JP2001076772A - Oxide semiconductor electrode and dye-sensitized solar battery using it - Google Patents

Oxide semiconductor electrode and dye-sensitized solar battery using it

Info

Publication number
JP2001076772A
JP2001076772A JP24597999A JP24597999A JP2001076772A JP 2001076772 A JP2001076772 A JP 2001076772A JP 24597999 A JP24597999 A JP 24597999A JP 24597999 A JP24597999 A JP 24597999A JP 2001076772 A JP2001076772 A JP 2001076772A
Authority
JP
Japan
Prior art keywords
oxide semiconductor
dye
particles
electrode
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24597999A
Other languages
Japanese (ja)
Other versions
JP4507306B2 (en
Inventor
Kazuo Higuchi
和夫 樋口
Tadashi Inaba
忠司 稲葉
Kazumasa Takatori
一雅 鷹取
Takao Tani
孝夫 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP24597999A priority Critical patent/JP4507306B2/en
Publication of JP2001076772A publication Critical patent/JP2001076772A/en
Application granted granted Critical
Publication of JP4507306B2 publication Critical patent/JP4507306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To diffuse and adsorb a dye and a charge transportation phase fully and easily by providing a porous oxide semiconductor layer including hollow grains made of a metal oxide on a conductive substrate to form an electrode. SOLUTION: A conductive substrate 10 comprises a substrate 14 and a conductive membrane 16 formed on the substrate 14. A porous oxide semiconductor layer 12 is formed on the conductive membrane 16. The porous oxide semiconductor layer 12 has a structure connected with a plurality of hollow grains 20 having shells on oxide semiconductor fine grains 18. When this oxide semiconductor electrode 1 is used for a dye-sensitized solar battery, a pigment is carried on the porous oxide semiconductor layer 12, the pigment is kept in contact with a charge transportation phase, the charge transportation in the charge transportation phase is facilitated, and the characteristic of the dye-sensitized solar battery is improved. The average grain size of the hollow grains 20 is preferably set to 200 nm-10 μm. The dye and charge transportation is facilitated even when the oxide semiconductor grains 18 having the grain size easily transmitting from visible light to near infrared light related to photoelectric transfer are used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属酸化物からな
る中空状粒子を含む酸化物半導体電極及びそれを用いた
色素増感型太陽電池に関する。
The present invention relates to an oxide semiconductor electrode containing hollow particles made of a metal oxide and a dye-sensitized solar cell using the same.

【0002】[0002]

【従来の技術】太陽電池は、環境に対する影響が少ない
発電手段であるため、近年その用途が拡大している。代
表的な太陽電池としては、シリコンのpn接合による固
体デバイスが挙げられ、現在では光エネルギー変換効率
が20%を超すようなものも開発されている。しかしな
がら、この種の太陽電池はその製造過程、特に原料のシ
リコンを精製する過程に大きな電気エネルギーが必要で
あるため低価格化が難しく、発電コストが高くなるとい
う問題がある。
2. Description of the Related Art In recent years, the use of a solar cell is expanding because it is a power generation means having little influence on the environment. A typical solar cell is a solid-state device using a pn junction of silicon, and a solar cell having a light energy conversion efficiency exceeding 20% has been developed at present. However, this type of solar cell has a problem that it is difficult to reduce the price and the power generation cost is high because large electric energy is required in the manufacturing process, particularly in the process of refining silicon as a raw material.

【0003】これに対して、グレッツェルらにより提案
された色素増感型太陽電池(湿式太陽電池とも呼ばれ
る。特許2664194号公報、J. Am. Chem. Soc., 1
15, 6382-6390 (1993)及び Nature, 353, 737 (1991)等
に開示されている。)は、使用する材料が安価なことと
製造に大がかりな設備を使用しないことから低発電コス
トの太陽電池として期待されている。
On the other hand, a dye-sensitized solar cell proposed by Gretzel et al. (Also referred to as a wet solar cell; Japanese Patent No. 2664194, J. Am. Chem. Soc., 1).
15, 6382-6390 (1993) and Nature, 353, 737 (1991). ) Is expected to be a low power generation cost solar cell because the materials used are inexpensive and large-scale equipment is not used for production.

【0004】図11にグレッツェルらにより提案された
色素増感型太陽電池の一例の断面図を示す。同図に示す
色素増感型太陽電池は、酸化物半導体電極102と対極
104の間にヨウ化物を電解質とする電解液106が充
填された構造を有している。酸化物半導体電極102
は、ガラス基板108と、ガラス基板108上に形成さ
れた透明導電膜110と、透明導電膜110上に形成さ
れた酸化物半導体層112から構成されている。一方、
対極104は、ガラス基板114と、ガラス基板114
上に形成された透明導電膜116から構成されている。
FIG. 11 shows a cross-sectional view of an example of a dye-sensitized solar cell proposed by Gretzel et al. The dye-sensitized solar cell shown in FIG. 1 has a structure in which an electrolyte 106 containing iodide as an electrolyte is filled between an oxide semiconductor electrode 102 and a counter electrode 104. Oxide semiconductor electrode 102
Comprises a glass substrate 108, a transparent conductive film 110 formed on the glass substrate 108, and an oxide semiconductor layer 112 formed on the transparent conductive film 110. on the other hand,
The counter electrode 104 includes a glass substrate 114 and a glass substrate 114.
It is composed of a transparent conductive film 116 formed thereon.

【0005】図12は、図11に示す色素増感型太陽電
池のBで表した部分を拡大した模式断面図である。同図
に示す酸化物半導体電極102は、ガラス基板108上
に形成された透明導電膜110の上に、多数の非中空状
の酸化物半導体粒子、すなわち酸化物半導体中実粒子1
18が連結した構造を有する酸化物半導体層112を備
えている。また、酸化物半導体中実粒子118の表面に
は色素120が化学吸着している。このような構成のた
め、酸化物半導体中実粒子118の間には空隙が生じ、
酸化物半導体層112は大きな表面荒さ係数を有するよ
うになる。
FIG. 12 is an enlarged schematic cross-sectional view of a portion indicated by B of the dye-sensitized solar cell shown in FIG. The oxide semiconductor electrode 102 shown in FIG. 1 has a large number of solid oxide semiconductor particles, that is, solid oxide semiconductor particles 1 on a transparent conductive film 110 formed on a glass substrate 108.
An oxide semiconductor layer 112 having a structure in which the oxide semiconductor layers 18 are connected to each other is provided. Further, the dye 120 is chemically adsorbed on the surface of the solid particles 118 of the oxide semiconductor. Due to such a structure, voids are generated between the oxide semiconductor solid particles 118,
The oxide semiconductor layer 112 has a large surface roughness coefficient.

【0006】図11に示す色素増感型太陽電池のガラス
基板108を通して光が入射すると、色素120が励起
され、色素120から酸化物半導体層112へ電子が注
入される。この電子は電位勾配により透明導電膜110
へ到達し、更に対極104に達すると電解液106のヨ
ウ化物イオンを還元する。還元されたヨウ化物イオンは
色素120上で酸化される。以上が繰り返されることに
よって電流が生じる。
When light enters through the glass substrate 108 of the dye-sensitized solar cell shown in FIG. 11, the dye 120 is excited, and electrons are injected from the dye 120 into the oxide semiconductor layer 112. The electrons are supplied to the transparent conductive film 110 by a potential gradient.
, And further reaches the counter electrode 104 to reduce iodide ions in the electrolytic solution 106. The reduced iodide ions are oxidized on the dye 120. A current is generated by repeating the above.

【0007】なお、酸化物半導体層112は次に述べる
方法により作製される。すなわち、透明導電膜110が
形成されたガラス基板108の当該透明導電膜110の
上に、直径が10〜30nm程度の酸化物半導体中実粒
子のスラリーを塗布した後に乾燥し更に熱処理するか、
若しくは、透明導電膜110の上に、金属アルコキシド
を加水分解したゾルを塗布し、それを乾燥し更に熱処理
することにより作製される。
Note that the oxide semiconductor layer 112 is manufactured by a method described below. That is, a slurry of solid oxide semiconductor particles having a diameter of about 10 to 30 nm is applied on the transparent conductive film 110 of the glass substrate 108 on which the transparent conductive film 110 is formed, and then dried and further heat-treated.
Alternatively, it is produced by applying a sol obtained by hydrolyzing a metal alkoxide on the transparent conductive film 110, drying the sol, and further performing a heat treatment.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記従
来の色素増感型太陽電池には次のような問題点がある。
However, the above-mentioned conventional dye-sensitized solar cell has the following problems.

【0009】1)色素吸着量を大きくするために粒径の
極めて小さい酸化物半導体中実粒子を用いて酸化物半導
体層を形成するため、光電変換に関わる可視から近赤外
の光は酸化物半導体電極内で十分に吸収されることなく
透過してしまう。 2)酸化物半導体層内部の空隙が小さいため、色素の吸
着に時間を要し、また、酸化物半導体層の奥まで色素が
拡散吸着できない。 3)酸化物半導体層内部の空隙が小さいため、電解液等
の電荷輸送相の拡散が遅い。
1) Since an oxide semiconductor layer is formed using solid oxide semiconductor particles having an extremely small particle size in order to increase the amount of dye adsorbed, visible to near-infrared light related to photoelectric conversion The light is transmitted through the semiconductor electrode without being sufficiently absorbed. 2) Since the voids inside the oxide semiconductor layer are small, it takes time to adsorb the dye, and the dye cannot be diffused and adsorbed deep into the oxide semiconductor layer. 3) Since the voids inside the oxide semiconductor layer are small, diffusion of a charge transporting phase such as an electrolytic solution is slow.

【0010】本発明は、このような技術的課題に鑑みて
なされたものであり、光電変換に関わる可視から近赤外
の光が十分に吸収されず透過しやすい粒径の酸化物半導
体粒子を用いた場合であっても、色素及び電荷輸送相を
十分且つ容易に拡散及び吸着させることが可能な酸化物
半導体電極を提供することを目的とする。更に、本発明
は、その酸化物半導体電極を用いることにより、入射光
が酸化物半導体層内で散乱・吸収される量が多く入射光
の利用効率の高い色素増感型太陽電池を提供することを
目的とする。
[0010] The present invention has been made in view of such technical problems, and it is intended to provide an oxide semiconductor particle having a particle size that is easy to transmit without sufficiently absorbing visible to near-infrared light related to photoelectric conversion. It is an object of the present invention to provide an oxide semiconductor electrode capable of sufficiently and easily diffusing and adsorbing a dye and a charge transporting phase even when used. Further, the present invention provides a dye-sensitized solar cell in which incident light is scattered and absorbed in the oxide semiconductor layer by using the oxide semiconductor electrode and the incident light utilization efficiency is high. With the goal.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記の目
的を達成すべく鋭意研究を重ねた結果、金属酸化物から
なる中空状粒子を含む多孔質酸化物半導体層を有した電
極を用いることによって、十分な光吸収と、色素及び電
荷輸送相の十分な拡散・吸着との両立が可能となり、ひ
いては、その電極を用いることによって、入射光の利用
効率の高い色素増感型太陽電池が得られることを見出
し、本発明を完成させた。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, have obtained an electrode having a porous oxide semiconductor layer containing hollow particles made of metal oxide. By using this, it is possible to achieve both sufficient light absorption and sufficient diffusion and adsorption of the dye and the charge transport phase, and by using the electrode, a dye-sensitized solar cell having high utilization efficiency of incident light can be obtained. Were obtained, and the present invention was completed.

【0012】すなわち、本発明の酸化物半導体電極は、
導電性基板と、前記導電性基板上に形成され金属酸化物
からなる中空状粒子を含む多孔質酸化物半導体層とを有
することを特徴とする。
That is, the oxide semiconductor electrode of the present invention comprises:
It has a conductive substrate, and a porous oxide semiconductor layer formed on the conductive substrate and including hollow particles made of a metal oxide.

【0013】また、本発明の色素増感型太陽電池は、第
一の導電性基板と、前記第一の導電性基板上に形成され
金属酸化物からなる中空状粒子を含む多孔質酸化物半導
体層とを有し、該多孔質酸化物半導体層の表面及び/又
は内部に色素が担持された第一の電極と、第二の導電性
基板からなる第二の電極と、前記第一の電極と前記第二
の電極の間に充填された電荷輸送相とを備えていること
を特徴とする。
[0013] A dye-sensitized solar cell according to the present invention is a porous oxide semiconductor comprising a first conductive substrate and hollow particles formed of a metal oxide and formed on the first conductive substrate. A first electrode having a layer and a dye carried on the surface and / or inside of the porous oxide semiconductor layer; a second electrode made of a second conductive substrate; and the first electrode And a charge transport phase filled between the second electrodes.

【0014】上記のように、金属酸化物からなる中空状
粒子を含む多孔質酸化物半導体層を導電性基板上に形成
することにより、中実粒子(非中空状粒子)のみを用い
る従来の方法(例えば、上記のグレッツェルらにより開
示された方法)に比較して、酸化物半導体電極に色素及
び電荷輸送相を十分且つ容易に拡散及び吸着させること
が可能になる。このために、その酸化物半導体電極を用
いた色素増感型太陽電池においては、酸化物半導体層に
おいて入射光が効率よく吸収され、従って入射光の利用
効率が上昇する。
As described above, the conventional method using only solid particles (non-hollow particles) by forming a porous oxide semiconductor layer containing hollow particles made of a metal oxide on a conductive substrate. As compared with (for example, the method disclosed by Gretzel et al., Above), it becomes possible to diffuse and adsorb the dye and the charge transport phase to the oxide semiconductor electrode sufficiently and easily. For this reason, in the dye-sensitized solar cell using the oxide semiconductor electrode, incident light is efficiently absorbed in the oxide semiconductor layer, and the utilization efficiency of the incident light increases.

【0015】本発明の酸化物半導体電極及び色素増感型
太陽電池においては、金属酸化物からなる中空状粒子の
平均粒径が200nm〜10μmであり、且つ該中空状
粒子が2μm以下の平均粒径の金属酸化物微粒子からな
る皮殻を有することが好ましい。
In the oxide semiconductor electrode and the dye-sensitized solar cell of the present invention, the hollow particles made of metal oxide have an average particle size of 200 nm to 10 μm, and the hollow particles have an average particle size of 2 μm or less. It is preferable to have a shell made of metal oxide fine particles having a diameter.

【0016】光電変換に寄与する光の波長は200nm
〜10μmであり、この波長と同程度の平均粒径を有し
た中空状粒子を多孔質酸化物半導体層に含むことによ
り、多孔質酸化物半導体層内での光の散乱及び閉じ込め
効果が高まり、この結果、酸化物半導体電極への入射光
の利用効率が高まって、色素増感型太陽電池の性能が向
上する傾向にある。
The wavelength of light contributing to photoelectric conversion is 200 nm
10 μm to 10 μm, by including hollow particles having an average particle size approximately the same as this wavelength in the porous oxide semiconductor layer, the light scattering and confinement effect in the porous oxide semiconductor layer is increased, As a result, the efficiency of use of incident light on the oxide semiconductor electrode is increased, and the performance of the dye-sensitized solar cell tends to be improved.

【0017】また、金属酸化物からなる中空状粒子の皮
殻を構成する金属酸化物微粒子の平均粒径を2μm以下
とすることにより中空状粒子の総表面積が大きくなり、
担持される色素の量が増加するため、光電変換の効率が
高くなる傾向にある。
Further, by setting the average particle diameter of the metal oxide fine particles constituting the shell of the hollow particles made of metal oxide to 2 μm or less, the total surface area of the hollow particles becomes large,
Since the amount of the dye to be supported increases, the efficiency of photoelectric conversion tends to increase.

【0018】更に、本発明の酸化物半導体電極及び色素
増感型太陽電池においては、金属酸化物が、TiO2
SnO2、ZnO、ZrO2、Nb25、CeO2、W
3、SiO2及びAl23からなる群より選ばれる少な
くとも一つの酸化物若しくはこれらの酸化物を含有する
複合酸化物であることが好ましい。上記の酸化物及び複
合酸化物は、担持された色素による光増感作用及び/又
は光触媒作用を有し、光の散乱に有効であるため、これ
を用いることによって入射光の利用効率が高くなる傾向
にある。
Further, in the oxide semiconductor electrode and the dye-sensitized solar cell of the present invention, the metal oxide is TiO 2 ,
SnO 2 , ZnO, ZrO 2 , Nb 2 O 5 , CeO 2 , W
It is preferably at least one oxide selected from the group consisting of O 3 , SiO 2 and Al 2 O 3 or a composite oxide containing these oxides. The above oxides and composite oxides have a photosensitizing effect and / or a photocatalytic effect by a supported dye, and are effective in scattering light. Therefore, use of the oxides and composite oxides increases the efficiency of use of incident light. There is a tendency.

【0019】[0019]

【発明の実施の形態】以下、図面と共に本発明の好適な
実施形態についてさらに詳細に説明する。先ず、本発明
に係る酸化物半導体電極について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in more detail with reference to the drawings. First, an oxide semiconductor electrode according to the present invention will be described.

【0020】図1は、本発明の酸化物半導体電極の第一
実施形態を示す断面図である。同図に示す酸化物半導体
電極1は導電性基板10とその上に形成された多孔質酸
化物半導体層12から成り、導電性基板10は基板14
と基板14上に形成された導電膜16から成る。
FIG. 1 is a sectional view showing a first embodiment of the oxide semiconductor electrode of the present invention. The oxide semiconductor electrode 1 shown in FIG. 1 comprises a conductive substrate 10 and a porous oxide semiconductor layer 12 formed thereon, and the conductive substrate 10
And a conductive film 16 formed on the substrate 14.

【0021】導電性基板10を構成する基板14に用い
られる材料は特に制限されず、各種透明材料又は不透明
材料が使用可能であるが、ガラスを用いることが好まし
い。また、導電膜16に用いられる材料に関しても特に
制限はないが、アンチモンドープ酸化スズ(SnO2
Sb)、フッ素ドープ酸化スズ(SnO2−F)、スズ
ドープ酸化インジウム(In2O03−Sn)等に代表さ
れる、酸化スズや酸化インジウムに原子価の異なる陽イ
オン若しくは陰イオンをドープした透明電極を用いるこ
とが好ましい。
The material used for the substrate 14 constituting the conductive substrate 10 is not particularly limited, and various transparent or opaque materials can be used, but glass is preferably used. Although there is no particular limitation on the material used for the conductive film 16, antimony-doped tin oxide (SnO 2
Sb), transparent doping of tin oxide or indium oxide doped with cations or anions having different valences, such as fluorine-doped tin oxide (SnO 2 -F) and tin-doped indium oxide (In 2 O 3 -Sn). Preferably, electrodes are used.

【0022】基板14上に導電膜16を形成する方法と
しては、導電膜16を形成する成分の真空蒸着、スパッ
タリング、CVD及びゾルゲル法によるコーティング等
の方法が使用可能である。
As a method of forming the conductive film 16 on the substrate 14, a method such as vacuum deposition, sputtering, CVD, and sol-gel coating of components for forming the conductive film 16 can be used.

【0023】多孔質酸化物半導体層12の構造は、図1
の酸化物半導体電極1のAで表した部分を拡大した図2
に模式的に示されている。多孔質酸化物半導体層12
は、導電膜16が形成された基板14の当該導電膜16
の上に形成されるが、この多孔質酸化物半導体層12
は、酸化物半導体微粒子18からなる皮殻を有する中空
状粒子20が複数連結した構造を有している。酸化物半
導体電極1を色素増感型太陽電池に用いる場合は、多孔
質酸化物半導体層12には色素が担持され、この色素と
電荷輸送相とが接するため、電荷輸送相中の電荷輸送が
容易となり色素増感型太陽電池の特性が向上する。
The structure of the porous oxide semiconductor layer 12 is shown in FIG.
FIG. 2 is an enlarged view of a portion indicated by A of the oxide semiconductor electrode 1 of FIG.
Is schematically shown in FIG. Porous oxide semiconductor layer 12
Is the conductive film 16 on the substrate 14 on which the conductive film 16 is formed.
Formed on the porous oxide semiconductor layer 12
Has a structure in which a plurality of hollow particles 20 having a shell made of oxide semiconductor fine particles 18 are connected. When the oxide semiconductor electrode 1 is used in a dye-sensitized solar cell, the porous oxide semiconductor layer 12 carries a dye, and the dye and the charge transport phase are in contact with each other. This facilitates the improvement of the characteristics of the dye-sensitized solar cell.

【0024】図3は、図2に示される複数の中空状粒子
20の1つを取り出しその模式断面図を示したものであ
る。中空状粒子20の皮殻は、酸化物半導体微粒子18
が隙間なく連結したものであってもよいが、酸化物半導
体微粒子18が一部間隙を有して連結したものであって
もよい。
FIG. 3 is a schematic sectional view showing one of the plurality of hollow particles 20 shown in FIG. The shell of the hollow particles 20 is formed of the oxide semiconductor fine particles 18.
May be connected without gaps, or may be connected with some gaps in the oxide semiconductor fine particles 18.

【0025】本発明においては、中空状粒子20の平均
粒径は200nm〜10μmであることが好ましく、よ
り好ましくは、平均粒径は300nm〜2μmである。
中空状粒子20の平均粒径が200nm未満である場合
は、多孔質酸化膜半導体層12における太陽光の散乱及
び閉じ込め効果が短波長成分に限られる傾向にあり、中
空状粒子20の平均粒径が10μmを超える場合は、中
空状粒子20を含む多孔質酸化物半導体層12の厚さが
不必要に大きくなる傾向にある。
In the present invention, the average particle diameter of the hollow particles 20 is preferably from 200 nm to 10 μm, more preferably from 300 nm to 2 μm.
When the average particle size of the hollow particles 20 is less than 200 nm, the effect of scattering and confining sunlight in the porous oxide semiconductor layer 12 tends to be limited to short wavelength components, and the average particle size of the hollow particles 20 Exceeds 10 μm, the thickness of the porous oxide semiconductor layer 12 including the hollow particles 20 tends to be unnecessarily large.

【0026】また、本発明においては、中空状粒子20
の50重量%以上が200nm〜10μmの粒径を有す
ることがより好ましく、中空粒子20の比表面積は5〜
200m2/gであることが好ましい。
In the present invention, the hollow particles 20
More preferably has a particle size of 200 nm to 10 μm, and the specific surface area of the hollow particles 20 is 5 to
It is preferably 200 m 2 / g.

【0027】更に、本発明においては、酸化物半導体微
粒子18の平均粒径は2μm以下であることが好まし
く、5nm〜2μmであることがより好ましい。酸化物
半導体微粒子18の平均粒径が2μmを超す場合は、中
空状粒子20の総表面積が小さくなる傾向にあり、その
ために担持される色素の量が不十分になる恐れがある。
Further, in the present invention, the average particle size of the oxide semiconductor fine particles 18 is preferably 2 μm or less, more preferably 5 nm to 2 μm. When the average particle size of the oxide semiconductor fine particles 18 exceeds 2 μm, the total surface area of the hollow particles 20 tends to be small, and therefore the amount of the dye to be supported may be insufficient.

【0028】また、中空状粒子20に用いられる材料は
酸化物半導体であれば特に制限されないが、TiO2
SnO2、ZnO、ZrO2、Nb25、CeO2、W
3、SiO2及びAl23からなる群より選ばれる少な
くとも一つの酸化物若しくはこれらの酸化物を含有する
複合酸化物であることが好ましい。上記の酸化物及び複
合酸化物は、担持された色素による光増感作用及び/又
は光触媒作用を有しているため、これを用いることによ
って入射光の利用効率が高くなる傾向にある。
Further, although the material used for the hollow particles 20 is not particularly limited as long as the oxide semiconductor, TiO 2,
SnO 2 , ZnO, ZrO 2 , Nb 2 O 5 , CeO 2 , W
It is preferably at least one oxide selected from the group consisting of O 3 , SiO 2 and Al 2 O 3 or a composite oxide containing these oxides. Since the above-mentioned oxides and composite oxides have a photosensitizing effect and / or a photocatalytic effect by the supported dye, the use efficiency of incident light tends to be increased by using them.

【0029】基板14上に形成された導電膜16表面
に、上記の中空状粒子20を形成する方法としては、例
えば、酸化物半導体からなる中空状粒子20を別途作製
し、これを導電膜16上に塗布した後に、熱処理を施す
方法を採用することができる。
As a method of forming the hollow particles 20 on the surface of the conductive film 16 formed on the substrate 14, for example, hollow particles 20 made of an oxide semiconductor are separately formed, A method of performing heat treatment after application on the upper surface can be adopted.

【0030】金属酸化物からなる中空状粒子を作製する
方法としては、特開平11−116211号公報に開示
された方法が好適に用いられる。すなわち、金属硝酸塩
等の金属塩を溶解及び/又は懸濁させた水溶液に有機溶
剤を添加してW/O型エマルジョンを形成し、該W/O
型エマルジョンを噴霧・燃焼させて金属酸化物の中空状
粒子を得る方法である。
As a method for producing hollow particles made of a metal oxide, the method disclosed in Japanese Patent Application Laid-Open No. H11-16211 is preferably used. That is, an organic solvent is added to an aqueous solution in which a metal salt such as a metal nitrate is dissolved and / or suspended to form a W / O emulsion, and the W / O emulsion is formed.
It is a method of obtaining hollow particles of a metal oxide by spraying and burning a type emulsion.

【0031】中空状粒子を作製する際に使用する有機溶
剤としては、ヘキサン、オクタン、ケロシン、ガソリン
等の炭化水素系の有機溶剤を用いることが好ましい。ま
た、W/O型エマルジョンを噴霧・燃焼させる手段とし
ては、特開平7−81905号公報に開示されたエマル
ジョン燃焼反応装置を用いることができ、例えば火炎温
度700〜1000℃にてW/O型エマルジョンから金
属酸化物の中空状粒子を得ることができる。
As the organic solvent used for preparing the hollow particles, it is preferable to use a hydrocarbon organic solvent such as hexane, octane, kerosene, gasoline and the like. As means for spraying and burning the W / O emulsion, an emulsion combustion reactor disclosed in JP-A-7-81905 can be used. Hollow particles of metal oxide can be obtained from the emulsion.

【0032】このようにして得られた金属酸化物の中空
状粒子に有機溶剤、水、界面活性剤等を加えスラリーと
し、基板10上に形成された導電膜16表面にこのスラ
リーを塗布した後、乾燥し、好ましくは300℃以上
(例えば450℃程度)で加熱することにより、図2に
示した構造の酸化物半導体電極を得ることができる。
An organic solvent, water, a surfactant and the like are added to the hollow particles of the metal oxide thus obtained to form a slurry, and the slurry is applied to the surface of the conductive film 16 formed on the substrate 10. By drying and heating at preferably 300 ° C. or more (for example, about 450 ° C.), an oxide semiconductor electrode having a structure shown in FIG. 2 can be obtained.

【0033】本発明における酸化物半導体電極は前述し
た第一実施形態に限定されるものではない。本発明の酸
化物半導体電極の第二実施形態の模式断面図を図4に示
す。同図に示す酸化物半導体電極は、基板14と導電膜
16からなる導電性基板10上に、金属酸化物微粒子1
9からなる皮殻を有する中空状粒子21と酸化物半導体
中実粒子22とが混在して連結した多孔質酸化物半導体
層12を備えている。図4に示す酸化物半導体電極を色
素増感型太陽電池に用いる場合は、多孔質酸化物半導体
層12には色素が担持される。
The oxide semiconductor electrode of the present invention is not limited to the first embodiment. FIG. 4 shows a schematic cross-sectional view of the second embodiment of the oxide semiconductor electrode of the present invention. The oxide semiconductor electrode shown in FIG. 1 has a metal oxide fine particle 1 on a conductive substrate 10 including a substrate 14 and a conductive film 16.
The porous oxide semiconductor layer 12 includes a mixture of hollow particles 21 having a shell made of carbon 9 and solid particles 22 of an oxide semiconductor. When the oxide semiconductor electrode shown in FIG. 4 is used for a dye-sensitized solar cell, the porous oxide semiconductor layer 12 carries a dye.

【0034】ここで、中空状粒子21及び酸化物半導体
中実粒子22を構成する材料は特に制限されないが、T
iO2、SnO2、ZnO、ZrO2、Nb25、Ce
2、WO3、SiO2及びAl23からなる群より選ば
れる少なくとも一つの酸化物若しくはこれらの酸化物を
含有する複合酸化物であることが好ましい。なお、中空
状粒子21と酸化物半導体中実粒子22を構成する酸化
物の種類は同一であっても異なっていてもよい。
The material constituting the hollow particles 21 and the solid particles 22 of the oxide semiconductor is not particularly limited.
iO 2 , SnO 2 , ZnO, ZrO 2 , Nb 2 O 5 , Ce
It is preferably at least one oxide selected from the group consisting of O 2 , WO 3 , SiO 2 and Al 2 O 3 or a composite oxide containing these oxides. Note that the types of oxides constituting the hollow particles 21 and the oxide semiconductor solid particles 22 may be the same or different.

【0035】酸化物半導体中実粒子22の粒径は3nm
〜1μmであることが好ましい。酸化物半導体中実粒子
22の粒径が3nm未満である場合は、光の散乱及び閉
じ込め効果が十分でなくなる傾向にあり、1μmを超す
場合は、多孔質酸化物半導体層12の表面積が著しく小
さくなるため、色素吸着量が低下し本実施形態の酸化物
半導体電極を用いた色素増感型太陽電池の特性が低下し
たり、本実施形態の酸化物半導体電極の光触媒作用が低
下したりする恐れがある。
The diameter of the solid particles 22 of the oxide semiconductor is 3 nm.
〜1 μm is preferred. When the particle size of the solid oxide semiconductor particles 22 is less than 3 nm, the light scattering and confinement effects tend to be insufficient, and when it exceeds 1 μm, the surface area of the porous oxide semiconductor layer 12 is extremely small. Therefore, the amount of dye adsorbed may be reduced, and the characteristics of the dye-sensitized solar cell using the oxide semiconductor electrode of the present embodiment may be reduced, or the photocatalytic action of the oxide semiconductor electrode of the present embodiment may be reduced. There is.

【0036】上記の多孔質酸化物半導体層12を形成す
るためには、例えば、中空状粒子21を含むスラリーに
酸化物半導体中実粒子22を添加・混合し、それを導電
膜16表面上に塗布した後、乾燥し、更に前記第一実施
形態と同様に加熱すればよい。
In order to form the porous oxide semiconductor layer 12, for example, solid oxide semiconductor particles 22 are added to and mixed with a slurry containing hollow particles 21, and the mixture is added to the surface of the conductive film 16. After the application, the coating may be dried and heated in the same manner as in the first embodiment.

【0037】また、本発明の酸化物半導体電極は上記第
一及び第二実施形態に限定されず、種々の変形が可能で
ある。例えば、第一実施形態の変形態様として、複数の
多孔質酸化物半導体層を有する酸化物半導体電極が挙げ
られる。すなわち、例えば、導電膜16に接するように
形成された酸化物半導体中実粒子のみからなる酸化物半
導体層と、その上に形成された中空状粒子20が複数連
結した中空状粒子層とを備える酸化物半導体電極として
もよい。
The oxide semiconductor electrode of the present invention is not limited to the first and second embodiments, but can be variously modified. For example, a modification of the first embodiment includes an oxide semiconductor electrode having a plurality of porous oxide semiconductor layers. That is, for example, an oxide semiconductor layer including only oxide semiconductor solid particles formed in contact with the conductive film 16 and a hollow particle layer formed on the oxide semiconductor layer and having a plurality of hollow particles 20 connected thereto are provided. An oxide semiconductor electrode may be used.

【0038】また、第二実施形態の変形態様として、同
様に、複数の多孔質酸化物半導体層を有する酸化物半導
体電極が挙げられる。すなわち、例えば、導電膜16に
接するように形成された酸化物半導体中実粒子のみから
なる酸化物半導体層と、その上に形成された中空状粒子
21及び酸化物半導体中実粒子が混在した粒子層を備え
る酸化物半導体電極としてもよい。
Further, as a modification of the second embodiment, similarly, an oxide semiconductor electrode having a plurality of porous oxide semiconductor layers can be mentioned. That is, for example, an oxide semiconductor layer formed of only solid oxide semiconductor particles formed in contact with the conductive film 16 and particles formed by mixing hollow particles 21 and solid oxide semiconductor particles formed thereon. An oxide semiconductor electrode including a layer may be used.

【0039】このような複数の多孔質酸化物半導体層を
有する酸化物半導体電極を作製するためには、例えば、
基板と導電膜からなる導電性基板上に、酸化物半導体中
実粒子のスラリーを塗布した後に乾燥し更に熱処理する
ことにより酸化物半導体中実粒子のみからなる酸化物半
導体層を形成し、次いで、この層の上に、前記第一及び
第二実施形態と同様にして中空状粒子層を形成すればよ
い。
In order to manufacture an oxide semiconductor electrode having such a plurality of porous oxide semiconductor layers, for example,
On a conductive substrate composed of a substrate and a conductive film, a slurry of solid oxide semiconductor particles is applied, followed by drying and further heat treatment to form an oxide semiconductor layer consisting only of solid oxide semiconductor particles, A hollow particle layer may be formed on this layer in the same manner as in the first and second embodiments.

【0040】上記本発明の酸化物半導体電極を使用すれ
ば、後述するように入射光が酸化物半導体層内で散乱・
吸収される量が多く入射光の利用効率の高い色素増感型
太陽電池を作製することが可能である。また、上記の酸
化物半導体電極のうち光触媒作用のある酸化物半導体か
らなる多孔質酸化物半導体層を備えるものは、色素増感
型太陽電池の電極として使用できる他、例えば光触媒と
しても使用することができる。
When the above-described oxide semiconductor electrode of the present invention is used, incident light is scattered in the oxide semiconductor layer as described later.
It is possible to manufacture a dye-sensitized solar cell that has a large amount of absorption and high utilization efficiency of incident light. Further, among the above oxide semiconductor electrodes, those having a porous oxide semiconductor layer made of an oxide semiconductor having a photocatalytic action can be used as an electrode of a dye-sensitized solar cell and also used as a photocatalyst, for example. Can be.

【0041】次に、本発明に係る色素増感型太陽電池に
ついて説明する。図5は、本発明の色素増感型太陽電池
の第一実施形態を示す断面図である。同図に示す色素増
感型太陽電池50は、第一の電極24と第二の電極26
との間に電荷輸送相28が充填され側面を封止材30で
封止した構成を有しており、第一の電極24が前述の本
発明の酸化物半導体電極に相当する。
Next, the dye-sensitized solar cell according to the present invention will be described. FIG. 5 is a sectional view showing a first embodiment of the dye-sensitized solar cell of the present invention. The dye-sensitized solar cell 50 shown in the figure includes a first electrode 24 and a second electrode 26.
And the side surface is sealed with a sealing material 30 between the first and second electrodes, and the first electrode 24 corresponds to the above-described oxide semiconductor electrode of the present invention.

【0042】すなわち、第一の電極24は、第一の基板
32と、第一の基板32上に形成された第一の導電膜3
4と、第一の導電膜34上に形成された多孔質酸化物半
導体層36とを備えている。そして、多孔質酸化物半導
体層36は金属酸化物からなる中空状粒子を含んでお
り、多孔質酸化物半導体層36の表面及び/又は内部に
は色素が担持されている。一方、第二の電極26は、第
二の基板38と、第二の基板38上に形成された第二の
導電膜40を備えている。なお、第一の電極24及び第
二の電極26のうちの少なくとも一方は透明な電極であ
る。
That is, the first electrode 24 is composed of the first substrate 32 and the first conductive film 3 formed on the first substrate 32.
4 and a porous oxide semiconductor layer 36 formed on the first conductive film 34. The porous oxide semiconductor layer 36 includes hollow particles made of a metal oxide, and a dye is supported on the surface and / or inside of the porous oxide semiconductor layer 36. On the other hand, the second electrode 26 includes a second substrate 38 and a second conductive film 40 formed on the second substrate 38. At least one of the first electrode 24 and the second electrode 26 is a transparent electrode.

【0043】金属酸化物からなる中空状粒子は、金属酸
化物微粒子が隙間なく連結した皮殻及び/又は金属酸化
物微粒子が一部間隙を有して連結した皮殻を有してい
る。金属酸化物微粒子が一部間隙を有して連結した場
合、皮殻は孔を有することとなり、このために、色素及
び電荷輸送相の拡散・吸着が更に容易となる。また、中
空状粒子の内部への色素及び電荷輸送相の拡散・吸着も
可能となるため、多孔質酸化物半導体層における色素濃
度が上昇し、色素増感型太陽電池の性能が向上する。
The hollow particles made of a metal oxide have a shell in which metal oxide fine particles are connected without gaps and / or a shell in which metal oxide fine particles are connected with a gap. When the metal oxide fine particles are connected with some gaps therebetween, the shell has pores, which makes diffusion and adsorption of the dye and the charge transport phase easier. In addition, since the dye and the charge transport phase can be diffused and adsorbed into the hollow particles, the dye concentration in the porous oxide semiconductor layer increases, and the performance of the dye-sensitized solar cell improves.

【0044】第一の電極24における第一の基板32、
第一の導電膜34及び多孔質酸化物半導体層36は、前
述の本発明の酸化物半導体電極の基板14、導電膜16
及び多孔質酸化物半導体層12と同じである。
The first substrate 32 on the first electrode 24,
The first conductive film 34 and the porous oxide semiconductor layer 36 are the same as the oxide semiconductor electrode substrate 14 and the conductive film 16 of the present invention described above.
And the same as the porous oxide semiconductor layer 12.

【0045】また、上記の多孔質酸化物半導体層36の
表面及び/又は内部に担持される色素は、少なくとも2
00nm〜10μmの波長の光により励起され電子を放
出するものであればよく、特に制限されない。このよう
な色素としては、ジ(チオシアネート)−N,N’−ビ
ス(2,2’−ビピリジル−4,4’−ジカルボン酸)
−ルテニウム(II)等のルテニウム系金属錯体、オス
ミニウム系金属錯体等が挙げられる。このような色素の
担持方法としては、例えば、色素を含有する溶液に多孔
質酸化物半導体層36を浸漬する方法が挙げられる。
The dye carried on the surface and / or inside the porous oxide semiconductor layer 36 has at least two dyes.
It is not particularly limited as long as it is excited by light having a wavelength of 00 nm to 10 μm and emits electrons. Such dyes include di (thiocyanate) -N, N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid)
-Ruthenium-based metal complexes such as ruthenium (II), and osmium-based metal complexes. As a method for supporting such a dye, for example, a method in which the porous oxide semiconductor layer 36 is immersed in a solution containing the dye may be mentioned.

【0046】第二の基板38に用いられる材料は上記第
一の基板32と同様に特に制限されず、各種透明材料又
は不透明材料が使用可能であり、透明基板としてはガラ
スを使用することが好ましい。また、第一の基板32と
第二の基板38とは同一であっても異なるものであって
もよい。
The material used for the second substrate 38 is not particularly limited as in the case of the first substrate 32, and various transparent materials or opaque materials can be used, and glass is preferably used as the transparent substrate. . Further, the first substrate 32 and the second substrate 38 may be the same or different.

【0047】また、第二の導電膜40に用いられる材料
は上記第一の導電膜34と同様に各種導電材料が使用可
能であり、両者は同一であっても異なるものであっても
よい。なお、透明基板上に形成される導電膜は透明でな
ければならない。透明な導電膜を形成する材料として
は、白金薄膜;アンチモンドープ酸化スズ(SnO2
Sb)、フッ素ドープ酸化スズ(SnO2−F)、スズ
ドープ酸化インジウム(In23−Sn)等に代表され
る、酸化スズや酸化インジウムに原子価の異なる陽イオ
ン若しくは陰イオンをドープした金属材料が挙げられ
る。
As the material used for the second conductive film 40, various conductive materials can be used as in the case of the first conductive film 34, and they may be the same or different. Note that the conductive film formed on the transparent substrate must be transparent. As a material for forming a transparent conductive film, a platinum thin film; antimony-doped tin oxide (SnO 2
Sb), metal obtained by doping cations or anions having different valences into tin oxide or indium oxide, such as fluorine-doped tin oxide (SnO 2 —F) and tin-doped indium oxide (In 2 O 3 —Sn). Materials.

【0048】上記の電荷輸送相28としては、液状、ゲ
ル状若しくは固体状のイオン導電体、ホール輸送体ない
しは電子輸送体を使用することができる。液状のイオン
導電体としては、例えば、ヨウ化テトラプロピルアンモ
ニウム及びヨウ素をアセトニトリル等に溶解したヨウ素
系イオン導電体が挙げられる。
As the charge transport phase 28, a liquid, gel or solid ionic conductor, hole transporter or electron transporter can be used. Examples of the liquid ionic conductor include an iodine-based ionic conductor in which tetrapropylammonium iodide and iodine are dissolved in acetonitrile or the like.

【0049】上記の封止材30としては、電荷輸送相2
8が流出しないように色素増感型太陽電池をシールでき
るものであればよく、特に制限されないが、例えば、エ
ポキシ樹脂、シリコーン樹脂、エチレン/メタクリル酸
共重合体からなる熱可塑性樹脂等を用いることができ
る。
The sealing material 30 includes the charge transport phase 2
Any material can be used as long as it can seal the dye-sensitized solar cell so that 8 does not flow out, and is not particularly limited. For example, a thermoplastic resin made of an epoxy resin, a silicone resin, an ethylene / methacrylic acid copolymer, or the like is used. Can be.

【0050】図5に示す色素増感型太陽電池50の第一
の基板32及び/又は第二の基板38を通して光が入射
すると、多孔質酸化物半導体層36の表面及び/又は内
部に担持された色素が励起され、当該色素から多孔質酸
化物半導体層36へ電子が注入される。この電子は第一
の導電膜34へ到達し、第一の導電膜34及び第二の導
電膜40に接続された外部配線(図示せず)により第二
の導電膜40に達する。この電子は電荷輸送相28中の
電解質を還元し、還元された電解質は色素上で酸化さ
れ、色素に電子が移動する。以上が繰り返されることに
よって電流が生じる。
When light enters through the first substrate 32 and / or the second substrate 38 of the dye-sensitized solar cell 50 shown in FIG. 5, the light is carried on the surface and / or inside the porous oxide semiconductor layer 36. The dye is excited, and electrons are injected from the dye into the porous oxide semiconductor layer 36. The electrons reach the first conductive film 34 and reach the second conductive film 40 by an external wiring (not shown) connected to the first conductive film 34 and the second conductive film 40. The electrons reduce the electrolyte in the charge transport phase 28, and the reduced electrolyte is oxidized on the dye, and the electrons move to the dye. A current is generated by repeating the above.

【0051】本発明における色素増感型太陽電池は前述
した第一実施形態に限定されるものではない。図6に本
発明に係る色素増感型太陽電池の第一実施形態の変形態
様の断面図を示す。図6に示す色素増感型太陽電池は、
図5に示す第一実施形態の第二の電極38の背面(第二
の導電膜40が形成されていない側の面)に透過光反射
層42を備えたものである。透過光反射層42を備える
ことで第一の基板32を通して入射した光の一部が多孔
質酸化物半導体層36を通過した場合でも、この光を再
び多孔質酸化物半導体層36の方向へ反射させることが
でき、このために色素増感型太陽電池の性能が向上す
る。
The dye-sensitized solar cell of the present invention is not limited to the first embodiment. FIG. 6 shows a cross-sectional view of a modification of the first embodiment of the dye-sensitized solar cell according to the present invention. The dye-sensitized solar cell shown in FIG.
The transmission light reflection layer 42 is provided on the back surface (the surface on which the second conductive film 40 is not formed) of the second electrode 38 of the first embodiment shown in FIG. By providing the transmitted light reflecting layer 42, even if a part of the light incident through the first substrate 32 passes through the porous oxide semiconductor layer 36, this light is reflected again toward the porous oxide semiconductor layer 36. And the performance of the dye-sensitized solar cell is improved.

【0052】本発明の色素増感型太陽電池の第二実施形
態を図7に示す。同図に示す色素増感型太陽電池50
は、第一の電極24と第二の電極26との間に電荷輸送
相28が充填され、側面を封止材30で封止した構成を
有している。
FIG. 7 shows a second embodiment of the dye-sensitized solar cell of the present invention. Dye-sensitized solar cell 50 shown in FIG.
Has a configuration in which a charge transporting phase 28 is filled between a first electrode 24 and a second electrode 26, and a side surface is sealed with a sealing material 30.

【0053】第一の電極24は、第一の基板32と、第
一の基板32上に形成された第一の導電膜34と、第一
の導電膜34上に形成された多孔質酸化物半導体層36
を備えている。多孔質酸化物半導体層36は、第一の導
電膜16に接するように形成され酸化物半導体中実粒子
のみからなる酸化物半導体層43と、その上に形成され
中空状粒子が複数連結した中空状粒子層44とを備えて
いる。また、多孔質酸化物半導体層36の表面及び/又
は内部には色素が担持されている。一方、第二の電極2
6は、第二の基板38と、第二の基板38上に形成され
た第二の導電膜40を備えている。なお、第一の電極2
4及び/又は第二の電極26は透明な電極である。
The first electrode 24 includes a first substrate 32, a first conductive film 34 formed on the first substrate 32, and a porous oxide formed on the first conductive film 34. Semiconductor layer 36
It has. The porous oxide semiconductor layer 36 is formed so as to be in contact with the first conductive film 16, and is formed of an oxide semiconductor layer 43 made of only oxide semiconductor solid particles, and a hollow formed by connecting a plurality of hollow particles. And a particulate particle layer 44. A dye is supported on the surface and / or inside of the porous oxide semiconductor layer 36. On the other hand, the second electrode 2
6 includes a second substrate 38 and a second conductive film 40 formed on the second substrate 38. The first electrode 2
The fourth and / or second electrode 26 is a transparent electrode.

【0054】本発明に係る色素増感型太陽電池の第二実
施形態の変形態様の断面図を図8に示す。図8に示す色
素増感型太陽電池は、図7に示す第二実施形態の第二の
電極38の背面(第二の導電膜40が形成されていない
側の面)に透過光反射層42を備えたものである。透過
光反射層42を備えることにより、色素増感型太陽電池
の性能が向上する。
FIG. 8 is a sectional view showing a modification of the second embodiment of the dye-sensitized solar cell according to the present invention. The dye-sensitized solar cell shown in FIG. 8 has a transmitted light reflecting layer 42 on the back surface (the surface on which the second conductive film 40 is not formed) of the second electrode 38 of the second embodiment shown in FIG. It is provided with. By providing the transmitted light reflecting layer 42, the performance of the dye-sensitized solar cell is improved.

【0055】[0055]

【実施例】以下、実施例を挙げて本発明を詳細に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0056】(実施例1)チタンイオンを含む硝酸溶液
(チタンイオン濃度:2.0mol/l)315ml
に、185mlのケロシンと少量の分散剤を加え攪拌す
ることでエマルジョンを得た。このエマルジョンをエマ
ルジョン燃焼装置を用いて700℃にて噴霧燃焼させる
ことにより中空状TiO2粒子を得た。この中空状Ti
2粒子を大気中400℃で4時間熱処理し、これを以
下の試験に用いた。
(Example 1) 315 ml of a nitric acid solution containing titanium ions (titanium ion concentration: 2.0 mol / l)
Then, 185 ml of kerosene and a small amount of a dispersant were added thereto, followed by stirring to obtain an emulsion. This emulsion was sprayed and burned at 700 ° C. using an emulsion burning apparatus to obtain hollow TiO 2 particles. This hollow Ti
The O 2 particles were heat-treated in the atmosphere at 400 ° C. for 4 hours and used for the following tests.

【0057】なお、熱処理して得られた中空状TiO2
粒子は、約60%がアナターゼ相で残りがルチル相から
なり、この粒子の粒径は200nm〜5μm(平均粒
径:500nm)であり、粒子の皮殻を形成するTiO
2微粒子の粒径は5〜50nm(平均粒径:10nm)
であった。また、この中空状TiO2粒子の比表面積は
67m2/gであった。
The hollow TiO 2 obtained by the heat treatment was used.
About 60% of the particles are composed of the anatase phase and the rest of the rutile phase. The particle size of the particles is 200 nm to 5 μm (average particle size: 500 nm), and TiO that forms the crust of the particles is used.
2 The particle size of the fine particles is 5 to 50 nm (average particle size: 10 nm)
Met. The specific surface area of the hollow TiO 2 particles was 67 m 2 / g.

【0058】次に、中空状TiO2粒子3.00gに、
アセチルアセトン0.1ml、イオン交換水6.0m
l、界面活性剤(Triton−X)0.05mlを加
えスラリーとした。
Next, to 3.00 g of hollow TiO 2 particles,
0.1 ml of acetylacetone, 6.0 m of ion-exchanged water
1, 0.05 ml of a surfactant (Triton-X) was added to form a slurry.

【0059】SnO2コートガラス基板(大きさ:15
mm×25mm)上に、粘着テープ(厚さ:80μm)
をマスク兼スペーサーとして貼付し、上記のスラリーを
バーコーターを用いて1cm2の面積に塗布した後、乾
燥し、450℃にて30分の熱処理を行い、SnO2
ートガラス基板上に多孔質のTiO2層(厚さ:10μ
m)を有する電極を作製した。
An SnO 2 coated glass substrate (size: 15)
mm × 25mm) on the adhesive tape (thickness: 80μm)
Is applied as a mask and spacer, and the slurry is applied to an area of 1 cm 2 using a bar coater, dried, and heat-treated at 450 ° C. for 30 minutes to form a porous layer on the SnO 2 coated glass substrate. TiO 2 layer (thickness: 10μ)
m) was prepared.

【0060】この電極を色素(ルテニウム系金属錯体:
ジ(チオシアネート)−N,N’−ビス(2,2’−ビ
ピリジル−4,4’−ジカルボン酸)ルテニウム(I
I))のエタノール溶液(濃度:3.0×10-4mol
/l)に20時間浸漬することにより、TiO2層に色
素を担持させ、開放電圧向上のためにt−ブチルピリジ
ンのアセトニトリル溶液(濃度:5×10-2mol/
l)に15分間浸漬した後、乾燥し、これを色素増感型
太陽電池のカソードとした。
This electrode was treated with a dye (ruthenium-based metal complex:
Di (thiocyanate) -N, N'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (I
I)) in an ethanol solution (concentration: 3.0 × 10 −4 mol)
/ L) for 20 hours to carry the dye on the TiO 2 layer, and to improve the open-circuit voltage, a solution of t-butylpyridine in acetonitrile (concentration: 5 × 10 -2 mol /
After immersion in l) for 15 minutes, the mixture was dried and used as a cathode of a dye-sensitized solar cell.

【0061】一方、電子ビーム蒸着法で白金を3nm蒸
着したSnO2コートガラス基板(大きさ:15mm×
25mm)をアノードとし、このアノードと上記カソー
ドを対向させ(間隔:50μm)その間にヨウ素系電解
液(ヨウ化テトラプロピルアンモニウム0.6mol/
lとヨウ素5×102mol/lを含むグルタロニトリ
ル溶液)を満たしかつ周囲を封止することにより、図5
に示すような色素増感型太陽電池を作製した。
On the other hand, a SnO 2 coated glass substrate (size: 15 mm ×
25 mm) as an anode, and the anode and the cathode are opposed to each other (interval: 50 μm). In the meantime, an iodine-based electrolyte (tetrapropyl ammonium iodide 0.6 mol /
5 and 5 × 10 2 mol / l of iodine (a solution of glutaronitrile) and sealing the periphery to obtain FIG.
A dye-sensitized solar cell as shown in (1) was produced.

【0062】また、電子ビーム蒸着法で白金を3nm蒸
着したSnO2コートガラス基板の白金未蒸着面に透過
光反射用のアルミナ焼結体を形成させたアノードを作製
し、このアノードと上記カソード及びヨウ素電解溶液か
ら、図6に示すような色素増感型太陽電池を作製した。
Further, an anode was formed by forming an alumina sintered body for reflecting transmitted light on a platinum non-deposited surface of a SnO 2 coated glass substrate on which platinum was deposited to a thickness of 3 nm by an electron beam deposition method. A dye-sensitized solar cell as shown in FIG. 6 was prepared from the iodine electrolytic solution.

【0063】(実施例2)スラリーとして、中空状Ti
2粒子1.50g及び中実TiO2粒子(日本エアロジ
ル社製、P25)1.50gに(中空状TiO2粒子/
中実TiO2粒子=50/50)、アセチルアセトン
0.1ml、イオン交換水6.0ml、界面活性剤(T
riton−X)0.05mlを加えたものを使用した
他は、実施例1と同様にして、2種類の色素増感型太陽
電池を作製した。
(Example 2) Hollow Ti
1.50 g of O 2 particles and 1.50 g of solid TiO 2 particles (manufactured by Nippon Aerosil Co., Ltd., P25) were added to (hollow TiO 2 particles /
Solid TiO 2 particles = 50/50), 0.1 ml of acetylacetone, 6.0 ml of ion-exchanged water, surfactant (T
(Riton-X) Two kinds of dye-sensitized solar cells were produced in the same manner as in Example 1 except that 0.05 ml of added dye was used.

【0064】(比較例1)スラリーとして、中実TiO
2粒子(日本エアロジル社製、P25)3.00gに、
アセチルアセトン0.1ml、イオン交換水6.0m
l、界面活性剤(Triton−X)0.05mlを加
えたものを使用した他は、実施例1と同様にして、2種
類の色素増感型太陽電池を作製した。
(Comparative Example 1) Solid TiO was used as a slurry.
2 particles (Nippon Aerosil Co., Ltd., P25) 3.00g,
0.1 ml of acetylacetone, 6.0 m of ion-exchanged water
1 and two kinds of dye-sensitized solar cells were produced in the same manner as in Example 1, except that a solution containing 0.05 ml of a surfactant (Triton-X) was used.

【0065】実施例1、2及び比較例1にて得られた色
素増感型太陽電池に対して、ソーラーシミュレータを用
いて得られたAM−1.5、100mW/cm2の疑似
太陽光を照射し短絡電流を測定した。短絡電流比(アル
ミナ焼結体ありでの短絡電流/アルミナ焼結体なしでの
短絡電流)を測定することにより、透過光反射用のアル
ミナ焼結体の設置の有無により短絡電流がどの程度変化
するかを調べた。この結果を表1に示す。
The simulated sunlight of AM-1.5, 100 mW / cm 2 obtained by using a solar simulator was applied to the dye-sensitized solar cells obtained in Examples 1 and 2 and Comparative Example 1. Irradiation was performed and the short-circuit current was measured. By measuring the short-circuit current ratio (short-circuit current with alumina sintered body / short-circuit current without alumina sintered body), how much the short-circuit current changes depending on the presence or absence of the alumina sintered body for transmitted light reflection I checked what to do. Table 1 shows the results.

【0066】[0066]

【表1】 [Table 1]

【0067】中空状TiO2粒子を含む電極を用いた色
素増感型太陽電池(実施例1及び2)においては、中実
TiO2粒子のみを含む電極を用いた色素増感型太陽電
池(比較例1)に比べて、色素増感型太陽電池を透過す
る光が減少しており、電極中で入射光が有効利用されて
いることがわかった。
In the dye-sensitized solar cells using electrodes containing hollow TiO 2 particles (Examples 1 and 2), the dye-sensitized solar cells using electrodes containing only solid TiO 2 particles (comparative examples) Light transmitted through the dye-sensitized solar cell was reduced as compared with Example 1), indicating that incident light was effectively used in the electrode.

【0068】(実施例3)チタンイオン及び等量のアル
ミニウムイオンを含む硝酸溶液(チタンイオン濃度:
2.0mol/l、アルミニウムイオン濃度:2.0m
ol/l)315mlに、185mlのケロシンと少量
の分散剤を加え攪拌することでエマルジョンを得た。こ
のエマルジョンをエマルジョン燃焼装置を用いて750
℃にて噴霧燃焼させることにより中空状粒子を得た。こ
の中空状粒子を大気中400℃で4時間熱処理し、これ
を以下の試験に用いた。
Example 3 A nitric acid solution containing titanium ions and an equal amount of aluminum ions (titanium ion concentration:
2.0 mol / l, aluminum ion concentration: 2.0 m
(ol / l) 315 ml of kerosene and a small amount of a dispersant were added and stirred to obtain an emulsion. This emulsion is 750 with an emulsion combustion device.
Spray combustion at 0 ° C. gave hollow particles. The hollow particles were heat-treated in the atmosphere at 400 ° C. for 4 hours and used for the following tests.

【0069】なお、熱処理して得られた中空状粒子の粒
径は200nm〜5μm(平均粒径:500nm)であ
り、微粒子の粒径は5〜50nm(平均粒径:10n
m)であった。また、中空状粒子は、比表面積が59m
2/gのAl2TiO5とTiO2の混合相からなり、Ti
2はルチル相であった。
The particle diameter of the hollow particles obtained by the heat treatment is 200 nm to 5 μm (average particle diameter: 500 nm), and the particle diameter of the fine particles is 5 to 50 nm (average particle diameter: 10 n).
m). The hollow particles have a specific surface area of 59 m.
2 / g of a mixed phase of Al 2 TiO 5 and TiO 2 ,
O 2 was in the rutile phase.

【0070】次に、この中空状粒子0.75g及び中実
TiO2粒子(日本エアロジル社製、P25)2.25
gに、アセチルアセトン0.1ml、イオン交換水6.
0ml、界面活性剤(Triton−X)0.05ml
を加えスラリーとした。
Next, 0.75 g of the hollow particles and 2.25 of solid TiO 2 particles (P25, manufactured by Nippon Aerosil Co., Ltd.)
5. g of acetylacetone and ion-exchanged water
0 ml, surfactant (Triton-X) 0.05 ml
Was added to form a slurry.

【0071】このスラリーを用いて実施例1と同様にし
て2種類の色素増感型太陽電池を作製した。さらに、こ
れらの色素増感型太陽電池に対して、ソーラーシミュレ
ータを用いて得られたAM−1.5、100mW/cm
2の疑似太陽光を照射し短絡電流を測定した。短絡電流
比(アルミナ焼結体ありでの短絡電流/アルミナ焼結体
なしでの短絡電流)を測定することにより、透過光反射
用のアルミナ焼結体の設置の有無により短絡電流がどの
程度変化するかを調べた。表2にこの結果を比較例1の
結果と共に示す。
Using this slurry, two types of dye-sensitized solar cells were produced in the same manner as in Example 1. Further, for these dye-sensitized solar cells, AM-1.5, 100 mW / cm obtained using a solar simulator was used.
The short-circuit current was measured by irradiating the simulated sunlight of No. 2 . By measuring the short-circuit current ratio (short-circuit current with alumina sintered body / short-circuit current without alumina sintered body), how much the short-circuit current changes depending on the presence or absence of the alumina sintered body for transmitted light reflection I checked what to do. Table 2 shows the results together with the results of Comparative Example 1.

【0072】[0072]

【表2】 [Table 2]

【0073】中空状粒子を含む電極を用いた色素増感型
太陽電池(実施例3)においては、中実TiO2粒子の
みを含む電極を用いた色素増感型太陽電池(比較例1)
に比べて、色素増感型太陽電池を透過する光が減少して
おり、電極中で入射光が有効利用されていることがわか
った。
In a dye-sensitized solar cell using an electrode containing hollow particles (Example 3), a dye-sensitized solar cell using an electrode containing only solid TiO 2 particles (Comparative Example 1)
As compared with, the light transmitted through the dye-sensitized solar cell was reduced, indicating that the incident light was effectively used in the electrode.

【0074】(実施例4)中実TiO2粒子(日本エア
ロジル社製、P25)3.0gに、アセチルアセトン
0.1ml、イオン交換水6.0ml、界面活性剤(T
riton−X)0.05mlを加えスラリーとした。
Example 4 0.1 g of acetylacetone, 6.0 ml of ion-exchanged water, 3.0 g of solid TiO 2 particles (P25, manufactured by Nippon Aerosil Co., Ltd.)
riton-X) was added to obtain a slurry.

【0075】SnO2コートガラス基板上に上記のスラ
リーを用いて10μmのP25のみからなる層を形成し
た後に、その層の上に実施例1で示した中空状TiO2
と同一の中空状TiO2粒子からなる層を形成した以外
は実施例1と同様にして電極を作製した。そして、この
電極を用いて実施例1と同様にして2種類の色素増感型
太陽電池(図7及び図8に示すような色素増感型太陽電
池)を作製した。
After a layer of only 10 μm P25 was formed on the SnO 2 coated glass substrate using the above slurry, the hollow TiO 2 layer shown in Example 1 was formed on the layer.
An electrode was produced in the same manner as in Example 1 except that a layer composed of the same hollow TiO 2 particles was formed. Then, two kinds of dye-sensitized solar cells (dye-sensitized solar cells as shown in FIGS. 7 and 8) were produced in the same manner as in Example 1 using these electrodes.

【0076】(実施例5)中空状TiO2粒子を含むス
ラリーとして、中空状TiO2粒子0.75g及び中実
TiO2粒子(日本エアロジル社製、P25)2.25
gに(中空状TiO2粒子/中実TiO2粒子=25/7
5)、アセチルアセトン0.1ml、イオン交換水6.
0ml、界面活性剤(Triton−X)0.05ml
を加えたものを使用した他は、実施例4と同様にして、
2種類の色素増感型太陽電池を作製した。
[0076] (Example 5) as a slurry containing the hollow TiO 2 particles, hollow TiO 2 particles 0.75g and solid TiO 2 particles (Nippon Aerosil Co., Ltd., P25) 2.25
g (hollow TiO 2 particles / solid TiO 2 particles = 25/7)
5), 0.1 ml of acetylacetone, ion-exchanged water
0 ml, surfactant (Triton-X) 0.05 ml
Except for using the addition of
Two types of dye-sensitized solar cells were produced.

【0077】(比較例2)中実TiO2粒子(日本エア
ロジル社製、P25)のみからなる層の厚さを20μm
(実施例4及び5における、P25からなる層及び中空
状TiO2粒子の層の合計の厚さと同等)とし、且つ中
空状TiO2粒子からなる層を形成しなかった以外は実
施例4と同様にして、2種類の色素増感型太陽電池を作
製した。
(Comparative Example 2) The thickness of the layer consisting of only solid TiO 2 particles (P25 manufactured by Nippon Aerosil Co., Ltd.) was 20 μm.
(Equivalent to the total thickness of the layer made of P25 and the layer of hollow TiO 2 particles in Examples 4 and 5), and the same as Example 4 except that the layer made of hollow TiO 2 particles was not formed Thus, two types of dye-sensitized solar cells were produced.

【0078】実施例4、5及び比較例2にて得られた色
素増感型太陽電池に対して、ソーラーシミュレータを用
いて得られたAM−1.5、100mW/cm2の疑似
太陽光を照射し短絡電流を測定した。短絡電流比(アル
ミナ焼結体ありでの短絡電流/アルミナ焼結体なしでの
短絡電流)を測定することにより、透過光反射用のアル
ミナ焼結体の設置の有無により短絡電流がどの程度変化
するかを調べた。この結果を表3に示す。
To the dye-sensitized solar cells obtained in Examples 4 and 5 and Comparative Example 2 , simulated sunlight of AM-1.5, 100 mW / cm 2 obtained using a solar simulator was used. Irradiation was performed and the short-circuit current was measured. By measuring the short-circuit current ratio (short-circuit current with alumina sintered body / short-circuit current without alumina sintered body), how much the short-circuit current changes depending on the presence or absence of the alumina sintered body for transmitted light reflection I checked what to do. Table 3 shows the results.

【0079】[0079]

【表3】 [Table 3]

【0080】中空状TiO2粒子を含む電極を用いた色
素増感型太陽電池(実施例4及び5)においては、中実
TiO2粒子のみを含む電極を用いた色素増感型太陽電
池(比較例2)に比べて、色素増感型太陽電池を透過す
る光が減少しており、電極中で入射光が有効利用されて
いることがわかった。
In the dye-sensitized solar cells using electrodes containing hollow TiO 2 particles (Examples 4 and 5), the dye-sensitized solar cells using electrodes containing only solid TiO 2 particles (comparative examples) Light transmitted through the dye-sensitized solar cell was reduced as compared with Example 2), indicating that incident light was effectively used in the electrode.

【0081】(実施例6)スラリーとして、実施例1と
同一の中空状TiO2粒子0.3g及び中実TiO2粒子
(日本エアロジル社製、P25)2.7gに(中空状T
iO2粒子/中実TiO2粒子=10/90)、アセチル
アセトン0.1ml、イオン交換水6.0ml、界面活
性剤(Triton−X)0.05mlを加えたものを
使用した他は、実施例1と同様にして、アルミナ焼結体
を有する色素増感型太陽電池を作製した。
(Example 6) As slurry, 0.3 g of hollow TiO 2 particles and 2.7 g of solid TiO 2 particles (P25, manufactured by Nippon Aerosil Co., Ltd.) were used as in Example 1 (hollow T).
iO 2 particles / solid TiO 2 particles = 10/90), acetylacetone 0.1 ml, except that was used by adding ion-exchanged water 6.0 ml, surfactant (Triton-X) 0.05 ml is Example In the same manner as in Example 1, a dye-sensitized solar cell having an alumina sintered body was produced.

【0082】(実施例7)スラリーとして、中空状Ti
2粒子0.75g及び中実TiO2粒子(日本エアロジ
ル社製、P25)2.25gに(中空状TiO2粒子/
中実TiO2粒子=25/75)、アセチルアセトン
0.1ml、イオン交換水6.0ml、界面活性剤(T
riton−X)0.05mlを加えたものを使用した
他は、実施例1と同様にして、アルミナ焼結体を有する
色素増感型太陽電池を作製した。
(Example 7) Hollow Ti
0.75 g of O 2 particles and 2.25 g of solid TiO 2 particles (manufactured by Nippon Aerosil Co., Ltd., P25) (hollow TiO 2 particles /
Solid TiO 2 particles = 25/75), acetylacetone 0.1 ml, ion exchanged water 6.0 ml, surfactant (T
(Riton-X) A dye-sensitized solar cell having an alumina sintered body was prepared in the same manner as in Example 1 except that 0.05 ml of the dye was added.

【0083】実施例1、2、6、7及び比較例1で得ら
れたアルミナ焼結体を有する色素増感型太陽電池に対し
て、ソーラーシミュレータを用いて得られたAM−1.
5、100mW/cm2の疑似太陽光を照射し、短絡電
流及び変換効率を測定した。その結果をそれぞれ図9、
図10に示す。
For the dye-sensitized solar cells having the alumina sintered bodies obtained in Examples 1, 2, 6, 7 and Comparative Example 1, AM-1.
5, 100 mW / cm 2 of simulated sunlight was irradiated, and the short-circuit current and the conversion efficiency were measured. The results are shown in FIG.
As shown in FIG.

【0084】なお、比較例1、実施例6、実施例7、実
施例2及び実施例1のカソードが有する中空状TiO2
粒子と中実TiO2粒子の比(中空状TiO2粒子/中実
TiO2粒子)は、それぞれ、0/100、10/9
0、25/75、50/50及び100/0である。
The cathodes of Comparative Example 1, Example 6, Example 7, Example 2, and Example 1 had hollow TiO 2.
The ratio of particles to solid TiO 2 particles (hollow TiO 2 particles / solid TiO 2 particles) was 0/100, 10/9, respectively.
0, 25/75, 50/50 and 100/0.

【0085】図9及び図10より、中空状TiO2粒子
/中実TiO2粒子が、25/75〜50/50にピー
クがあることがわかる。なお、中空状TiO2粒子の直
径がTiO2粒子の直径より大きいため、中空状TiO2
粒子/中実TiO2粒子が0/100から100/0に
近づくにつれ、カソードが有するTiO2の総量は少な
くなっている。このために、中空状TiO2粒子/中実
TiO2粒子が100/0の時の値が、中空状TiO2
子/中実TiO2粒子が0/100の時の値より小さく
なっていると考えられる。
FIG. 9 and FIG. 10 show that hollow TiO 2 particles / solid TiO 2 particles have peaks at 25/75 to 50/50. Since the diameter of the hollow TiO 2 particles are larger than the diameter of the TiO 2 particles, hollow TiO 2
As particles / solid TiO 2 particles approach 0/100 to 100/0, the total amount of TiO 2 possessed by the cathode decreases. For this reason, the value when the ratio of the hollow TiO 2 particles / solid TiO 2 particles is 100/0 is smaller than the value when the ratio of the hollow TiO 2 particles / solid TiO 2 particles is 0/100. Conceivable.

【0086】[0086]

【発明の効果】以上説明したように、本発明によれば、
光電変換に関わる可視から近赤外の光が十分に吸収され
ず透過しやすい粒径の酸化物半導体粒子を用いた場合で
あっても、色素及び電荷輸送相を十分且つ容易に拡散及
び吸着させることが可能な酸化物半導体電極が得られ
る。更に、係る本発明の酸化物半導体電極を用いること
により、入射光が酸化物半導体層内で散乱・吸収される
量が多く入射光の利用効率の高い色素増感型太陽電池が
得られる。
As described above, according to the present invention,
Even in the case of using oxide semiconductor particles having a particle size that easily absorbs and transmits visible to near-infrared light related to photoelectric conversion, the dye and the charge transport phase are sufficiently and easily diffused and adsorbed. An oxide semiconductor electrode that can be used is obtained. Further, by using such an oxide semiconductor electrode of the present invention, a dye-sensitized solar cell having a large amount of incident light scattered and absorbed in the oxide semiconductor layer and high utilization efficiency of incident light can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る酸化物半導体電極の第一実施形態
の断面図である。
FIG. 1 is a cross-sectional view of a first embodiment of an oxide semiconductor electrode according to the present invention.

【図2】本発明に係る酸化物半導体電極の第一実施形態
の要部の模式断面図である。
FIG. 2 is a schematic sectional view of a main part of the first embodiment of the oxide semiconductor electrode according to the present invention.

【図3】本発明に係る酸化物半導体電極の第一実施形態
における中空状粒子の模式断面図である。
FIG. 3 is a schematic cross-sectional view of hollow particles in the first embodiment of the oxide semiconductor electrode according to the present invention.

【図4】本発明に係る酸化物半導体電極の第二実施形態
の要部の模式断面図である。
FIG. 4 is a schematic sectional view of a main part of a second embodiment of the oxide semiconductor electrode according to the present invention.

【図5】本発明に係る色素増感型太陽電池の第一実施形
態の断面図である。
FIG. 5 is a sectional view of a first embodiment of a dye-sensitized solar cell according to the present invention.

【図6】本発明に係る色素増感型太陽電池の第一実施形
態の変形態様の断面図である。
FIG. 6 is a sectional view of a modification of the first embodiment of the dye-sensitized solar cell according to the present invention.

【図7】本発明に係る色素増感型太陽電池の第二実施形
態の断面図である。
FIG. 7 is a sectional view of a second embodiment of the dye-sensitized solar cell according to the present invention.

【図8】本発明に係る色素増感型太陽電池の第二実施形
態の変形態様の断面図である。
FIG. 8 is a sectional view of a modification of the second embodiment of the dye-sensitized solar cell according to the present invention.

【図9】色素増感型太陽電池における中空状TiO2
合比と短絡電流との関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the mixing ratio of hollow TiO 2 and short-circuit current in a dye-sensitized solar cell.

【図10】色素増感型太陽電池における中空状TiO2
配合比と変換効率との関係を示すグラフである。
FIG. 10 shows hollow TiO 2 in a dye-sensitized solar cell.
4 is a graph showing the relationship between the mixing ratio and the conversion efficiency.

【図11】従来の色素増感型太陽電池の断面図である。FIG. 11 is a cross-sectional view of a conventional dye-sensitized solar cell.

【図12】従来の色素増感型太陽電池の要部の模式断面
図である。
FIG. 12 is a schematic sectional view of a main part of a conventional dye-sensitized solar cell.

【符号の説明】[Explanation of symbols]

1…酸化物半導体電極、10…導電性基板、12…多孔
質酸化物半導体層、14…基板、16…導電膜、18…
酸化物半導体微粒子、19…金属酸化物微粒子、20…
中空状粒子、21…中空状粒子、22…酸化物半導体中
実粒子、24…第一の電極、26…第二の電極、28…
電荷輸送相、30…封止材、32…第一の基板、34…
第一の導電膜、36…多孔質酸化物半導体層、38…第
二の基板、40…第二の導電膜、42…透過光反射層、
43…酸化物半導体層、44…中空状粒子層、50…色
素増感型太陽電池、102…酸化物半導体電極、104
…対極、106…電解液、108…ガラス基板、110
…透明導電膜、112…酸化物半導体層、114…ガラ
ス基板、116…透明導電膜、118…酸化物半導体中
実粒子、120…色素。
DESCRIPTION OF SYMBOLS 1 ... Oxide semiconductor electrode, 10 ... Conductive substrate, 12 ... Porous oxide semiconductor layer, 14 ... Substrate, 16 ... Conductive film, 18 ...
Oxide semiconductor fine particles, 19 ... metal oxide fine particles, 20 ...
Hollow particles, 21 hollow particles, 22 solid oxide semiconductor particles, 24 first electrodes, 26 second electrodes, 28
Charge transport phase, 30 sealing material, 32 first substrate, 34
A first conductive film, 36 a porous oxide semiconductor layer, 38 a second substrate, 40 a second conductive film, 42 a transmitted light reflecting layer,
43: oxide semiconductor layer, 44: hollow particle layer, 50: dye-sensitized solar cell, 102: oxide semiconductor electrode, 104
... counter electrode, 106 ... electrolytic solution, 108 ... glass substrate, 110
... Transparent conductive film, 112 ... Oxide semiconductor layer, 114 ... Glass substrate, 116 ... Transparent conductive film, 118 ... Oxide semiconductor solid particles, 120 ... Dye.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鷹取 一雅 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 谷 孝夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 5F051 AA14 5H032 AA06 AS06 AS16 CC11 EE16 HH01 HH04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazumasa Takatori 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. No. 41, Changchun Yokomichi No. 1 F-term in Toyota Central R & D Laboratories Co., Ltd. (Reference) 5F051 AA14 5H032 AA06 AS06 AS16 AS16 CC11 EE16 HH01 HH04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 導電性基板と、 前記導電性基板上に形成され、金属酸化物からなる中空
状粒子を含む多孔質酸化物半導体層と、を有することを
特徴とする酸化物半導体電極。
1. An oxide semiconductor electrode comprising: a conductive substrate; and a porous oxide semiconductor layer formed on the conductive substrate and including hollow particles made of a metal oxide.
【請求項2】 前記多孔質酸化物半導体層における前記
中空状粒子の平均粒径が200nm〜10μmであり、
且つ該中空状粒子が2μm以下の平均粒径の金属酸化物
微粒子からなる皮殻を有することを特徴とする請求項1
記載の酸化物半導体電極。
2. An average particle diameter of the hollow particles in the porous oxide semiconductor layer is 200 nm to 10 μm,
2. The hollow particles having a shell made of metal oxide fine particles having an average particle diameter of 2 μm or less.
26. The oxide semiconductor electrode according to claim 23.
【請求項3】 前記多孔質酸化物半導体層における前記
金属酸化物が、TiO2、SnO2、ZnO、ZrO2
Nb25、CeO2、WO3、SiO2及びAl 23から
なる群より選ばれる少なくとも一つの酸化物若しくはこ
れらの酸化物を含有する複合酸化物であることを特徴と
する請求項1または請求項2記載の酸化物半導体電極。
3. The porous oxide semiconductor layer according to claim 2, wherein
The metal oxide is TiOTwo, SnOTwo, ZnO, ZrOTwo,
NbTwoOFive, CeOTwo, WOThree, SiOTwoAnd Al TwoOThreeFrom
At least one oxide selected from the group consisting of
Characterized by being a composite oxide containing these oxides
The oxide semiconductor electrode according to claim 1 or 2, wherein:
【請求項4】 第一の導電性基板と、前記第一の導電性
基板上に形成され、金属酸化物からなる中空状粒子を含
む多孔質酸化物半導体層とを有し、該多孔質酸化物半導
体層の表面及び/又は内部に色素が担持された第一の電
極と、 第二の導電性基板からなる第二の電極と、 前記第一の電極と前記第二の電極の間に充填された電荷
輸送相と、を備えていることを特徴とする色素増感型太
陽電池。
4. A semiconductor device comprising: a first conductive substrate; and a porous oxide semiconductor layer formed on the first conductive substrate and including hollow particles made of a metal oxide. A first electrode in which a dye is carried on the surface and / or inside of the semiconductor layer; a second electrode made of a second conductive substrate; and a space between the first electrode and the second electrode A charge-transporting phase, and a dye-sensitized solar cell.
【請求項5】 前記中空状粒子の平均粒径が200nm
〜10μmであり、且つ該中空状粒子が2μm以下の平
均粒径の金属酸化物微粒子からなる皮殻を有することを
特徴とする請求項4記載の色素増感型太陽電池。
5. The hollow particles have an average particle size of 200 nm.
The dye-sensitized solar cell according to claim 4, wherein the hollow particles have a shell made of metal oxide fine particles having an average particle diameter of 2 µm or less.
【請求項6】 前記金属酸化物が、TiO2、SnO2
ZnO、ZrO2、Nb25、CeO2、WO3、SiO2
及びAl23からなる群より選ばれる少なくとも一つの
酸化物若しくはこれらの酸化物を含有する複合酸化物で
あることを特徴とする請求項4または請求項5記載の色
素増感型太陽電池。
6. The method according to claim 1, wherein the metal oxide is TiO 2 , SnO 2 ,
ZnO, ZrO 2 , Nb 2 O 5 , CeO 2 , WO 3 , SiO 2
6. The dye-sensitized solar cell according to claim 4, which is at least one oxide selected from the group consisting of Al 2 O 3 and a composite oxide containing these oxides.
JP24597999A 1999-08-31 1999-08-31 Oxide semiconductor electrode and dye-sensitized solar cell using the same Expired - Fee Related JP4507306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24597999A JP4507306B2 (en) 1999-08-31 1999-08-31 Oxide semiconductor electrode and dye-sensitized solar cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24597999A JP4507306B2 (en) 1999-08-31 1999-08-31 Oxide semiconductor electrode and dye-sensitized solar cell using the same

Publications (2)

Publication Number Publication Date
JP2001076772A true JP2001076772A (en) 2001-03-23
JP4507306B2 JP4507306B2 (en) 2010-07-21

Family

ID=17141686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24597999A Expired - Fee Related JP4507306B2 (en) 1999-08-31 1999-08-31 Oxide semiconductor electrode and dye-sensitized solar cell using the same

Country Status (1)

Country Link
JP (1) JP4507306B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080346A1 (en) * 2000-04-12 2001-10-25 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Semiconductor layer, solar cell using it, and production methods and applications therefor
JP2002050413A (en) * 2000-08-03 2002-02-15 Japan Gore Tex Inc Light electrode, and solar cell using the same
US6677516B2 (en) 2001-01-29 2004-01-13 Sharp Kabushiki Kaisha Photovoltaic cell and process for producing the same
KR100433630B1 (en) * 2002-03-11 2004-05-31 한국전자통신연구원 Dye-sensitized solar cell having semiconductor electrode of nanocrystalline oxides and manufacturing method thereof
KR100462006B1 (en) * 2001-03-30 2004-12-17 태원필 SnO2/TiO2 coupled oxide semiconductor and dye-sensitized solar cell
JP2005116302A (en) * 2003-10-07 2005-04-28 Sony Corp Photoelectric conversion element and electronic equipment
KR100567330B1 (en) 2004-08-04 2006-04-04 한국전자통신연구원 Double structure dye-sensitized solar cell
JP2006108064A (en) * 2004-10-06 2006-04-20 Korea Inst Of Science & Technology Highly efficient counter electrode for dye-sensitized solar cell and its manufacturing method
KR100656365B1 (en) 2005-11-18 2006-12-13 한국전자통신연구원 Composition of non-aqueous paste for forming semiconductor electrode of dye-sensitized solar cell, preparation method thereof, and dye-sensitized solar cells comprising the same
US7202412B2 (en) 2002-01-18 2007-04-10 Sharp Kabushiki Kaisha Photovoltaic cell including porous semiconductor layer, method of manufacturing the same and solar cell
US7476607B2 (en) 2003-12-08 2009-01-13 Panasonic Corporation Semiconductor electrode, production process thereof and photovoltaic cell using semiconductor electrode
JP2009032663A (en) * 2007-07-24 2009-02-12 Korea Inst Of Science & Technology Photoelectrode for dye-sensitized solar cell containing metal oxide nano-particle of hollow spherical shape, and its manufacturing method
KR100929812B1 (en) * 2007-08-02 2009-12-08 한국전자통신연구원 Solar cell having increased energy conversion efficiency and manufacturing method thereof
KR100952570B1 (en) 2007-09-28 2010-04-12 한국전력공사 Fabrication Method of Titanium oxide or Titanium oxide-Silicon oxide aerogel thin film/thick film for electrode support of transparent solar cell
JP2010205753A (en) * 2009-02-27 2010-09-16 Toyota Central R&D Labs Inc Pigment-sensitized solar cell, and method of manufacturing same
KR101030039B1 (en) 2004-02-26 2011-04-20 삼성에스디아이 주식회사 Organic solar cell and fabrication method thereof
KR101034640B1 (en) 2009-01-30 2011-05-16 한국과학기술연구원 Electrodes comprising metal oxide-polymer composite and preparation method thereof, and dye-sensitized solar cells using the same
US20110174368A1 (en) * 2007-12-10 2011-07-21 Lee Sang-Soo Composite electrolyte and the preparation method thereof, and dye-sensitized solar cell using the same
JP2011222532A (en) * 2004-01-22 2011-11-04 Showa Denko Kk Metal oxide dispersion material and coating method of the same
US20110277822A1 (en) * 2010-05-11 2011-11-17 Honeywell International Inc. Composite electron conductor for use in photovoltaic devices
US8441708B2 (en) 2009-08-24 2013-05-14 Samsung Electronics Co., Ltd. Electrochromic device and method of manufacturing the same
KR101338785B1 (en) * 2012-06-14 2013-12-06 국립대학법인 울산과학기술대학교 산학협력단 Dye sensitized solar cell using antireflection layer, method for producing thereof
JP2015050003A (en) * 2013-08-30 2015-03-16 住友大阪セメント株式会社 Paste for dye-sensitized solar cell, oxide semiconductor film, oxide semiconductor electrode and dye-sensitized solar cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101135476B1 (en) 2010-11-16 2012-04-13 삼성에스디아이 주식회사 Dye-sensitized solar cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255863A (en) * 1997-03-11 1998-09-25 Central Res Inst Of Electric Power Ind Sensitized pigment solar battery
JP2000020462A (en) * 1998-06-30 2000-01-21 Toshiba Corp Bus system to be applied to computer system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255863A (en) * 1997-03-11 1998-09-25 Central Res Inst Of Electric Power Ind Sensitized pigment solar battery
JP2000020462A (en) * 1998-06-30 2000-01-21 Toshiba Corp Bus system to be applied to computer system

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080346A1 (en) * 2000-04-12 2001-10-25 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Semiconductor layer, solar cell using it, and production methods and applications therefor
JP2002050413A (en) * 2000-08-03 2002-02-15 Japan Gore Tex Inc Light electrode, and solar cell using the same
US6677516B2 (en) 2001-01-29 2004-01-13 Sharp Kabushiki Kaisha Photovoltaic cell and process for producing the same
KR100462006B1 (en) * 2001-03-30 2004-12-17 태원필 SnO2/TiO2 coupled oxide semiconductor and dye-sensitized solar cell
US7202412B2 (en) 2002-01-18 2007-04-10 Sharp Kabushiki Kaisha Photovoltaic cell including porous semiconductor layer, method of manufacturing the same and solar cell
KR100433630B1 (en) * 2002-03-11 2004-05-31 한국전자통신연구원 Dye-sensitized solar cell having semiconductor electrode of nanocrystalline oxides and manufacturing method thereof
JP2005116302A (en) * 2003-10-07 2005-04-28 Sony Corp Photoelectric conversion element and electronic equipment
JP4561073B2 (en) * 2003-10-07 2010-10-13 ソニー株式会社 Photoelectric conversion element and electronic device
US7476607B2 (en) 2003-12-08 2009-01-13 Panasonic Corporation Semiconductor electrode, production process thereof and photovoltaic cell using semiconductor electrode
JP2011222532A (en) * 2004-01-22 2011-11-04 Showa Denko Kk Metal oxide dispersion material and coating method of the same
KR101030039B1 (en) 2004-02-26 2011-04-20 삼성에스디아이 주식회사 Organic solar cell and fabrication method thereof
KR100567330B1 (en) 2004-08-04 2006-04-04 한국전자통신연구원 Double structure dye-sensitized solar cell
JP2006108064A (en) * 2004-10-06 2006-04-20 Korea Inst Of Science & Technology Highly efficient counter electrode for dye-sensitized solar cell and its manufacturing method
KR100656365B1 (en) 2005-11-18 2006-12-13 한국전자통신연구원 Composition of non-aqueous paste for forming semiconductor electrode of dye-sensitized solar cell, preparation method thereof, and dye-sensitized solar cells comprising the same
KR100927212B1 (en) * 2007-07-24 2009-11-16 한국과학기술연구원 Photoelectrode for dye-sensitized solar cell containing hollow sphere metal oxide nanoparticles and method for manufacturing same
EP2019398A3 (en) * 2007-07-24 2011-04-27 Korea Institute of Science and Technology Photo-electrode for dye-sensitized solar cell comprising hollow spherical agglomerates of metal oxide nanoparticles and process for preparation thereof
JP2009032663A (en) * 2007-07-24 2009-02-12 Korea Inst Of Science & Technology Photoelectrode for dye-sensitized solar cell containing metal oxide nano-particle of hollow spherical shape, and its manufacturing method
KR100929812B1 (en) * 2007-08-02 2009-12-08 한국전자통신연구원 Solar cell having increased energy conversion efficiency and manufacturing method thereof
KR100952570B1 (en) 2007-09-28 2010-04-12 한국전력공사 Fabrication Method of Titanium oxide or Titanium oxide-Silicon oxide aerogel thin film/thick film for electrode support of transparent solar cell
US20110174368A1 (en) * 2007-12-10 2011-07-21 Lee Sang-Soo Composite electrolyte and the preparation method thereof, and dye-sensitized solar cell using the same
KR101034640B1 (en) 2009-01-30 2011-05-16 한국과학기술연구원 Electrodes comprising metal oxide-polymer composite and preparation method thereof, and dye-sensitized solar cells using the same
JP2010205753A (en) * 2009-02-27 2010-09-16 Toyota Central R&D Labs Inc Pigment-sensitized solar cell, and method of manufacturing same
US8441708B2 (en) 2009-08-24 2013-05-14 Samsung Electronics Co., Ltd. Electrochromic device and method of manufacturing the same
US20110277822A1 (en) * 2010-05-11 2011-11-17 Honeywell International Inc. Composite electron conductor for use in photovoltaic devices
KR101338785B1 (en) * 2012-06-14 2013-12-06 국립대학법인 울산과학기술대학교 산학협력단 Dye sensitized solar cell using antireflection layer, method for producing thereof
JP2015050003A (en) * 2013-08-30 2015-03-16 住友大阪セメント株式会社 Paste for dye-sensitized solar cell, oxide semiconductor film, oxide semiconductor electrode and dye-sensitized solar cell

Also Published As

Publication number Publication date
JP4507306B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4507306B2 (en) Oxide semiconductor electrode and dye-sensitized solar cell using the same
JP4392741B2 (en) Photoelectric cell
CN1993857B (en) Photoelectrode, dye sensitizing solar cell, and dye sensitizing solar cell module
JP4169140B2 (en) Novel metal oxide particles and uses thereof
Miyasaka et al. Photovoltaic performance of plastic dye-sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania
JP4812956B2 (en) Photoelectrode and dye-sensitized solar cell provided with the same
JP4046974B2 (en) Photoelectrode and dye-sensitized solar cell provided with the same
US20020134426A1 (en) Photovoltaic cell and and process for producing the same
JP4824196B2 (en) Photoelectrode and dye-sensitized solar cell provided with the same
JP2008277019A (en) Photoelectric cell and coating material for forming porous semiconductor film for photoelectric cell
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JPH11354169A (en) Photocell
JP2000348784A (en) Photoelectric transfer element and its manufacture
JP5199587B2 (en) Photoelectric cell and method for manufacturing the same
JP2004165015A (en) Counter electrode and dye-sensitized solar cell equipped therewith
JP2002314108A (en) Solar cell
JP4102054B2 (en) Photoelectrode and dye-sensitized solar cell provided with the same
JP4334960B2 (en) Carbon electrode and electrode and dye-sensitized solar cell comprising the same
JP2004134298A (en) Manufacturing method of dye-sensitized solar cell, and dye-sensitized solar cell
JP2003308892A (en) Organic pigment sensitizing metal oxide semiconductor electrode and organic pigment sensitizing solar battery
JP5140031B2 (en) Photoelectric cell
JP2001155791A (en) Photoelectric cell
JP2002252359A (en) Light-receiving layer and solar battery
JP2002280087A (en) Optical electrode and dye sensitized solar battery provided with the same
JP4684572B2 (en) Carbon electrode and manufacturing method thereof, carbon electrode manufacturing material, and dye-sensitized solar cell provided with carbon electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees