will be described. First, the MRI apparatus is collected from a hospital or the like, and is carried into a factory having a heating furnace 28 as shown in FIG. Next, electrical components such as a heat insulating material and a wiring material, that is, non-metal members are removed, and only the magnetic field generator 10 is used. The magnetic field generator 10 is mounted on a cart 30 as shown in FIG. The heating furnace 28 needs to be large enough to accommodate the entire magnetic field generator 10 as assembled. When the dimensions of the magnetic field generator 10 are, for example, length × width × height = about 1.9 × 1.1 × 1.5 m, the dimensions of the heating furnace 28 are set to about 2 × 2 m in frontage and about 5 m in depth. Is desirable. As the heating furnace 28, an electric furnace or a heavy oil furnace is used, but the electric furnace facilitates temperature adjustment.

【0020】そして、後述のようにヒートパターンに基
づいて加熱処理し、加熱処理の終了後、自然冷却する。
その後、磁界発生装置10のボルト18a、18bをゆ
るめ、ネオジム磁石22を取り出す。先に板状継鉄12
a、12bと柱状継鉄24とを分離してからネオジム磁
石22を取り出してもよい。このとき回収されたネオジ
ム磁石22を外周面仕上げする。そして、必要に応じて
テンパ炉(図示せず)でたとえば450゜C〜600゜
Cで3時間以上時効熱処理し、磁気特性を回復させる。
ネオジム磁石22の寸法および磁気特性をチェックし、
ネオジム磁石22を再利用する。
Then, as described later, a heat treatment is performed based on the heat pattern, and after the heat treatment is completed, it is naturally cooled.
Thereafter, the bolts 18a and 18b of the magnetic field generator 10 are loosened, and the neodymium magnet 22 is taken out. Plate yoke 12 first
The neodymium magnet 22 may be taken out after the a, 12b and the columnar yoke 24 are separated. At this time, the recovered neodymium magnet 22 is finished on the outer peripheral surface. Then, if necessary, aging heat treatment is performed in a tempering furnace (not shown) at, for example, 450 ° C. to 600 ° C. for 3 hours or more to recover magnetic properties.
Check the dimensions and magnetic properties of the neodymium magnet 22,
The neodymium magnet 22 is reused.

【0021】ここで、加熱処理について詳しく説明す
る。まず、ネオジム磁石22を減磁させ、接着剤を削る
加熱処理方式について述べる。この方式で用いられる加
熱炉28としては電気炉が適する。この方式では、ネオ
ジム磁石22を磁気特性が劣化しない程度に減磁しかつ
接着剤が炭化しないような温度で加熱する。接着剤は熱
によって変質し脆くなるが、ネオジム磁石22がそのま
ま取り出せる程度ではないので、接着剤を削る必要があ
る。具体的には、200゜C〜350゜C、好ましくは
図7に線Cで示すように300゜Cまで昇温し、この温
度で5時間キープする。図4からわかるように、このと
きネオジム磁石22の磁力は、0.07T以下になる。
自然冷却後、柱状継鉄24から板状継鉄12a、12b
を取り外し、さらに板状継鉄12a、12bからそれぞ
れ磁極片16a、16bを取り外したのち、接着剤を削
ってネオジム磁石22を取り出す。接着剤を削る機械と
しては、サーフェスグラインダーを使用することができ
る。
Here, the heat treatment will be described in detail. First, a heat treatment method for demagnetizing the neodymium magnet 22 and scraping the adhesive will be described. An electric furnace is suitable as the heating furnace 28 used in this method. In this method, the neodymium magnet 22 is demagnetized to such an extent that the magnetic properties do not deteriorate, and is heated at a temperature at which the adhesive is not carbonized. The adhesive is altered by heat and becomes brittle, but the neodymium magnet 22 cannot be taken out as it is, so it is necessary to scrape the adhesive. Specifically, the temperature is raised to 200 ° C. to 350 ° C., preferably to 300 ° C. as shown by a line C in FIG. 7, and kept at this temperature for 5 hours. As can be seen from FIG. 4, the magnetic force of the neodymium magnet 22 becomes 0.07T or less at this time.
After natural cooling, the columnar yoke 24 converts the plate yoke 12a, 12b
After removing the pole pieces 16a and 16b from the plate-shaped yokes 12a and 12b, respectively, the adhesive is scraped to take out the neodymium magnet 22. A surface grinder can be used as a machine for scraping the adhesive.

【0022】この方式によれば、変質した接着剤を物理
的に除去するだけで、ネオジム磁石22を安全に取り出
すことができ、磁界発生装置10を安全に解体できる。
また、ネオジム磁石22の表面が劣化しないため、ネオ
ジム磁石22の表面を浄化し再着磁するだけで、ネオジ
ム磁石22を容易に再利用できる。また、400゜C以
下で加熱するので、加熱後のネオジム磁石22に対し
て、時効熱処理を施さなくてもよい。さらに、磁界発生
装置10の加熱に、加熱炉28を利用できるので、「従
来の技術」の欄で述べた関連技術の場合よりも解体コス
トを抑えることができる。
According to this method, the neodymium magnet 22 can be safely removed only by physically removing the deteriorated adhesive, and the magnetic field generator 10 can be safely disassembled.
Further, since the surface of the neodymium magnet 22 does not deteriorate, the neodymium magnet 22 can be easily reused only by cleaning and re-magnetizing the surface of the neodymium magnet 22. Further, since the heating is performed at 400 ° C. or less, the aging heat treatment does not need to be performed on the neodymium magnet 22 after the heating. Furthermore, since the heating furnace 28 can be used for heating the magnetic field generator 10, the disassembly cost can be reduced as compared with the related art described in the section of "Prior Art".

【0023】なお、接着剤が熱変性していても溶剤で溶
ける場合には、溶剤入りの槽に接着剤を入れて溶かして
もよい。溶剤としては、酢酸エチル、メチルエチルケト
ン、アセトン等が使用されるが、これらは浸透性が低い
ため、ネオジム磁石22を1週間くらい浸しておく必要
がある。一方、メチレンクロライド、エチレンクロライ
ド等の浸透性が高い溶剤を用いた場合、24時間程度で
ネオジム磁石22を回収できるが、溶剤の揮発が激しい
ため、排気設備など大がかりな設備が必要となる。
If the adhesive is soluble in a solvent even if it is thermally denatured, the adhesive may be dissolved in a solvent-containing tank. Ethyl acetate, methyl ethyl ketone, acetone and the like are used as the solvent, but since these have low permeability, it is necessary to soak the neodymium magnet 22 for about one week. On the other hand, when a highly permeable solvent such as methylene chloride or ethylene chloride is used, the neodymium magnet 22 can be recovered in about 24 hours. However, since the solvent volatilizes violently, large-scale equipment such as exhaust equipment is required.

【0024】ついで、接着剤を炭化させる加熱処理方式
について述べる。この方式で用いられる加熱炉28とし
ては重油炉が適する。重油炉を用いれば加熱に必要なコ
ストが少なくてすむ。この方式では、磁界発生装置10
をキューリー温度(340°C)以上に加熱するととも
に、接着剤を炭化させることによって、磁界発生装置1
0を解体可能とする。
Next, a heat treatment method for carbonizing the adhesive will be described. A heavy oil furnace is suitable as the heating furnace 28 used in this method. If a heavy oil furnace is used, the cost required for heating can be reduced. In this method, the magnetic field generator 10
Is heated to a Curie temperature (340 ° C.) or higher and the adhesive is carbonized, whereby the magnetic field generator 1 is heated.
0 is disassembled.

【0025】まず、加熱炉28内に磁界発生装置10全
体を入れて、図7の線Dで示すように、4時間かけて5
50゜Cまで昇温する。その後、その温度で5時間キー
プし、自然冷却して磁界発生装置10を取り出す。自然
冷却後、柱状継鉄24から板状継鉄12a、12bを取
り外し、板状継鉄12a、12bからそれぞれ磁極片1
6a、16bを取り外し、ネオジム磁石22を取り出
す。取り出されたネオジム磁石22の表面にはカーボン
が付着しており、ネオジム磁石22の表面が炭化および
酸化しているため、ネオジム磁石22はそのままでは再
度接着し難い。したがって、ネオジム磁石22の表面を
0.1mm〜0.5mm程度研磨して、カーボンおよび
酸化している部分を取り除く。研磨後、再度500゜C
で1時間、時効処理してネオジム磁石22としての特性
を取り戻させる。なお、加熱炉28の温度が高すぎる
と、Nd2Fe14Bなる正方晶化合物が粒成長を起こ
し、ネオジム磁石22の保磁力が低下するため、加熱温
度は1000゜C以下にする必要がある。
First, the entire magnetic field generator 10 is placed in the heating furnace 28 and, as shown by a line D in FIG.
Raise the temperature to 50 ° C. Thereafter, the magnetic field generator 10 is kept at that temperature for 5 hours, cooled naturally, and the magnetic field generator 10 is taken out. After natural cooling, the plate yokes 12a and 12b are removed from the columnar yoke 24, and the pole pieces 1 are respectively removed from the plate yokes 12a and 12b.
6a and 16b are removed, and the neodymium magnet 22 is taken out. Since carbon is attached to the surface of the taken out neodymium magnet 22 and the surface of the neodymium magnet 22 is carbonized and oxidized, it is difficult for the neodymium magnet 22 to adhere again as it is. Therefore, the surface of the neodymium magnet 22 is polished by about 0.1 mm to 0.5 mm to remove carbon and oxidized portions. After polishing, again at 500 ° C
For 1 hour to restore the properties of the neodymium magnet 22. If the temperature of the heating furnace 28 is too high, the tetragonal compound such as Nd2Fe14B causes grain growth, and the coercive force of the neodymium magnet 22 decreases. Therefore, the heating temperature needs to be 1000 ° C. or lower.

【0026】この方式によれば、接着剤が炭化して接着
力を失い、かつネオジム磁石22がほとんど磁力を失う
ので、ネオジム磁石22の回収および取扱が容易にな
り、磁界発生装置10を安全に解体できる。さらに、回
収されたネオジム磁石22の表面を研磨することによっ
て、ネオジム磁石22を再度接着させるときの接着力を
回復させることができる。また、ネオジム磁石22を再
度時効処理することによって、ネオジム磁石22の特性
を確実に復活させることができる。
According to this method, since the adhesive carbonizes and loses the adhesive force, and the neodymium magnet 22 loses almost no magnetic force, the recovery and handling of the neodymium magnet 22 becomes easy, and the magnetic field generator 10 can be safely used. Can be dismantled. Further, by polishing the surface of the recovered neodymium magnet 22, the adhesive force when the neodymium magnet 22 is bonded again can be recovered. Further, by aging the neodymium magnet 22 again, the properties of the neodymium magnet 22 can be reliably restored.

【0027】このようにして、強力な磁界を発生する使
用済みの磁界発生装置10を解体し、リサイクルするこ
とによって、資源を有効利用できる。また、磁界発生装
置10を放置することによる危険性を解消でき、安全性
を確保できる。さらに、着磁されたままのネオジム磁石
22は非常に危険であるが、少なくとも柱状継鉄24が
板状継鉄12aまたは12bに接続された状態や、図1
に示す磁界発生装置10のままで、加熱炉28に入れて
加熱することによって、解体作業をより安全に行える。
なお、永久磁石が取り付けられた板状継鉄を柱状継鉄2
4から分離した状態で加熱炉28に入れて加熱し、解体
してもよいことはいうまでもない。
In this way, the used magnetic field generator 10 that generates a strong magnetic field is disassembled and recycled, so that resources can be used effectively. In addition, danger caused by leaving the magnetic field generator 10 unresolved can be eliminated, and safety can be ensured. Further, although the neodymium magnet 22 which is magnetized is very dangerous, at least the columnar yoke 24 is connected to the plate-like yoke 12a or 12b, and FIG.
By heating the magnetic field generator 10 in the heating furnace 28 as it is, the dismantling operation can be performed more safely.
The plate yoke to which the permanent magnet is attached is replaced with a columnar yoke 2
Needless to say, it may be placed in a heating furnace 28 while being separated from the heating furnace 4 and heated to be dismantled.

【0028】[0028]

【発明の効果】この発明によれば、ネオジム磁石を十分
に減磁させかつ接着剤の接着力を低下させるので、ネオ
ジム磁石を安全に取り出すことができ、磁界発生装置も
安全に解体できる。また、加熱すればよいので、コスト
を抑えることができる。また、回収されたネオジム磁石
の表面を研磨することによって、表面が浄化されネオジ
ム磁石を再度接着させるときの接着力を回復させること
ができ、ネオジム磁石のリサイクルが可能となる。さら
に、回収されたネオジム磁石を再度時効処理することに
よって、ネオジム磁石の特性を確実に復活させることが
でき、ネオジム磁石のリサイクルを良好に行える。
According to the present invention, since the neodymium magnet is sufficiently demagnetized and the adhesive force of the adhesive is reduced, the neodymium magnet can be taken out safely and the magnetic field generator can be safely dismantled. Further, since heating may be performed, cost can be reduced. In addition, by polishing the surface of the recovered neodymium magnet, the surface is purified and the adhesive force when the neodymium magnet is bonded again can be recovered, and the neodymium magnet can be recycled. Further, by aging the collected neodymium magnet again, the characteristics of the neodymium magnet can be surely restored, and the neodymium magnet can be satisfactorily recycled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明が適用される磁界発生装置の一例を示
す一部省略斜視図である。
FIG. 1 is a partially omitted perspective view showing an example of a magnetic field generator to which the present invention is applied.

【図2】磁界発生装置の一例を示す断面図である。FIG. 2 is a cross-sectional view illustrating an example of a magnetic field generator.

【図3】磁石ブロックの一例を示す斜視図である。FIG. 3 is a perspective view showing an example of a magnet block.

【図4】ネオジム磁石の熱減磁曲線を示すグラフであ
る。
FIG. 4 is a graph showing a thermal demagnetization curve of a neodymium magnet.

【図5】接着剤の熱時引張剪断強度を示すグラフであ
る。
FIG. 5 is a graph showing the hot tensile shear strength of the adhesive.

【図6】加熱炉、台車を示す図解図である。FIG. 6 is an illustrative view showing a heating furnace and a bogie;

【図7】磁界発生装置を加熱するときのヒートパターン
の例を示すグラフである。
FIG. 7 is a graph showing an example of a heat pattern when heating the magnetic field generator.

【符号の説明】[Explanation of symbols]

10 磁界発生装置 12a、12b 板状継鉄 14a、14b 永久磁石 16a、16b 磁極片 20 磁石ブロック 22 ネオジム磁石 24 柱状継鉄 28 加熱炉 DESCRIPTION OF SYMBOLS 10 Magnetic field generator 12a, 12b Plate yoke 14a, 14b Permanent magnet 16a, 16b Magnetic pole piece 20 Magnet block 22 Neodymium magnet 24 Columnar yoke 28 Heating furnace

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 板状継鉄と、接着剤によって結合される
複数のネオジム磁石を含みかつ前記板状継鉄上に設けら
れる永久磁石とを有する磁界発生装置の解体方法であっ
て、 前記磁界発生装置を200゜C〜1000゜Cで加熱す
る、磁界発生装置の解体方法。
1. A disassembly method for a magnetic field generator comprising: a plate yoke; and a permanent magnet including a plurality of neodymium magnets bonded by an adhesive and provided on the plate yoke. A method for disassembling a magnetic field generator, wherein the generator is heated at 200 ° C. to 1000 ° C.
【請求項2】 前記磁界発生装置は、前記板状継鉄に接
続される柱状継鉄をさらに含む、請求項1に記載の磁界
発生装置の解体方法。
2. The method according to claim 1, wherein the magnetic field generator further includes a columnar yoke connected to the plate yoke.
【請求項3】 前記磁界発生装置の加熱温度が200゜
C〜400゜Cである、請求項1または2に記載の磁界
発生装置の解体方法。
3. The disassembly method for a magnetic field generator according to claim 1, wherein the heating temperature of the magnetic field generator is 200 ° C. to 400 ° C.
【請求項4】 前記磁界発生装置の加熱温度が200゜
C〜350゜Cであり、前記ネオジム磁石を減磁させた
後、前記接着剤を除去して前記ネオジム磁石を回収す
る、請求項1または2に記載の磁界発生装置の解体方
法。
4. The method according to claim 1, wherein the heating temperature of the magnetic field generator is 200 ° C. to 350 ° C., and after the neodymium magnet is demagnetized, the adhesive is removed to recover the neodymium magnet. Or the disassembly method of the magnetic field generator according to 2.
【請求項5】 前記磁界発生装置の加熱温度が350゜
C〜1000゜Cであり、前記接着剤を炭化させて前記
ネオジム磁石を回収する、請求項1または2に記載の磁
界発生装置の解体方法。
5. The disassembly of the magnetic field generator according to claim 1, wherein the heating temperature of the magnetic field generator is 350 ° C. to 1000 ° C., and the neodymium magnet is recovered by carbonizing the adhesive. Method.
【請求項6】 前記接着剤がアクリル系接着剤である、
請求項1に記載の磁界発生装置の解体方法。
6. The adhesive according to claim 1, wherein the adhesive is an acrylic adhesive.
A disassembly method for the magnetic field generator according to claim 1.
【請求項7】 前記ネオジム磁石がR−Fe−Bの三元
系ネオジム磁石である、請求項1に記載の磁界発生装置
の解体方法。
7. The disassembly method for a magnetic field generator according to claim 1, wherein the neodymium magnet is an R—Fe—B ternary neodymium magnet.
【請求項8】 同一極が前記板状継鉄の主面と平行方向
に並ぶように前記複数のネオジム磁石が配置される、請
求項1に記載の磁界発生装置の解体方法。
8. The disassembly method for a magnetic field generator according to claim 1, wherein the plurality of neodymium magnets are arranged such that the same pole is arranged in a direction parallel to a main surface of the plate-like yoke.
【請求項9】 板状継鉄と、接着剤によって結合される
複数のネオジム磁石を含みかつ前記板状継鉄上に設けら
れる永久磁石とを有する磁界発生装置のリサイクル方法
であって、 前記磁界発生装置を200゜C〜1000゜Cで加熱し
た後に前記ネオジム磁石を回収し、回収された前記ネオ
ジム磁石の表面を研磨して前記ネオジム磁石を再利用す
る、磁界発生装置のリサイクル方法。
9. A method for recycling a magnetic field generator having a plate yoke and a permanent magnet including a plurality of neodymium magnets bonded by an adhesive and provided on the plate yoke, the method comprising: A method for recycling a magnetic field generator, wherein the neodymium magnet is recovered after heating the generator at 200 ° C. to 1000 ° C., and the surface of the recovered neodymium magnet is polished to reuse the neodymium magnet.
【請求項10】 回収された前記ネオジム磁石を再度時
効処理する、請求項9に記載の磁界発生装置のリサイク
ル方法。
10. The method for recycling a magnetic field generator according to claim 9, wherein the recovered neodymium magnet is subjected to aging treatment again.
【請求項11】 板状継鉄と、接着剤によって結合され
る複数のネオジム磁石を含みかつ前記板状継鉄上に設け
られる永久磁石とを有する磁界発生装置のリサイクル方
法であって、 前記磁界発生装置を200゜C〜1000゜Cで加熱し
た後に前記ネオジム磁石を回収し、回収された前記ネオ
ジム磁石を再度時効処理して再利用する、磁界発生装置
のリサイクル方法。
11. A method for recycling a magnetic field generator comprising a plate yoke and a permanent magnet including a plurality of neodymium magnets bonded by an adhesive and provided on the plate yoke, wherein: A method for recycling a magnetic field generator, wherein the neodymium magnet is collected after heating the generator at 200 ° C. to 1000 ° C., and the collected neodymium magnet is re-aged and reused.
JP2000213823A 1999-07-15 2000-07-14 Disassembly method of magnetic field generator and method of recycling magnetic field generator Expired - Lifetime JP3180331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000213823A JP3180331B2 (en) 1999-07-15 2000-07-14 Disassembly method of magnetic field generator and method of recycling magnetic field generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-201291 1999-07-15
JP20129199 1999-07-15
JP2000213823A JP3180331B2 (en) 1999-07-15 2000-07-14 Disassembly method of magnetic field generator and method of recycling magnetic field generator

Publications (2)

Publication Number Publication Date
JP2001085223A true JP2001085223A (en) 2001-03-30
JP3180331B2 JP3180331B2 (en) 2001-06-25

Family

ID=26512709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000213823A Expired - Lifetime JP3180331B2 (en) 1999-07-15 2000-07-14 Disassembly method of magnetic field generator and method of recycling magnetic field generator

Country Status (1)

Country Link
JP (1) JP3180331B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7051425B2 (en) * 1999-07-15 2006-05-30 Neomax Co., Ltd. Recycling method for magnetic field generator
JP2010199110A (en) * 2009-02-23 2010-09-09 Rare Metals 21:Kk Method of recovering neodymium magnet from used equipment, and neodymium magnet collected or recycled by the method
US8322024B2 (en) 2002-02-15 2012-12-04 Hitachi Metals, Ltd. Magnetic field generator manufacturing method
JP2013021020A (en) * 2011-07-07 2013-01-31 Mitsubishi Electric Corp Separation recovery method of rare-earth magnet, manufacturing method of rare-earth magnet, and manufacturing method of rotary electric machine
WO2013144995A1 (en) * 2012-03-27 2013-10-03 三菱電機株式会社 Separation and recovery method for rare-earth magnets, manufacturing method for rare-earth magnets, and manufacturing method for rotary electric machine
JP2013236982A (en) * 2012-05-11 2013-11-28 Mitsubishi Electric Corp Separation recovery method of rare earth magnet and separation recovery apparatus of rare earth magnet
JP2014199887A (en) * 2013-03-29 2014-10-23 愛知製鋼株式会社 Method of recovering magnet powder from rare earth bond magnet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7051425B2 (en) * 1999-07-15 2006-05-30 Neomax Co., Ltd. Recycling method for magnetic field generator
US7143507B2 (en) 1999-07-15 2006-12-05 Neomax Co., Ltd. Recycling method for magnetic field generator
US8322024B2 (en) 2002-02-15 2012-12-04 Hitachi Metals, Ltd. Magnetic field generator manufacturing method
JP2010199110A (en) * 2009-02-23 2010-09-09 Rare Metals 21:Kk Method of recovering neodymium magnet from used equipment, and neodymium magnet collected or recycled by the method
JP2013021020A (en) * 2011-07-07 2013-01-31 Mitsubishi Electric Corp Separation recovery method of rare-earth magnet, manufacturing method of rare-earth magnet, and manufacturing method of rotary electric machine
WO2013144995A1 (en) * 2012-03-27 2013-10-03 三菱電機株式会社 Separation and recovery method for rare-earth magnets, manufacturing method for rare-earth magnets, and manufacturing method for rotary electric machine
JP2013236982A (en) * 2012-05-11 2013-11-28 Mitsubishi Electric Corp Separation recovery method of rare earth magnet and separation recovery apparatus of rare earth magnet
JP2014199887A (en) * 2013-03-29 2014-10-23 愛知製鋼株式会社 Method of recovering magnet powder from rare earth bond magnet

Also Published As

Publication number Publication date
JP3180331B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
US7143507B2 (en) Recycling method for magnetic field generator
JP3180331B2 (en) Disassembly method of magnetic field generator and method of recycling magnetic field generator
Zakotnik et al. Possible methods of recycling NdFeB-type sintered magnets using the HD/degassing process
EP1835516B1 (en) Magnetizing method for permanent magnet
JP4012311B2 (en) Bulk superconducting member and magnet, and method of manufacturing the same
CN110947459B (en) Impurity separator for rare earth permanent magnet material for civil engineering
CN101086524A (en) Method for disassembling a magnetic field generator
Zakotnik et al. Hydrogen decrepitation and recycling of NdFeB-type sintered magnets
JP3016545B2 (en) Permanent magnet magnetic circuit
CN105880011A (en) Method for clearing away obstinate impurities in high-intensity magnetic separator medium box
JP5454195B2 (en) Magnet recovery apparatus and magnet recovery method using the same
JP2010199110A (en) Method of recovering neodymium magnet from used equipment, and neodymium magnet collected or recycled by the method
JP2012147602A (en) Manufacturing method and manufacturing device of permanent magnet
US11183908B2 (en) Method for producing radially anisotropic multipolar solid magnet adapted to different waveform widths
JP5337775B2 (en) How to collect neodymium magnets
JP5930836B2 (en) Rare earth magnet separation and recovery method, and rare earth magnet separation and recovery apparatus
US20210202147A1 (en) Systems and methods for magnetizing permanent magnet rotors
JP5921426B2 (en) Rotating drum for neodymium magnet separation, neodymium magnet recovery device
JP2013223346A (en) Demagnetization method and demagnetizer of rotator
JP5326357B2 (en) Magnetization method of permanent magnet
JP6790881B2 (en) Rare earth sintered magnet manufacturing method
JP2023101445A (en) Waste magnet reproduction method
JPH0614519A (en) Method for disassembling magnetic circuit
Zheng et al. New approach to preparing unidirectional NiMnFeGa magnetic shape memory alloy.
CN104043524A (en) Electric permanent-magnet iron separator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3180331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 13

EXPY Cancellation because of completion of term