JP2001083074A - Grain diameter distribution measuring device and method - Google Patents

Grain diameter distribution measuring device and method

Info

Publication number
JP2001083074A
JP2001083074A JP25643699A JP25643699A JP2001083074A JP 2001083074 A JP2001083074 A JP 2001083074A JP 25643699 A JP25643699 A JP 25643699A JP 25643699 A JP25643699 A JP 25643699A JP 2001083074 A JP2001083074 A JP 2001083074A
Authority
JP
Japan
Prior art keywords
measured
temperature
sample
particle size
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25643699A
Other languages
Japanese (ja)
Other versions
JP3689276B2 (en
Inventor
Tetsuji Yamaguchi
哲司 山口
Tatsuo Igushi
達夫 伊串
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP25643699A priority Critical patent/JP3689276B2/en
Publication of JP2001083074A publication Critical patent/JP2001083074A/en
Application granted granted Critical
Publication of JP3689276B2 publication Critical patent/JP3689276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grain diameter distribution measuring device and method, capable of switching between, when directly and accurately measuring temperature data at measurement and when substituting indirectly measured temperature, such as the temperature of a holder for simplicity of measurements and using the temperature data for computing a grain diameter distribution. SOLUTION: In this grain diameter distribution measuring device 1, a scattering light generated by irradiating samples to be measured 3 and 4 with a laser beam 6 is converted into electrical detecting signals, and grain diameter distribution F(D) of grains 4 contained in the samples to be measured 3 and 4 are computed by performing the inverse computations on the detection signals. The measuring device 1 comprises an external temperature sensor 15b, mounted to a holder 2b to hold the samples 3 and 4 to be measured for measuring the temperatures T of the samples to be measured 3 and 4 for measuring the their temperatures indirectly, an internal temperature sensor 15a to measure directly the temperatures of the samples to be measured 3 and 4, is capable of selecting the temperature sensor to be used according to the samples to be measured 3 and 4, and comprises a computation processing part 17 to perform the inverse computation for the grain diameter distributions F(D) by substituting the temperature T of the samples to be measured 3 and 4 measured by the selected temperature sensor into the Stokes-Einstein equation and obtaining the response function.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、動的光散乱を利用
した粒径分布測定装置および粒径分布測定方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle size distribution measuring apparatus and a particle size distribution measuring method utilizing dynamic light scattering.

【0002】[0002]

【従来の技術】近年、測定対象試料の分散媒中に分散す
る粒子の粒径分布を測定する粒径分布測定装置が提案さ
れている。すなわち、この粒径分布測定装置は、測定対
象試料に対して特定波長のレーザ光を照射し、粒子に当
たって散乱した散乱光を検出器に入射させる。このと
き、ブラウン運動する粒子に照射したレーザ光のドップ
ラーシフトにより生じる散乱光の干渉光を検出して、こ
の拡散光の検出信号をフーリエ変換して周波数解析する
ことにより、測定した光強度の周波数特性を求めること
ができる。ついで、この光強度の周波数特性から粒径分
布の測定を行うことが提案されている。
2. Description of the Related Art Recently, a particle size distribution measuring device for measuring the particle size distribution of particles dispersed in a dispersion medium of a sample to be measured has been proposed. That is, the particle size distribution measuring device irradiates a laser beam of a specific wavelength to the sample to be measured, and makes the scattered light scattered on the particles incident on the detector. At this time, the interference light of the scattered light generated by the Doppler shift of the laser light applied to the particles performing the Brownian motion is detected, and the detection signal of the diffused light is subjected to the Fourier transform to analyze the frequency, thereby obtaining the frequency of the measured light intensity. Characteristics can be determined. Then, it has been proposed to measure the particle size distribution from the frequency characteristics of the light intensity.

【0003】[0003]

【発明が解決しようとする課題】ところが、周波数特性
から粒径分布を求めるためには、複雑な演算処理を行う
必要があり、それだけ、高性能のコンピュータを必要と
していた。また、演算結果が発散して、粒径分布を求め
られなくなることもあった。このため、周波数特性から
粒径分布を求めるために、周波数特性をコンボリューシ
ョン積分の形に変換してこれをデコンボリューションす
ることや、シフトバリアントな応答関数を用いて粒径分
布をもとめることが考えられているが、この方法では分
析精度が低下することは避けられなかった。
However, in order to obtain the particle size distribution from the frequency characteristics, it is necessary to perform complicated arithmetic processing, which requires a high-performance computer. In addition, the calculation result may diverge, and the particle size distribution may not be obtained. Therefore, in order to obtain the particle size distribution from the frequency characteristics, it is conceivable to convert the frequency characteristics into the form of convolution integral and deconvolve it, or to obtain the particle size distribution using a shift variant response function. However, this method inevitably reduces the analytical accuracy.

【0004】そこで、本出願人は1998年10月30
日付けで、「粒子径分布解析方法」(特願平10−31
0063号)を出願している。この粒径分布解析方法を
用いることにより、簡単な繰り返し演算を行うことによ
り、第1種フレドホルム積分方程式から粒径分布を逆演
算することにより求めることができる。さらに、逆演算
の過程で用いる応答関数を測定時の各種条件に合わせる
ことにより、より正確な粒径分布を測定することができ
る。
Accordingly, the present applicant has filed a statement on October 30, 1998.
As of the date, “Particle size distribution analysis method” (Japanese Patent Application No. 10-31)
0063). By using this particle size distribution analysis method, a simple repetitive calculation can be performed, and the particle size distribution can be obtained by inversely calculating the particle size distribution from the Fredholm integral equation of the first kind. Further, by adjusting the response function used in the process of the inverse operation to various conditions at the time of measurement, a more accurate particle size distribution can be measured.

【0005】ここで、逆演算によって求まる粒径分布を
より正確なものとするためには、使用者が測定前に、測
定時の試料の温度、粘性係数などの各種条件を正確なパ
ラメータとして数値入力することが重要であるが、この
入力作業が煩わしいという課題もあった。なお、粘性係
数は測定対象試料の分散媒(溶媒)の種類によって温度
に対する所定の関係を有する変化をするものであり、正
確な粒径分布の測定を行うためには正確な温度の測定を
行うことが重要であった。
Here, in order to make the particle size distribution obtained by the inverse calculation more accurate, various conditions such as the temperature and the viscosity coefficient of the sample at the time of the measurement are set as accurate parameters by the user before the measurement. It is important to input, but there is also a problem that this input operation is troublesome. The viscosity coefficient changes with a predetermined relationship with temperature depending on the type of the dispersion medium (solvent) of the sample to be measured. To measure the particle size distribution accurately, the temperature must be measured accurately. That was important.

【0006】前記測定対象試料の温度測定方法としては
一般的に、測定対象試料を収容したセルを保持する金属
あるいは液浸バス型のホルダ(セルホルダ)に取り付け
られて間接的にその温度を測定することが行われてい
た。しかしながら、この方法では、セルホルダの温度と
測定対象試料の液温に差が生じることが往々にしてあ
り、これが測定誤差を生じさせる原因となることもあっ
た。とりわけ、セルに高温または冷温の測定対象試料を
入れて直ぐに測定を開始した場合などでは差が激しくな
り、大きな誤差を生じさせることがあった。
As a method of measuring the temperature of a sample to be measured, generally, the temperature is indirectly measured by attaching the sample to a metal or immersion bath type holder (cell holder) which holds a cell containing the sample to be measured. That was being done. However, in this method, a difference often occurs between the temperature of the cell holder and the liquid temperature of the sample to be measured, and this may cause a measurement error. In particular, when the measurement is started immediately after a high-temperature or low-temperature sample to be measured is placed in the cell, the difference becomes large and a large error may occur.

【0007】本発明は、上述の事柄を考慮に入れてなさ
れたものであって、その目的とするところは、粒径分布
の演算に不可欠な測定時の温度データを直接的に正確に
測定する場合と、測定の簡便のためにホルダの温度など
間接的に測定された温度を代用する場合とを切り換え
て、その温度データを粒径分布の演算に用いることがで
きる粒径分布測定装置および粒径分布測定方法を提供す
ることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to directly and accurately measure temperature data at the time of measurement, which is indispensable for calculating the particle size distribution. A particle size distribution measuring device and a particle size measurement method that can switch between the case and the case where an indirectly measured temperature such as the temperature of a holder is substituted for simplicity of measurement, and use the temperature data for calculating the particle size distribution. An object of the present invention is to provide a method for measuring a diameter distribution.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、第1発明の粒径分布測定装置は、測定対象試料にレ
ーザ光を照射して、生じる散乱光を電気的な検出信号に
変換し、この検出信号を逆演算して試料に含まれる粒子
の粒径分布を算出する粒径分布測定装置において、測定
対象試料の温度を測定するために測定対象試料を保持す
るホルダに取り付けられて間接的にその温度を測定する
外部温度センサと、直接的に測定対象試料の温度を測定
する内部温度センサとを有し、測定対象試料に応じて使
用する温度センサを選択可能とし、選ばれた温度センサ
によって測定された測定対象試料の温度をストークスア
インスタインの式に代入して応答関数を求めることによ
り粒径分布の逆演算を行なう演算処理部を有することを
特徴としている。
In order to achieve the above object, a particle size distribution measuring apparatus according to a first aspect of the present invention irradiates a sample to be measured with laser light and converts scattered light generated into an electrical detection signal. Then, in the particle size distribution measuring device for calculating the particle size distribution of the particles contained in the sample by performing an inverse operation of the detection signal, attached to a holder holding the sample to be measured in order to measure the temperature of the sample to be measured. An external temperature sensor that indirectly measures the temperature, and an internal temperature sensor that directly measures the temperature of the sample to be measured, allowing the temperature sensor to be used according to the sample to be measured to be selectable and selected It is characterized by having an arithmetic processing unit for performing the inverse calculation of the particle size distribution by substituting the temperature of the sample to be measured measured by the temperature sensor into the Stokes-Einstein equation to obtain a response function.

【0009】したがって、第1発明によれば使用者は測
定対象試料に合わせて精度の要求度などを考慮して、温
度測定を直接的に行うか、間接的に行うかを切り換える
ことができる。つまり、精度を必要とする場合には、直
接的に測定対象試料の液温を実測する内部温度センサを
用いることで、温度誤差の発生を防ぎ、精度の高い粒径
分布を得ることができる。また、温度による影響が少な
い測定対象試料やさほどの精度が要求されていない測定
対象試料については外部温度センサを用いることで測定
を簡単にすることができる。すなわち、可及的に正確な
粒径分布を得て、計算誤差や間違いによる分布の不良を
防止できる機能と、より簡単な測定を行う機能を兼ね備
えることができる。
Therefore, according to the first aspect, the user can switch between performing the temperature measurement directly and indirectly in consideration of the required accuracy and the like according to the sample to be measured. That is, when accuracy is required, the use of an internal temperature sensor that directly measures the liquid temperature of the sample to be measured can prevent a temperature error from occurring, and can provide a highly accurate particle size distribution. In addition, the measurement can be simplified by using an external temperature sensor for a measurement target sample that is less affected by temperature and a measurement target sample that does not require much accuracy. In other words, it is possible to have both a function of obtaining a particle size distribution as accurate as possible, preventing a distribution failure due to a calculation error and an error, and a function of performing a simpler measurement.

【0010】なお、本出願人は1998年10月30日
付けで、「粒度分布解析方法」(特願平10−3099
78号:以下、先願の発明という)を出願しており、測
定時の諸条件に合わせた演算パラメータの入力により、
理論式を用いて粒径分布を解析する新たな解析方法を提
案している。つまり、本発明によって測定された温度デ
ータは演算パラメータとして正確に入力されるので、前
記先願の発明において提案した粒径分布の解析をより精
度良く行うことができるのである。
[0010] The applicant of the present invention filed on October 30, 1998, "Method of analyzing particle size distribution" (Japanese Patent Application No. 10-3099).
No. 78: hereinafter referred to as the invention of the prior application), and by inputting calculation parameters in accordance with various conditions at the time of measurement,
We propose a new analysis method to analyze the particle size distribution using the theoretical formula. That is, since the temperature data measured by the present invention is accurately input as the calculation parameter, the analysis of the particle size distribution proposed in the invention of the prior application can be performed with higher accuracy.

【0011】また、第2発明の粒径分布測定装置は、測
定対象試料にレーザ光を照射して、生じる散乱光を電気
的な検出信号に変換し、この検出信号を逆演算して試料
に含まれる粒子の粒径分布を算出する粒径分布測定装置
において、前記レーザ光を測定対象試料まで導いて照射
し、かつ粒子による散乱光を検出器まで導く光ファイバ
ーと、この光ファイバーのレーザ光出射端側に取り付け
られて測定対象試料の温度を直接的に測定する温度セン
サとを有し、この温度センサによって測定された測定対
象試料の温度をストークスアインスタインの式に代入し
て応答関数を求めることにより粒径分布の逆演算を行な
う演算処理部を有することを特徴としている。
A particle size distribution measuring apparatus according to a second aspect of the present invention irradiates a sample to be measured with laser light, converts scattered light generated into an electrical detection signal, and inversely operates the detection signal to obtain a sample. In a particle size distribution measuring device for calculating a particle size distribution of contained particles, an optical fiber for guiding and irradiating the laser light to a sample to be measured and guiding light scattered by the particles to a detector, and a laser light emitting end of the optical fiber Having a temperature sensor attached to the side to directly measure the temperature of the sample to be measured, and substituting the temperature of the sample to be measured measured by the temperature sensor into the Stokes-Einstein equation to obtain a response function And an arithmetic processing unit for performing an inverse calculation of the particle size distribution.

【0012】したがって、第2発明によれば任意の容器
に収容された測定対象試料に対して光ファイバーの先端
を浸漬するだけで、測定対象試料を容器から取り出すこ
となく粒径分布を測定できるので、取扱いが容易であ
る。さらに、温度センサが光ファイバーのレーザ光出射
端側に取り付けられているので、より測定点に近い部分
の実測温度を測定でき、それだけ正確な粒径分布を算出
することができる。
Therefore, according to the second aspect of the present invention, the particle size distribution can be measured without removing the sample to be measured from the container only by immersing the tip of the optical fiber in the sample to be measured stored in an arbitrary container. Easy to handle. Further, since the temperature sensor is attached to the laser light emitting end side of the optical fiber, it is possible to measure the actually measured temperature of a portion closer to the measurement point, and to calculate the particle size distribution more accurately.

【0013】また、本発明の粒径分布測定方法は、測定
対象試料にレーザ光を照射して、生じる散乱光を電気的
な検出信号に変換し、この検出信号を逆演算して試料に
含まれる粒子の粒径分布を算出する粒径分布測定方法に
おいて、測定対象試料に応じてその温度を直接的に測定
する内部温度センサまたは間接的に測定する外部温度セ
ンサの何れを用いて測定するかを選択した後に、測定時
に測定対象試料の温度を選ばれた温度センサによって測
定し、測定された温度をストークスアインスタインの式
に代入して応答関数を求めることにより粒径分布の逆演
算を行なうことを特徴としている。
Further, in the particle size distribution measuring method of the present invention, a sample to be measured is irradiated with laser light, the generated scattered light is converted into an electrical detection signal, and the detection signal is inversely calculated and included in the sample. In the particle size distribution measuring method for calculating the particle size distribution of particles to be measured, whether to use an internal temperature sensor for directly measuring the temperature or an external temperature sensor for indirectly measuring the temperature according to the sample to be measured After selecting, the temperature of the sample to be measured is measured by the selected temperature sensor at the time of measurement, and the measured temperature is substituted into the Stokes-Einstein equation to obtain a response function, thereby performing an inverse calculation of the particle size distribution. It is characterized by:

【0014】[0014]

【発明の実施の形態】図1は本発明の粒径分布測定装置
である動的光拡散式粒径分布測定装置の構成を概略的に
示す図である。図1において、1は測定部であり、例え
ば次のように構成されている。すなわち、2は溶媒3と
測定対象の粒子(試料)4を収容するセル、5は粒子4
にレーザ光6を照射する光源、7はレーザ光6をセル2
内に集光させるレンズである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram schematically showing a configuration of a dynamic light diffusion type particle size distribution measuring device which is a particle size distribution measuring device of the present invention. In FIG. 1, reference numeral 1 denotes a measuring unit, which is configured as follows, for example. That is, 2 is a cell containing a solvent 3 and particles (sample) 4 to be measured, and 5 is a particle 4
Is a light source for irradiating the laser beam 6 to the cell 2, and 7 is a
It is a lens that focuses light inside.

【0015】8は粒子4による散乱光によって生じた干
渉光9を反射するビームスプリッタ(またはレーザ光6
の透過孔を設けた反射鏡)、10は干渉光9を集光する
レンズ、11は干渉光9を電気的な検出信号に変換する
検出器である。また、12は前記検出信号を増幅するア
ンプ、13はフィルタ、14は検出信号をデジタル信号
に変換するAD変換器である。
Reference numeral 8 denotes a beam splitter (or a laser beam 6) that reflects interference light 9 generated by light scattered by the particles 4.
, A reflecting mirror provided with a transmission hole), a lens 10 for condensing the interference light 9, and a detector 11 for converting the interference light 9 into an electric detection signal. Reference numeral 12 denotes an amplifier for amplifying the detection signal, reference numeral 13 denotes a filter, and reference numeral 14 denotes an AD converter for converting the detection signal into a digital signal.

【0016】加えて、15はセル2に収容される試料
3,4の温度を測定する温度計測部であり、試料3,4
の温度を直接的に測定する内部温度センサ15aと、試
料3,4の温度を間接的に外部温度センサ15bと、こ
れらの温度センサ15a,15bに接続されて温度デー
タTを出力する温度計回路15cとからなっており、こ
の温度センサ15による温度データもAD変換器14に
よってデジタル信号に変換される。
In addition, reference numeral 15 denotes a temperature measuring unit for measuring the temperature of the samples 3 and 4 stored in the cell 2;
An internal temperature sensor 15a for directly measuring the temperature of the sample, an external temperature sensor 15b for indirectly measuring the temperatures of the samples 3 and 4, and a thermometer circuit connected to these temperature sensors 15a and 15b to output the temperature data T The temperature data from the temperature sensor 15 is also converted into a digital signal by the AD converter 14.

【0017】図2は前記温度計測部15の配置を明らか
にする水平断面図である。図1,2に示すように、本例
における内部温度センサ15aは、セル2の蓋2aに取
り付けられることで、セル2内の試料3,4に浸漬した
状態で、その温度を測定する。なお、この内部温度セン
サ15aはセル2内を透過するレーザ光6の光路を妨げ
ないようにセル2の隅の位置に配置されているが、本発
明はこの内部温度センサ15aの配置位置や取付け方法
を限定するものではない。
FIG. 2 is a horizontal sectional view for clarifying the arrangement of the temperature measuring section 15. As shown in FIGS. 1 and 2, the internal temperature sensor 15 a in this example is attached to the lid 2 a of the cell 2, and measures the temperature in a state where the internal temperature sensor 15 a is immersed in the samples 3 and 4 in the cell 2. The internal temperature sensor 15a is disposed at a corner of the cell 2 so as not to obstruct the optical path of the laser beam 6 passing through the cell 2. However, the present invention is not limited to the arrangement position and mounting of the internal temperature sensor 15a. It does not limit the method.

【0018】また、本例では内部温度センサ15aを熱
伝対のような接触型の温度センサとすることにより、よ
り精度の高い温度測定を可能としているが、本発明はこ
れに限定されるものではない。すなわち、内部温度セン
サ15bを、放射する赤外線によって温度を測定する非
接触の放射温度計によって形成してもよい。この場合、
内部温度センサ15aを測定の毎に洗浄する必要がない
ので、より簡単な粒径分布の測定を行うことができる。
In this embodiment, the internal temperature sensor 15a is a contact-type temperature sensor such as a thermocouple, thereby enabling more accurate temperature measurement. However, the present invention is not limited to this. is not. That is, the internal temperature sensor 15b may be formed by a non-contact radiation thermometer that measures the temperature by radiating infrared rays. in this case,
Since it is not necessary to clean the internal temperature sensor 15a every time the measurement is performed, the particle size distribution can be measured more easily.

【0019】さらに、放射温度計を接触型の温度センサ
15aと別途に設けることで、放射温度計による試料
3,4の温度の測定を用いて、外部温度センサ15bに
よる測定温度と試料3,4の実際の温度に差が生じてい
ることを検出できるようにしてもよい。つまり、内部温
度センサ15aを用いる必要があるかどうかを判断する
基準として放射温度計による試料3,4の温度の測定を
用いるなど、種々の変形が考えられる。
Further, by providing a radiation thermometer separately from the contact-type temperature sensor 15a, the temperature of the samples 3 and 4 measured by the radiation thermometer can be used to determine the temperature measured by the external temperature sensor 15b and the temperature of the samples 3 and 4. It may be possible to detect that a difference has occurred in the actual temperature of the data. That is, various modifications can be considered, such as using the measurement of the temperature of the samples 3 and 4 by the radiation thermometer as a criterion for determining whether or not the internal temperature sensor 15a needs to be used.

【0020】また、外部温度センサ15bは、セル2の
外側においてセルを保持する金属製のセルホルダ2bに
埋設して取り付けており、このセルホルダ2bの温度に
よって間接的に試料3,4の温度を測定する。しかしな
がら、本発明はセルホルダ2bの形状を限定するもので
はなく、セル2を液体に浸漬した状態でこの液体を介し
て試料3,4の温度調節を行うものであってもよい。ま
た、この場合は外部温度センサ15bをセル2と共に液
体に浸漬するようにセルホルダ2bに取り付けることが
できる。
The external temperature sensor 15b is buried and attached to the outside of the cell 2 in a metal cell holder 2b for holding the cell, and indirectly measures the temperatures of the samples 3 and 4 based on the temperature of the cell holder 2b. I do. However, the present invention does not limit the shape of the cell holder 2b, and may adjust the temperature of the samples 3 and 4 via the liquid while the cell 2 is immersed in the liquid. In this case, the external temperature sensor 15b can be attached to the cell holder 2b so as to be immersed in the liquid together with the cell 2.

【0021】なお、本例においてセルホルダ2bはセル
2内の試料3,4の温度調節を行うものであり、図外の
ヒータや電子冷却器を備えている。つまり、外部温度セ
ンサ15bは常にホルダ2bの温度を測定しており、こ
の外部温度センサ15bが測定する温度を一定にするよ
うに温度調節される。そして、温調されたホルダ2b内
にセル2が挿入される。
In this embodiment, the cell holder 2b adjusts the temperature of the samples 3 and 4 in the cell 2, and includes a heater and an electronic cooler (not shown). That is, the external temperature sensor 15b constantly measures the temperature of the holder 2b, and the temperature is adjusted so that the temperature measured by the external temperature sensor 15b is constant. Then, the cell 2 is inserted into the holder 2b whose temperature has been adjusted.

【0022】このような場合、セル2内の測定対象試料
3,4の温度にしたがって、一時的に外部温度センサ1
5bによる検出温度データTが変動することが考えられ
る。したがって、この温度変動が激しいときは、セル2
内の測定対象試料3,4の温度とホルダ2bの温度との
間に差が生じていることを示しているので、粒径分布測
定装置1が使用者に内部温度センサ15aを使用するこ
とを促すようにしてもよい。あるいは、温度変化が落ち
つくまで、干渉光9の測定を待つように促してもよい。
In such a case, the external temperature sensor 1 is temporarily set according to the temperatures of the samples 3 and 4 to be measured in the cell 2.
It is conceivable that the detected temperature data T by 5b fluctuates. Therefore, when this temperature fluctuation is severe, the cell 2
This indicates that there is a difference between the temperature of the measurement target samples 3 and 4 and the temperature of the holder 2b, so that the particle size distribution measurement device 1 uses the internal temperature sensor 15a for the user. You may be prompted. Alternatively, the user may be prompted to wait for the measurement of the interference light 9 until the temperature change has calmed down.

【0023】16は前記測定部1を始めとする装置全体
を制御すると共に、各種の演算を行なう測定制御部で、
例えばパソコンよりなる。そして、パソコン16は演算
処理を行なうCPU17(演算処理部)に加えてメモリ
18やハードディスク19などの記憶部や表示部20や
キーボード21などの入出力部を有している。
Reference numeral 16 denotes a measurement control unit which controls the entire apparatus including the measurement unit 1 and performs various calculations.
For example, it consists of a personal computer. The personal computer 16 has a storage section such as a memory 18 and a hard disk 19 and an input / output section such as a display section 20 and a keyboard 21 in addition to a CPU 17 (calculation processing section) for performing calculation processing.

【0024】また、前記メモリ18やハードディスク1
9には前記検出信号から粒径分布を求めるための解析プ
ログラムや、溶媒の種類に対応する粘性係数や屈折率に
関するデータを収納している。なお、この解析プログラ
ムによる粒径分布の解析方法は前記先願の発明に示した
方法を用いるので、その詳細は省略する。
The memory 18 and the hard disk 1
Reference numeral 9 stores an analysis program for obtaining a particle size distribution from the detection signal and data on a viscosity coefficient and a refractive index corresponding to the type of the solvent. Note that the method of analyzing the particle size distribution by this analysis program uses the method shown in the invention of the prior application, and thus the details are omitted.

【0025】上記構成の動的光散乱式粒径分布測定装置
において、光源5を出たレーザ光6はビームスプリッタ
8およびレンズ7を通過してセル2内に集光する。この
とき、レーザ光6は溶媒3に分散されたブラウン運動す
る粒子3に当たり、粒子3のブラウン運動によってドッ
プラーシフトした光を散乱する。そして、このドップラ
ーシフトした散乱光によって干渉光9が生じ、この干渉
光9が検出器11によって検出される。なお、干渉光9
は散乱光同士の干渉によって生じることも、散乱光と非
散乱光によって生じることもある。
In the dynamic light scattering type particle size distribution measuring apparatus having the above configuration, the laser beam 6 emitted from the light source 5 passes through the beam splitter 8 and the lens 7 and is condensed in the cell 2. At this time, the laser light 6 hits the particles 3 which are dispersed in the solvent 3 and which undergoes Brownian motion, and scatters light which has been Doppler shifted by the Brownian motion of the particles 3. The interference light 9 is generated by the Doppler-shifted scattered light, and the interference light 9 is detected by the detector 11. The interference light 9
May be caused by interference between scattered lights or by scattered light and non-scattered light.

【0026】前記干渉光9の測定中は同時に前記温度計
測部15による温度データTの取り込みも行われる。そ
して、検出器11によって検出された干渉光9の検出信
号および温度計測部15によって測定された試料3,4
の温度データTがAD変換器14によってデジタル信号
に変換されてパソコン16に入力される。そして、パソ
コン16は前記干渉光9の検出信号をパワースペクトル
に変換し、一定の測定時間の間に測定した干渉光9の検
出信号から前記パワースペクトルの平均値を算出するこ
とにより、ノイズによる影響の少ない分析を行なう。
During the measurement of the interference light 9, the temperature data T is also taken in by the temperature measuring section 15. Then, the detection signal of the interference light 9 detected by the detector 11 and the samples 3 and 4 measured by the temperature measurement unit 15
Is converted into a digital signal by the AD converter 14 and input to the personal computer 16. Then, the personal computer 16 converts the detection signal of the interference light 9 into a power spectrum, and calculates the average value of the power spectrum from the detection signal of the interference light 9 measured during a certain measurement time to thereby reduce the influence of noise. Perform analysis with less

【0027】また、前記測定時間中に取り込んだ温度デ
ータTはその平均値Ta、最大値Tmx、最小値Tmnが求
められる。そして、温度の平均値Ta(平均温度)を用
いてパソコン16側では、測定時における試料3,4の
平均温度Taと、溶媒3の種類などの情報がメモリ18
やハードディスク19に収められているデータを用いて
処理されることにより、測定時の溶媒3の粘性係数や温
度などの各種パラメータη,Tを算出する。
The average value Ta, the maximum value Tmx, and the minimum value Tmn of the temperature data T captured during the measurement time are obtained. The personal computer 16 uses the average temperature Ta (average temperature) to store information such as the average temperature Ta of the samples 3 and 4 at the time of measurement and the type of the solvent 3 in the memory 18.
And the data stored in the hard disk 19 to calculate various parameters η and T such as the viscosity coefficient and the temperature of the solvent 3 at the time of measurement.

【0028】すなわち、パソコン16は溶媒3の種類に
従って各溶媒3の温度に対する粘性係数を表わす温度−
粘性近似式Fxをメモリ18やハードディスク19にデ
ータとして有しており、パソコン16は前記温度センサ
15によって測定された試料3,4の平均温度Taから
測定時の粘性係数ηを求めることができる。
That is, the personal computer 16 determines the viscosity coefficient with respect to the temperature of each solvent 3 according to the type of the solvent 3.
The viscosity approximation formula Fx is stored in the memory 18 and the hard disk 19 as data, and the personal computer 16 can obtain the viscosity coefficient η at the time of measurement from the average temperature Ta of the samples 3 and 4 measured by the temperature sensor 15.

【0029】次いで、パソコン16は求められた粘性係
数ηと前記測定温度Taを、以下の式(1)に示すスト
ークスアインスタインの関係式に代入してローレンツ関
数から応答関数を求める。そして、求められた応答関数
と前記干渉光9の検出信号から求められるパワースペク
トルとから粒径分布F(D)が算出される。 但し、ηは粘性係数,Tは測定温度の平均値Ta,Dp
は粒子径であり、それぞれ、単位は、〔mPaSe
c〕,〔K〕,〔m〕である。
Then, the personal computer 16 substitutes the obtained viscosity coefficient η and the measured temperature Ta into a Stokes-Einstein relational expression shown in the following equation (1) to obtain a response function from the Lorentz function. Then, a particle size distribution F (D) is calculated from the obtained response function and the power spectrum obtained from the detection signal of the interference light 9. Here, η is the viscosity coefficient, and T is the average value of the measured temperatures Ta, Dp
Is the particle diameter, and the unit is [mPaSe
c], [K] and [m].

【0030】上述のように、測定時の試料3,4の温度
Tや粘性係数ηなどの正確な条件が応答関数の作成に反
映されるので、より正確な粒径分布F(D)の測定が可
能となる。とりわけ、本発明では測定時に使用する温度
センサ15a,15bを適宜選択可能であるから、測定
対象試料3,4に合わせた精度の粒径分布の測定を行う
ことができる。
As described above, since accurate conditions such as the temperature T and the viscosity coefficient η of the samples 3 and 4 at the time of measurement are reflected in the preparation of the response function, a more accurate measurement of the particle size distribution F (D) is performed. Becomes possible. In particular, in the present invention, since the temperature sensors 15a and 15b used at the time of measurement can be appropriately selected, it is possible to measure the particle size distribution with an accuracy suitable for the samples 3 and 4 to be measured.

【0031】すなわち、可及的に高精度の測定を行いた
いときは内部温度センサ15aを選択することにより、
試料3,4の温度Tを直接測定できるので、温度の測定
誤差による粒径分布の測定誤差を最小限に抑えることが
できる。一方、さほどの測定精度を必要としない場合
は、外部温度センサ15bを選択することにより、内部
温度センサ15aを使う必要がなく、内部温度センサ1
5aを洗浄する手間がなくなり、測定を簡単に行うこと
ができる。
That is, when it is desired to perform a measurement with as high a precision as possible, the internal temperature sensor 15a is selected,
Since the temperature T of the samples 3 and 4 can be directly measured, the measurement error of the particle size distribution due to the temperature measurement error can be minimized. On the other hand, when not much measurement accuracy is required, by selecting the external temperature sensor 15b, there is no need to use the internal temperature sensor 15a.
There is no need to clean 5a, and the measurement can be performed easily.

【0032】図3は本発明の別の例を開示する図であ
る。図3において、22は測定対象となる溶媒3や粒子
4を収容する液タンクであり、23は一端側23aがこ
の液タンク22内に挿入されて他端側23bが前記レン
ズ7の集光点に配置される光ファイバーである。この光
ファイバー23の一端側23aには前述した接触型の温
度センサ15aを沿わせるように配置する。
FIG. 3 is a diagram disclosing another example of the present invention. In FIG. 3, reference numeral 22 denotes a liquid tank containing the solvent 3 and the particles 4 to be measured. Reference numeral 23 denotes one end 23a of which is inserted into the liquid tank 22 and the other end 23b is a condensing point of the lens 7. The optical fiber is arranged in the optical fiber. The above-mentioned contact-type temperature sensor 15a is arranged along one end 23a of the optical fiber 23.

【0033】前記構成によれば、レンズ7に入射するレ
ーザ光6が光ファイバー23の他端側23bから光ファ
イバー23を通って一端側23a(レーザ光出射端側)
から出射し、粒子4に当たって散乱光を生じさせ、この
散乱光によって干渉光9が生じる。そして、この干渉光
9は一端側23aに入射し、他端側23bから出射する
ことにより、図1に示したような検出器11によって検
出される。
According to the above configuration, the laser beam 6 incident on the lens 7 passes through the optical fiber 23 from the other end 23b of the optical fiber 23 and the one end 23a (laser light emitting end).
And scattered light hitting the particles 4 to generate interference light 9. Then, the interference light 9 enters the one end 23a and exits from the other end 23b, and is detected by the detector 11 as shown in FIG.

【0034】同時に、本例では光ファイバー23の一端
側23aに液温を実測する温度センサ15aを取り付け
ているので、粒径分布を測定するための光を検知する部
分における温度を正確に測定することができ、それだけ
粒径分布の測定結果の精度を向上することができる。そ
の他の点は図1,2において説明したものと同じである
ので、その詳細な説明を省略する。
At the same time, in this example, the temperature sensor 15a for measuring the liquid temperature is attached to one end 23a of the optical fiber 23, so that the temperature at the portion for detecting the light for measuring the particle size distribution can be accurately measured. And the accuracy of the measurement result of the particle size distribution can be improved accordingly. The other points are the same as those described with reference to FIGS. 1 and 2, and a detailed description thereof will be omitted.

【0035】また、本例のように構成することにより、
測定対象試料3,4を任意の容器22に収容した状態
で、その粒径分布を測定できる。したがって、測定対象
試料3,4が取り出すことができないような所に収容さ
れているとしても、試料3,4を収容する容器に内容物
の温度を測定する手段が一切なくても、光ファイバー2
3の一端側23aを挿入できるような開口部さえあれば
試料3,4の粒径分布を測定することが可能となる。
Further, by configuring as in this example,
The particle size distribution can be measured in a state where the measurement target samples 3 and 4 are stored in an arbitrary container 22. Therefore, even if the measurement target samples 3 and 4 are stored in a place where they cannot be taken out, the optical fiber 2 can be used without any means for measuring the temperature of the contents in the container storing the samples 3 and 4.
As long as there is an opening into which one end 23a of the sample 3 can be inserted, the particle size distribution of the samples 3 and 4 can be measured.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
使用者は測定対象試料の液温を実測する温度センサを用
いることによって、より正確な測定時の温度やこの温度
条件に合わせた粘性係数を演算パラメータとして用いて
粒径分布を算出することができる。従って、最終目的と
して可及的に正確な粒径分布を得ることができる。ま
た、測定対象試料の温度を間接的に測定する外部温度セ
ンサも取り付けた場合には、この外部温度センサを選択
して用いることにより、高精度を要求しない試料の粒径
分布の測定をより簡素に行うことができる。
As described above, according to the present invention,
By using the temperature sensor that measures the liquid temperature of the sample to be measured, the user can calculate the particle size distribution using the temperature at the time of more accurate measurement and the viscosity coefficient according to this temperature condition as the calculation parameter. . Therefore, a particle size distribution as accurate as possible can be obtained as the final purpose. If an external temperature sensor that indirectly measures the temperature of the sample to be measured is also installed, this external temperature sensor can be selected and used to simplify the measurement of the particle size distribution of samples that do not require high accuracy. Can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の粒径分布測定装置の全体的な構成を示
す図である。
FIG. 1 is a diagram showing an overall configuration of a particle size distribution measuring device of the present invention.

【図2】前記粒径分布測定装置による溶媒の選択方法を
示す図である。
FIG. 2 is a diagram showing a method of selecting a solvent by the particle size distribution measuring device.

【図3】前記粒径分布測定方法の処理の流れを示す図で
ある。
FIG. 3 is a diagram showing a processing flow of the particle size distribution measuring method.

【符号の説明】[Explanation of symbols]

1…粒径分布測定装置、2b…ホルダ、3,4…測定対
象試料、6…レーザ光、9…散乱光、15…温度計測
部、15a…内部温度センサ、15b…外部温度セン
サ、17…演算処理部、F(D)…粒径分布。
DESCRIPTION OF SYMBOLS 1 ... Particle size distribution measuring device, 2b ... Holder, 3, 4 ... Sample to be measured, 6 ... Laser light, 9 ... Scattered light, 15 ... Temperature measuring unit, 15a ... Internal temperature sensor, 15b ... External temperature sensor, 17 ... Arithmetic processing unit, F (D): particle size distribution.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 測定対象試料にレーザ光を照射して、生
じる散乱光を電気的な検出信号に変換し、この検出信号
を逆演算して試料に含まれる粒子の粒径分布を算出する
粒径分布測定装置において、測定対象試料の温度を測定
するために測定対象試料を保持するホルダに取り付けら
れて間接的にその温度を測定する外部温度センサと、直
接的に測定対象試料の温度を測定する内部温度センサと
を有し、測定対象試料に応じて使用する温度センサを選
択可能とし、選ばれた温度センサによって測定された測
定対象試料の温度をストークスアインスタインの式に代
入して応答関数を求めることにより粒径分布の逆演算を
行なう演算処理部を有することを特徴とする粒径分布測
定装置。
1. A particle for irradiating a sample to be measured with a laser beam, converting generated scattered light into an electrical detection signal, and calculating the particle size distribution of particles contained in the sample by performing an inverse operation on the detection signal. In the diameter distribution measuring device, an external temperature sensor attached to a holder that holds the sample to be measured to measure the temperature of the sample to be measured and indirectly measures the temperature, and directly measures the temperature of the sample to be measured Internal temperature sensor that can select the temperature sensor to be used in accordance with the sample to be measured, and substitutes the temperature of the sample to be measured measured by the selected temperature sensor into the Stokes Einstein equation for a response function. A particle size distribution measuring device, comprising: an arithmetic processing unit for performing an inverse calculation of the particle size distribution by obtaining the following.
【請求項2】 測定対象試料にレーザ光を照射して、生
じる散乱光を電気的な検出信号に変換し、この検出信号
を逆演算して試料に含まれる粒子の粒径分布を算出する
粒径分布測定装置において、前記レーザ光を測定対象試
料まで導いて照射し、かつ粒子による散乱光を検出器ま
で導く光ファイバーと、この光ファイバーのレーザ光出
射端側に取り付けられて測定対象試料の温度を直接的に
測定する温度センサとを有し、この温度センサによって
測定された測定対象試料の温度をストークスアインスタ
インの式に代入して応答関数を求めることにより粒径分
布の逆演算を行なう演算処理部を有することを特徴とす
る粒径分布測定装置。
2. A particle for irradiating a sample to be measured with laser light, converting scattered light generated into an electrical detection signal, and calculating the particle size distribution of particles contained in the sample by inversely calculating the detection signal. In the diameter distribution measuring device, the laser light is guided to the sample to be measured and irradiated, and the optical fiber that guides the scattered light by the particles to the detector, and the temperature of the sample to be measured attached to the laser light emitting end side of the optical fiber is adjusted. A temperature sensor for directly measuring the temperature of the sample to be measured, and substituting the temperature of the sample to be measured into the Stokes-Einstein equation to obtain a response function, thereby performing an inverse calculation of the particle size distribution. A particle size distribution measuring device having a portion.
【請求項3】 測定対象試料にレーザ光を照射して、生
じる散乱光を電気的な検出信号に変換し、この検出信号
を逆演算して試料に含まれる粒子の粒径分布を算出する
粒径分布測定方法において、測定対象試料に応じてその
温度を直接的に測定する内部温度センサまたは間接的に
測定する外部温度センサの何れを用いて測定するかを選
択した後に、測定時に測定対象試料の温度を選ばれた温
度センサによって測定し、測定された温度をストークス
アインスタインの式に代入して応答関数を求めることに
より粒径分布の逆演算を行なうことを特徴とする粒径分
布測定方法。
3. A particle for irradiating a sample to be measured with laser light, converting generated scattered light into an electrical detection signal, and calculating the particle size distribution of particles contained in the sample by inversely calculating the detection signal. In the diameter distribution measurement method, after selecting whether to use an internal temperature sensor for directly measuring the temperature or an external temperature sensor for indirectly measuring the temperature according to the sample to be measured, the sample to be measured at the time of measurement is selected. A particle size distribution measuring method characterized in that the temperature of the sample is measured by a selected temperature sensor, and the measured temperature is substituted into the Stokes-Einstein equation to obtain a response function, thereby performing inverse calculation of the particle size distribution. .
JP25643699A 1999-09-10 1999-09-10 Particle size distribution measuring apparatus and particle size distribution measuring method Expired - Fee Related JP3689276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25643699A JP3689276B2 (en) 1999-09-10 1999-09-10 Particle size distribution measuring apparatus and particle size distribution measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25643699A JP3689276B2 (en) 1999-09-10 1999-09-10 Particle size distribution measuring apparatus and particle size distribution measuring method

Publications (2)

Publication Number Publication Date
JP2001083074A true JP2001083074A (en) 2001-03-30
JP3689276B2 JP3689276B2 (en) 2005-08-31

Family

ID=17292647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25643699A Expired - Fee Related JP3689276B2 (en) 1999-09-10 1999-09-10 Particle size distribution measuring apparatus and particle size distribution measuring method

Country Status (1)

Country Link
JP (1) JP3689276B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100707894B1 (en) 2004-04-14 2007-04-17 가부시끼가이샤 도시바 Method for estimating liquid medicine, method for recognizing liquid medicine and method for manufacturing semiconductor device
JP2007322329A (en) * 2006-06-02 2007-12-13 Univ Of Tsukuba Particle characteristic measuring device and particle characteristic measuring method
JP2012032308A (en) * 2010-07-30 2012-02-16 Fujifilm Corp Light scattering intensity measuring method and dynamic light scattering measuring equipment
WO2018110468A1 (en) * 2016-12-14 2018-06-21 株式会社堀場製作所 Particle physical-property measurement device
WO2024079473A1 (en) * 2022-10-14 2024-04-18 Malvern Panalytical Limited Thermal compensation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023148528A1 (en) * 2022-02-07 2023-08-10 Malvern Panalytical Limited Particle analysis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100707894B1 (en) 2004-04-14 2007-04-17 가부시끼가이샤 도시바 Method for estimating liquid medicine, method for recognizing liquid medicine and method for manufacturing semiconductor device
JP2007322329A (en) * 2006-06-02 2007-12-13 Univ Of Tsukuba Particle characteristic measuring device and particle characteristic measuring method
JP2012032308A (en) * 2010-07-30 2012-02-16 Fujifilm Corp Light scattering intensity measuring method and dynamic light scattering measuring equipment
WO2018110468A1 (en) * 2016-12-14 2018-06-21 株式会社堀場製作所 Particle physical-property measurement device
GB2572707A (en) * 2016-12-14 2019-10-09 Horiba Ltd Particle physical-property measurement device
WO2024079473A1 (en) * 2022-10-14 2024-04-18 Malvern Panalytical Limited Thermal compensation

Also Published As

Publication number Publication date
JP3689276B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
US7301630B2 (en) Light scattering analysis and measurement
US5754294A (en) Optical micrometer for measuring thickness of transparent wafers
Burstyn et al. Decay rate of critical concentration fluctuations in a binary liquid
JP3874345B2 (en) Method for determining the position of a shadow line in a photoelectric array and critical angle refractometer using the same method
Claeys et al. Thermoreflectance optical test probe for the measurement of current‐induced temperature changes in microelectronic components
JP7477500B2 (en) Steady-state thermoreflectance method and system for measuring thermal conductivity - Patents.com
JP3689276B2 (en) Particle size distribution measuring apparatus and particle size distribution measuring method
US7333206B2 (en) Light scatter measurement apparatus and method
Peest et al. Instrumentation-related uncertainty of reflectance and transmittance measurements with a two-channel spectrophotometer
US4185497A (en) Adiabatic laser calorimeter
JP2636051B2 (en) Particle measurement method and device
Firago et al. Radiometric calibration of fiber optic spectrophotometers
JP3820065B2 (en) Dynamic light scattering particle size distribution measuring apparatus and dynamic light scattering particle size distribution measuring method
CN112611746A (en) Absorption spectrum detection device and detection method for material micro-area
Rodriguez et al. Frequency-resolved thermal lensing: An approach for thermal diffusivity measurements in liquid samples
JPH1038856A (en) Light absorptance measuring instrument and measuring method
JPS5847654B2 (en) Hannokongobutsuno Kiyuukodoo
CN219675840U (en) Semiconductor heat conductivity coefficient testing device based on pumping detection Raman spectrum
CN214749784U (en) Absorption spectrum detection device for material micro-area
JP7330869B2 (en) Automatic analysis method and automatic analysis device
JP3926362B2 (en) Method for determining the size of defects on a semiconductor wafer surface in a semiconductor wafer inspection system
Longtin et al. Laser-based temperature measurement at a liquid surface
RU2663301C1 (en) Device for measuring reflection and emission coefficients of materials and coatings
CN117630102A (en) Method and system for testing thermal reflection coefficient of material
Ng et al. Fluorescence and fiber-optics based real-time thickness sensor for dynamic liquid films

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees