JP2001076746A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JP2001076746A
JP2001076746A JP24966499A JP24966499A JP2001076746A JP 2001076746 A JP2001076746 A JP 2001076746A JP 24966499 A JP24966499 A JP 24966499A JP 24966499 A JP24966499 A JP 24966499A JP 2001076746 A JP2001076746 A JP 2001076746A
Authority
JP
Japan
Prior art keywords
fuel
flow path
gas
grooves
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24966499A
Other languages
Japanese (ja)
Other versions
JP4232286B2 (en
Inventor
Hideo Maeda
秀雄 前田
Hisatoshi Fukumoto
久敏 福本
Koji Hamano
浩司 濱野
Kenro Mitsuta
憲朗 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24966499A priority Critical patent/JP4232286B2/en
Priority to US09/631,989 priority patent/US6500579B1/en
Publication of JP2001076746A publication Critical patent/JP2001076746A/en
Application granted granted Critical
Publication of JP4232286B2 publication Critical patent/JP4232286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell with high voltage, high output, capable of preventing slip of gas, and mass-producing. SOLUTION: Fuel flow paths 43a-i made of 1.2 mm wide grooves introduced from a fuel supply opening 26 run in 9 lines as a fuel parallel flow path group, the width of a ridge 44 between the grooves is 1.0 mm, and the width of a ridge 45 between parallel flow paths formed by folding back nine grooves is 1.7 mm 70% wider than the ridge 45 within the parallel flow path group. Since the ridge width between adjacent parallel flow path groups is wider than that between grooves within the parallel flow path group, slip of gas within a separator flow path is reduced, gas is effectively utilized, and highly efficient operation is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気化学的な反応
を利用して発電する例えば電気自動車等で使用される燃
料電池に関するものである。本明細書では、特に固体高
分子型燃料電地について記述しているが、リン酸型燃料
電池にも適用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell for generating electric power by utilizing an electrochemical reaction, for example, used in an electric vehicle or the like. Although the present specification particularly describes a polymer electrolyte fuel cell, the present invention can also be applied to a phosphoric acid fuel cell.

【0002】[0002]

【従来の技術】燃料電池は周知のように、電解質を介し
て一対の電極を有し、この電極の一方に燃料を、他方の
電極に酸化剤を供給し、燃料と酸化剤とを電池内で電気
化学的に反応させることにより化学エネルギーを直接電
気エネルギーに変換する装置である。燃料電池には電解
質によりいくつかの型があるが、近年高出力の得られる
燃料電池として、電解質に固体高分子電解質膜を用いた
固体高分子型燃料電池が注目されている。例えば燃料電
極に水素ガスを、酸化剤電極に酸素ガスを供給し、外部
回路より電流を取り出すときに下記化学反応式(1)お
よび(2)で示されるような反応が生じる。 陰極反応:H2→2H++2e- ・・(1) 陽極反応:2H++2e-+(1/2)O2→H2O ・・(2)
2. Description of the Related Art As is well known, a fuel cell has a pair of electrodes via an electrolyte, and supplies fuel to one of the electrodes and an oxidant to the other electrode. Is a device that directly converts chemical energy into electrical energy by causing an electrochemical reaction in the device. There are several types of fuel cells depending on the type of electrolyte. In recent years, a polymer electrolyte fuel cell using a solid polymer electrolyte membrane as an electrolyte has attracted attention as a fuel cell capable of obtaining high output. For example, when hydrogen gas is supplied to the fuel electrode and oxygen gas is supplied to the oxidant electrode, and current is taken out from an external circuit, reactions represented by the following chemical reaction formulas (1) and (2) occur. Cathodic reaction: H 2 → 2H + + 2e (1) Anodic reaction: 2H + + 2e + (1/2) O 2 → H 2 O (2)

【0003】この反応が生じるとき、燃料電極上で水素
はプロトンとなり、水を伴って電解質体中を酸化剤電極
上まで移動し、酸化剤電極上で酸素と反応して水を生ず
る。従って、上記のような燃料電池の運転には、反応ガ
スの供給と排出、電流の取り出しが必要となる。
When this reaction occurs, hydrogen becomes a proton on the fuel electrode, moves with the water through the electrolyte to the oxidant electrode, and reacts with oxygen on the oxidant electrode to produce water. Therefore, the operation of the fuel cell as described above requires the supply and discharge of the reaction gas and the extraction of the current.

【0004】燃料電池から電流を取り出すとともに、ガ
スと水を効率よく流通させるセパレータ板が、例えば特
開昭58―161270号公報、特開昭58―1612
69号公報および特開平3―206763号公報に示さ
れている。図3は、特開平3―206763号公報に示
されている燃料電池における単位電池の概念的な構成を
説明するための断面図であり、図において、1、2は導
電性のセパレータ板、3は酸化剤電極、4は燃料電極、
5は例えばプロトン導電性の固体高分子を用いた電解質
体であり、電解質体5、酸化剤電極3および燃料電極4
により単セル6を構成する。
A separator plate for extracting current from a fuel cell and for efficiently flowing gas and water is disclosed in, for example, JP-A-58-161270 and JP-A-58-1612.
No. 69 and JP-A-3-206676. FIG. 3 is a cross-sectional view for explaining a conceptual configuration of a unit cell in the fuel cell disclosed in Japanese Patent Application Laid-Open No. Hei 3-206763. In FIG. Is the oxidant electrode, 4 is the fuel electrode,
Reference numeral 5 denotes an electrolyte using a proton conductive solid polymer, for example, the electrolyte 5, the oxidant electrode 3, and the fuel electrode 4.
Constitutes the single cell 6.

【0005】図4は、上記図3に示した燃料電池におけ
るセパレータ板1の上面を示す説明図であり、以下図3
を併用して説明する。即ち、20はセパレータ板1の主
表面、21はセパレータ板1における電極3を支持する
電極支持部分、22はセパレータ板1に形成され酸化剤
として空気を供給する酸化剤供給口、23は空気を排出
するための酸化剤排出口、24は燃料を供給する燃料供
給口、25は燃料を排出するための燃料排出口である。
なお、上記セパレータ板1、2においては、主表面20
を削って形成された溝と電極3、4に囲まれた空間によ
ってそれぞれ酸化剤流路10および燃料流路11が構成
される。
FIG. 4 is an explanatory view showing the upper surface of the separator plate 1 in the fuel cell shown in FIG.
Will be described together. That is, reference numeral 20 denotes a main surface of the separator plate 1, reference numeral 21 denotes an electrode supporting portion for supporting the electrode 3 in the separator plate 1, reference numeral 22 denotes an oxidant supply port formed in the separator plate 1 and supplies air as an oxidant, and reference numeral 23 denotes air. An oxidant discharge port for discharging the fuel, 24 is a fuel supply port for supplying fuel, and 25 is a fuel discharge port for discharging fuel.
In the separator plates 1 and 2, the main surface 20
The oxidant flow path 10 and the fuel flow path 11 are respectively formed by the grooves formed by shaving and the spaces surrounded by the electrodes 3 and 4.

【0006】以下、上記燃料電池の動作を上記図3およ
び図4を用いて説明する。セパレータ板1の酸化剤供給
口22より供給された酸素ガスは、並行して走る複数の
酸化剤流路10を通って酸化剤電極3に供給され、一
方、水素ガスは、上記酸化剤と同様に、燃料ガス流路1
1より燃料電極4に供給される。このとき、酸化剤電極
3と燃料電極4は電気的に外部で接続されているので、
酸化剤電極3側では上記化学反応式(2)の反応が生
じ、酸化剤ガス流路10を通って未反応ガスと水が酸化
剤排出口23に排出される。また、このとき燃料電極4
側では上記化学反応式(1)の反応が生じ、未反応ガス
は同様に燃料ガス流路11を通じて燃料排出口25より
排出されることとなる。この反応によって得られた電子
は電極3、4から電極支持部分21を経由してセパレー
タ板1、2を通って流れる。
Hereinafter, the operation of the fuel cell will be described with reference to FIGS. 3 and 4. Oxygen gas supplied from the oxidant supply port 22 of the separator plate 1 is supplied to the oxidant electrode 3 through a plurality of oxidant passages 10 running in parallel, while hydrogen gas is supplied in the same manner as the oxidant. And the fuel gas flow path 1
1 to the fuel electrode 4. At this time, since the oxidant electrode 3 and the fuel electrode 4 are electrically connected outside,
The reaction of the chemical reaction formula (2) occurs on the oxidant electrode 3 side, and the unreacted gas and water are discharged to the oxidant discharge port 23 through the oxidant gas flow path 10. At this time, the fuel electrode 4
On the side, the reaction of the chemical reaction formula (1) occurs, and the unreacted gas is similarly discharged from the fuel outlet 25 through the fuel gas passage 11. The electrons obtained by this reaction flow from the electrodes 3 and 4 via the electrode supporting portions 21 and the separator plates 1 and 2.

【0007】酸化剤流路10は、図4に示したように、
セパレータ板1の一方の面にその断面が蛇腹状に形成さ
れ、並行する複数の溝になっている。また、燃料ガス流
路11も酸化剤流路10と同様、複数の溝になってい
る。上記燃料電池では、ガス流路を蛇腹型にして長くと
ることにより、ガス流速を増加させて境膜を薄くするこ
とにより、反応に必要なガスの拡散を促進するととも
に、酸化剤電極で発生した水を効率よく排出させてい
る。
[0007] As shown in FIG.
On one surface of the separator plate 1, the cross section is formed in a bellows-like shape, forming a plurality of parallel grooves. Also, the fuel gas passage 11 has a plurality of grooves similarly to the oxidant passage 10. In the above fuel cell, the gas flow path is increased by making the gas flow path longer by making a bellows type, thereby increasing the gas flow rate and thinning the film, thereby promoting the diffusion of gas necessary for the reaction and generating the gas at the oxidant electrode. It discharges water efficiently.

【0008】また、特開昭62―40169号公報に示
すセパレータ板の斜視図である図5に示すように、領域
を完全に分割して蛇腹流路を構成させる工夫も見られ
た。なお、図中、7はガス分離板、8、8aは溝、9、
9aはリブである。この方法では、ひとつの流体の入口
及び出口がセパレータ板の一つの辺長のほぼ全域を独占
することになり、他の流体の取り合いが困難になる欠点
があった。
Further, as shown in FIG. 5, which is a perspective view of a separator plate disclosed in Japanese Patent Application Laid-Open No. 62-40169, a device has been devised in which a region is completely divided to form a bellows channel. In the figure, 7 is a gas separation plate, 8, 8a are grooves, 9,
9a is a rib. In this method, the inlet and the outlet of one fluid occupy almost the entire area of one side length of the separator plate, and there is a disadvantage that it is difficult to connect other fluids.

【0009】また、WO96/20510に示すセパレ
ータ板の斜視図である図6のように並行流路を単純に折
り返す流路も考えられている。なお、図中、71は空気
流路、72は燃料供給口、73は空気供給口、74は空
気排出口、75は燃料排出口である。
Further, a flow path in which a parallel flow path is simply folded back as shown in FIG. 6 which is a perspective view of a separator plate shown in WO 96/20510 is also considered. In the figure, 71 is an air flow path, 72 is a fuel supply port, 73 is an air supply port, 74 is an air discharge port, and 75 is a fuel discharge port.

【0010】[0010]

【発明が解決しようとする課題】上記の説明の通り、従
来のセパレータ板ではガス流速を速くして生成した水を
排出できるように工夫していた。しかし、流路群とこの
流路群に隣接する折り返した流路群との間でガスがスリ
ップして有効に利用できないという欠点があった。
As described above, the conventional separator plate has been devised so that the generated water can be discharged by increasing the gas flow rate. However, there is a disadvantage that the gas slips between the flow path group and the folded flow path group adjacent to the flow path group and cannot be used effectively.

【0011】本発明はかかる課題を解消するためになさ
れたもので、ガスのスリップが防止され、大量生産が可
能な高電圧・高出力の燃料電池を得ることを目的として
いる。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an object of the present invention is to provide a high-voltage, high-output fuel cell which prevents gas slippage and can be mass-produced.

【0012】[0012]

【課題を解決するための手段】本発明に係る第1の燃料
電池は、電解質膜を燃料電極および酸化剤電極で狭持し
てなる単セルと、上記燃料電極に燃料流体を供給し、並
行した複数の溝からなる燃料並行流路群および上記酸化
剤電極に酸化剤流体を供給し、並行した複数の溝からな
る酸化剤並行流路群が折り返して走行するセパレータ板
とを、順次積層した積層体からなる燃料電池において、
上記並行流路群内の溝間の畝幅より、隣接する並行流路
群間の畝幅が大のものである。
A first fuel cell according to the present invention comprises a single cell in which an electrolyte membrane is sandwiched between a fuel electrode and an oxidant electrode, and a fuel cell which supplies a fuel fluid to the fuel electrode. An oxidant fluid is supplied to the fuel parallel flow path group composed of a plurality of grooves and the oxidant electrode, and the separator plate in which the parallel oxidant parallel flow path group composed of a plurality of parallel grooves turns and runs is sequentially laminated. In a fuel cell comprising a laminate,
The ridge width between adjacent parallel flow channel groups is larger than the ridge width between grooves in the parallel flow channel group.

【0013】本発明に係る第2の燃料電池は、上記第1
の燃料電池において、隣接する並行流路群間の畝幅を、
折り返し部からの距離が大きくなる程大きくしたもので
ある。
[0013] The second fuel cell according to the present invention includes the first fuel cell.
In the fuel cell of the ridge width between adjacent parallel flow path group,
It is increased as the distance from the turn-back portion increases.

【0014】[0014]

【発明の実施の形態】実施の形態1.図1は本発明の第
1の実施の形態の燃料電池に用いるセパレータ板の燃料
流路面の平面図であり、図中2はセパレータ板、26は
燃料供給口、27は燃料排出口、41はセパレータ板2
の主表面、42は電極支持部、43a〜iは燃料を供給
する並行した溝で、単セルと積層した時に燃料を流すガ
ス流路を形成するための燃料流路で、9本の燃料流路で
燃料並行流路群として走行し、44は並行流路群内の溝
間の畝、45は折り返して走行する並行流路群間の畝で
ある。即ち、燃料供給口26から導かれた9本の溝は幅
1.2mmで、9本の溝間の畝44の幅は1.0mmで、9
本の溝が折り返して走行する並行流路群間の畝45の幅
は1.7mmと並行流路群内の畝幅よりも70%広くし
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a plan view of a fuel passage surface of a separator plate used in the fuel cell according to the first embodiment of the present invention. In FIG. 1, 2 is a separator plate, 26 is a fuel supply port, 27 is a fuel outlet, and 41 is a fuel outlet. Separator plate 2
Reference numeral 42 denotes an electrode supporting portion, 43a to 43i parallel grooves for supplying fuel, and a fuel flow path for forming a gas flow path through which fuel flows when stacked with a single cell. The fuel cell runs as a fuel parallel flow path group on the road, 44 is a ridge between grooves in the parallel flow path group, and 45 is a ridge between the parallel flow path groups that run back. That is, the nine grooves led from the fuel supply port 26 have a width of 1.2 mm, and the width of the ridge 44 between the nine grooves is 1.0 mm.
The width of the ridge 45 between the parallel flow channel groups in which the grooves run back is 1.7 mm, which is 70% wider than the ridge width in the parallel flow channel group.

【0015】次に動作を、図3を併用して説明する。並
行流路の溝にメタノール改質ガス(水素75%、炭酸ガ
ス25%)を供給し、燃料電池を運転すると燃料流路1
1を流れる燃料は燃料電極4のガス拡散層を伝わって燃
料電極触媒まで到達し、化学反応式(1)の反応を生じ
る。この時、畝幅が広すぎると畝の中央部に相当する電
極部へのガスの拡散が阻害されるので、本実施の形態の
ように1mm程度の畝幅が適当である。しかし、これは畝
の両側の流路間にガスの圧力差が無い場合の仕様であ
り、圧力差がある場合には、つまり並行流路群が折り返
して向かいあっている場合は、圧力差によりガスが溝内
を通らずに畝と接するガス拡散層をスリップして通り抜
ける量が増加する。従って、並行流路群間の畝45の幅
を並行流路群内の畝44と同じ1.0mmにしたところ、
燃料利用率を80%以上に増加させると有効にガスが利
用できない部分が生じて急激に特性が低下したが、本実
施の形態のように並行流路群間の畝45の幅を1.7m
mにしたところ、燃料利用率を82%まで増大させても
特性低下は燃料利用率75%の時より40mV低下した
だけで収まり、高い特性を維持できるようになった。
Next, the operation will be described with reference to FIG. When a fuel cell is operated by supplying a reformed methanol gas (75% hydrogen, 25% carbon dioxide gas) to the grooves of the parallel flow path, the fuel flow path 1
1 flows through the gas diffusion layer of the fuel electrode 4 and reaches the fuel electrode catalyst, where a reaction represented by the chemical reaction formula (1) occurs. At this time, if the ridge width is too wide, gas diffusion to the electrode portion corresponding to the center of the ridge is hindered. Therefore, a ridge width of about 1 mm is appropriate as in the present embodiment. However, this is a specification when there is no gas pressure difference between the flow paths on both sides of the ridge, and when there is a pressure difference, that is, when the parallel flow path group is turned back and facing, the pressure difference The amount of gas that slips through the gas diffusion layer in contact with the ridge without passing through the groove increases. Therefore, when the width of the ridges 45 between the parallel flow path groups was set to 1.0 mm, which is the same as the ridges 44 in the parallel flow path groups,
When the fuel utilization rate is increased to 80% or more, a portion where gas cannot be effectively used is generated and the characteristics are sharply reduced.
When the fuel utilization rate was increased to 82%, the deterioration in the characteristics was stopped only by a 40 mV decrease from the case where the fuel utilization rate was 75%, and high characteristics could be maintained.

【0016】実施の形態2.本発明の第2の実施の形態
の燃料電池に用いるセパレータ板の燃料流路面の平面図
であり、図1において、並行流路群を折り返した際の、
並行流路群間の畝幅を折り返し部からの距離の増大に伴
って太くし、畝幅に傾斜を設けたものである。ここで
は、図2に示すように畝45を折り返し部a,b,c,
dでは並行流路群間の畝44より少し幅広の1.3mmと
し、次の折り返し点である対辺側e,f,g,hでの幅
を2.0mmと1.3〜2.0倍まで傾斜させた。この場
合、燃料利用率を84%まで増大させることが可能にな
り、特性が安定すると共に、ガス流量の急変による燃料
欠乏による電池のダメージを受ける危険性を大幅に低減
することができた。
Embodiment 2 FIG. 8 is a plan view of a fuel flow path surface of a separator plate used in the fuel cell according to the second embodiment of the present invention. FIG.
The width of the ridges between the parallel flow path groups is increased with an increase in the distance from the folded portion, and the ridge width is inclined. Here, as shown in FIG. 2, the ridges 45 are folded back at a, b, c,
In the case of d, the width is 1.3 mm, which is slightly wider than the ridges 44 between the parallel flow path groups, and the width at the next turning point, the opposite side e, f, g, h, is 2.0 mm, which is 1.3 to 2.0 times. Tilted up. In this case, it was possible to increase the fuel utilization rate to 84%, stabilize the characteristics, and significantly reduce the risk of damage to the battery due to fuel shortage due to a sudden change in gas flow rate.

【0017】つまり、隣接する溝間の圧力差は、流量を
一定とすると流路長さに比例する。従って、折り返し部
(a,b,c,d)での圧力差は小さいが、対辺側
(e,f,g,h)では圧力差は最大となるので、並行
流路群間でのガスのスリップを防止するには、上記のよ
うに並行流路群間の畝幅に傾斜を設けることが有効であ
る。
That is, the pressure difference between adjacent grooves is proportional to the flow path length when the flow rate is constant. Therefore, the pressure difference at the folded portions (a, b, c, d) is small, but the pressure difference is the largest at the opposite side (e, f, g, h). In order to prevent the slip, it is effective to provide an inclination in the ridge width between the parallel flow channel groups as described above.

【0018】上記実施の形態ではセパレータ板をカーボ
ン含有の熱可塑性樹脂で成形したが、フェノール樹脂の
ような熱硬化性樹脂でもよい。
In the above embodiment, the separator plate is formed of a carbon-containing thermoplastic resin, but may be formed of a thermosetting resin such as a phenol resin.

【0019】[0019]

【発明の効果】本発明の第1の燃料電池は、電解質膜を
燃料電極および酸化剤電極で狭持してなる単セルと、上
記燃料電極に燃料流体を供給し、並行した複数の溝から
なる燃料並行流路群および上記酸化剤電極に酸化剤流体
を供給し、並行した複数の溝からなる酸化剤並行流路群
が折り返して走行するセパレータ板とを、順次積層した
積層体からなる燃料電池において、上記並行流路群内の
溝間の畝幅より、隣接する並行流路群間の畝幅が大のも
ので、セパレータ流路内でのガスのスリップが減少し、
ガスを有効に利用して高効率な運転ができるという効果
がある。
According to the first fuel cell of the present invention, a single cell in which an electrolyte membrane is sandwiched between a fuel electrode and an oxidant electrode, and a fuel fluid is supplied to the fuel electrode and a plurality of grooves are formed in parallel. A fuel composed of a stacked body in which an oxidant fluid is supplied to the fuel parallel flow path group and the oxidant electrode, and a separator plate in which the oxidant parallel flow path group formed of a plurality of parallel grooves turns and runs sequentially. In the battery, the ridge width between the adjacent parallel channel groups is larger than the ridge width between the grooves in the parallel channel group, and the gas slip in the separator channel is reduced,
There is an effect that highly efficient operation can be performed by effectively utilizing gas.

【0020】本発明に係る第2の燃料電池は、上記第1
の燃料電池において、隣接する並行流路群間の畝幅を、
折り返し部からの距離が大きくなる程大きくしたもの
で、さらにセパレータ流路内でのガスのスリップが減少
し、さらにガスを有効に利用して高効率な運転ができる
という効果がある。
The second fuel cell according to the present invention comprises the first fuel cell described above.
In the fuel cell of the ridge width between adjacent parallel flow path group,
This is increased as the distance from the turn-back portion increases, and further has the effect that the slip of gas in the separator flow path is reduced, and the gas can be effectively used to perform highly efficient operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施の形態の燃料電池に用い
るセパレータ板の燃料流路面の平面図である。
FIG. 1 is a plan view of a fuel flow path surface of a separator plate used in a fuel cell according to a first embodiment of the present invention.

【図2】 本発明の第2の実施の形態の燃料電池に用い
るセパレータ板の燃料流路面の平面図である。
FIG. 2 is a plan view of a fuel flow path surface of a separator plate used in a fuel cell according to a second embodiment of the present invention.

【図3】 従来の燃料電池における単位電池の概念的な
構成を説明するための断面図である。
FIG. 3 is a cross-sectional view for explaining a conceptual configuration of a unit cell in a conventional fuel cell.

【図4】 従来の燃料電池におけるセパレータ板の上面
を示す説明図である。
FIG. 4 is an explanatory view showing an upper surface of a separator plate in a conventional fuel cell.

【図5】 従来のセパレータ板の構成を示す斜視図であ
る。
FIG. 5 is a perspective view showing a configuration of a conventional separator plate.

【図6】 従来のセパレータ板の構成を示す斜視図であ
る。
FIG. 6 is a perspective view showing a configuration of a conventional separator plate.

【符号の説明】[Explanation of symbols]

2 セパレータ板、26 燃料供給口、25 燃料排出
口、41 セパレータ主表面、42 電極支持部、43
燃料流路、44 並行流路群内の畝、45並行流路群
間の畝。
2 separator plate, 26 fuel supply port, 25 fuel outlet, 41 separator main surface, 42 electrode support, 43
Fuel channels, ridges in 44 parallel flow channel groups, ridges between 45 parallel flow channel groups.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱野 浩司 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 光田 憲朗 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5H026 AA04 AA06 CC03 CC10 CX04 EE05 EE18 HH03  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Koji Hamano 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Norio Mitsuda 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation F-term (reference) 5H026 AA04 AA06 CC03 CC10 CX04 EE05 EE18 HH03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解質膜を燃料電極および酸化剤電極で
狭持してなる単セルと、上記燃料電極に燃料流体を供給
し、並行した複数の溝からなる燃料並行流路群および上
記酸化剤電極に酸化剤流体を供給し、並行した複数の溝
からなる酸化剤並行流路群が折り返して走行するセパレ
ータ板とを、順次積層した積層体からなる燃料電池にお
いて、上記並行流路群内の溝間の畝幅より、隣接する並
行流路群間の畝幅が大であることを特徴とする燃料電
池。
1. A single cell comprising an electrolyte membrane sandwiched between a fuel electrode and an oxidant electrode, a fuel parallel flow path group comprising a plurality of parallel grooves for supplying a fuel fluid to the fuel electrode, and the oxidant An oxidant fluid is supplied to the electrodes, and a separator plate in which an oxidant parallel channel group composed of a plurality of parallel grooves runs in a folded manner, and in a fuel cell composed of a layered body sequentially laminated, in the parallel channel group, A fuel cell, wherein a ridge width between adjacent parallel flow path groups is larger than a ridge width between grooves.
【請求項2】 隣接する並行流路群間の畝幅を、折り返
し部からの距離が大きくなる程大きくしたことを特徴と
する請求項1に記載の燃料電池。
2. The fuel cell according to claim 1, wherein the ridge width between the adjacent parallel flow path groups is increased as the distance from the folded portion is increased.
JP24966499A 1999-08-19 1999-09-03 Fuel cell Expired - Fee Related JP4232286B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24966499A JP4232286B2 (en) 1999-09-03 1999-09-03 Fuel cell
US09/631,989 US6500579B1 (en) 1999-08-19 2000-08-03 Fuel cell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24966499A JP4232286B2 (en) 1999-09-03 1999-09-03 Fuel cell

Publications (2)

Publication Number Publication Date
JP2001076746A true JP2001076746A (en) 2001-03-23
JP4232286B2 JP4232286B2 (en) 2009-03-04

Family

ID=17196390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24966499A Expired - Fee Related JP4232286B2 (en) 1999-08-19 1999-09-03 Fuel cell

Country Status (1)

Country Link
JP (1) JP4232286B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365295B1 (en) * 1999-01-29 2002-04-02 Aisin Takaoka Co., Ltd. Fuel cell and separator comprising contact lugs with specific widths
JP2003022811A (en) * 2001-07-06 2003-01-24 Honda Motor Co Ltd Degassing method of separator for fuel cell
KR20040006667A (en) * 2002-07-13 2004-01-24 엘지전자 주식회사 Fuel supply structure of fuel cell stack
JP2005197069A (en) * 2004-01-07 2005-07-21 Toyota Motor Corp Separator for fuel cell
CN1312798C (en) * 2004-02-26 2007-04-25 三菱电机株式会社 Fuel cell
CN100388547C (en) * 2004-03-23 2008-05-14 三菱电机株式会社 Fuel cell
US7531265B2 (en) 2004-02-19 2009-05-12 Honda Motor Co., Ltd. Fuel cell
WO2009141989A1 (en) * 2008-05-19 2009-11-26 パナソニック株式会社 Separator for fuel cell and fuel cell provided with same
WO2009141990A1 (en) * 2008-05-19 2009-11-26 パナソニック株式会社 Fuel cell separator and fuel cell comprising said separator
US9178225B2 (en) 2006-06-26 2015-11-03 Toyota Jidosha Kabushiki Kaisha Fuel cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365295B1 (en) * 1999-01-29 2002-04-02 Aisin Takaoka Co., Ltd. Fuel cell and separator comprising contact lugs with specific widths
JP4652623B2 (en) * 2001-07-06 2011-03-16 本田技研工業株式会社 Degassing method for fuel cell separator
JP2003022811A (en) * 2001-07-06 2003-01-24 Honda Motor Co Ltd Degassing method of separator for fuel cell
KR20040006667A (en) * 2002-07-13 2004-01-24 엘지전자 주식회사 Fuel supply structure of fuel cell stack
JP2005197069A (en) * 2004-01-07 2005-07-21 Toyota Motor Corp Separator for fuel cell
JP4656841B2 (en) * 2004-01-07 2011-03-23 トヨタ自動車株式会社 Fuel cell separator
US7531265B2 (en) 2004-02-19 2009-05-12 Honda Motor Co., Ltd. Fuel cell
CN1312798C (en) * 2004-02-26 2007-04-25 三菱电机株式会社 Fuel cell
DE102004058040B4 (en) * 2004-02-26 2007-08-16 Mitsubishi Denki K.K. fuel cell
CN100388547C (en) * 2004-03-23 2008-05-14 三菱电机株式会社 Fuel cell
US9178225B2 (en) 2006-06-26 2015-11-03 Toyota Jidosha Kabushiki Kaisha Fuel cell
WO2009141990A1 (en) * 2008-05-19 2009-11-26 パナソニック株式会社 Fuel cell separator and fuel cell comprising said separator
WO2009141989A1 (en) * 2008-05-19 2009-11-26 パナソニック株式会社 Separator for fuel cell and fuel cell provided with same
US8546037B2 (en) 2008-05-19 2013-10-01 Panasonic Corporation Fuel cell separator having reactant gas channels with different cross sections and fuel cell comprising the same
US8546038B2 (en) 2008-05-19 2013-10-01 Panasonic Corporation Fuel cell separator having reactant gas channels with different cross sections and fuel cell comprising the same

Also Published As

Publication number Publication date
JP4232286B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
US7867666B2 (en) Fuel cell with triangular buffers for reactant gas and coolant
JP4527081B2 (en) Direct liquid fuel cell stack
US7799482B2 (en) Stack of generators and fuel cell system having the same
EP1722436B1 (en) Polymer electrolyte fuel cell and bipolar separator for the same
JP2000195529A (en) Fuel cell
US7081314B2 (en) Fuel cell having sealant for sealing a solid polymer electrolyte membrane
JP2006073528A (en) Stack for fuel cell
JP2005340207A (en) Fuel cell system and stack for fuel cell
JP2001076746A (en) Fuel cell
JP4031936B2 (en) Fuel cell
JP2006156398A (en) Bipolar plate and direct liquid fuel cell stack
CN108232228B (en) Separator plate, membrane-electrode unit, and fuel cell
EP1641065A2 (en) Fuel cell stack and fuel cell system having the same
KR101238886B1 (en) Fuel cell system and stack
JP2001068131A (en) Fuel cell
JP2001057219A (en) Fuel cell
JP2001057226A (en) Manufacture of fuel cell and fuel cell
US7329472B2 (en) Fuel cell system and stack used thereto
JP2003217615A (en) Separator for fuel cell
JP2004087190A (en) Solid polymer cell assembly
JP3906975B2 (en) Polymer electrolyte fuel cell
CN219032399U (en) Water electrolysis device
KR101065382B1 (en) Fuel cell system and stack used thereto
CN216288531U (en) Power generation unit cell of fuel cell stack
JP2005340210A (en) Fuel cell system and stack

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees