JP2001081561A - High temperature heat receiving body - Google Patents

High temperature heat receiving body

Info

Publication number
JP2001081561A
JP2001081561A JP25691399A JP25691399A JP2001081561A JP 2001081561 A JP2001081561 A JP 2001081561A JP 25691399 A JP25691399 A JP 25691399A JP 25691399 A JP25691399 A JP 25691399A JP 2001081561 A JP2001081561 A JP 2001081561A
Authority
JP
Japan
Prior art keywords
groove
base material
heat receiving
receiving body
temperature heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25691399A
Other languages
Japanese (ja)
Inventor
Shigehiko Takaoka
重彦 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Material Corp
Original Assignee
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Material Corp filed Critical Allied Material Corp
Priority to JP25691399A priority Critical patent/JP2001081561A/en
Publication of JP2001081561A publication Critical patent/JP2001081561A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PROBLEM TO BE SOLVED: To obtain a heat receiving body composed of different kinds of joined body wide in the difference in thermal expansion coefficients by directly joining a dense tungsten thick film at least to a part of a base material having a thermal expansion coefficient higher than that of tungsten without providing an intermediate layer. SOLUTION: The film thickness of a tungsten (W) thick film 2 is >=1 mm, and a base material 2 is a high temp. heat receiving body composed of copper or a copper alloy. Preferably, the joined face between the base material 2 and the W thick film 3 is subjected to groove working so as to make a trapezoidal shape in which the cross-section of the groove is opened toward the outside. The width of the opening part of the worked groove 1 whose cross-section has a trapezoidal shape is suitably controlled to the one equal to or above the depth of the groove. The worked groove 1 is formed on the joined face of the base material 2 composed of oxygen free copper, after cleaning and drying, W-CVD film deposition is executed by a hydrogen reducing method using tungsten hexafluoride as the raw material, and W is joined. After the joining, the side face and surface of the W part are finished by mechanical polishing. The high temperature heat receiving body composed of the joined body excellent in adhesive strength can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高エネルギー密度
利用発電機器などの高温高負荷で使用される装置の高温
受熱体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature heat receiving body for an apparatus used under a high temperature and a high load, such as a power generator utilizing high energy density.

【0002】[0002]

【従来の技術】近年、大電流プラズマ電極,MHD発
電,核融合炉あるいは高エネルギー密度のビーム利用機
器等の部材に,その過酷な放電負荷や熱負荷に耐える材
料が要求されている。
2. Description of the Related Art In recent years, materials such as large current plasma electrodes, MHD power generation, nuclear fusion reactors, and devices utilizing high energy density beams have been required to withstand severe discharge loads and heat loads.

【0003】それに対し,高融点で耐熱性が高く,放電
消耗の少ないタングステン(W)およびW合金の使用が
望まれているが,その難加工性,高比重や機械的脆さ,
あるいは組立て時の部材間の結合の困難さから,他材質
基材,特にその加工性や熱伝導性に優れた銅(Cu)お
よびCu合金との接合体の検討がなされている。
On the other hand, the use of tungsten (W) and a W alloy having a high melting point, high heat resistance, and low discharge consumption is desired.
Alternatively, due to the difficulty of bonding between members during assembly, a joint with a base material of another material, particularly copper (Cu) and a Cu alloy excellent in workability and thermal conductivity has been studied.

【0004】例えば,MHD発電においてはアノ一ド
は、アークエロージョンや電気化学的なコロージョンに
耐える必要が有るため,エロージョン・コロージヨン損
耗の少ないWと熱伝導率が高く水冷効果の大きいCuの
接合体を用いることにより,W単体のアノ一ドに比べ表
面温度を低くでき放電消耗も減少すると考えられてい
る。また,核融合炉あるいは高エネルギー密度のビーム
利用機器においても,大きな熱負荷を受けるとともに,
高エネルギーの荷電粒子ビームによるエロージョン損耗
の少ないWと水冷効果の大きいCuの接合体の使用が検
討されている。
For example, in MHD power generation, an anode needs to withstand arc erosion and electrochemical corrosion, and therefore, a joint of W with little erosion and corrosion wear and Cu with high thermal conductivity and a large water cooling effect. It is considered that the use of the alloy makes it possible to lower the surface temperature and reduce the discharge consumption as compared with the anode of W alone. In addition, a fusion reactor or a high energy density beam-based device receives a large heat load,
The use of a bonded body of W having a small erosion loss due to a high energy charged particle beam and Cu having a large water cooling effect has been studied.

【0005】ところで、WとCuは、相互に固溶しない
組合わせであり,非常に接合の難しい組み合わせである
ことが良く知られている。
[0005] Incidentally, it is well known that W and Cu are a combination that does not form a solid solution with each other and are very difficult to join.

【0006】通常、異種材料の接合に使用される接合方
法としては、アーク、TIG,レーザー、電子ビーム等
を用いた融接接合(溶接)、ろう接接合、鋳ぐるみ法な
どがある。
[0006] As a joining method generally used for joining dissimilar materials, there are a fusion joining (welding) using an arc, a TIG, a laser, an electron beam or the like, a brazing joining, a cast-in method and the like.

【0007】この中で、融接は一般に「溶接」と称さ
れ、母材の溶接しようとする部位を加熱し、母材のみ
か、又は母材と溶加材とを融合させて溶融金属を作り、
これを凝固させ接合する方法で、鉄系金属を中心に広く
構造物の製作に使用されている。
[0007] Among these, fusion welding is generally called "welding" and heats a portion of the base metal to be welded, and fuses the base metal alone or the base metal and the filler metal to form a molten metal. Make
This is a method of solidifying and joining it, and is widely used in the manufacture of structures, mainly iron-based metals.

【0008】しかし、融接法では、母材を溶融する必要
があるため、母材の融点以上の温度に加熱することが必
須である。また、母材の溶融、凝固を伴うため組織変
化、すなわち再結晶およぴその粗大化が避けえないため
残留応力変形および組織変化により融接継手部近傍の脆
化、強度低下等の特性変化が生じる。そのため、特に溶
融、凝固にともなう結晶粒粗大化による脆化が顕著なW
などの難溶融性金属に対して適用が困難である。特に、
WとCuの接合の場合、その融点の大きな差および非固
溶性のためほとんど実用レベルの接合は不可能である。
However, in the fusion welding method, since the base material needs to be melted, it is essential to heat the base material to a temperature higher than the melting point of the base material. In addition, changes in the structure due to melting and solidification of the base material, that is, recrystallization and its coarsening are unavoidable. Occurs. Therefore, embrittlement due to coarsening of crystal grains accompanying melting and solidification is particularly remarkable.
It is difficult to apply to hard-to-melt metals. In particular,
In the case of joining W and Cu, almost no practical level of joining is possible due to the large difference in melting points and insolubility.

【0009】また、ろう接は、ろう付けとも称され、母
材を溶融することなく、母材よりも低い融点をもつ金属
の溶加材(ろう材)を溶融させ、毛細管現象を利用し接
合面の隙問に行き渡らせて接合を行う方法である。その
ため、母材の溶融、凝固にともなう結晶粒粗大化や金属
問化合物が生成による脆化が生じないほか、施工温度が
低いため熱応力を抑えることができるとともに、母材の
組織変化がない等の利点がある。さらに、ろう接は難溶
融性金属のように、母材溶融に対して高エネルギーが必
要な場合、あるいは凝固時に割れが生じやすい材料に適
している。また、異種材料の接合にも適している。
[0009] Brazing is also called brazing, in which a filler metal (brazing material) having a melting point lower than that of a base material is melted without melting the base material, and bonding is performed using a capillary phenomenon. This is a method of joining by spreading the gap between the surfaces. Therefore, crystal grains do not become coarse due to melting and solidification of the base material and embrittlement due to generation of metal intermetallic compounds does not occur, and thermal stress can be suppressed due to the low construction temperature, and there is no structural change in the base material etc. There are advantages. Furthermore, brazing is suitable for a material that requires high energy for melting a base material, such as a refractory metal, or a material that is liable to crack during solidification. It is also suitable for joining different materials.

【0010】しかしながら、ろう接は接合強度が融接法
に比し低いだけでなく,ばらつきが大きいため信頼性が
低いことが問題である。しかも使用ろう材の融点により
使用温度が制限される欠点がある。
[0010] However, brazing has a problem that not only the bonding strength is lower than that of the fusion welding method but also the reliability is low due to the large variation. In addition, there is a drawback that the working temperature is limited by the melting point of the brazing material used.

【0011】また、鋳ぐるみ法は、しばしばWとCuの
接合に用いられている。すなわち、鋳型内に高融点のW
基材をセットし、低融点のCuを溶かした溶揚を流し込
み凝固させW基材を固定する方法である。この場合、少
なくともW基材の周囲の一部を抱きかかえるようにCu
が回り込む必要がある。すなわち一面同士の接合は不可
能であり、適用できる接合体の形状が制限される。
In addition, the cast-in method is often used for joining W and Cu. That is, high melting point W
This is a method in which a base material is set, and a molten material in which Cu having a low melting point is melted is poured and solidified to fix the W base material. In this case, Cu is held so as to hold at least a part around the W base material.
Need to wrap around. That is, joining of one surface is impossible, and the shape of an applicable joined body is limited.

【0012】また、上記した以外の接合法としてPVD
成膜法がある。しかしながら、電極等では寿命や冷却能
力の負荷軽減からW膜厚の1mm以上という厚膜化の要
求が高まっている。比較的厚膜成膜が可能な溶射法にお
いても、1mm程度が限界であり、その密着強度や信頼
性の低さ、さらに最大の問題は緻密化が事実上不可能で
あること、すなわちポアの存在が避けられないことであ
る。
Further, as a joining method other than the above, PVD is used.
There is a film forming method. However, in electrodes and the like, the demand for increasing the thickness of the W film to 1 mm or more is increasing in order to reduce the life and load of the cooling capacity. Even in the thermal spraying method capable of forming a relatively thick film, the limit is about 1 mm, and its adhesion strength and reliability are low, and the biggest problem is that densification is practically impossible, that is, Existence is inevitable.

【0013】また、他のイオンプレーティング等のPV
D成膜法は、薄膜成膜法でありその残留応力の大きさや
成膜速度の関係から適応膜厚が数十μmであり、上記の
ような1mm以上という厚膜には適用できない。
Further, other PVs such as ion plating are used.
The D film forming method is a thin film forming method and has an adaptive film thickness of several tens of μm from the relation of the magnitude of the residual stress and the film forming speed, and cannot be applied to the above thick film of 1 mm or more.

【0014】以上のように、WとCuの接合に対して実
用十分な強度が得られ、かつ適用形状に制限を受けない
接合法が現状では存在しないため、その開発が要求され
ている。
As described above, since there is no bonding method that can provide practically sufficient strength for bonding W and Cu and is not limited by the applicable shape at present, its development is required.

【0015】[0015]

【発明が解決しようとする課題】そのため、上記要求に
対し発明者らは、W−CVD法による高能率、高密着性
の厚膜成膜法の適用をCu基材に対し検討した。このC
VD法はガスを原料をするため、回り込みが良好で形状
的制約もなく、界面での反応がなくても接合可能なこと
からWとCuの接合に最適と考えられた。
Therefore, in response to the above demands, the present inventors have studied the application of a high-efficiency, high-adhesion thick film forming method by the W-CVD method to a Cu base material. This C
Since the VD method uses a gas as a raw material, it is considered to be the most suitable for joining W and Cu since it can be joined without good wraparound and has no shape restriction and can be joined without reaction at the interface.

【0016】しかしながら、電極等では前記のように寿
命や冷却能力の負荷軽減からW膜厚の1mm以上という
厚膜化の要求が高まっている。ただし、厚膜化にともな
い製作コストも大幅に増加するため厚さの最大要求とし
ては10mm、一般的には5mm程度が必要である。こ
のような要求に対してCu基材の一面に厚さ5mmのW
をCVD法により成膜し評価したところWとCuの熱膨
張係数の差が原因と推測される剥離が生じた。
However, as described above, there is an increasing demand for thicker electrodes such as electrodes having a W film thickness of 1 mm or more in order to reduce the life and load of the cooling capacity. However, since the manufacturing cost is greatly increased with the increase in the film thickness, the maximum thickness requirement is 10 mm, generally about 5 mm. To meet such demands, a 5 mm-thick W
Was evaluated by forming a film by the CVD method. As a result, peeling occurred, which was presumed to be caused by a difference in thermal expansion coefficient between W and Cu.

【0017】ここで、熱膨張係数は、各元素固有であ
り、この要因は変化させることはできないため、他の因
子により解決する必要がある。この熱膨張係数の差によ
る剥離をなくすことができれば、WとCuの組合せ以外
の熱膨張係数の差が大きい異種材料接合体にも適用可能
である。
Here, the coefficient of thermal expansion is unique to each element, and this factor cannot be changed, so that it is necessary to solve it with other factors. If the separation due to the difference in the thermal expansion coefficient can be eliminated, it can be applied to a dissimilar material joined body having a large difference in the thermal expansion coefficient other than the combination of W and Cu.

【0018】ここで、熱膨張係数は、金属データブック
(日本金属学会編、改訂3版)によれば、20〜500
℃において、W:4.6、Cu:18.3、Ni:1
5.2(10−6/K)である。
Here, the coefficient of thermal expansion is from 20 to 500 according to the metal data book (edited by the Japan Institute of Metals, revised 3rd edition).
At C, W: 4.6, Cu: 18.3, Ni: 1
5.2 (10 −6 / K).

【0019】そこで、本発明の一技術的課題は、上述の
事情を考慮して、高融点金属Wと、Cuのように熱膨張
係数の差が大きい異種材料の接合体からなる高温受熱体
を提供することにある。
In view of the above circumstances, one technical problem of the present invention is to provide a high-temperature heat receiving body composed of a joined body of a high melting point metal W and a dissimilar material having a large difference in thermal expansion coefficient such as Cu. To provide.

【0020】また、本発明のもう一つの技術的課題は、
高融点金属Wと、CuやNiのように熱膨張係数の差が
大きい異種材料において、密着強度に優れた接合体から
なる高温受熱体を提供することにある。
Further, another technical problem of the present invention is that
It is an object of the present invention to provide a high-temperature heat receiving body made of a joined body having excellent adhesion strength between a high melting point metal W and a different material such as Cu or Ni having a large difference in thermal expansion coefficient.

【0021】さらに、本発明のさらにもう一つの技術的
課題は、Cu基材に対し、CVD法によりW厚膜を成膜
し高能率、高密着性の厚膜接合体からなる高温受熱体を
提供することにある。
Still another technical object of the present invention is to provide a high-temperature heat receiving body comprising a high-efficiency, high-adhesion thick-film joined body by forming a W thick film on a Cu base material by a CVD method. To provide.

【0022】[0022]

【課題を解決するための手段】本発明者らは、ただCu
基材に対しW−CVD成膜を実施しても,前記のように
剥離を生じるため、Cu基材の成膜面に溝加工を施すこ
とにより、前記技術的課題を解決できることを見出し本
発明をなすに至ったものである。
Means for Solving the Problems The present inventors have proposed a method for producing Cu
Even if W-CVD film formation is performed on the base material, the above-described technical problem can be solved by performing groove processing on the film formation surface of the Cu base material because the separation occurs as described above. It is what led to.

【0023】即ち、本発明によれば、CVD法により緻
密なタングステン厚膜を中間層なしに、タングステンよ
りも熱膨張係数の大きい基材の少なくとも一部に直接接
合したことを特徴とする高温受熱体が得られる。
That is, according to the present invention, a dense tungsten thick film is directly joined to at least a part of a base material having a larger thermal expansion coefficient than tungsten without an intermediate layer by a CVD method. The body is obtained.

【0024】また、本発明によれば、前記高温受熱体に
おいて、前記タングステン厚膜は、少なくとも1mmの
厚さを有することを特徴とする高温受熱体が得られる。
Further, according to the present invention, in the high-temperature heat receiving body, the high-temperature heat receiving body is characterized in that the tungsten thick film has a thickness of at least 1 mm.

【0025】また、本発明によれば、前記高温受熱体に
おいて、前記基材は、銅または銅合金から実質的になる
ことを特徴とする高温受熱体が得られる。
Further, according to the present invention, in the high-temperature heat receiver, the base material is substantially made of copper or a copper alloy.

【0026】また、本発明によれば、前記高温受熱体に
おいて、前記基材の前記タングステン厚膜との接合面に
は、溝加工が施されていることを特徴とする高温受熱体
が得られる。
Further, according to the present invention, in the high-temperature heat receiving body, a groove is formed on a joint surface of the base material with the tungsten thick film, whereby a high-temperature heat receiving body is obtained. .

【0027】また、本発明によれば、前記高温受熱体に
おいて、前記基材の溝加工によって形成された溝の断面
が、外側に向かって開いた台形形状を有することを特徴
とする高温受熱体が得られる。
According to the present invention, in the high-temperature heat receiving body, the cross section of the groove formed by the groove processing of the base material has a trapezoidal shape that opens outward. Is obtained.

【0028】さらに、本発明によれば、前記高温受熱体
において、前記基材の溝加工によって形成された断面台
形形状の溝の開口部の幅は、溝の深さ以上であることを
特徴とする高温受熱体が得られる。
Further, according to the present invention, in the high-temperature heat receiving body, the width of the opening of the groove having a trapezoidal cross section formed by processing the groove of the base material is not less than the depth of the groove. A high-temperature heat receiving body is obtained.

【0029】[0029]

【発明の実施の形態】まず、本発明について更に具体的
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the present invention will be described more specifically.

【0030】本発明者らは、WとCuやNiのように熱
膨張係数の差が大きい異種材料において密着強度に優れ
た接合体を発明した。すなわち、Cu基材に対しCVD
法によりWを成膜し高能率、高密着性の厚膜接合体を得
る方法である。ただしCu基材に対しW−CVD成膜を
実施しても前記のように剥離を生じるため、Cu基材の
成膜面に溝加工を施すことにより目的を達しえることを
見いだしたものである。
The inventors of the present invention have invented a joined body having excellent adhesion strength between different materials such as W and Cu or Ni having a large difference in thermal expansion coefficient. In other words, the CVD
This is a method for obtaining a high-efficiency, high-adhesion thick-film joined body by forming W by a method. However, even if W-CVD film formation is performed on the Cu base material, the separation occurs as described above. Therefore, it has been found that the object can be achieved by performing the groove processing on the film formation surface of the Cu base material. .

【0031】それでは、本発明の実施の形態について図
面を参照して説明する。
Now, embodiments of the present invention will be described with reference to the drawings.

【0032】図1は本発明の実施の形態による高温受熱
体を示す断面図である。また、図2(a)、(b)、及
び(c)は図1の高温受熱体の基材の溝形状の種々の例
を示す断面図である。図3(a)は図1の基材の配置の
一例を示す平面図、図3(b)は図3(a)の基材の断
面図である。図4(a)は図1の基材の溝配置の他の例
を示す平面図、図4(b)は図4(a)の基材の断面図
である。
FIG. 1 is a sectional view showing a high-temperature heat receiving body according to an embodiment of the present invention. FIGS. 2A, 2B, and 2C are cross-sectional views showing various examples of the groove shape of the base material of the high-temperature heat receiving body of FIG. 3A is a plan view showing an example of the arrangement of the base material in FIG. 1, and FIG. 3B is a cross-sectional view of the base material in FIG. 4A is a plan view showing another example of the groove arrangement of the base material in FIG. 1, and FIG. 4B is a cross-sectional view of the base material in FIG.

【0033】図1に示すように、高温受熱体10は、基
材2の一面に溝加工を施して加工溝1を形成し、その一
面にCVDによりタングステン(W)からなる厚膜3を
形成したものである。
As shown in FIG. 1, the high-temperature heat receiving body 10 forms a processed groove 1 by performing groove processing on one surface of a base material 2 and forms a thick film 3 made of tungsten (W) on one surface thereof by CVD. It was done.

【0034】図2(a),(b),及び(c)に示すよ
うに、基材2に形成された加工溝1a〜1cは、断面形
状において、開口側が底部よりも大きく、開いた台形形
状を有する。いずれの加工溝1a〜1cにおいても、開
口側の幅は、加工溝の深さ以上の寸法を有している。
As shown in FIGS. 2 (a), 2 (b), and 2 (c), the processing grooves 1a to 1c formed in the base material 2 have a cross-sectional shape in which the opening side is larger than the bottom and the open trapezoid. It has a shape. In any of the processing grooves 1a to 1c, the width on the opening side has a dimension equal to or greater than the depth of the processing groove.

【0035】図3に示す例においては、加工溝1は、成
膜する一面の周辺付近に直交して設けられている。
In the example shown in FIG. 3, the processing groove 1 is provided at right angles near the periphery of one surface on which a film is formed.

【0036】また、図4の例においては、加工溝は、成
膜する一面に碁盤の目状に設けられている。
In the example shown in FIG. 4, the processed grooves are provided in a grid pattern on one surface on which a film is formed.

【0037】上述の本発明の実施の形態による高温受熱
体の製造方法について説明する。
A method for manufacturing a high-temperature heat receiving body according to the above-described embodiment of the present invention will be described.

【0038】ここでは、□20mm×厚さ30mmの無
酸素銅基材に、5mm厚さのWを接合する場合を例に説
明する。
Here, an example will be described in which W having a thickness of 5 mm is bonded to an oxygen-free copper base material having a size of 20 mm and a thickness of 30 mm.

【0039】図2(a)〜(c)に示すように、無酸素
銅基材の接合面に台形溝1a〜1cを機械加工により施
し洗浄、乾燥後CVD成膜によりWを接合した。W−C
VD成膜は、六弗化タングステンを原料とする水素還元
法により実施した。
As shown in FIGS. 2 (a) to 2 (c), trapezoidal grooves 1a to 1c were formed on the bonding surface of the oxygen-free copper substrate by machining, washed, dried, and then W was bonded by CVD film formation. WC
The VD film formation was performed by a hydrogen reduction method using tungsten hexafluoride as a raw material.

【0040】接合後、機械研磨によりW部の側面および
表面を機械研磨により仕上げた。比較用として、溝加工
のない無酸素銅基材に対するW−CVD成膜を実施し
た。
After the joining, the side surface and the surface of the W portion were finished by mechanical polishing. For comparison, W-CVD film formation was performed on an oxygen-free copper base material without groove processing.

【0041】溝加工のない無酸素銅基材を用いた接合体
では、すべて仕上げ研磨加工時に剥離を生じたのに対
し、溝加工を施した無酸素銅基利を用いた接合体では全
て仕上加工が可能で良好な接合強度をもつ接合体が得ら
れた。これは、界面に溝加工を施すことにより平面であ
る場合に比べて、界面の密着強度が向上したことを示
す。
In the joined body using the oxygen-free copper base material without the groove processing, the peeling occurred at the time of the finish polishing processing, whereas in the joint body using the oxygen-free copper base material with the groove processing, all the finishes were finished. A joined body that can be processed and has good joining strength was obtained. This indicates that by performing the groove processing on the interface, the adhesion strength of the interface was improved as compared with the case where the interface was flat.

【0042】その要因として、次の(い)〜(は)のこ
とが考えられる。
The following can be considered as the factors.

【0043】(い)接触面積が増大したこと。(ろ)成
膜後の冷却時の熱収縮が生じた際、熱膨張係数の差から
無酸素銅基材の溝の幅の収縮が溝内部に成膜されたWの
収縮量より大きいため、溝の部分においてCuの凹部が
Wの凸部を抱え込み締めつけ効果を発揮する。(は)熱
応力計算から一般に高温で接合された接合体の冷却時に
生じる残留応力は、界面近傍の基材外周部にもっとも大
きく、その大きさは板圧や接合温度が等しい場合接合面
積の増加にしたがって増大するが、溝により残留応力の
伝播が進まず接合面積が細分化されたと同じ効果を発揮
する。
(I) The contact area has increased. (R) When thermal contraction occurs during cooling after film formation, since the contraction of the width of the groove of the oxygen-free copper base material is larger than the contraction amount of W formed inside the groove due to the difference in thermal expansion coefficient, The concave portion of Cu holds the convex portion of W in the groove portion, and exhibits a tightening effect. (A) From the thermal stress calculation, the residual stress generated when cooling the joined body generally joined at a high temperature is the largest at the outer periphery of the base material near the interface, and the magnitude increases when the plate pressure and the joining temperature are equal. However, propagation of the residual stress does not progress due to the groove, and the same effect as when the bonding area is subdivided is exerted.

【0044】ここで、W−CVD成膜は、六弗化夕ング
ステンを原料とする水素還元法により実施したが、本発
明では、この系に限らず加熱温度が基材に対し、融解や
蒸発等の問題を生じない低温成膜が可能な系であれば、
適応可能である。
Here, the W-CVD film was formed by a hydrogen reduction method using tungsten hexafluoride as a raw material. However, in the present invention, the heating temperature is not limited to this system, and the heating and melting are performed on the base material. If it is a system capable of low-temperature film formation that does not cause problems such as
Be adaptable.

【0045】また、上記例において、基材材質としてC
uについて述べたが、純Cuである必要はなく、Cu合
金やNiおよびその合金あるいはステンレス鋼等の高合
金鋼など、Wよりも熱膨張係数が大きい金属および合金
などにも、本発明は適応できる。
In the above example, the base material is C
However, the present invention does not need to be pure Cu, and the present invention is applicable to metals and alloys having a coefficient of thermal expansion larger than W, such as Cu alloys, Ni and alloys thereof, and high alloy steels such as stainless steel. it can.

【0046】また、基材2の形状も、上記したような平
面だけではなく曲面に対しても溝加工が可能であれば問
題なく接合可能である。
The shape of the substrate 2 can be joined without any problem as long as the groove can be formed not only on the above-mentioned flat surface but also on a curved surface.

【0047】また、溝位置、寸法、形状および数量は、
成膜厚さあるいは基材の接合部面積や形状により決定す
ればよいが、図3及び図4に示すように、少なくとも溝
中心が基材の外周に外周から外形寸法の20%以内の部
分に溝を外周に平行に加工することが望ましい。
The groove position, dimensions, shape and quantity are
The thickness may be determined according to the thickness of the formed film or the area or shape of the joint portion of the base material. However, as shown in FIGS. It is desirable to process the groove parallel to the outer periphery.

【0048】さらに、図4に示すように、基材の接合部
面積により、基材内部に溝を加工しても良い。
Further, as shown in FIG. 4, a groove may be formed in the inside of the base material depending on the area of the joint portion of the base material.

【0049】また、本発明においては、溝の端部は、図
3及び図4に示すように、基材の側面に達しても良い
し、他の交わる溝との交点で止めてもよい。すなわち角
形接合面の場合、井げた状でも、閉じた四角状に加工し
てもよく、加工の容易さから決定すればよい。
In the present invention, the end of the groove may reach the side surface of the base material as shown in FIGS. 3 and 4, or may be stopped at an intersection with another intersecting groove. That is, in the case of a square joint surface, it may be processed into a well-formed shape or a closed square shape, and may be determined from the ease of processing.

【0050】また、本発明において、溝深さは極力浅い
方が製造コストを低下できるが、浅すぎると前記(い)
〜(は)の効果が期待できないため、成膜厚さの5%以
上が好ましい。
In the present invention, the manufacturing cost can be reduced if the groove depth is as shallow as possible.
Since the effects (1) to (3) cannot be expected, 5% or more of the film thickness is preferable.

【0051】また、必要以上に溝深さを深くしてもその
効果が比例することはなく、さらに深すぎると深さにと
もない溝幅も拡げる必要から、成膜層の無駄や基材の加
工部が増加し製造コストの増大するだけであり、最大で
も30%好ましくは20%が好ましい。
If the groove depth is increased more than necessary, the effect is not proportional, and if the groove depth is too large, the groove width must be increased according to the depth. Only the number of parts increases and the manufacturing cost increases, and the maximum is preferably 30%, preferably 20%.

【0052】溝形状は、角形やU字形のように平行溝で
もよいが、溝底部までガスが充分流れずボイドが発生す
る恐れが高いため、好ましくは、図2(a)〜(c)に
示すように、台形溝、あるいは図示しないV溝のように
溝が基材の接合面に向かい開いた形であることが望まし
い。
The groove shape may be a parallel groove such as a square or a U-shape. However, since the gas does not sufficiently flow to the bottom of the groove and voids are likely to be generated, the grooves are preferably formed as shown in FIGS. 2 (a) to 2 (c). As shown in the figure, it is desirable that the groove is open toward the joining surface of the base material, such as a trapezoidal groove or a V-shaped groove (not shown).

【0053】また、本発明においては、図2(a)〜
(c)に示すように、溝幅は溝底部までガスが充分流れ
るように開口部の幅が溝の深さ以上であることが望まし
いが、広すぎると基材の溝の締めつけ効果が低下するた
め溝深さの5倍以下、好ましくは3倍以下が望ましい。
In the present invention, FIGS.
As shown in (c), the width of the opening is desirably equal to or greater than the depth of the groove so that the gas flows sufficiently to the bottom of the groove, but if it is too wide, the effect of tightening the groove of the base material is reduced. Therefore, the groove depth is desirably five times or less, preferably three times or less.

【0054】以下、本発明の実施の形態による高温受熱
体の製造の具体例について説明する。
Hereinafter, a specific example of manufacturing the high-temperature heat receiving body according to the embodiment of the present invention will be described.

【0055】(例1)図2(a)〜(c)に示す溝深さ
0.5mm、溝深さ/溝幅比1:1〜1:5の台形状加
工溝1a,1b,1cを図3(a)及び(b)に示す溝
配置に加工を施した無酸素銅製の基材(□20mm×厚
さ30mm)を、市販のCu用エッチング液(CPB−
50)にてエッチングした後、温純水、アルコールの順
で超音波洗浄し、真空乾燥した。成膜が不要である裏
面、側面等をマスキングし、反応槽内に各台形溝形状を
施した基材を各1個を同一バッチにセットした。反応槽
内を真空、Arパージを数回繰り返した後、2本のガス
ノズルより高純度Hを6SLM導入し、所定の減圧度
とし、基板温度を600℃に加熱した。温度が安定した
後、WFを1.2SLM導入し、水素還元CVD成膜
により、Wを最も薄いところで5.3mm被覆した。マ
スク除去後,上面および側面上部のW成膜層のはみ出し
部分ならびにマスクと基材の隙間に回り込んだw成膜層
を機械研磨により厚さ5mmに仕上げた。その結果,成
膜した3種共W成膜層の剥離や割れなどの欠陥もなく,
仕上げ研磨加工に耐えることが十分にできる密着強度を
もつ接合体が得られた。
(Example 1) The trapezoidal processing grooves 1a, 1b and 1c shown in FIGS. 2A to 2C and having a groove depth of 0.5 mm and a groove depth / groove width ratio of 1: 1 to 1: 5 are used. An oxygen-free copper base material (□ 20 mm × thickness 30 mm) processed into the groove arrangement shown in FIGS. 3A and 3B was processed using a commercially available Cu etching solution (CPB-
After etching in step 50), the substrate was subjected to ultrasonic cleaning in the order of warm pure water and alcohol, and dried under vacuum. The back surface, side surface, and the like where film formation is unnecessary are masked, and one substrate having each trapezoidal groove shape is set in the same batch in a reaction tank. After the inside of the reaction tank was repeatedly vacuumed and Ar purged several times, 6 SLM of high-purity H 2 was introduced from two gas nozzles, the pressure was reduced to a predetermined degree, and the substrate temperature was heated to 600 ° C. After the temperature was stabilized, WF 6 was introduced at 1.2 SLM, and W was coated 5.3 mm at the thinnest point by hydrogen reduction CVD film formation. After removing the mask, the protruding portion of the W film layer on the upper surface and the upper side surface and the W film layer that had reached the gap between the mask and the base material were finished to a thickness of 5 mm by mechanical polishing. As a result, there was no defect such as peeling or cracking of the three W film formation layers.
A joined body having an adhesion strength enough to withstand finish polishing was obtained.

【0056】得られた接合体の中央および溝中心部断面
を観察した結果、ボイドなどの密着強度や熱伝導性を低
下させる欠陥は認められず、良好な密着性を有する界面
部であることが確認された。図1は得られた接合体の断
面模式図を示している。
As a result of observing the cross-section of the center and the center of the groove of the obtained joined body, no defects such as voids deteriorating the adhesion strength and the thermal conductivity were observed, and it was confirmed that the interface portion had good adhesion. confirmed. FIG. 1 shows a schematic sectional view of the obtained joined body.

【0057】なお、この例1の成膜条件は1例であり、
この成膜条件に限るものではなく、例えば、基板温度は
400〜800℃、WF/Hガス流量比はl:3〜
l:7の範囲、ガス流量、ノズル本数、ノズル径は基材
サイズ、セット数量など、すなわち成膜必要面積から決
定すれば良い。
Note that the film forming conditions in Example 1 are one example.
The film formation conditions are not limited to these. For example, the substrate temperature is 400 to 800 ° C., and the WF 6 / H 2 gas flow ratio is 1: 3 to
The range of 1: 7, the gas flow rate, the number of nozzles, and the nozzle diameter may be determined from the base material size, the set number, etc., that is, from the area required for film formation.

【0058】(比較例1)成膜面に溝加工のない無酸素
銅製の基材(□20mm×厚さ30mm)に、上記例1
と同様に、1バッチ3個セットでWを被覆し,機械研磨
を実施した。その結果,成膜した3個すべてマスク除去
後上面の研磨は可能であったが,側面上部のW成膜層の
はみ出し部分を研磨したところ剥離を生じた。すなわ
ち,側面上部のW成膜層のはみ出し部分の抱え込み効果
により見掛け上密着していたにすぎず、仕上げ研磨加工
に耐えるだけの密着強度を有していないことが確認され
た。
(Comparative Example 1) The above-described Example 1 was applied to an oxygen-free copper base material (□ 20 mm × thickness 30 mm) having no groove processing on the film forming surface.
In the same manner as described above, W was coated in sets of three per batch, and mechanical polishing was performed. As a result, although the upper surface could be polished after removing all three formed films, the protruding portion of the W film layer on the upper side surface was peeled off. In other words, it was confirmed that the W film layer on the upper side face had only an apparently close contact due to the holding effect of the protruding portion, and did not have sufficient adhesive strength to withstand the finish polishing.

【0059】(例2)図2(a)〜(c)に示す溝深さ
0.5mm、溝深さ/溝幅比1:1〜1:5の台形溝を
図4に示す溝配置に加工を施した無酸素銅製の基材(□
50mm×厚さ30mm)を用い、上記例1と同様に、
Wを最も薄いところで5.4mm被覆した後仕上げ研磨
加工した。その結果,成膜した3種共W成膜層の剥離や
割れなどの欠陥もなく,仕上げ研磨加工に酎えることが
十分にできる密着強度をもつ接合体が得られた。また、
断面観察によりボイドなどの欠陥も認められず良好な密
着性を有する界面部であることが確認された。
Example 2 Trapezoidal grooves having a groove depth of 0.5 mm and a groove depth / groove width ratio of 1: 1 to 1: 5 shown in FIGS. 2A to 2C are arranged in the groove arrangement shown in FIG. Processed oxygen-free copper base material (□
50 mm x thickness 30 mm), as in Example 1 above,
After coating 5.4 mm at the thinnest point of W, finish polishing was performed. As a result, a bonded body was obtained which had no defects such as peeling and cracking of the three types of W film formation layers, and which had sufficient adhesion strength for finish polishing. Also,
No defects such as voids were observed by cross-sectional observation, and it was confirmed that the interface had good adhesion.

【0060】(例3)図2(a)〜(c)に示す溝深さ
0.5mm、溝深さ/溝幅比1:1〜1:5の台形溝
を、図3に示す溝配置に加工を施した純Ni製の基材
(□20mm×厚さ30mm)を希塩酸にてエッチング
した後、温純水、アルコールの順で超音波洗浄、真空乾
燥し、上記例1と同様に、Wを最も薄いところで5.3
mm被覆した後仕上げ研磨加工した。その結果,成膜し
た3種共W成膜層の剥離や割れなどの欠陥もなく,仕上
げ研磨加工に耐えることが十分にできる密着強度をもつ
接合体が得られた。また、断面観察によりボイドなどの
欠陥も認められず良好な密着性を有する界面部であるこ
とが確認された。
(Example 3) A trapezoidal groove having a groove depth of 0.5 mm and a groove depth / groove width ratio of 1: 1 to 1: 5 shown in FIGS. After etching a substrate made of pure Ni (□ 20 mm × thickness 30 mm) processed with dilute hydrochloric acid, ultrasonic cleaning was performed in the order of hot pure water and alcohol, and vacuum drying was performed. 5.3 at the thinnest point
After finish coating, finish polishing was performed. As a result, a bonded body was obtained which had no defects such as peeling or cracking of the three types of W film formation layers, and had sufficient adhesion strength to withstand finish polishing. In addition, no defects such as voids were observed by cross-sectional observation, and it was confirmed that the interface had good adhesion.

【0061】[0061]

【発明の効果】以上説明したように、本発明によれば、
高融点金属Wと、Cuのように熱膨張係数の差が大きい
異種材料の接合体からなる高温受熱体を提供することが
できる。
As described above, according to the present invention,
It is possible to provide a high-temperature heat receiving body made of a joined body of a high melting point metal W and a dissimilar material having a large difference in thermal expansion coefficient such as Cu.

【0062】また、本発明によれば、WとCuやNiの
ように熱膨張係数の差が大きい異種材料において密着強
度に優れた接合体からなる高温受熱体を提供することが
できる。
Further, according to the present invention, it is possible to provide a high-temperature heat receiving body comprising a joined body having excellent adhesion strength between different materials such as W and Cu or Ni having a large difference in thermal expansion coefficient.

【0063】さらに、本発明によれば、Cu基材に対
し、CVD法によりW厚膜を成膜し高能率、高密着性の
厚膜接合体からなる高温受熱体を提供することができ
る。
Further, according to the present invention, it is possible to provide a high-temperature heat receiving body comprising a high-efficiency, high-adhesion thick-film joined body by forming a W thick film on a Cu base material by the CVD method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による高温受熱体を示す断
面図である。
FIG. 1 is a sectional view showing a high-temperature heat receiving body according to an embodiment of the present invention.

【図2】(a)、(b)、及び(c)は図1の高温受熱
体の基材の溝形状の種々の例を示す断面図である。
2 (a), 2 (b) and 2 (c) are cross-sectional views showing various examples of the groove shape of the base material of the high-temperature heat receiving body of FIG.

【図3】(a)は図1の基材の配置の一例を示す平面図
である。(b)は(a)の基材の断面図である。
FIG. 3A is a plan view showing an example of the arrangement of the base material in FIG. (B) is sectional drawing of the base material of (a).

【図4】(a)は図1の基材の溝配置の他の例を示す平
面図である。(b)は(a)の基材の断面図である。
FIG. 4A is a plan view showing another example of the groove arrangement of the base material in FIG. (B) is sectional drawing of the base material of (a).

【符号の説明】[Explanation of symbols]

1,1a,1b,1c 加工溝 2,2’ 基材 3 W成膜層(厚膜) 10 高温受熱体 1, 1a, 1b, 1c Processing groove 2, 2 'Base material 3 W film formation layer (thick film) 10 High temperature heat receiving body

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 CVD法により緻密なタングステン厚膜
を中間層なしに、タングステンよりも熱膨張係数の大き
い基材の少なくとも一部に直接接合したことを特徴とす
る高温受熱体。
1. A high-temperature heat receiving body characterized in that a dense tungsten thick film is directly joined to at least a part of a base material having a larger thermal expansion coefficient than tungsten without an intermediate layer by a CVD method.
【請求項2】 請求項1記載の高温受熱体において、前
記タングステン厚膜は、少なくとも1mmの厚さを有す
ることを特徴とする高温受熱体。
2. The high temperature heat receiver according to claim 1, wherein said tungsten thick film has a thickness of at least 1 mm.
【請求項3】 請求項1記載の高温受熱体において、前
記基材は、銅または銅合金から実質的になることを特徴
とする高温受熱体。
3. The high-temperature heat receiving body according to claim 1, wherein said base material is substantially made of copper or a copper alloy.
【請求項4】 請求項1記載の高温受熱体において、前
記基材の前記タングステン厚膜との接合面には、溝加工
が施されていることを特徴とする高温受熱体。
4. The high-temperature heat receiving body according to claim 1, wherein a groove is formed on a bonding surface of said base material with said tungsten thick film.
【請求項5】 請求項4記載の高温受熱体において、前
記基材の溝加工によって形成された溝の断面が、外側に
向かって開いた台形形状を有することを特徴とする高温
受熱体。
5. The high-temperature heat receiving body according to claim 4, wherein a cross section of the groove formed by the groove processing of the base has a trapezoidal shape that opens outward.
【請求項6】 請求項5記載の高温受熱体において、前
記基材の溝加工によって形成された断面台形形状の溝の
開口部の幅は、溝の深さ以上であることを特徴とする高
温受熱体。
6. The high-temperature heat receiving body according to claim 5, wherein the width of the opening of the groove having a trapezoidal cross section formed by processing the groove of the base material is equal to or greater than the depth of the groove. Heat receiver.
JP25691399A 1999-09-10 1999-09-10 High temperature heat receiving body Pending JP2001081561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25691399A JP2001081561A (en) 1999-09-10 1999-09-10 High temperature heat receiving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25691399A JP2001081561A (en) 1999-09-10 1999-09-10 High temperature heat receiving body

Publications (1)

Publication Number Publication Date
JP2001081561A true JP2001081561A (en) 2001-03-27

Family

ID=17299130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25691399A Pending JP2001081561A (en) 1999-09-10 1999-09-10 High temperature heat receiving body

Country Status (1)

Country Link
JP (1) JP2001081561A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101285484B1 (en) 2005-08-29 2013-07-12 플란제 에스이 Composite part with structured tungsten element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101285484B1 (en) 2005-08-29 2013-07-12 플란제 에스이 Composite part with structured tungsten element

Similar Documents

Publication Publication Date Title
JP5563456B2 (en) Target design and associated methods for combined target assemblies, methods of manufacture and use thereof
TWI357444B (en) Zirconium-cladded steel plates, and elements of ch
CN113001024B (en) Laser welding method for dissimilar materials
JP5712054B2 (en) Heater unit with shaft and manufacturing method of heater unit with shaft
CN100532330C (en) Method of connecting ceramic by low temperature active vacuum diffusion
JPH05134067A (en) Manufacture of heat-receiving plate having cooling structure
TW201020332A (en) Sputter target assembly having a low-temperature high-strength bond
EP0273161B1 (en) X-ray tube target
US4978051A (en) X-ray tube target
CN113857669A (en) Laser welding method for titanium alloy and aluminum alloy dissimilar materials
JP3799391B2 (en) Method for manufacturing bonded body of beryllium and copper or copper alloy, and bonded body
JP4675821B2 (en) Brazing method
JP2001081561A (en) High temperature heat receiving body
JP6332078B2 (en) Manufacturing method of cylindrical sputtering target
JP4615746B2 (en) Titanium target assembly for sputtering and manufacturing method thereof
JP4764008B2 (en) COOLING ELEMENT AND MANUFACTURING METHOD THEREOF
JP4342700B2 (en) COATING MEMBER FOR ELECTRIC DEVICE AND MANUFACTURING METHOD THEREOF
KR20110130930A (en) Method for diffusion bonding of nickel-based alloys
US6789723B2 (en) Welding process for Ti material and Cu material, and a backing plate for a sputtering target
CN112548253A (en) Method for brazing fiber reinforced composite material and metal in selective hot corrosion auxiliary mode
JP3651819B2 (en) Method for modifying copper or copper alloy surface
JPS60157B2 (en) Manufacturing method of carbide tools
CN115255585B (en) Arc spraying interlayer-based resistance spot welding method for aluminum-magnesium dissimilar alloy
JP3864202B2 (en) Joining electrodes and materials for high energy density resistant equipment
CN107570839B (en) A kind of copper-tungsten dissimilar metal plate electric arc spot welding method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040526