JP2001076739A - Separator for phosphoric acid fuel cell and fuel cell using it - Google Patents

Separator for phosphoric acid fuel cell and fuel cell using it

Info

Publication number
JP2001076739A
JP2001076739A JP25406099A JP25406099A JP2001076739A JP 2001076739 A JP2001076739 A JP 2001076739A JP 25406099 A JP25406099 A JP 25406099A JP 25406099 A JP25406099 A JP 25406099A JP 2001076739 A JP2001076739 A JP 2001076739A
Authority
JP
Japan
Prior art keywords
resin
fuel cell
phosphoric acid
separator
graphite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25406099A
Other languages
Japanese (ja)
Inventor
Akitsugu Tashiro
了嗣 田代
Tomonori Seki
智憲 関
Atsushi Fujita
藤田  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP25406099A priority Critical patent/JP2001076739A/en
Publication of JP2001076739A publication Critical patent/JP2001076739A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat resistance, acid resistance, electric characteristics, and general characteristics at a low cost by carbonizing the resin component in a compact including a resin and expansion graphite powder to manufacture a separator. SOLUTION: A resin and expansion graphite powder mixed by a dry method having good workability at a low cost are thermally molded in a die and hardened nearly completely by a heat treatment, then this separator is manufactured by carbonization in the atmosphere of inert gas such as nitrogen at 200 deg.C or above. An inexpensive powdery phenol resin hardened by ring-opening polymerization is suitable for this resin. Little gas is generated at hardening, moldability and general characteristics are good, the flow of the resin at molding is good if the average grain size is set to 1-1,000 μm, they are uniformly mixed, and the mechanical properties are not deteriorated. If the number average grain size is set to 5-100 μm for the expansion graphite powder obtained by heating, compression molding, and crushing from an interlayer compound generated by the dipping of the natural graphite having a highly developed crystal in a solution including an acid material and an oxidant, the mixing property and mechanical strength are improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リン酸型燃料電池
用セパレータ及びリン酸型燃料電池用セパレータを用い
た燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphoric acid type fuel cell separator and a fuel cell using the phosphoric acid type fuel cell separator.

【0002】[0002]

【従来の技術】リン酸を耐リン酸性のシート状物質に含
浸させたものを電解質として用い、これを作動温度が高
い(200℃前後)リン酸型の燃料電池に使用されるセ
パレータは、耐熱性及び電解質の種類から要求される高
い耐酸性品が必要であり、従来は黒鉛板の加工品が使用
されていた。
2. Description of the Related Art A separator impregnated with a phosphoric acid-resistant sheet-like substance is used as an electrolyte, and this is used in a phosphoric acid type fuel cell having a high operating temperature (around 200 ° C.). A high acid resistance product required from the properties and the type of electrolyte is required, and a processed product of a graphite plate has been conventionally used.

【0003】しかし、黒鉛板の加工品を用いる場合、複
雑なリブ形状を形成するため非常に精度の高い切削技術
が要求され切削終了までに時間を要する。前記工程を経
て得られるセパレータは、非常に高価なものであり、セ
パレータを多数使用して構成される燃料電池自身も当然
高価なものとなり、一般的な普及率を低下させていた。
また、汎用のセパレータとして、合成樹脂、黒鉛等を混
合したモールド成形品が挙げられるが、マトリックスが
汎用樹脂のため、使用環境が高温でかつ強酸又は強アル
カリでは使用範囲に限界があった。
[0003] However, when a processed product of a graphite plate is used, a very high-precision cutting technique is required to form a complicated rib shape, and it takes time to finish the cutting. The separator obtained through the above process is very expensive, and the fuel cell itself using a large number of separators is naturally expensive, which has reduced the general penetration rate.
As a general-purpose separator, there is a molded product in which a synthetic resin, graphite, or the like is mixed. However, since the matrix is a general-purpose resin, the operating environment is high temperature and a strong acid or strong alkali limits the range of use.

【0004】[0004]

【発明が解決しようとする課題】請求項1〜6記載の発
明は、量産性に優れ低コストであり、高温においても使
用でき耐酸性にも優れ、さらに電気特性などの一般物性
にも問題のないリン酸型燃料電池用セパレータを提供す
るものである。請求項7記載の発明は、安価で優れた耐
熱性、耐酸性、電気特性及び一般特性を確保したセパレ
ータを有する、高性能なリン酸型燃料電池を提供するも
のである。
The inventions according to claims 1 to 6 are excellent in mass productivity and low in cost, can be used even at high temperatures, have excellent acid resistance, and have problems in general physical properties such as electric characteristics. The present invention provides a phosphoric acid type fuel cell separator. The invention according to claim 7 is to provide a high-performance phosphoric acid fuel cell having a separator which is inexpensive and has excellent heat resistance, acid resistance, electrical characteristics and general characteristics.

【0005】[0005]

【課題を解決するための手段】本発明は、樹脂及び膨張
黒鉛粉を含む成形体中の樹脂分を炭化して得られるリン
酸型燃料電池用セパレータに関する。また、本発明は、
樹脂が、開環重合により硬化反応する粉末状フェノール
樹脂である前記のリン酸型燃料電池用セパレータに関す
る。また、本発明は、粉末状フェノール樹脂が、平均粒
径1μm〜1000μmの範囲である前記のリン酸型燃
料電池用セパレータに関する。
The present invention relates to a phosphoric acid type fuel cell separator obtained by carbonizing a resin component in a molded product containing a resin and expanded graphite powder. Also, the present invention
The present invention relates to the above phosphoric acid type fuel cell separator, wherein the resin is a powdery phenol resin which undergoes a curing reaction by ring-opening polymerization. The present invention also relates to the above-mentioned separator for a phosphoric acid type fuel cell, wherein the powdery phenol resin has an average particle size in a range of 1 μm to 1000 μm.

【0006】また、本発明は、膨張黒鉛粉が、平均粒径
5μm〜1000μmの範囲である前記のリン酸型燃料
電池用セパレータに関する。また、本発明は、樹脂の炭
化温度が、200℃以上である前記のリン酸型燃料電池
用セパレータに関する。また、本発明は、炭化雰囲気
が、不活性ガスである前記のリン酸型燃料電池用セパレ
ータに関する。さらに、本発明は、前記のセパレータを
有してなる燃料電池に関する。
The present invention also relates to the above-mentioned separator for a phosphoric acid type fuel cell, wherein the expanded graphite powder has an average particle size of 5 μm to 1000 μm. Further, the present invention relates to the phosphoric acid type fuel cell separator, wherein the carbonization temperature of the resin is 200 ° C. or higher. The present invention also relates to the phosphoric acid type fuel cell separator, wherein the carbonized atmosphere is an inert gas. Furthermore, the present invention relates to a fuel cell having the above-mentioned separator.

【0007】[0007]

【発明の実施の形態】本発明のリン酸型燃料電池用セパ
レータは、樹脂及び膨張黒鉛粉を含む成形体中の樹脂分
を炭化することにより、耐熱性、耐酸性、電気特性及び
一般特性に優れる。
BEST MODE FOR CARRYING OUT THE INVENTION The separator for a phosphoric acid type fuel cell of the present invention is characterized by heat resistance, acid resistance, electric characteristics and general characteristics by carbonizing a resin component in a molded body containing a resin and expanded graphite powder. Excellent.

【0008】本発明において、使用する樹脂としては、
粉末状の熱硬化性樹脂又は熱可塑性樹脂を用いることが
好ましい。その構造、官能基数、反応形式等については
特に制限はなく、例えば、固形エポキシ樹脂、メラミン
樹脂、アクリル樹脂、レゾールタイプ、ノボラックタイ
プ等の各種フェノール樹脂、粉末状ポリアミド樹脂、粉
末状ポリアミドイミド樹脂、ポリエーテルイミド樹脂、
フェノキシ樹脂等が使用される。これらの樹脂は必要に
応じて、硬化剤、硬化促進剤、硬化触媒等を併用するこ
とができる。例えば、ノボラック型フェノール樹脂は、
ヘキサメチレンテトラミンなどが硬化触媒として使用さ
れる。これらの樹脂の中で、優れた特性バランスを示
し、経済性、作業性等を考慮すると、フェノール樹脂が
好ましい。
In the present invention, the resin used is:
It is preferable to use a powdery thermosetting resin or a thermoplastic resin. There are no particular restrictions on the structure, the number of functional groups, the type of reaction, etc., for example, solid epoxy resin, melamine resin, acrylic resin, resol type, various phenolic resins such as novolak type, powdered polyamide resin, powdered polyamideimide resin, Polyetherimide resin,
A phenoxy resin or the like is used. These resins may be used in combination with a curing agent, a curing accelerator, a curing catalyst, and the like, if necessary. For example, novolak type phenolic resin
Hexamethylenetetramine or the like is used as a curing catalyst. Among these resins, a phenol resin is preferable in view of excellent property balance, economy, workability, and the like.

【0009】フェノール樹脂としては、硬化反応時に発
生ガスが少なく、成形性が良くまた良好な諸特性を有す
る開環重合により硬化反応するフェノール樹脂が特に好
ましいものとして用いられる。開環重合により硬化反応
するフェノール樹脂としては、粉末状の樹脂が好まし
く、一般式(a)
As the phenol resin, a phenol resin which undergoes a curing reaction by ring-opening polymerization, which has a small amount of gas generated during the curing reaction, has good moldability, and has good various properties, is particularly preferably used. As the phenol resin that undergoes a curing reaction by ring-opening polymerization, a resin in the form of a powder is preferable.

【化1】 に示されるジヒドロベンゾオキサジン環を含む樹脂が成
形性、耐熱性等に優れ、好ましい。この樹脂は、加熱に
より開環重合反応を起こし、触媒や硬化剤を用いること
なく、揮発分を発生させることなく優れた特性を持つ架
橋構造を形成することができる。
Embedded image The resin having a dihydrobenzoxazine ring shown in (1) is excellent in moldability, heat resistance and the like, and is preferred. This resin causes a ring-opening polymerization reaction by heating, and can form a crosslinked structure having excellent properties without using a catalyst or a curing agent and without generating volatile components.

【0010】前記ジヒドロベンゾオキサジン環を含む樹
脂としては、一般式(b)
The resin containing a dihydrobenzoxazine ring is represented by the general formula (b)

【化2】 (式中、芳香環に結合する水素はヒドロキシル基のオル
ト位の1つを除き、置換基で置換されていてもよい)に
示す化学構造単位と一般式(c)
Embedded image (Wherein the hydrogen bonded to the aromatic ring may be substituted with a substituent except for one of the ortho positions of the hydroxyl group) and a general formula (c)

【化3】 (式中、R1は炭化水素基であり、芳香環に結合する水
素は、置換基で置換されていてもよい)に示す化学構造
単位を含むものが揮発性ガスの発生を抑制する効果が高
いので好ましく、一般式(b)/一般式(c)のモル比
が4/1〜1/9で含むものが耐熱性等の点でより好ま
しい。なお、この比は、用いる材料の比率等により調整
できる。
Embedded image (Wherein R 1 is a hydrocarbon group, and the hydrogen bonded to the aromatic ring may be substituted with a substituent), which has the effect of suppressing generation of volatile gas. It is preferable because the molar ratio of general formula (b) / general formula (c) is 4/1 to 1/9 in view of heat resistance and the like. This ratio can be adjusted by the ratio of the materials used and the like.

【0011】前記一般式(b)及び一般式(c)で示さ
れる化学構造単位において、芳香環に結合する水素の代
わりに置換されていてもよい置換基としては特に制限は
ないが、メチル基、エチル基、プロピル基等のアルキル
基などの炭素原子数1〜10のアルキル基が好ましいも
のとして挙げられる。また、一般式(b)において、ヒ
ドロキシル基のオルト位の1つは硬化反応のために水素
を持つ。さらに、一般式(c)において、R1で示され
る炭化水素基としては、メチル基、エチル基、シクロヘ
キシル基、フェニル基、置換フェニル基等の炭素原子数
1〜10のものが挙げられる。
In the chemical structural units represented by the general formulas (b) and (c), the substituent which may be substituted in place of hydrogen bonded to an aromatic ring is not particularly limited, but a methyl group And an alkyl group having 1 to 10 carbon atoms such as an alkyl group such as an ethyl group and a propyl group. In the general formula (b), one of the ortho positions of the hydroxyl group has hydrogen for a curing reaction. Further, in the general formula (c), examples of the hydrocarbon group represented by R1 include those having 1 to 10 carbon atoms such as a methyl group, an ethyl group, a cyclohexyl group, a phenyl group and a substituted phenyl group.

【0012】前記各化学構造単位の数は、1分子中に含
まれる一般式(b)の数をm、一般式(c)の数をnと
するときに、mが1以上、nが1以上であればよいが、
数平均でm+nが3〜10であることが、硬化物の特
性、例えば耐熱性等の点で好ましい。
When the number of the general formula (b) contained in one molecule is m and the number of the general formula (c) is n in one molecule, m is 1 or more and n is 1 Anything above is acceptable,
It is preferable that m + n is 3 to 10 on a number average in terms of characteristics of the cured product, for example, heat resistance.

【0013】前記各化学構造単位は、互いに直接結合し
ていてもよく、各種の基を介して結合していてもよい。
このような基としては、有機基として、アルキレン基、
キシリレン基等の炭化水素基などが好ましいものとして
挙げられ、具体的には、
The above-mentioned chemical structural units may be directly bonded to each other, or may be bonded via various groups.
Such groups include, as organic groups, alkylene groups,
Preferred examples include hydrocarbon groups such as xylylene groups, and specifically,

【化4】 で示される基(但し、R2は、水素原子又はメチル基、
エチル基、プロピル基、イソプロピル基、フェニル基、
置換フェニル基等の炭素原子数1〜20の炭化水素基を
示す)、炭素原子数5〜20の鎖状アルキレン基等が挙
げられる。これは、原料として用いるフェノール性水酸
基を有する化合物の種類などにより選択できる。
Embedded image Wherein R 2 is a hydrogen atom or a methyl group,
Ethyl group, propyl group, isopropyl group, phenyl group,
A substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms), and a linear alkylene group having 5 to 20 carbon atoms. This can be selected according to the type of the compound having a phenolic hydroxyl group used as a raw material.

【0014】前記ジヒドロベンゾオキサジン環を含む樹
脂は、例えば、フェノール性水酸基を有する化合物、ホ
ルムアルデヒド類及び第1級アミンから合成することが
できる。これらの材料からジヒドロベンゾオキサジン環
を含む樹脂を合成する方法としては、フェノール性水酸
基を有する化合物と第1級アミンとの混合物を好ましく
は70℃以上に加熱したホルムアルデヒド類中に添加し
て、好ましくは70℃〜110℃、より好ましくは90
℃〜100℃で、好ましくは20分〜120分反応さ
せ、その後好ましくは120℃以下の温度で減圧乾燥す
る方法が挙げられる。
The resin containing a dihydrobenzoxazine ring can be synthesized, for example, from a compound having a phenolic hydroxyl group, formaldehyde, and a primary amine. As a method for synthesizing a resin containing a dihydrobenzoxazine ring from these materials, a mixture of a compound having a phenolic hydroxyl group and a primary amine is preferably added to formaldehydes heated to preferably 70 ° C. or more, Is 70 ° C to 110 ° C, more preferably 90 ° C
The reaction is carried out at a temperature of from 100 ° C to 100 ° C, preferably for 20 minutes to 120 minutes, and then dried under reduced pressure at a temperature of preferably 120 ° C or lower.

【0015】前記フェノール性水酸基を有する化合物と
しては、ビスフェノールA、ビスフェノールF、ビフェ
ノール等のビスフェノール化合物、トリスフェノール化
合物、テトラフェノール化合物等の低分子フェノール化
合物やフェノール樹脂を挙げることができる。フェノー
ル樹脂としては、フェノール若しくはキシレノール、t
−ブチルフェノール、オクチルフェノール等のアルキル
フェノールなどの1価のフェノール化合物、レゾルシノ
ール、ビスフェノールA等の多価フェノール化合物とホ
ルムアルデヒド類を反応させて得られるノボラック樹脂
若しくはレゾール樹脂、フェノール変性キシレン樹脂、
メラミン変性フェノール樹脂、ポリブタジエン変性フェ
ノール樹脂等が挙げられる。
Examples of the compound having a phenolic hydroxyl group include bisphenol compounds such as bisphenol A, bisphenol F, and biphenol; low-molecular phenol compounds such as trisphenol compounds and tetraphenol compounds; and phenol resins. Phenol resins include phenol or xylenol, t
-Monophenolic compounds such as alkylphenols such as butylphenol and octylphenol, resorcinol, polyphenol compounds such as bisphenol A and novolak resins or resol resins obtained by reacting formaldehydes, phenol-modified xylene resins,
Melamine-modified phenolic resin, polybutadiene-modified phenolic resin and the like can be mentioned.

【0016】前記ホルムアルデヒド類としては、ホルム
アルデヒドの他、ホルマリン、パラホルムアルデヒドや
ヘキサメチレンテトラミンのようなホルムアルデヒドを
発生するものを用いることもできる。第1級アミンとし
ては、メチルアミン、シクロヘキシルアミン等の脂肪族
アミン、アニリン、置換アニリン等の芳香族アミンが挙
げられる。耐熱性の面からは、芳香族アミンが好まし
い。
As the formaldehyde, those which generate formaldehyde such as formalin, paraformaldehyde and hexamethylenetetramine can be used in addition to formaldehyde. Examples of the primary amine include aliphatic amines such as methylamine and cyclohexylamine, and aromatic amines such as aniline and substituted aniline. From the viewpoint of heat resistance, aromatic amines are preferred.

【0017】これらの配合比に特に制限はないが、例え
ば、フェノール性水酸基を有する化合物のヒドロキシル
基(そのオルト位の少なくとも1つが水素であるもの)
1モルに対し、第1級アミンを0.2〜0.9モル、ホ
ルムアルデヒド類を第1級アミンの2倍モル量以上の比
で反応させることが好ましい。
The mixing ratio of these compounds is not particularly limited. For example, a hydroxyl group of a compound having a phenolic hydroxyl group (at least one of its ortho positions is hydrogen)
It is preferred that the primary amine be reacted at a ratio of 0.2 to 0.9 mol and the formaldehydes at a ratio of at least twice the molar amount of the primary amine per 1 mol.

【0018】樹脂として粉末状のフェノール樹脂を用い
る場合、その粒度分布に特に制限はないが、膨張黒鉛粉
などの粉末炭素材料との混合性(特に乾式混合法の場
合)、成形時に於ける樹脂の流れ性を考慮すると、数平
均粒径で1μm〜1000μmの範囲が好ましく、5μ
m〜500μmの範囲がさらに好ましい。数平均粒径が
1μm未満の場合、粒子同士が凝集(ブロッキング)を
起こし、作業性が悪いばかりでなく膨張黒鉛粉との均一
混合が難しくなり、得られるセパレータの機械物性が低
下する傾向があり、一方、1000μmを越える場合、
前記と同様に膨張黒鉛粉との均一混合が難しくなり、得
られるセパレータの機械物性が低下する傾向がある。
When a powdery phenolic resin is used as the resin, there is no particular limitation on the particle size distribution, but the mixing property with powdered carbon material such as expanded graphite powder (particularly in the case of the dry mixing method), and the resin at the time of molding. In consideration of the flowability of the particles, the number average particle diameter is preferably in the range of 1 μm to 1000 μm, and is preferably 5 μm.
The range of m to 500 μm is more preferable. When the number average particle size is less than 1 μm, the particles aggregate (block), not only workability is poor, but also uniform mixing with the expanded graphite powder becomes difficult, and the mechanical properties of the obtained separator tend to decrease. On the other hand, if it exceeds 1000 μm,
As described above, uniform mixing with the expanded graphite powder becomes difficult, and the mechanical properties of the obtained separator tend to decrease.

【0019】本発明で使用する膨張黒鉛粉は、例えば原
料黒鉛を、酸性物質及び酸化剤を含む溶液中に浸漬して
黒鉛層間化合物を生成させる工程、前記黒鉛層間化合物
を加熱して黒鉛結晶のC軸方向を膨張させて膨張黒鉛と
する工程、前記膨張黒鉛を圧縮成形した後粉砕する工
程、また必要に応じて行う前記粉砕粉の水洗、乾燥工程
を含むことにより得ることができる。
The expanded graphite powder used in the present invention is, for example, a step of dipping raw graphite in a solution containing an acidic substance and an oxidizing agent to form a graphite intercalation compound, and heating the graphite intercalation compound to form graphite crystals. It can be obtained by including a step of expanding the C-axis direction into expanded graphite, a step of compressing and molding the expanded graphite, and a step of washing and drying the pulverized powder with water as required.

【0020】前記の原料黒鉛としては特に制限はない
が、天然黒鉛、キッシュ黒鉛、熱分解黒鉛等の高度に結
晶が発達した黒鉛が好ましいものとして挙げられる。得
られる特性と経済性のバランスを考慮すると天然黒鉛が
好ましい。用いる天然黒鉛としては、特に制限はなく、
F48C(日本黒鉛(株)製、商品名)、H−50(中越
黒鉛(株)製、商品名)等の市販品を用いることができ
る。
The raw material graphite is not particularly limited, but is preferably graphite having a high degree of crystal development, such as natural graphite, quiche graphite, and pyrolytic graphite. Natural graphite is preferred in consideration of the balance between the obtained characteristics and economy. The natural graphite used is not particularly limited.
Commercial products such as F48C (trade name, manufactured by Nippon Graphite Co., Ltd.) and H-50 (trade name, manufactured by Chuetsu Graphite Co., Ltd.) can be used.

【0021】原料黒鉛の処理に用いられる酸性物質は、
一般に硫酸又は硫酸と硝酸との混液が使用される。酸の
濃度は、95重量%以上であることが好ましい。酸性物
質の使用量については特に制限はなく、目的とする膨張
倍率で決定され、例えば、黒鉛100重量部に対して1
00〜1000重量部使用することが好ましい。
The acidic substance used in the processing of the raw graphite is as follows:
Generally, sulfuric acid or a mixture of sulfuric acid and nitric acid is used. The concentration of the acid is preferably 95% by weight or more. The amount of the acidic substance to be used is not particularly limited, and is determined by a target expansion ratio. For example, 1 to 100 parts by weight of graphite is used.
It is preferable to use 100 to 1000 parts by weight.

【0022】また、酸性物質と共に用いられる酸化剤と
しては、過酸化水素、塩酸を用いることが、良好な膨張
黒鉛粉が得られるので好ましい。酸化剤として過酸化水
素を用いる場合、過酸化水素の濃度については特に制限
はないが、20〜40重量%が好ましい。その量につい
ても特に制限はないが、黒鉛100重量部に対して過酸
化水素水として5〜60重量部配合することが好まし
い。
As the oxidizing agent used together with the acidic substance, it is preferable to use hydrogen peroxide or hydrochloric acid since a good expanded graphite powder can be obtained. When hydrogen peroxide is used as the oxidizing agent, the concentration of hydrogen peroxide is not particularly limited, but is preferably 20 to 40% by weight. Although the amount is not particularly limited, it is preferable to mix 5 to 60 parts by weight of hydrogen peroxide with respect to 100 parts by weight of graphite.

【0023】前記黒鉛を膨張黒鉛にする方法に特に制限
はなく、公知の方法としては、前記黒鉛を硫酸又は硫酸
と硝酸との混液である酸性物質に浸漬し、さらに過酸化
水素、塩酸等の酸化剤を添加して処理することにより黒
鉛層間化合物を生成させ、次いで水洗してから急速加熱
して、黒鉛結晶のC軸方向を膨張処理する方法が挙げら
れる。これにより、膨張した黒鉛が虫状形となり方向性
のない複雑に絡み合った形態となる。
There is no particular limitation on the method of converting the graphite into expanded graphite. As a known method, the graphite is immersed in an acidic substance which is a mixed solution of sulfuric acid or sulfuric acid and nitric acid, and furthermore, such as hydrogen peroxide or hydrochloric acid. A method of generating a graphite intercalation compound by adding an oxidizing agent and performing a treatment, followed by washing with water and rapid heating to expand the C-axis direction of the graphite crystal. As a result, the expanded graphite becomes a worm-like shape, and becomes a complicatedly entangled form having no directionality.

【0024】膨張黒鉛粉の製造は、前記膨張黒鉛を、密
度が0.5g/cm3〜1.8g/cm3、好ましくは0.7g/cm
3〜1.7g/cm3になるようにロール、プレス等で加圧し
てシート状に加工し、膨張黒鉛同士の接触をさらに大き
くし、これを粉砕し、必要に応じて分級することにより
得ることができる。密度が0.5g/cm3未満のシートを
使用した場合、電気特性の向上があまり認められず、一
方、1.8g/cm3を越えるシートを使用した場合、製造
時に大きな圧力が必要となり、作業性及び生産性が低下
する傾向にある。
In the production of the expanded graphite powder, the expanded graphite is used in a density of 0.5 g / cm 3 to 1.8 g / cm 3 , preferably 0.7 g / cm 3 .
A sheet is formed by pressing with a roll, a press or the like so as to have a density of 3 to 1.7 g / cm 3 , further increasing the contact between the expanded graphites, crushing them, and classifying them as necessary. be able to. When a sheet having a density of less than 0.5 g / cm 3 is used, the electrical characteristics are not significantly improved, while a sheet having a density of more than 1.8 g / cm 3 requires a large pressure during production, Workability and productivity tend to decrease.

【0025】また、膨張黒鉛粉の平均粒径に特に制限は
ないが、粉末状の樹脂との乾式混合などを考慮すると、
数平均粒径で5μm〜1000μmの範囲が好ましく、
25μm〜500μmの範囲がさらに好ましい。ここ
で、数平均粒径が5μm未満の膨張黒鉛粉を使用した場
合、成形したセパレータの機械的強度が低下する傾向に
あり、一方、1000μmを越える膨張黒鉛を使用した
場合、粉末状の樹脂との混合性が低下し均一な成形体が
得られ難くなる傾向にある。
The average particle size of the expanded graphite powder is not particularly limited, but considering dry mixing with a powdery resin, etc.
The number average particle size is preferably in the range of 5 μm to 1000 μm,
The range of 25 μm to 500 μm is more preferable. Here, when the expanded graphite powder having a number average particle size of less than 5 μm is used, the mechanical strength of the molded separator tends to decrease. On the other hand, when the expanded graphite exceeding 1000 μm is used, the powdery resin and Tends to decrease, and it becomes difficult to obtain a uniform molded body.

【0026】本発明で使用する樹脂と膨張黒鉛粉の配合
比率は、樹脂/膨張黒鉛粉=10/90〜50/50
(重量比)の範囲が好ましく、20/80〜60/40
の範囲がさらに好ましい。ここで樹脂と膨張黒鉛粉の配
合比率が10/90を越える場合、機械的強度が急激に
低下する傾向があり、一方、50/50未満の場合、導
電性が急激に低下する傾向がある。
The mixing ratio of the resin and the expanded graphite powder used in the present invention is as follows: resin / expanded graphite powder = 10/90 to 50/50
(Weight ratio) is preferably in the range of 20/80 to 60/40.
Is more preferable. Here, when the mixing ratio of the resin and the expanded graphite powder exceeds 10/90, the mechanical strength tends to sharply decrease, while when it is less than 50/50, the conductivity tends to sharply decrease.

【0027】樹脂と膨張黒鉛粉の混合方法に特に制限は
なく、シエイカー、ミキサー等を使用した乾式混合法に
よればコスト及び作業性の点で好ましい。得られた混合
物の成形方法についても特に制限はないが、例えば圧縮
成形法で成形する場合、前記した混合粉状物か又はタブ
レット(作業効率を計るため、粉状物を予備成形し堆積
を減少させたブロック形状にする)化したものを、セパ
レータ成形用金型に充填し、熱成形される。
The method of mixing the resin and the expanded graphite powder is not particularly limited, and the dry mixing method using a shaker, a mixer or the like is preferable in terms of cost and workability. There is no particular limitation on the molding method of the obtained mixture. For example, in the case of molding by a compression molding method, the mixed powder or tablet (for the purpose of measuring work efficiency, the powder is preformed to reduce the accumulation). The resulting block is filled in a separator molding die and thermoformed.

【0028】前記の方法で得られたセパレータ成形品
は、さらに後硬化され使用した樹脂が完全に硬化したセ
パレータ成形品となる。リン酸型燃料電池用セパレータ
の場合、前記したように強酸雰囲気及び高温に曝される
ため一般樹脂の硬化物が含まれるセパレータの場合、耐
酸性と耐熱性の信頼性が損なわれ、燃料電池の電気特性
を低下させる。本発明は、前記で得られた使用樹脂がほ
ぼ完全に硬化したセパレータ成形品を、さらに200℃
以上の不活性ガス中で熱処理し、樹脂硬化物を炭化する
ことで達成される。
The separator molded product obtained by the above method is further post-cured to form a separator molded product in which the used resin is completely cured. In the case of a phosphoric acid type fuel cell separator, as described above, the separator containing a cured product of a general resin is exposed to a strong acid atmosphere and a high temperature. Decreases electrical properties. The present invention relates to a separator molded product obtained by curing the used resin obtained above almost completely, further at 200 ° C.
This is achieved by heat treatment in the above inert gas and carbonizing the cured resin.

【0029】前記の熱処理に使用する炉については特に
制限はないが、バッチ炉又は連続炉が使用される。ま
た、熱処理時間についても特に制限はなく、炉の体積、
昇温速度、使用温度範囲、処理枚数等により任意に設定
される。さらに、最適な熱処理条件(温度、時間)の設
定方法として、得られた熱処理成形品の機械強度、電気
特性及び寸法の測定は有効である。熱処理に使用する不
活性ガスには特に制限はないが、経済性を考慮すると窒
素ガスが好ましい。
The furnace used for the heat treatment is not particularly limited, but a batch furnace or a continuous furnace is used. Also, there is no particular limitation on the heat treatment time, the furnace volume,
The temperature can be set arbitrarily according to the temperature rising speed, the operating temperature range, the number of processed sheets, and the like. Further, as a method for setting optimal heat treatment conditions (temperature and time), measurement of mechanical strength, electrical properties and dimensions of the obtained heat treated molded product is effective. There is no particular limitation on the inert gas used for the heat treatment, but nitrogen gas is preferred in view of economy.

【0030】本発明における燃料電池用セパレータの大
きさ、厚さ、形状等に特に制限はない。図1に、本発明
の燃料電池用セパレータの一例の斜視図を示す。一般
に、燃料電池用セパレータ1には、反応ガスの流路を確
保するため、図1に示されるようなリブが設けられてい
る。2はリブ部、3は溝部である。図1の(a)は両面
にリブが設けられているものであり、(b)は片面にリ
ブが設けられているものである。
The size, thickness, shape and the like of the fuel cell separator according to the present invention are not particularly limited. FIG. 1 shows a perspective view of an example of the fuel cell separator of the present invention. In general, the fuel cell separator 1 is provided with ribs as shown in FIG. 1 in order to secure a flow path of a reaction gas. 2 is a rib, and 3 is a groove. FIG. 1A shows a configuration in which ribs are provided on both surfaces, and FIG. 1B shows a configuration in which ribs are provided on one surface.

【0031】[0031]

【実施例】以下、実施例により本発明を説明する。 実施例1 (1)膨張黒鉛粉の製造 硫酸(濃度99重量%)600gと硝酸(濃度99重量
%)200gを3リットルのガラスビーカに入れた。こ
のものに黒鉛F48C(固定炭素99重量%以上、日本
黒鉛(株)製、商品名)400gを配合し、ガラスはねを
取り付けた撹拌モータ(60rpm)で6分間撹拌し、そ
の後、過酸化水素(濃度35重量%)32gを配合し、
15分間撹拌した。撹拌終了後、減圧濾過で酸化黒鉛と
酸成分を分離し、得られた酸化黒鉛を別容器に移し、5
リットルの水を加え、10分間撹拌し、減圧濾過で洗浄
酸化黒鉛と洗浄水を分離した。
The present invention will be described below with reference to examples. Example 1 (1) Production of Expanded Graphite Powder 600 g of sulfuric acid (concentration 99% by weight) and 200 g of nitric acid (concentration 99% by weight) were put into a 3 liter glass beaker. This was mixed with 400 g of graphite F48C (fixed carbon: 99% by weight or more, trade name, manufactured by Nippon Graphite Co., Ltd.) and stirred for 6 minutes with a stirring motor (60 rpm) equipped with a glass splash. (Concentration 35% by weight)
Stir for 15 minutes. After the stirring, the graphite oxide and the acid component were separated by filtration under reduced pressure, and the obtained graphite oxide was transferred to another container.
One liter of water was added, the mixture was stirred for 10 minutes, and washed graphite oxide and washed water were separated by filtration under reduced pressure.

【0032】得られた洗浄酸化黒鉛をホーロー製のバッ
トに移し平らに均し、120℃に昇温した乾燥器で1時
間熱処理して水分を乾燥させた。このものを更に850
℃に昇温した加熱炉に5分間入れ、密度が0.015g/
cm3の膨張黒鉛を得た。冷却後、この膨張黒鉛をロール
で圧延して密度が1.0g/cm3のシートに加工し、得ら
れたシートを粗粉砕機(ホソカワミクロン(株)製、ロー
トプレックス(商品名))で粉砕後、微粉砕機(奈良機
械製作所(株)製、自由粉砕機M−3(商品名))で粉砕
し、平均粒径が130μmの膨張黒鉛粉を得た。
The obtained washed graphite oxide was transferred to an enamel vat, leveled, and heat-treated in a dryer heated to 120 ° C. for 1 hour to dry the water. Add 850 more
5 minutes in a heating furnace heated to a temperature of
cm 3 of expanded graphite was obtained. After cooling, the expanded graphite is rolled and processed into a sheet having a density of 1.0 g / cm 3 , and the obtained sheet is pulverized by a coarse pulverizer (Rosoplex (trade name) manufactured by Hosokawa Micron Corporation). Then, it was pulverized with a fine pulverizer (free pulverizer M-3 (trade name) manufactured by Nara Machinery Co., Ltd.) to obtain an expanded graphite powder having an average particle size of 130 μm.

【0033】(2)開環重合するフェノール樹脂(ジヒ
ドロベンゾオキサジン環を含む樹脂)の製造 フェノール1.9kg、ホルマリン(37重量%水溶液)
1.0kg及びしゅう酸4gを5リットルのフラスコに仕
込み、環流温度で6時間反応させた。引き続き、内部を
6666.1Pa(50mmHg)以下に減圧して未反応のフ
ェノール及び水を除去し、フェノールノボラック樹脂を
合成した。得られた樹脂は、軟化点84℃(環球法)、
3核体〜多核体/2核体比92/18(ゲルパーミエー
ションクロマトグラフィー法によるピーク面積比)であ
った。
(2) Production of phenolic resin (resin containing dihydrobenzoxazine ring) to undergo ring-opening polymerization 1.9 kg of phenol, formalin (37% by weight aqueous solution)
1.0 kg and 4 g of oxalic acid were charged into a 5-liter flask and reacted at reflux temperature for 6 hours. Subsequently, the internal pressure was reduced to 6666.1 Pa (50 mmHg) or less to remove unreacted phenol and water, thereby synthesizing a phenol novolak resin. The obtained resin has a softening point of 84 ° C (ring and ball method),
The trinuclear to polynuclear / binuclear ratio was 92/18 (peak area ratio by gel permeation chromatography).

【0034】次に合成したフェノールノボラック樹脂
1.7kg(ヒドロキシル基16モルに相当)をアニリン
0.93kg(10モルに相当)と混合し、80℃で5
時間撹拌し、均一な混合溶液を調製した。次いで5リッ
トルフラスコ中に、ホルマリン1.62kgを仕込み90
℃に加熱し、さらに前記のノボラック/アニリン混合溶
液を30分かけて少しずつ添加した。添加終了後、30
分間、環流温度に保ち、しかる後に100℃で2時間6
666.1Pa(50mmHg)以下に減圧して縮合水を除去
し、反応し得るヒドロキシル基の71モル%がジヒドロ
ベンゾオキサジン化されたジヒドロベンゾオキサジン環
を含む樹脂を得た。すなわち、上記ジヒドロベンゾオキ
サジン環を含む樹脂は、前記一般式(b)と一般式
(c)のモル比を前者/後者で1/2.45で含むもの
である。この後前記の樹脂を粉砕機で微粉化し、反応時
発生するガスの少ない粉末状のフェノール樹脂を得た。
Next, 1.7 kg of the synthesized phenol novolak resin (corresponding to 16 mol of hydroxyl groups) was mixed with 0.93 kg (corresponding to 10 mol) of aniline, and the mixture was mixed at 80 ° C. with 5 kg.
After stirring for an hour, a uniform mixed solution was prepared. Next, 1.62 kg of formalin was charged into a 5-liter flask, and 90
C., and the above novolak / aniline mixed solution was added little by little over 30 minutes. After the addition, 30
For 2 minutes at 100 ° C. for 2 hours
Condensed water was removed by reducing the pressure to 666.1 Pa (50 mmHg) or less to obtain a resin containing a dihydrobenzoxazine ring in which 71 mol% of the reactive hydroxyl groups were dihydrobenzoxazinated. That is, the resin containing a dihydrobenzoxazine ring contains the above-mentioned general formula (b) and the general formula (c) at a molar ratio of 1 / 2.45 for the former / the latter. Thereafter, the above-mentioned resin was pulverized with a pulverizer to obtain a powdery phenol resin with little gas generated during the reaction.

【0035】なお、前記フェノールノボラック樹脂にお
いて反応し得るヒドロキシル基の量は、下記のようにし
て算出したものである。すなわち、前記フェノールノボ
ラック樹脂1.7kg(ヒドロキシル基16モルに相当)
をアニリン1.4(16モルに相当)、ホルマリン2.
59kgと反応させ、反応し得るヒドロキシル基のすべて
にジヒドロベンゾオキサジン環が導入された樹脂を合成
した。過剰のアニリン及びホルマリンは乾燥中にのぞか
れ、収量は3.34kgであった。このことから、前記フ
ェノールノボラック樹脂において、反応し得るヒドロキ
シル基の量は14モル反応し、ジヒドロベンゾオキサジ
ン環化したことを示している。
The amount of the hydroxyl group that can react in the phenol novolak resin is calculated as follows. That is, 1.7 kg of the phenol novolak resin (corresponding to 16 moles of hydroxyl groups)
Aniline 1.4 (corresponding to 16 moles), formalin 2.
The resin was reacted with 59 kg to synthesize a resin in which a dihydrobenzoxazine ring was introduced into all of the reactive hydroxyl groups. Excess aniline and formalin were removed during drying, yielding 3.34 kg. This indicates that, in the phenol novolak resin, the amount of the hydroxyl group capable of reacting was 14 mol and the dihydrobenzoxazine was cyclized.

【0036】(3)リン酸型燃料電池用セパレータの製
造 実施例1(1)で得た膨張黒鉛粉80gと(2)で得た
粉末状のフェノール樹脂20g(膨張黒鉛粉/フェノー
ル樹脂=80/20(重量比)を、ビニール袋に計り取
り空気を入れて袋を膨らませた状態で1分間乾式混合を
行った。得られた混合粉は材料同士が均一に混合されて
いた。
(3) Production of separator for phosphoric acid type fuel cell 80 g of expanded graphite powder obtained in Example 1 (1) and 20 g of phenol resin powder obtained in (2) (expanded graphite powder / phenol resin = 80) / 20 (weight ratio) was weighed into a plastic bag, air was put into the bag, and the bag was inflated, and dry-mixed for 1 minute to obtain a mixed powder, in which the materials were uniformly mixed.

【0037】前記混合粉20gを分取し、180℃に昇
温したセパレータ成形金型に均一に充填し、温度180
℃に昇温した70トン圧縮成形機で、ゲージ圧力40kg
f/cm2(3.92MPa)、成形時間10分の条件で成形し
た。得られたセパレータ成形品は、片面に高さ2mmのリ
ブ状突起物を形成した縦140mm、横180mm及び密度
が1.3g/cm3の外観が良好なものであった。
20 g of the mixed powder was dispensed and uniformly filled in a separator molding die heated to 180 ° C.
70 ton compression molding machine heated to ℃, gauge pressure 40kg
The molding was performed under the conditions of f / cm 2 (3.92 MPa) and a molding time of 10 minutes. The obtained molded separator had a good appearance of 140 mm in length, 180 mm in width and a density of 1.3 g / cm 3 in which a rib-like projection having a height of 2 mm was formed on one surface.

【0038】次に上記で得たセパレータ成形品を、厚さ
が3mmの鉄板2枚で挟み、200℃に昇温した乾燥器に
入れ1時間熱処理し、該成形品に配合された樹脂をほぼ
完全に反応させた。次いで得られた成形品を変形防止治
具で固定し、250℃に昇温した工業用窒素雰囲気を用
いたマッフル炉に入れ2時間で400℃まで昇温し、5
00℃の状態で10時間熱処理し、樹脂分の炭化(炭素
化)を行った。炭化したリン酸型燃料電池用セパレータ
は、膨れ、クラック等がなく外観が良好なものであっ
た。
Next, the molded product of the separator obtained above was sandwiched between two iron plates having a thickness of 3 mm, placed in a drier heated to 200 ° C., and heat-treated for 1 hour. It was completely reacted. Next, the obtained molded product was fixed with a deformation preventing jig, placed in a muffle furnace using an industrial nitrogen atmosphere heated to 250 ° C., and heated to 400 ° C. in 2 hours.
Heat treatment was performed for 10 hours at 00 ° C. to carbonize (carbonize) the resin. The carbonized phosphoric acid fuel cell separator had good appearance without swelling or cracks.

【0039】実施例2 マッフル炉での熱処理条件を、3時間で800℃まで昇
温し、800℃の状態で10時間熱処理した以外は、実
施例1と同様の材料を使用し、かつ実施例1と同様の工
程を経てリン酸型燃料電池用セパレータを得た。得られ
たリン酸型燃料電池用セパレータは、実施例1と同様に
外観は良好であり、特に問題はなかった。
Example 2 The same materials as in Example 1 were used except that the heat treatment conditions in the muffle furnace were raised to 800 ° C. in 3 hours and heat-treated at 800 ° C. for 10 hours. Through the same steps as in 1, a phosphoric acid fuel cell separator was obtained. The obtained phosphoric acid fuel cell separator had a good appearance as in Example 1, and had no particular problem.

【0040】比較例1 マッフル炉での熱処理を行わなかった以外は、実施例1
と同様の材料を使用し、かつ実施例1と同様の工程を経
て燃料電池用セパレータを得た。
Comparative Example 1 Example 1 was repeated except that the heat treatment in the muffle furnace was not performed.
A fuel cell separator was obtained using the same materials as in Example 1 and through the same steps as in Example 1.

【0041】評価 次に、実施例1、2及び比較例1で得られた燃料電池用
セパレータの一部を5mm×5mm×厚さ2mmの大きさに切
り出して試験片とし、この試験片を200℃に加熱した
リン酸に浸漬し、外観の変化と比抵抗について評価し
た。その結果を表1に示す。なお、リン酸処理は、試験
片を200℃に加熱したりリン酸に8時間浸漬した後、
該試験片を多量の水中に30分放置し、その後よく水洗
し、110℃で2時間減圧乾燥した。
Evaluation Next, a part of the fuel cell separators obtained in Examples 1 and 2 and Comparative Example 1 was cut into a size of 5 mm × 5 mm × 2 mm in thickness to obtain a test piece. It was immersed in phosphoric acid heated to ℃ and evaluated for changes in appearance and specific resistance. Table 1 shows the results. In addition, the phosphoric acid treatment heats a test piece to 200 degreeC, or after immersing in phosphoric acid for 8 hours,
The test piece was left in a large amount of water for 30 minutes, washed well with water, and dried under reduced pressure at 110 ° C. for 2 hours.

【0042】[0042]

【表1】 [Table 1]

【0043】表1に示されるように、リン酸処理前にお
いては熱処理した本発明になる実施例1及び2のリン酸
型燃料電池用セパレータは、熱処理しない比較例1の燃
料電池用セパレータに比較して、比抵抗が低く、樹脂を
炭化した効果が明らかである。また、リン酸処理後にお
いても熱処理した本発明になる実施例1及び2のリン酸
型燃料電池用セパレータは、外観は良好で比抵抗におい
てもリン酸処理前とあまり変わらず、樹脂の炭化により
耐リン酸性が向上していることが明らかである。これに
対し比較例1の燃料電池用セパレータは、膨れが発生
し、比抵抗については測定不能であった。
As shown in Table 1, the phosphoric acid type fuel cell separators of Examples 1 and 2 which were heat treated before the phosphoric acid treatment were compared with the fuel cell separator of Comparative Example 1 which was not heat treated. Thus, the specific resistance is low, and the effect of carbonizing the resin is apparent. Further, the phosphoric acid type fuel cell separators of Examples 1 and 2 according to the present invention, which were heat-treated even after the phosphoric acid treatment, had a good appearance and the specific resistance was not so different from that before the phosphoric acid treatment. It is clear that the phosphoric acid resistance has been improved. On the other hand, the fuel cell separator of Comparative Example 1 swelled, and the specific resistance could not be measured.

【0044】また、上記とは別にリン酸を耐リン酸性の
シートマトリックスに含浸させた電解質の上下面にPt
担持カーボンを表面に有するカーボン繊維電極基板のP
t担持カーボン側の面が前記電解質に接するようにして
重ね合わせ、さらにカーボン繊維電極基板の両外側面に
上記で得られたリン酸型燃料電池用セパレータを重ね合
わせてリン酸型燃料電池を作製し、その性能を調べたと
ころ、長期にわたり高性能を維持できることを確認し
た。
Separately from the above, Pt is added to the upper and lower surfaces of the electrolyte impregnated with phosphoric acid in a phosphoric acid-resistant sheet matrix.
P of carbon fiber electrode substrate having carbon on the surface
The phosphoric acid-type fuel cell is prepared by superposing the phosphoric acid-type fuel cell separator obtained above on the both outer surfaces of the carbon fiber electrode substrate, with the t-supported carbon side surface being in contact with the electrolyte. When the performance was examined, it was confirmed that the high performance could be maintained for a long time.

【0045】[0045]

【発明の効果】請求項1〜6記載のリン酸型燃料電池用
セパレータは、量産性に優れ低コストであり、高温にお
いても使用でき耐酸性にも優れ、さらに電気特性などの
一般物性にも問題のないリン酸型燃料電池用セパレータ
である。請求項7及び8記載のリン酸型燃料電池は、安
価で優れた耐熱性、耐酸性、電気特性及び一般特性を確
保したセパレータを有する、高性能なリン酸型燃料電池
である。
The phosphoric acid fuel cell separator according to claims 1 to 6 is excellent in mass productivity and low in cost, can be used at high temperatures, has excellent acid resistance, and has good general physical properties such as electric properties. It is a separator for a phosphoric acid type fuel cell without any problem. The phosphoric acid fuel cell according to claims 7 and 8 is a high-performance phosphoric acid fuel cell having a separator which is inexpensive and has excellent heat resistance, acid resistance, electrical characteristics and general characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例になるリン酸型燃料電池用セパ
レータの一例を示す斜視図であり、(a)は両面にリブ
が存在するもの及び(b)は片面にリブが存在するもの
である。
FIG. 1 is a perspective view showing an example of a phosphoric acid type fuel cell separator according to an embodiment of the present invention, in which (a) has ribs on both sides and (b) has ribs on one side. It is.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 リブ部 3 溝部 DESCRIPTION OF SYMBOLS 1 Separator 2 Rib part 3 Groove part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 淳 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎事業所内 Fターム(参考) 5H026 AA04 BB00 BB01 CC03 EE05 HH01 HH08  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Atsushi Fujita 3-3-1 Ayukawacho, Hitachi City, Hitachi City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Yamazaki Office F-term (reference)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 樹脂及び膨張黒鉛粉を含む成形体中の樹
脂分を炭化して得られるリン酸型燃料電池用セパレー
タ。
1. A phosphoric acid type fuel cell separator obtained by carbonizing a resin component in a molded article containing a resin and expanded graphite powder.
【請求項2】 樹脂が、開環重合により硬化反応する粉
末状フェノール樹脂である請求項1記載のリン酸型燃料
電池用セパレータ。
2. The phosphoric acid type fuel cell separator according to claim 1, wherein the resin is a powdery phenol resin which undergoes a curing reaction by ring-opening polymerization.
【請求項3】 粉末状フェノール樹脂が、平均粒径1μ
m〜1000μmの範囲である請求項1又は2記載のリ
ン酸型燃料電池用セパレータ。
3. The powdery phenol resin has an average particle size of 1 μm.
The separator for a phosphoric acid type fuel cell according to claim 1, wherein the thickness is in a range of m to 1,000 μm.
【請求項4】 膨張黒鉛粉が、平均粒径5μm〜100
0μmの範囲である請求項1、2又は3記載のリン酸型
燃料電池用セパレータ。
4. The expanded graphite powder has an average particle size of 5 μm to 100 μm.
4. The phosphoric acid fuel cell separator according to claim 1, wherein the thickness is in the range of 0 μm.
【請求項5】 樹脂の炭化温度が、200℃以上である
請求項1、2、3又は4記載のリン酸型燃料電池用セパ
レータ。
5. The phosphoric acid type fuel cell separator according to claim 1, wherein the carbonization temperature of the resin is 200 ° C. or higher.
【請求項6】 炭化雰囲気が、不活性ガスである請求項
1、2、3、4又は5記載のリン酸型燃料電池用セパレ
ータ。
6. The phosphoric acid type fuel cell separator according to claim 1, wherein the carbonizing atmosphere is an inert gas.
【請求項7】 請求項1〜6記載のセパレータを有して
なる燃料電池。
7. A fuel cell comprising the separator according to claim 1.
JP25406099A 1999-09-08 1999-09-08 Separator for phosphoric acid fuel cell and fuel cell using it Pending JP2001076739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25406099A JP2001076739A (en) 1999-09-08 1999-09-08 Separator for phosphoric acid fuel cell and fuel cell using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25406099A JP2001076739A (en) 1999-09-08 1999-09-08 Separator for phosphoric acid fuel cell and fuel cell using it

Publications (1)

Publication Number Publication Date
JP2001076739A true JP2001076739A (en) 2001-03-23

Family

ID=17259677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25406099A Pending JP2001076739A (en) 1999-09-08 1999-09-08 Separator for phosphoric acid fuel cell and fuel cell using it

Country Status (1)

Country Link
JP (1) JP2001076739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059502A (en) * 2001-08-23 2003-02-28 Unitika Ltd Manufacturing method of fuel cell separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059502A (en) * 2001-08-23 2003-02-28 Unitika Ltd Manufacturing method of fuel cell separator

Similar Documents

Publication Publication Date Title
CA2391894C (en) Fuel cell, fuel cell separator, and method of manufacture thereof
WO2003079475A1 (en) Separator for fuel cell, method for producing the same, and fuel cell using the same
JP3437937B2 (en) Fuel cell, fuel cell separator and method of manufacturing the same
JP3438865B2 (en) Fuel cell separator, method for producing the same, and fuel cell using the separator
JP2000251903A (en) Separator for fuel cell, its manufacture and fuel cell using it
JP2000311695A (en) Fuel cell separator, its manufacture and fuel cell using fuel cell separator
JP2004103495A (en) Fuel cell separator, its manufacturing method, and fuel cell using the fuel cell separator
JP2004103494A (en) Fuel cell separator, its manufacturing method and fuel cell using the fuel cell separator
JP3413368B2 (en) Fuel cell, fuel cell separator and method of manufacturing the same
JP2001031880A (en) Heat radiating molding material
JP6606908B2 (en) Resin compound for Sm-based bonded magnet, bonded magnet using the same, and method for producing Sm-based bonded magnet
Liu et al. Degradable Schiff base benzoxazine thermosets with high glass transition temperature and its high‐performance epoxy alloy: Synthesis and properties
TWI404740B (en) Isolation material for fuel cell and manufacturing method thereof
JP3372220B2 (en) Fuel cell, fuel cell separator and method of manufacturing the same
JP2000048830A (en) Fuel cell, separator for fuel cell and manufacture thereof
JP2000243410A (en) Separator for fuel cell and its manufacture and fuel cell using the separator
JP2001085030A (en) Manufacture of separator for fuel cell, separator for fuel cell obtained in this manufacture and fuel cell using separator for fuel cell
JP2001076739A (en) Separator for phosphoric acid fuel cell and fuel cell using it
JP2001122663A (en) Radiating molding
JP3705211B2 (en) Carbonaceous powder molding material and carbonaceous molded product
JP2005068417A (en) Thermosetting resin composition and its production process, and process for producing molded product
JP2003213137A (en) Thermosetting resin molding material and molded article obtained by molding the same
JP2009158118A (en) Separator material for solid polymer fuel battery and manufacturing method for the separator material
JP2008140668A (en) Separator material for polymer electrolyte fuel cell and its manufacturing method
JP4129508B2 (en) Refractory binder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090709