JP2001079398A - Methanol synthesis and cracking catalyst, its production and methanol synthesis and cracking method - Google Patents

Methanol synthesis and cracking catalyst, its production and methanol synthesis and cracking method

Info

Publication number
JP2001079398A
JP2001079398A JP26287699A JP26287699A JP2001079398A JP 2001079398 A JP2001079398 A JP 2001079398A JP 26287699 A JP26287699 A JP 26287699A JP 26287699 A JP26287699 A JP 26287699A JP 2001079398 A JP2001079398 A JP 2001079398A
Authority
JP
Japan
Prior art keywords
catalyst
methanol
palladium
reaction
mesoporous compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26287699A
Other languages
Japanese (ja)
Other versions
JP3086881B1 (en
Inventor
Yasuyuki Matsumura
安行 松村
Kapoor Mahendra
カプール マヘンドラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11262876A priority Critical patent/JP3086881B1/en
Application granted granted Critical
Publication of JP3086881B1 publication Critical patent/JP3086881B1/en
Publication of JP2001079398A publication Critical patent/JP2001079398A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To obtain a methanol synthesis catalyst having a high catalytic activity and high methanol selectivity even under a low pressure and a methanol cracking catalyst excellent in selectivity to crack methanol into carbon monoxide and hydrogen by carrying palladium on a carrier composed of a mesoporous compound. SOLUTION: The mesoporous compound used as a carrier is a porous body usually having about 2-50 nm center fine pore diameter and preferably having fine pores about 3-10 nm in diameter. As the mesoporous compound, for example, a compound containing the oxide of zirconium, cerium, titanium, silicon or the like. The average particle diameter of the carried palladium is usually about <=10 nm, preferably about <=3 nm as a measured value by the XDR method or the hydrogen adsorption method. Palladium is desirably highly dispersed to be carried on the carrier. The carrying quantity of palladium is usually about 0.5-15 wt.% per total sum of palladium and the mesoporous compound carrier.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メタノール合成用
触媒および該触媒を用いたメタノール合成方法、ならび
にメタノール分解用触媒および該触媒を用いたメタノー
ル分解方法に関する。
The present invention relates to a catalyst for methanol synthesis, a method for synthesizing methanol using the catalyst, a catalyst for methanol decomposition, and a method for methanol decomposition using the catalyst.

【0002】[0002]

【従来の技術】合成ガスからのメタノール合成方法とし
て、1923年にドイツにおいて、亜鉛−クロム系触媒の存
在下、20MPa、400℃にて行われる気相反応プロセスが、
工業化された。
2. Description of the Related Art As a method for synthesizing methanol from synthesis gas, a gas phase reaction process performed in Germany in 1923 at 20 MPa and 400 ° C. in the presence of a zinc-chromium-based catalyst has been proposed.
Industrialized.

【0003】1959年には、銅−亜鉛系触媒が英国におい
て開発され、1966年に反応圧力5MPaでのメタノール合成
方法が工業化された。その後、銅−亜鉛系触媒の改善な
らびに反応プロセスの改善が進み、現在では反応圧力5
〜10MPa、反応温度250〜300℃において工業的なメタノ
ール合成が可能となったが、実際には、メタノールの反
応出口濃度が高くなり、設備費及び操業経費が有利とな
るので、反応圧力は8〜10MPaの条件下において、実施さ
れている。
[0003] In 1959, a copper-zinc catalyst was developed in the UK, and in 1966, a methanol synthesis method at a reaction pressure of 5 MPa was industrialized. After that, the improvement of copper-zinc catalyst and the improvement of the reaction process proceeded.
Industrial methanol synthesis became possible at 1010 MPa and a reaction temperature of 250 to 300 ° C., but in practice, the reaction outlet concentration of methanol was increased, and equipment costs and operation costs became advantageous. It is carried out under the condition of 1010 MPa.

【0004】しかしながら、高い反応圧力を保つために
は、昇圧動力が必要となるので、操業経費を低下させる
ためには、より低い圧力で反応を行うことが必要であ
る。例えば、銅−亜鉛系触媒を用いて、2MPa、250℃に
おいて、一酸化炭素33vol%、水素67vol%の組成を有す
る原料ガスを用いてメタノール合成を行った場合、メタ
ノールの平衡転化率は21%にすぎず、実用性に乏しい。
[0004] However, in order to maintain a high reaction pressure, a boosting power is required, so that it is necessary to perform the reaction at a lower pressure in order to reduce operating costs. For example, when performing methanol synthesis using a raw material gas having a composition of 33 vol% of carbon monoxide and 67 vol% of hydrogen at 2 MPa and 250 ° C. using a copper-zinc catalyst, the equilibrium conversion of methanol is 21%. It is not practical.

【0005】同様の条件において、反応温度を200℃と
した場合には、理論上60%の平衡転化率を達成すること
が可能であるが、実際には、触媒活性が低下し、極めて
多量の触媒が必要となるので、やはり実用性に乏しい。
Under the same conditions, when the reaction temperature is set at 200 ° C., an equilibrium conversion of 60% can be theoretically achieved. Since a catalyst is required, the utility is also poor.

【0006】銅−亜鉛系触媒以外のメタノール合成用触
媒も開発されている。例えば、希土類酸化物を担体とし
含浸法により調製されたパラジウム系触媒が報告されて
いる(Journal of the Chemical Society Chemical Comm
unications、1982年、12号、645頁)。
[0006] Catalysts for methanol synthesis other than copper-zinc catalysts have also been developed. For example, a palladium-based catalyst prepared by an impregnation method using a rare earth oxide as a carrier has been reported (Journal of the Chemical Society Chemical Comm.
unications, 1982, Issue 12, p. 645).

【0007】しかしながら、この触媒は、反応活性が低
く、メタノール選択率が低いという問題点がある。
[0007] However, this catalyst has a problem that the reaction activity is low and the methanol selectivity is low.

【0008】このように、より低い反応圧力において、
効率よくメタノールを合成できる触媒の開発が切望され
ている。
Thus, at lower reaction pressures,
There is a strong need for the development of a catalyst that can efficiently synthesize methanol.

【0009】一方、メタノール分解反応は一酸化炭素と
水素からのメタノール合成反応の逆反応であり、吸熱反
応である。従って、200℃以下の低温排熱を熱源として
反応を進行させれば、低温排熱のエネルギー回収が可能
となる。
On the other hand, a methanol decomposition reaction is a reverse reaction of a methanol synthesis reaction from carbon monoxide and hydrogen, and is an endothermic reaction. Therefore, if the reaction proceeds with low-temperature exhaust heat of 200 ° C. or less as a heat source, energy recovery of low-temperature exhaust heat becomes possible.

【0010】これを実用化するためには、200℃以下で
も高い触媒活性を有し、且つ一酸化炭素と水素への高い
選択性を有するメタノール分解用触媒が必要である。
In order to put this into practical use, a catalyst for decomposing methanol having high catalytic activity even at 200 ° C. or lower and having high selectivity to carbon monoxide and hydrogen is required.

【0011】しかしながら、現時点では、適当な触媒は
見出されていない。
However, at present, no suitable catalyst has been found.

【0012】[0012]

【発明が解決しようとする課題】本発明は、低圧力にお
いても優れた触媒活性を有し、且つ高いメタノール選択
性を有するメタノール合成用触媒と該触媒を用いたメタ
ノール合成法を提供することを目的とする。また、低温
においても優れた触媒活性を有し、且つ一酸化炭素と水
素への選択性に優れたメタノール分解用触媒と該触媒を
用いたメタノール分解法を提供することを目的とする。
An object of the present invention is to provide a catalyst for methanol synthesis having excellent catalytic activity even at low pressure and having high methanol selectivity, and a method for synthesizing methanol using the catalyst. Aim. It is another object of the present invention to provide a methanol decomposition catalyst having excellent catalytic activity even at low temperatures and excellent in selectivity to carbon monoxide and hydrogen, and a methanol decomposition method using the catalyst.

【0013】[0013]

【課題を解決するための手段】本発明者は、鋭意研究を
重ねた結果、メソポーラス化合物からなる担体に、パラ
ジウムを担持した触媒が、メタノール合成反応およびメ
タノール分解反応に高い触媒活性及び高い選択性を有す
ることを見出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that a catalyst comprising palladium on a support comprising a mesoporous compound has high catalytic activity and high selectivity for methanol synthesis reaction and methanol decomposition reaction. And completed the present invention.

【0014】即ち、本発明は、下記のメタノール合成/
分解用触媒およびメタノール合成/分解方法に係るもの
である。 1.メソポーラス化合物からなる担体に、パラジウムを
担持したメタノール合成用触媒。 2.メソポーラス化合物の中心細孔径が2〜50nmである
上記1に記載のメタノール合成用触媒。 3.メタノール合成用触媒の製造方法であって、(1)メ
ソポーラス化合物に水酸化パラジウムを析出させ触媒前
駆体を得る工程、(2)得られた触媒前駆体を加熱して、
水酸化パラジウムを酸化させる工程、および(3)酸化さ
せた触媒前駆体を還元処理に供する工程を有することを
特徴とする触媒の製造方法。 4.一酸化炭素及び/または二酸化炭素と水素とを気相
で反応させてメタノールを合成する方法であって、メソ
ポーラス化合物からなる担体に、パラジウムを担持した
触媒の存在下に反応させることを特徴とするメタノール
の合成方法。 5.反応圧力が1〜15MPaである上記4に記載のメタノー
ルの合成方法。 6.反応温度が150〜300℃である上記4〜5のいずれか
に記載のメタノールの合成方法。 7.メソポーラス化合物からなる担体に、パラジウムを
担持したメタノール分解用触媒。 8.メソポーラス化合物の細孔径が2〜50nmである上記
7に記載のメタノール分解用触媒。 9.メタノール分解用触媒の製造方法であって、(1)メ
ソポーラス化合物に水酸化パラジウムを析出させ触媒前
駆体を得る工程、(2)得られた触媒前駆体を加熱して、
水酸化パラジウムを酸化させる工程、および(3)酸化さ
せた触媒前駆体を還元処理に供する工程を有することを
特徴とする触媒の製造方法。 10.メタノールを一酸化炭素と水素とに分解する気相
分解法であって、メソポーラス化合物からなる担体にパ
ラジウムを担持した触媒の存在下に反応させることを特
徴とするメタノールの分解方法。 11.反応圧力が0.05〜1MPaである上記10に記載のメ
タノールの分解方法。 12.反応温度が130〜350℃である上記10〜11のい
ずれかに記載のメタノールの分解方法。
That is, the present invention provides the following methanol synthesis /
The present invention relates to a decomposition catalyst and a methanol synthesis / decomposition method. 1. A catalyst for methanol synthesis in which palladium is supported on a support made of a mesoporous compound. 2. 2. The catalyst for methanol synthesis according to the above 1, wherein the mesoporous compound has a center pore diameter of 2 to 50 nm. 3. A method for producing a catalyst for methanol synthesis, comprising: (1) a step of depositing palladium hydroxide on a mesoporous compound to obtain a catalyst precursor; and (2) heating the obtained catalyst precursor.
A method for producing a catalyst, comprising: a step of oxidizing palladium hydroxide; and (3) a step of subjecting the oxidized catalyst precursor to a reduction treatment. 4. A method for synthesizing methanol by reacting carbon monoxide and / or carbon dioxide with hydrogen in the gas phase, wherein the reaction is carried out in the presence of a catalyst supporting palladium on a support composed of a mesoporous compound. A method for synthesizing methanol. 5. The method for synthesizing methanol according to the above item 4, wherein the reaction pressure is 1 to 15 MPa. 6. The method for synthesizing methanol according to any one of the above items 4 to 5, wherein the reaction temperature is 150 to 300 ° C. 7. A catalyst for methanol decomposition in which palladium is supported on a support made of a mesoporous compound. 8. 8. The catalyst for decomposing methanol according to 7 above, wherein the mesoporous compound has a pore diameter of 2 to 50 nm. 9. A method for producing a catalyst for decomposing methanol, comprising: (1) a step of depositing palladium hydroxide on a mesoporous compound to obtain a catalyst precursor; and (2) heating the obtained catalyst precursor.
A method for producing a catalyst, comprising: a step of oxidizing palladium hydroxide; and (3) a step of subjecting the oxidized catalyst precursor to a reduction treatment. 10. A gas phase decomposition method for decomposing methanol into carbon monoxide and hydrogen, wherein the reaction is carried out in the presence of a catalyst in which palladium is supported on a support made of a mesoporous compound. 11. The method for decomposing methanol according to the above item 10, wherein the reaction pressure is 0.05 to 1 MPa. 12. 12. The method for decomposing methanol according to any of the above 10 to 11, wherein the reaction temperature is 130 to 350 ° C.

【0015】[0015]

【発明の実施の形態】本発明の第一発明は、メソポーラ
ス化合物からなる担体に、パラジウムを担持したメタノ
ール合成用触媒に係る。
BEST MODE FOR CARRYING OUT THE INVENTION The first invention of the present invention relates to a catalyst for methanol synthesis in which palladium is supported on a support comprising a mesoporous compound.

【0016】本発明の第二発明は、メソポーラス化合物
からなる担体に、パラジウムを担持したメタノール分解
用触媒に係る。
The second invention of the present invention relates to a catalyst for decomposing methanol in which palladium is supported on a support comprising a mesoporous compound.

【0017】第一発明に係る触媒と第二発明に係る触媒
を併せて、以下、「本発明の触媒」ということがある。
Hereinafter, the catalyst according to the first invention and the catalyst according to the second invention may be collectively referred to as "catalyst of the present invention".

【0018】本発明の触媒において、担体として用いる
メソポーラス化合物(メソ多孔体)は、中心細孔径が通常
2〜50nm程度、好ましくは2〜20nm程度、特に好ましくは
3〜10nm程度の細孔を有する多孔体である。本願発明に
おいて用いるメソポーラス化合物は、一次元的細孔によ
って構成されたほぼ均一な規則的細孔構造を有している
ことが好ましい。一次元的細孔とは、筒状の細管が同一
方向に整列し、更に積層している状態を示す。この様な
構造の一例を模式図として図1に示す。メソポーラス化
合物は、その細孔の大部分、例えば90%以上程度の細孔
が細孔径4〜6nmの範囲にあるものが特に好ましい。な
お、中心細孔径の値は、窒素吸着法による測定値を用い
る。
In the catalyst of the present invention, the mesoporous compound (mesoporous body) used as a carrier usually has a center pore diameter.
About 2 to 50 nm, preferably about 2 to 20 nm, particularly preferably
It is a porous body having pores of about 3 to 10 nm. The mesoporous compound used in the present invention preferably has an almost uniform regular pore structure constituted by one-dimensional pores. One-dimensional pores indicate a state in which cylindrical thin tubes are aligned in the same direction and are further stacked. One example of such a structure is schematically shown in FIG. It is particularly preferable that the mesoporous compound has most of its pores, for example, about 90% or more of pores having a pore diameter of 4 to 6 nm. As the value of the center pore diameter, a value measured by a nitrogen adsorption method is used.

【0019】メソポーラス化合物として、例えば、ジル
コニウム、セリウム、チタン、ケイ素などの酸化物を含
む化合物、これらの酸化物を二種類以上含む化合物など
を例示することができる。メソポーラス化合物は、公知
の方法を用いて製造することができる。例えば、酸化セ
リウムを含むメソポーラス化合物の製造方法は、Journa
l of Catalysis、178巻、299〜308頁(1998年)などに、
酸化ジルコニウムを含むメソポーラス化合物の製造方法
は、Journal of Material Chemistry、6巻、89〜95頁(1
996年)などに、酸化チタンを含むメソポーラス化合物の
製造方法は、Chemical Materials、9巻、2690〜2693頁
(1997年)など、酸化ケイ素を含むメソポーラス化合物の
製造方法は、触媒、37巻、 No.8、636〜641頁(1995年)
などにそれぞれ記載されている。
Examples of the mesoporous compound include compounds containing oxides such as zirconium, cerium, titanium and silicon, and compounds containing two or more kinds of these oxides. The mesoporous compound can be produced using a known method. For example, a method for producing a mesoporous compound containing cerium oxide is described in Journa.
l of Catalysis, 178, 299-308 (1998), etc.
A method for producing a mesoporous compound containing zirconium oxide is described in Journal of Material Chemistry, Volume 6, pages 89 to 95 (1.
996), and the method for producing a mesoporous compound containing titanium oxide is described in Chemical Materials, Volume 9, pages 2690 to 2693.
(1997), a method for producing a mesoporous compound containing silicon oxide is described in Catalyst, Vol. 37, No. 8, pp. 636-641 (1995).
And so on.

【0020】本発明の触媒に担持されているパラジウム
の平均粒子径は、所定の効果が得られる限り特に制限さ
れない。パラジウムの平均粒子径は、XRD法或いは水素
吸着法による測定値として、通常10nm以下程度、好まし
くは3nm以下程度である。
The average particle size of palladium supported on the catalyst of the present invention is not particularly limited as long as a predetermined effect can be obtained. The average particle size of palladium is usually about 10 nm or less, preferably about 3 nm or less, as measured by the XRD method or the hydrogen adsorption method.

【0021】本発明の触媒においては、担体にパラジウ
ムが高分散担持されていることが望ましい。
In the catalyst of the present invention, it is desirable that palladium be highly dispersed and supported on the carrier.

【0022】本発明の触媒におけるパラジウム担持量
は、該パラジウムと上記メソポーラス化合物担体との合
計量の通常0.5〜15wt%、好ましくは2〜10wt%程度であ
る。パラジウムの担持量が少なすぎる場合には、十分な
触媒活性が発現しない。
The supported amount of palladium in the catalyst of the present invention is usually about 0.5 to 15% by weight, preferably about 2 to 10% by weight, based on the total amount of the palladium and the mesoporous compound carrier. If the amount of supported palladium is too small, sufficient catalytic activity will not be exhibited.

【0023】本発明の触媒の形状は特に制限されず、例
えば、粉末状、粒状、細片状などを例示することができ
る。触媒の粒度は、所定の効果が得られる限り特に制限
されないが、通常10〜100メッシュ程度、好ましくは30
〜80メッシュ程度である。触媒は、所望の粒度を有する
担体を用いて製造しても良いし、或いは、担体にパラジ
ウムを担持後、所望の粒度となるよう粉砕しても良い。
前者の方が、好ましい。
The shape of the catalyst of the present invention is not particularly limited, and examples thereof include powder, granules, and strips. The particle size of the catalyst is not particularly limited as long as a predetermined effect is obtained, but is usually about 10 to 100 mesh, preferably 30 mesh.
It is about 80 mesh. The catalyst may be produced using a carrier having a desired particle size, or may be pulverized to a desired particle size after supporting palladium on the carrier.
The former is preferred.

【0024】本発明の触媒は、ペレット状、円筒状、ハ
ニカム状などに成形して使用してもよい。成形方法は、
自体公知の方法を用いることができ、例えば、反応に悪
影響を与えない公知のバインダー(例えば、シリカゲル
など)と混合し成形する方法、反応に悪影響を与えない
公知のバインダー(例えば、シリカゲルなど)との混合物
をセラミックスなどの基材に塗布する方法などが挙げら
れる。
The catalyst of the present invention may be used after being formed into pellets, cylinders, honeycombs, or the like. The molding method is
A method known per se can be used, for example, a method of mixing and molding with a known binder that does not adversely affect the reaction (e.g., silica gel or the like), a known binder that does not adversely affect the reaction (e.g., silica gel or the like) A method of applying a mixture of the above to a substrate such as ceramics.

【0025】この様な成形触媒を使用することにより、
反応原料の拡散を促進すると共に、触媒の活性度を適度
にコントロールすることができる。
By using such a shaped catalyst,
While promoting the diffusion of the reactants, the activity of the catalyst can be appropriately controlled.

【0026】本発明(第一発明および第二発明)の触媒
は、例えば、以下の工程を有する製造方法(以下、「析出
沈殿法」ということがある)によって製造することができ
る。 (1)メソポーラス化合物からなる担体に、水酸化パラジ
ウムを析出させ触媒前駆体を得る工程、(2)得られた触
媒前駆体を加熱して、水酸化パラジウムを酸化させる工
程、および(3)酸化させた触媒前駆体を還元処理に供し
て、触媒前駆体中の酸化パラジウムを金属パラジウムに
還元させる工程。
The catalyst of the present invention (first invention and second invention) can be produced, for example, by a production method having the following steps (hereinafter sometimes referred to as “precipitation precipitation method”). (1) a step of depositing palladium hydroxide on a support composed of a mesoporous compound to obtain a catalyst precursor; (2) a step of heating the obtained catalyst precursor to oxidize palladium hydroxide; and (3) oxidation. A step of subjecting the catalyst precursor thus subjected to reduction treatment to reduce palladium oxide in the catalyst precursor to metal palladium.

【0027】工程(1)は、メソポーラス化合物からなる
担体に、水酸化パラジウムを析出させる工程である。
Step (1) is a step of precipitating palladium hydroxide on a support comprising a mesoporous compound.

【0028】工程(1)では、例えば、pH3〜8程度の条件
下において、パラジウム化合物溶液にメソポーラス化合
物を含浸させる方法などにより、メソポーラス化合物に
水酸化パラジウムを析出させ、触媒前駆体(以下、「前駆
体」ということがある)を調製する。
In the step (1), palladium hydroxide is precipitated on the mesoporous compound by, for example, a method of impregnating the mesoporous compound into a palladium compound solution under a condition of about pH 3 to 8, and a catalyst precursor (hereinafter, referred to as “the catalyst precursor”). A precursor).

【0029】工程(1)において用いるパラジウム化合物
は、溶液中においてPd2+を解離する化合物であれば特に
制限されない。この様な化合物として、例えば、塩化パ
ラジウム、硝酸パラジウム、酢酸パラジウムなどのパラ
ジウム塩などを挙げることができる。これらの化合物は
は、一種を単独で用いてもよいし、二種以上を併用して
もよい。
The palladium compound used in step (1) is not particularly limited as long as it is a compound that dissociates Pd 2+ in a solution. Such compounds include, for example, palladium salts such as palladium chloride, palladium nitrate and palladium acetate. These compounds may be used alone or in a combination of two or more.

【0030】工程(1)において用いるパラジウム溶液
は、パラジウム化合物を水、メタノール、アセトン、こ
れらの混合溶媒などの溶媒に溶解させることにより調製
することができる。これらの中では、水が好ましい。パ
ラジウム溶液の濃度は、用いるパラジウム化合物の種類
などに応じて適宜設定することができるが、通常0.1〜5
mol/l程度、好ましくは0.5〜2mol/l程度である。
The palladium solution used in the step (1) can be prepared by dissolving a palladium compound in a solvent such as water, methanol, acetone or a mixed solvent thereof. Of these, water is preferred. The concentration of the palladium solution can be appropriately set according to the type of the palladium compound to be used and the like, but is usually 0.1 to 5
mol / l, preferably about 0.5 to 2 mol / l.

【0031】pHの調整は、例えば、炭酸ナトリウム、炭
酸カリウムなどの塩基性化合物を添加することなどによ
り行うことができる。
The pH can be adjusted by, for example, adding a basic compound such as sodium carbonate or potassium carbonate.

【0032】メソポーラス化合物の細孔内などにパラジ
ウム溶液を効率的に分散させるために、超音波による振
盪を加えながら、メソポーラス化合物の細孔内などに水
酸化パラジウムを析出させてもよい。
In order to efficiently disperse the palladium solution in the pores of the mesoporous compound, palladium hydroxide may be precipitated in the pores of the mesoporous compound while shaking by ultrasonic waves.

【0033】析出させた水酸化パラジウムは、必要に応
じて、0.5〜24時間程度熟成させてもよい。熟成をさせ
るときの温度は、特に制限されないが通常50〜90℃程度
である。
The deposited palladium hydroxide may be aged for about 0.5 to 24 hours, if necessary. The temperature for aging is not particularly limited, but is usually about 50 to 90 ° C.

【0034】得られた前駆体を、ろ過などの公知の方法
により単離する。得られた前駆体を、必要に応じて、洗
浄したり、乾燥したりしてもよい。
The obtained precursor is isolated by a known method such as filtration. The obtained precursor may be washed or dried as necessary.

【0035】工程(2)では、工程(1)において得られた
前駆体を加熱して、担持されている水酸化パラジウムを
酸化させる。
In step (2), the precursor obtained in step (1) is heated to oxidize the supported palladium hydroxide.

【0036】加熱は、空気などの酸化雰囲気下において
行う。加熱温度は、特に制限されないが、通常200〜500
℃程度である。加熱時間は、特に制限されないが、通常
0.5〜10時間程度である。
The heating is performed in an oxidizing atmosphere such as air. The heating temperature is not particularly limited, but is usually 200 to 500.
It is about ° C. The heating time is not particularly limited, but is usually
It is about 0.5 to 10 hours.

【0037】工程(3)では、工程(2)において得られた
前駆体を還元処理に供して、担持されている酸化パラジ
ウムを金属パラジウムに還元させる。工程(3)は、工程
(2)を施した直後に行っても良いが、反応直前に、例え
ば、反応器に触媒を設置した後に行っても良い。
In step (3), the precursor obtained in step (2) is subjected to a reduction treatment to reduce the supported palladium oxide to metal palladium. Step (3) is a step
The reaction may be performed immediately after (2) is performed, or may be performed immediately before the reaction, for example, after installing a catalyst in the reactor.

【0038】工程(3)において行う還元処理として、例
えば、水素などの還元ガス雰囲気下における気相還元処
理、ホルマリン溶液などの還元剤溶液を用いる液相還元
処理などを挙げることができる。水素還元処理として
は、具体的には、触媒を、水素雰囲気下、200〜500℃程
度において、3〜10時間程度加熱する方法を例示するこ
とができる。
Examples of the reduction treatment performed in the step (3) include a gas phase reduction treatment in a reducing gas atmosphere such as hydrogen, a liquid phase reduction treatment using a reducing agent solution such as a formalin solution, and the like. Specific examples of the hydrogen reduction treatment include a method of heating the catalyst at about 200 to 500 ° C. for about 3 to 10 hours in a hydrogen atmosphere.

【0039】本発明の触媒は、一旦使用した後、必要に
応じて、水素還元処理などを行うことにより、再生する
ことができる。
[0039] The catalyst of the present invention can be regenerated by performing a hydrogen reduction treatment or the like, as needed, after once using it.

【0040】上記方法を用いて製造した触媒は、パラジ
ウム塩を担体表面に付着させた後、空気中において焼成
することによりパラジウム酸化物とする含浸法と違っ
て、パラジウムが水酸化物としてメソポーラス化合物の
細孔内などに析出することによって担持されるから、パ
ラジウムのメソポーラス化合物細孔内への高分散担持が
可能になり、得られるパラジウムの比表面積も大きいも
のとなる。
The catalyst produced by the above method is different from the impregnation method in which a palladium salt is attached to the surface of a carrier and then calcined in the air to form a palladium oxide. Thus, palladium is supported by being precipitated in the pores thereof, so that palladium can be highly dispersed and supported in the pores of the mesoporous compound, and the palladium obtained has a large specific surface area.

【0041】パラジウムの含有量が小さいほどパラジウ
ムの分散度が高くなるので、パラジウム当たりの触媒活
性を高めることが出来る。
The smaller the content of palladium, the higher the degree of dispersion of palladium, so that the catalytic activity per palladium can be increased.

【0042】第一発明に係る触媒は、一酸化炭素および
/または二酸化炭素と水素とを気相において反応させて
メタノールを合成する方法において、例えば以下の反応
条件において触媒活性を発揮する。
The catalyst according to the first invention comprises carbon monoxide and
In a method of synthesizing methanol by reacting carbon dioxide and hydrogen in the gas phase, for example, the catalyst exhibits catalytic activity under the following reaction conditions.

【0043】反応圧力は、特に制限されないが、通常1
〜15MPa程度、好ましくは1.2〜10MPa程度、より好まし
くは1.5〜5MPaである。反応圧力は、ほぼ反応原料の分
圧に等しい。反応圧力が低すぎる場合はメタノール収量
が低下する。
The reaction pressure is not particularly limited, but is usually 1
The pressure is about 15 MPa, preferably about 1.2 to 10 MPa, and more preferably 1.5 to 5 MPa. The reaction pressure is approximately equal to the partial pressure of the reactants. If the reaction pressure is too low, the methanol yield will decrease.

【0044】反応温度は、特に制限されないが、通常15
0〜300℃程度、好ましくは170〜250℃程度である。反応
温度が低すぎる場合には、触媒活性が低下する。反応温
度が高すぎる場合には、化学平衡の制約があるので、反
応圧力を高くしなければ、十分な反応効率が得られな
い。
The reaction temperature is not particularly limited, but is usually 15
The temperature is about 0 to 300 ° C, preferably about 170 to 250 ° C. If the reaction temperature is too low, the catalytic activity will decrease. If the reaction temperature is too high, the chemical equilibrium is restricted, and sufficient reaction efficiency cannot be obtained unless the reaction pressure is increased.

【0045】反応原料の組成比は、特に制限されるもの
ではないが、反応の量論関係を考慮して決定されるべき
である。一酸化炭素および/または二酸化炭素と水素と
の組成比は、H2/(CO2+CO)(モル比)として、通常1〜5程
度、好ましくは2〜4程度である。一酸化炭素と二酸化炭
素は、単独で用いても良いし、二種を併用しても良い。
The composition ratio of the reaction raw materials is not particularly limited, but should be determined in consideration of the stoichiometric relationship of the reaction. The composition ratio of carbon monoxide and / or carbon dioxide to hydrogen is usually about 1 to 5, preferably about 2 to 4, as H 2 / (CO 2 + CO) (molar ratio). Carbon monoxide and carbon dioxide may be used alone or in combination.

【0046】反応原料は、反応に悪影響を及ぼさない範
囲で、窒素等の反応不活性な気体によって希釈しても良
い。過度に希釈を行う場合には、反応圧力に昇圧する際
にエネルギー損失が生じる。
The reaction raw materials may be diluted with a reaction inert gas such as nitrogen as long as the reaction is not adversely affected. If the dilution is excessive, energy loss occurs when the pressure is increased to the reaction pressure.

【0047】反応原料である一酸化炭素および/または
二酸化炭素と水素は、気相流通方式で供給してもよい。
反応原料の供給量は、反応器の大きさ、形状、反応温
度、反応圧力などに応じて適宜選択することができる
が、通常、触媒1g当たり500〜10000ml・h-1程度、好ま
しくは1000〜5000ml・h-1程度である。
The reaction raw materials of carbon monoxide and / or carbon dioxide and hydrogen may be supplied in a gas phase flow system.
The supply amount of the reaction raw material can be appropriately selected depending on the size, shape, reaction temperature, reaction pressure, and the like of the reactor, but is usually about 500 to 10,000 ml / h -1 per 1 g of the catalyst, preferably 1,000 to 1,000. It is about 5000 ml · h -1 .

【0048】第二発明に係る触媒は、メタノールを気相
において反応させて一酸化炭素と水素とに分解する方法
において、例えば以下の反応条件において触媒活性を発
揮する。
The catalyst according to the second invention exhibits catalytic activity under the following reaction conditions in a method in which methanol is reacted in the gas phase to decompose into carbon monoxide and hydrogen.

【0049】反応温度は、通常130〜350℃程度、好まし
くは150〜300℃程度である。反応温度が低すぎる場合
は、メタノールの分解効率が下がるのに対し、反応温度
が高すぎる場合は、メタンの副生によりメタノールの脱
水素生成物への選択性が低下するおそれがある。
The reaction temperature is usually about 130-350 ° C., preferably about 150-300 ° C. If the reaction temperature is too low, the decomposition efficiency of methanol decreases, whereas if the reaction temperature is too high, the selectivity of methanol to dehydrogenation products may decrease due to by-product methane.

【0050】反応圧力は、通常0.05〜1MPa程度、好ま
しくは0.1〜0.5MPa程度である。反応圧力が高すぎる
と、化学平衡により高い反応転化率が得られず、反応圧
力が低すぎる場合は分解生成物収量が低下する。メタノ
ール分圧は、通常0.01〜1MPa程度、好ましくは0.02〜0.
5MPa程度である。
The reaction pressure is usually about 0.05-1 MPa, preferably about 0.1-0.5 MPa. If the reaction pressure is too high, a high reaction conversion cannot be obtained due to chemical equilibrium, and if the reaction pressure is too low, the yield of decomposition products will decrease. The methanol partial pressure is usually about 0.01 to 1 MPa, preferably 0.02 to 0.
It is about 5MPa.

【0051】メタノールの供給方法は特に制限されない
が、通常気相流通方式などを用いてガス状として供給さ
れる。メタノールは、反応に悪影響を及ぼさないガス、
例えばヘリウム、窒素、アルゴンなどで希釈して供給し
てもよい。
The method of supplying methanol is not particularly limited, but it is usually supplied in gaseous form using a gas phase flow system or the like. Methanol is a gas that does not adversely affect the reaction,
For example, it may be supplied after being diluted with helium, nitrogen, argon, or the like.

【0052】メタノールの供給量は、反応器の大きさお
よび形状、反応温度に応じて適宜選択すればよいが、通
常触媒1g当たり0.1〜10mol・h-1程度である。
The amount of methanol to be supplied may be appropriately selected according to the size and shape of the reactor and the reaction temperature, and is usually about 0.1 to 10 mol · h −1 per 1 g of the catalyst.

【0053】[0053]

【発明の効果】本発明による触媒は、メタノールの合成
反応において、パラジウムを通常の酸化物担体に担持し
た公知触媒に比して、低温・低圧の条件下であっても、
良好な触媒活性を示す。
The catalyst according to the present invention can be used in a methanol synthesis reaction at a lower temperature and a lower pressure compared to a known catalyst in which palladium is supported on an ordinary oxide carrier.
Shows good catalytic activity.

【0054】本発明の触媒においては、メソポーラス化
合物の構造がメタノールの合成に寄与し、担体とパラジ
ウムとの相互作用によって低温・低圧での触媒活性が高
まるものと考えられる。
In the catalyst of the present invention, it is considered that the structure of the mesoporous compound contributes to the synthesis of methanol, and the interaction between the carrier and palladium enhances the catalytic activity at low temperature and low pressure.

【0055】また、本発明による触媒は、メタノールの
脱水素分解反応において、公知の触媒反応に比して、低
温・低圧条件下で良好な触媒活性および一酸化炭素への
高い選択性を発揮し、良好な速度でメタノール分解反応
を行うことができる。
Further, the catalyst according to the present invention exhibits good catalytic activity and high selectivity to carbon monoxide under low temperature and low pressure conditions in the dehydrogenation decomposition reaction of methanol, as compared with known catalytic reactions. The methanol decomposition reaction can be performed at a favorable rate.

【0056】この場合も、メソポーラス化合物の構造が
メタノールの分解に寄与し、パラジウムの反応活性を高
めているものと考えられる。
Also in this case, it is considered that the structure of the mesoporous compound contributes to the decomposition of methanol and enhances the reaction activity of palladium.

【0057】[0057]

【実施例】以下、本発明の実施例を示す。本発明はこれ
ら実施例に限定されるものではない。
Embodiments of the present invention will be described below. The present invention is not limited to these examples.

【0058】実施例1 酸化セリウムからなるメソポーラス化合物をJournal of
Catalysis、178巻、299〜308頁(1998年)に記載の方
法で合成した。得られたメソポーラス化合物の中心細孔
径は、窒素吸着法による測定値として4nm、最大細孔径
は10nmであった。メソポーラス化合物の粒子径は、約60
メッシュであった。この化合物にパラジウムを析出沈殿
法によって担持させ、所望のパラジウム触媒を得た。こ
の析出沈殿法は以下の通りである。
Example 1 A mesoporous compound composed of cerium oxide was used in the Journal of Japan.
Catalysis, vol. 178, pp. 299-308 (1998). The center pore diameter of the obtained mesoporous compound was 4 nm as measured by a nitrogen adsorption method, and the maximum pore diameter was 10 nm. The particle size of the mesoporous compound is about 60
It was a mesh. Palladium was supported on this compound by a precipitation method to obtain a desired palladium catalyst. This precipitation method is as follows.

【0059】塩化パラジウム(PdCl2)0.26gを秤量し、
これを300mlの蒸留水に溶解させた。この溶液に上記の
メソポーラス化合物5gを含浸させ、これに炭酸ナトリウ
ムの1N溶液を添加してpHを10以下として、担体に水酸
化パラジウムを担持させた。その後、攪拌熟成(2時
間)、水洗、乾燥の各過程を経て、500℃で5時間の焼成
を行った。
0.26 g of palladium chloride (PdCl 2 ) was weighed,
This was dissolved in 300 ml of distilled water. The solution was impregnated with 5 g of the above mesoporous compound, and a 1N solution of sodium carbonate was added to adjust the pH to 10 or less, and palladium hydroxide was supported on the carrier. After that, calcination was performed at 500 ° C. for 5 hours through each process of stirring aging (2 hours), washing with water, and drying.

【0060】得られたパラジウム−メソポーラス化合物
触媒中のパラジウム担持量は3wt%であった。
The supported amount of palladium in the obtained palladium-mesoporous compound catalyst was 3% by weight.

【0061】実施例2 酸化ジルコニウムからなるメソポーラス化合物をJourna
l of Material Chemistry、6巻、89〜95頁(1996年)に
記載の方法で合成した。得られたメソポーラス化合物の
中心細孔径は、窒素吸着法による測定値として5nm、最
大細孔径は10nmであった。メソポーラス化合物の粒子径
は、約60メッシュであった。この化合物にパラジウムを
析出沈殿法によって担持させ、パラジウム触媒を得た。
この析出沈殿法は以下の通りである。
Example 2 A mesoporous compound comprising zirconium oxide was used
Synthesized by the method described in l of Material Chemistry, vol. 6, pages 89-95 (1996). The center pore diameter of the obtained mesoporous compound was 5 nm as measured by a nitrogen adsorption method, and the maximum pore diameter was 10 nm. The particle size of the mesoporous compound was about 60 mesh. Palladium was supported on this compound by a precipitation method to obtain a palladium catalyst.
This precipitation method is as follows.

【0062】塩化パラジウム(PdCl2)0.26gを秤量し、こ
れを300mlの蒸留水に溶解させた。この溶液に上記のメ
ソポーラス化合物5gを含浸させ、超音波による振盪を加
えながら、炭酸ナトリウムの1N溶液を添加し、pHを10
以下として、担体に水酸化パラジウムを担持させた。そ
の後、攪拌熟成(2時間)、水洗、乾燥の各過程を経て、5
00℃で5時間の焼成を行った。
0.26 g of palladium chloride (PdCl 2 ) was weighed and dissolved in 300 ml of distilled water. This solution was impregnated with 5 g of the above mesoporous compound, and a 1N solution of sodium carbonate was added thereto while shaking with ultrasonic waves to adjust the pH to 10%.
In the following, palladium hydroxide was supported on the carrier. After that, after each process of stirring and aging (2 hours), washing and drying, 5
Baking was performed at 00 ° C. for 5 hours.

【0063】得られたパラジウム−メソポーラス化合物
触媒中のパラジウム担持量は、3wt%であった。
The supported amount of palladium in the obtained palladium-mesoporous compound catalyst was 3% by weight.

【0064】実施例3 酸化チタニウムからなるメソポーラス化合物をChemical
Materials、9巻、2690〜2693頁(1997年)に記載の方
法で合成した。得られたメソポーラス化合物の中心細孔
径は、窒素吸着法による測定値として3nm、最大細孔径
は10nmであった。メソポーラス化合物の粒子径は、約50
メッシュであった。この化合物にパラジウムを析出沈殿
法によって担持させたパラジウム触媒を得た。この析出
沈殿法は以下の通りである。
Example 3 A mesoporous compound composed of titanium oxide was used as a chemical.
Materials, vol. 9, pages 2690 to 2693 (1997). The center pore diameter of the obtained mesoporous compound was 3 nm as measured by a nitrogen adsorption method, and the maximum pore diameter was 10 nm. The particle size of the mesoporous compound is about 50
It was a mesh. A palladium catalyst in which palladium was supported on this compound by a precipitation method was obtained. This precipitation method is as follows.

【0065】塩化パラジウム(PdCl2)0.26gを秤量し、こ
れを300mlの蒸留水に溶解させた。この溶液に上記のメ
ソポーラス化合物5gを混入し、炭酸ナトリウムの1N溶
液を添加してpH10以下とし、担体に水酸化パラジウムを
担持させた。その後、攪拌熟成(2時間)、水洗、乾燥の
各過程を経て、500℃で5時間の焼成を行った。
0.26 g of palladium chloride (PdCl 2 ) was weighed and dissolved in 300 ml of distilled water. 5 g of the above mesoporous compound was mixed into this solution, and a 1N solution of sodium carbonate was added to adjust the pH to 10 or less, and palladium hydroxide was supported on a carrier. After that, calcination was performed at 500 ° C. for 5 hours through each process of stirring aging (2 hours), washing with water, and drying.

【0066】得られたパラジウム−メソポーラス化合物
触媒中のパラジウム担持量は、3wt%であった。
The supported amount of palladium in the obtained palladium-mesoporous compound catalyst was 3% by weight.

【0067】実施例4 実施例1で得られた触媒を固定床流通式反応装置に組み
込み、この触媒を水素還元処理(300℃、1時間)に供した
後、200℃において、水素2容、一酸化炭素1容からな
る反応ガスを圧力2MPa、空間速度3600ml・h-1・g-1で供
給し、反応圧力2MPaでメタノール合成反応を行った。
Example 4 The catalyst obtained in Example 1 was incorporated into a fixed bed flow type reactor, and the catalyst was subjected to a hydrogen reduction treatment (300 ° C., 1 hour). A reaction gas consisting of one volume of carbon monoxide was supplied at a pressure of 2 MPa and a space velocity of 3600 ml · h −1 · g −1 , and a methanol synthesis reaction was performed at a reaction pressure of 2 MPa.

【0068】結果、触媒1g当たりのメタノール生成量
は4.0mmol・h-1であり、メタノール選択率は97.7%であ
った。主な副生成物はメタンであった。
As a result, the amount of methanol produced per gram of the catalyst was 4.0 mmol · h −1 , and the methanol selectivity was 97.7%. The main by-product was methane.

【0069】実施例5 実施例2で得られた触媒を用いて、反応温度を250℃に
した以外は、実施例4と同様の方法でメタノール合成反
応を行った。
Example 5 Using the catalyst obtained in Example 2, a methanol synthesis reaction was carried out in the same manner as in Example 4 except that the reaction temperature was changed to 250 ° C.

【0070】結果、触媒1g当たりのメタノール生成量
は6.3mmol・h-1であり、メタノール選択率は96.2%であ
った。
As a result, the amount of methanol produced per gram of the catalyst was 6.3 mmol · h −1 , and the methanol selectivity was 96.2%.

【0071】実施例6 実施例3で得られた触媒を用いて、実施例4と同様の方
法でメタノール合成反応を行った。
Example 6 Using the catalyst obtained in Example 3, a methanol synthesis reaction was carried out in the same manner as in Example 4.

【0072】結果、触媒1g当たりのメタノール生成量
は3.1mmol・h-1であり、メタノール選択率は91.5%であ
った。
As a result, the amount of methanol produced per gram of the catalyst was 3.1 mmol · h −1 , and the methanol selectivity was 91.5%.

【0073】実施例7 実施例1で得られた触媒を固定床流通式反応装置に組み
込み、この触媒を水素還元処理(300℃、1時間)に供した
後、250℃において、水素3容、二酸化炭素1容からな
る反応ガスを圧力2MPa、空間速度3600ml・h-1・g-1
供給し、反応圧力2MPaでメタノール合成反応を行った。
Example 7 The catalyst obtained in Example 1 was incorporated in a fixed bed flow reactor, and the catalyst was subjected to a hydrogen reduction treatment (300 ° C., 1 hour). A reaction gas consisting of one volume of carbon dioxide was supplied at a pressure of 2 MPa and a space velocity of 3600 ml · h −1 · g −1 to perform a methanol synthesis reaction at a reaction pressure of 2 MPa.

【0074】結果、触媒1g当たりのメタノール生成量
は3.5mmol・h-1であり、メタノール選択率は63%であっ
た。主な副生成物は一酸化炭素であった。副生した一酸
化炭素は、未反応の反応ガスとともに分離回収し原料に
添加することにより、循環再利用してメタノールを合成
することができる。
As a result, the amount of methanol produced per 1 g of the catalyst was 3.5 mmol · h −1 , and the methanol selectivity was 63%. The major by-product was carbon monoxide. By-produced carbon monoxide is separated and recovered together with the unreacted reaction gas, and is added to the raw material, whereby it can be recycled and recycled to synthesize methanol.

【0075】実施例8 実施例1で得られた触媒を固定床流通式反応装置に組み
込み、この触媒を水素還元処理に供した後、これにアル
ゴンで希釈されたメタノール(メタノール分圧:0.02MP
a、反応圧力0.1MPa、空間速度:25000ml・h-1・g-1)を
供給し、反応温度160℃でメタノールの分解反応を行っ
た。
Example 8 The catalyst obtained in Example 1 was incorporated in a fixed-bed flow reactor, and the catalyst was subjected to a hydrogen reduction treatment, and then methanol diluted with argon (methanol partial pressure: 0.02MP)
a, a reaction pressure of 0.1 MPa and a space velocity of 25000 ml · h −1 · g −1 ) were supplied, and a methanol decomposition reaction was carried out at a reaction temperature of 160 ° C.

【0076】その結果、触媒1g当たりの定常分解活性
は30mmol・h-1であり、一酸化炭素への選択率は100%で
あった。
As a result, the steady decomposition activity per gram of the catalyst was 30 mmol · h −1 , and the selectivity to carbon monoxide was 100%.

【0077】実施例9 実施例2で得られた触媒を固定床流通式反応装置に組み
込み、この触媒を水素還元処理に供した後、これにアル
ゴンで希釈されたメタノール(メタノール分圧:0.02MP
a、反応圧力1MPa)、空間速度:25000ml・h-1・g-1)を供
給し、反応温度180℃でメタノールの分解反応を行っ
た。
Example 9 The catalyst obtained in Example 2 was incorporated in a fixed bed flow type reactor, and the catalyst was subjected to a hydrogen reduction treatment, and then methanol diluted with argon (methanol partial pressure: 0.02MP)
a, a reaction pressure of 1 MPa) and a space velocity of 25000 ml · h −1 · g −1 ) were supplied, and a methanol decomposition reaction was performed at a reaction temperature of 180 ° C.

【0078】結果、触媒1g当たりの定常分解活性は52m
mol・h-1であり、一酸化炭素への選択率は100%であっ
た。
As a result, the steady decomposition activity per gram of the catalyst was 52 m
mol · h −1 and the selectivity to carbon monoxide was 100%.

【0079】実施例10 実施例3で得られた触媒を固定床流通式反応装置に組み
込み、この触媒を水素還元処理に供した後、これにアル
ゴンで希釈されたメタノール(メタノール分圧:0.02MP
a、反応圧力0.1MPa)、空間速度:25000ml・h-1・g-1)を
供給し、反応温度160℃でメタノールの分解反応を行っ
た。
Example 10 The catalyst obtained in Example 3 was incorporated in a fixed-bed flow reactor, and the catalyst was subjected to a hydrogen reduction treatment. Then, methanol diluted with argon (methanol partial pressure: 0.02 MPa) was added thereto.
a, a reaction pressure of 0.1 MPa) and a space velocity of 25000 ml · h −1 · g −1 ) were supplied to carry out a methanol decomposition reaction at a reaction temperature of 160 ° C.

【0080】結果、触媒1g当たりの定常分解活性は41m
mol・h-1であり、一酸化炭素への選択率は100%であっ
た。
As a result, the steady decomposition activity per gram of the catalyst was 41 m
mol · h −1 and the selectivity to carbon monoxide was 100%.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一次元的細孔を有するメソポーラス化合物の一
部分を模式的に描いた図である。
FIG. 1 is a diagram schematically illustrating a part of a mesoporous compound having one-dimensional pores.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 31/04 C07C 31/04 Fターム(参考) 4G040 EA02 EB16 EB23 EC03 EC08 4G069 AA03 AA08 AA12 AA14 BA04B BA05B BB04B BB05A BB05C BC43A BC50B BC51A BC72A EA02Y EA06 EA18 EB18Y EC10X FA02 FA08 FB08 FB30 FB34 FB39 FB43 FC06 FC07 4H006 AA02 AC41 BA25 BA56 BA81 BC10 BC11 BC13 BE20 BE40 BE41 Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat II (Reference) C07C 31/04 C07C 31/04 F term (Reference) 4G040 EA02 EB16 EB23 EC03 EC08 4G069 AA03 AA08 AA12 AA14 BA04B BA05B BB04B BB05A BB05A BC43A BC50B BC51A BC72A EA02Y EA06 EA18 EB18Y EC10X FA02 FA08 FB08 FB30 FB34 FB39 FB43 FC06 FC07 4H006 AA02 AC41 BA25 BA56 BA81 BC10 BC11 BC13 BE20 BE40 BE41

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】メソポーラス化合物からなる担体に、パラ
ジウムを担持したメタノール合成用触媒。
1. A catalyst for methanol synthesis in which palladium is supported on a support comprising a mesoporous compound.
【請求項2】メソポーラス化合物の中心細孔径が2〜50n
mである請求項1に記載のメタノール合成用触媒。
2. A mesoporous compound having a center pore diameter of 2 to 50 n.
The catalyst for methanol synthesis according to claim 1, wherein m is m.
【請求項3】メタノール合成用触媒の製造方法であっ
て、 (1)メソポーラス化合物に水酸化パラジウムを析出させ
触媒前駆体を得る工程、(2)得られた触媒前駆体を加熱
して、水酸化パラジウムを酸化させる工程、および(3)
酸化させた触媒前駆体を還元処理に供する工程を有する
ことを特徴とする触媒の製造方法。
3. A method for producing a catalyst for methanol synthesis, comprising: (1) a step of depositing palladium hydroxide on a mesoporous compound to obtain a catalyst precursor; and (2) heating the obtained catalyst precursor to obtain water. Oxidizing palladium oxide, and (3)
A method for producing a catalyst, comprising a step of subjecting an oxidized catalyst precursor to a reduction treatment.
【請求項4】一酸化炭素及び/または二酸化炭素と水素
とを気相で反応させてメタノールを合成する方法であっ
て、メソポーラス化合物からなる担体に、パラジウムを
担持した触媒の存在下に反応させることを特徴とするメ
タノールの合成方法。
4. A method for synthesizing methanol by reacting carbon monoxide and / or carbon dioxide with hydrogen in a gaseous phase, wherein the reaction is carried out on a support comprising a mesoporous compound in the presence of a catalyst carrying palladium. A method for synthesizing methanol, comprising:
【請求項5】反応圧力が1〜15MPaである請求項4に記載
のメタノールの合成方法。
5. The method for synthesizing methanol according to claim 4, wherein the reaction pressure is 1 to 15 MPa.
【請求項6】反応温度が150〜300℃である請求項4〜5
のいずれかに記載のメタノールの合成方法。
6. The reaction temperature according to claim 4, wherein the reaction temperature is 150 to 300 ° C.
The method for synthesizing methanol according to any one of the above.
【請求項7】メソポーラス化合物からなる担体に、パラ
ジウムを担持したメタノール分解用触媒。
7. A catalyst for methanol decomposition in which palladium is supported on a support comprising a mesoporous compound.
【請求項8】メソポーラス化合物の細孔径が2〜50nmで
ある請求項7に記載のメタノール分解用触媒。
8. The catalyst for methanol decomposition according to claim 7, wherein the mesoporous compound has a pore size of 2 to 50 nm.
【請求項9】メタノール分解用触媒の製造方法であっ
て、(1)メソポーラス化合物に水酸化パラジウムを析出
させ触媒前駆体を得る工程、(2)得られた触媒前駆体を
加熱して、水酸化パラジウムを酸化させる工程、および
(3)酸化させた触媒前駆体を還元処理に供する工程を有
することを特徴とする触媒の製造方法。
9. A method for producing a catalyst for decomposing methanol, comprising: (1) a step of depositing palladium hydroxide on a mesoporous compound to obtain a catalyst precursor; and (2) heating the obtained catalyst precursor to obtain Oxidizing palladium oxide, and
(3) A method for producing a catalyst, comprising a step of subjecting the oxidized catalyst precursor to a reduction treatment.
【請求項10】メタノールを一酸化炭素と水素とに分解
する気相分解法であって、メソポーラス化合物からなる
担体にパラジウムを担持した触媒の存在下に反応させる
ことを特徴とするメタノールの分解方法。
10. A process for decomposing methanol into carbon monoxide and hydrogen, wherein the reaction is carried out in the presence of a catalyst comprising palladium supported on a support comprising a mesoporous compound. .
【請求項11】反応圧力が0.05〜1MPaである請求項10
に記載のメタノールの分解方法。
11. The reaction pressure according to claim 10, wherein the reaction pressure is 0.05 to 1 MPa.
4. The method for decomposing methanol according to 1.
【請求項12】反応温度が130〜350℃である請求項10
〜11のいずれかに記載のメタノールの分解方法。
12. The method according to claim 10, wherein the reaction temperature is 130 to 350 ° C.
12. The method for decomposing methanol according to any one of items 11 to 11.
JP11262876A 1999-09-17 1999-09-17 Catalyst for synthesis and decomposition of methanol, method for producing the same, and method for synthesis and decomposition of methanol using the catalyst Expired - Lifetime JP3086881B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11262876A JP3086881B1 (en) 1999-09-17 1999-09-17 Catalyst for synthesis and decomposition of methanol, method for producing the same, and method for synthesis and decomposition of methanol using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11262876A JP3086881B1 (en) 1999-09-17 1999-09-17 Catalyst for synthesis and decomposition of methanol, method for producing the same, and method for synthesis and decomposition of methanol using the catalyst

Publications (2)

Publication Number Publication Date
JP3086881B1 JP3086881B1 (en) 2000-09-11
JP2001079398A true JP2001079398A (en) 2001-03-27

Family

ID=17381869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11262876A Expired - Lifetime JP3086881B1 (en) 1999-09-17 1999-09-17 Catalyst for synthesis and decomposition of methanol, method for producing the same, and method for synthesis and decomposition of methanol using the catalyst

Country Status (1)

Country Link
JP (1) JP3086881B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175662A (en) * 2005-12-28 2007-07-12 Kao Corp Amination catalyst of fatty alcohol and method for manufacturing amine using the same
JP2008006350A (en) * 2006-06-27 2008-01-17 Wako Pure Chem Ind Ltd Method for carrying metal catalyst on fibrous protein
US7432410B2 (en) 2004-08-11 2008-10-07 Japan Gas Synthesize, Ltd. Production of LPG containing propane or butane from dimethyl ether or methanol
JP2009148674A (en) * 2007-12-19 2009-07-09 Mitsubishi Heavy Ind Ltd Methanol synsthesis catalyst, method for producing the same, and method and apparatus for synthesizing methanol
JP2021146258A (en) * 2020-03-18 2021-09-27 本田技研工業株式会社 Carbon dioxide reduction catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3802314B2 (en) 1999-11-02 2006-07-26 花王株式会社 Ether production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7432410B2 (en) 2004-08-11 2008-10-07 Japan Gas Synthesize, Ltd. Production of LPG containing propane or butane from dimethyl ether or methanol
JP2007175662A (en) * 2005-12-28 2007-07-12 Kao Corp Amination catalyst of fatty alcohol and method for manufacturing amine using the same
JP4641497B2 (en) * 2005-12-28 2011-03-02 花王株式会社 Aliphatic alcohol amination catalyst and method for producing amine using the catalyst
JP2008006350A (en) * 2006-06-27 2008-01-17 Wako Pure Chem Ind Ltd Method for carrying metal catalyst on fibrous protein
JP2009148674A (en) * 2007-12-19 2009-07-09 Mitsubishi Heavy Ind Ltd Methanol synsthesis catalyst, method for producing the same, and method and apparatus for synthesizing methanol
JP2021146258A (en) * 2020-03-18 2021-09-27 本田技研工業株式会社 Carbon dioxide reduction catalyst
JP7092814B2 (en) 2020-03-18 2022-06-28 本田技研工業株式会社 Carbon dioxide reduction catalyst

Also Published As

Publication number Publication date
JP3086881B1 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
JP2761609B2 (en) An improved method for the conversion of methane to synthesis gas.
EP1399256B1 (en) A process for the activation of a catalyst comprising a cobalt compound and a support
JP3118565B2 (en) Catalyst for synthesizing methanol and method for synthesizing methanol
EP0406896B1 (en) Catalyst for reforming hydrocarbon with steam
JP3345782B2 (en) Catalyst for syngas production and method for producing carbon monoxide
AU2002304467A1 (en) A process for the activation of a catalyst comprising a cobalt compound and a support
WO2023077872A1 (en) Supported bimetallic single-atom catalyst, and preparation method therefor and application thereof
US20100227232A1 (en) Initiating a Reaction Between Hydrogen Peroxide and an Organic Compound
WO1984000749A1 (en) Catalytic process for the production of methanol
JP3086881B1 (en) Catalyst for synthesis and decomposition of methanol, method for producing the same, and method for synthesis and decomposition of methanol using the catalyst
KR100858924B1 (en) Supported catalyst for producing hydrogen gas by steam reforming reaction of liquefied natural gas, method for preparing the supported catalyst and method for producing hydrogen gas using the supported catalyst
EP0927146B1 (en) Fischer-tropsch catalyst and process for preparing hydrocarbons
JP3885139B2 (en) Ethanol steam reforming catalyst, method for producing the same, and method for producing hydrogen
JP2003038957A (en) Catalyst for reforming dimethyl ether and method for producing hydrogen containing gas using the same
JP3552766B2 (en) Ammonia synthesis catalyst and its preparation method
JP3873964B2 (en) Ethanol steam reforming catalyst, method for producing the same, and method for producing hydrogen
EP0133778B1 (en) Methanol conversion process
KR101652467B1 (en) A Noble Catalyst Of Aqueous Phase Reforming Reaction, Using Mesoporous Alumina Carrier And Platinum, And Manufacturing Method Of The Same
KR101745966B1 (en) Catalyst for preparing olefin and carbon monoxide from paraffin and carbon dioxide by chemical looping combustion
JP2003305364A (en) Aqueous gas shift reaction catalyst
TWI775625B (en) Method of fabricating dual-functional hydrogenation catalyst for carbon reduction
TWI769527B (en) Supported catalyst
JP2003093878A (en) Catalyst for manufacturing hydrogen and manufacturing method for hydrogen using the same
KR102584042B1 (en) HETEROGENEOUS CATALYST FOR THE PRODUCTION OF C2-oxygenates
JP3243495B2 (en) Catalyst for producing synthesis gas by methanol decomposition and method for producing synthesis gas using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3086881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term