JP2001076663A - Electron radiating device used for photoelectron spectrometer - Google Patents

Electron radiating device used for photoelectron spectrometer

Info

Publication number
JP2001076663A
JP2001076663A JP24814299A JP24814299A JP2001076663A JP 2001076663 A JP2001076663 A JP 2001076663A JP 24814299 A JP24814299 A JP 24814299A JP 24814299 A JP24814299 A JP 24814299A JP 2001076663 A JP2001076663 A JP 2001076663A
Authority
JP
Japan
Prior art keywords
grid
electrode
filament
electrons
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24814299A
Other languages
Japanese (ja)
Other versions
JP3950593B2 (en
Inventor
Masato Kudou
政都 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP24814299A priority Critical patent/JP3950593B2/en
Publication of JP2001076663A publication Critical patent/JP2001076663A/en
Application granted granted Critical
Publication of JP3950593B2 publication Critical patent/JP3950593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To radiate a large quantity of low-energy electrons to a sample at uniform density by arranging an earth electrode protrusively from an extracting electrode on the outside of the extracting electrode, so that the electrons extracted by the extraction electrode are decelerated to reach the sample by the electric field formed in cooperation with the extraction electrode. SOLUTION: A filament 2 arranged around a grid 1 is excited and heated, and the thermoelectrons generated from the filament 2 are accelerated toward the grid 1. Since a repeller electrode 3 having the same potential as that of the filament 2 is arranged on the outside of the filament 2, the electrons passing through the grid 1 are again pushed back to the grid 1 side, thereby the space with a high electron density is formed in the cylindrical grid 1 to serve as an electron source. An electron beam from the electron source is generated by extracting the electrons existing in the grid 1 with the electric field formed by the extraction electrode 4, repeller electrode 3, and the grid 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、X線を一次励起
源とする光電子分光装置におけるサンプル帯電中和用の
電子照射装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron irradiation device for neutralizing a sample in a photoelectron spectrometer using X-rays as a primary excitation source.

【0002】[0002]

【従来の技術】X線を一次励起源とする光電子分光装置
において、サンプルが絶縁物の場合、サンプルから光電
子が放出されるためサンプル表面が正に帯電して分析に
支障をきたすことが多い。これを中和して緩和するため
に、低エネルギー電子を照射する手法が知られている。
2. Description of the Related Art In a photoelectron spectroscopy apparatus using an X-ray as a primary excitation source, when a sample is an insulator, photoelectrons are emitted from the sample, and the sample surface is positively charged, which often hinders analysis. In order to neutralize and alleviate this, a method of irradiating low energy electrons is known.

【0003】このような目的に使用される電子照射装置
には、(1)照射される電子の量ができるだけ多いこ
と、(2)その電子エネルギーができるだけ低いこと、
(3)電子がサンプル表面上の大きな領域にできるだけ
均一に照射されること、などの性能が要求される。特に
(3)項の性能は、X線のサンプル上での照射面積が大
きい場合に重要である。
[0003] Electron irradiation devices used for such purposes include (1) that the amount of irradiated electrons is as large as possible, (2) that the electron energy is as low as possible,
(3) It is required to have a performance such that the large area on the sample surface is irradiated with electrons as uniformly as possible. In particular, the performance of the item (3) is important when the irradiation area of the X-ray on the sample is large.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
光電子分光装置において帯電中和用として用いる電子照
射装置では、上記条件を全て満たすものはなく、したが
って十分に帯電を緩和することができず、分析に支障を
きたす場合が発生している。
However, none of the electron irradiators used for neutralizing charge in the conventional photoelectron spectroscopy satisfies all of the above conditions, so that the charge cannot be sufficiently alleviated. In some cases.

【0005】本発明は、従来の光電子分光装置に用いる
電子照射装置における上記問題点を解消するためになさ
れたもので、低エネルギー電子を大量に且つ均一密度で
サンプル上に照射できるようにした光電子分光装置用の
電子照射装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in the electron irradiation apparatus used in the conventional photoelectron spectroscopy apparatus, and is intended to irradiate a sample with a large amount of low energy electrons at a uniform density on a sample. An object of the present invention is to provide an electron irradiation device for a spectroscopic device.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
め、本発明は、メッシュからなる円筒状グリッドと、該
グリッドの外周囲に配置され該グリッドに対して負電圧
の印加されたフィラメントと、該フィラメントの外側に
配置され該フィラメントと同電位の負電圧の印加され
た、前記フィラメントから発生した熱電子を前記グリッ
ドの内部に溜め込ませるための円筒状リペラ電極と、該
リペラ電極の外側に配置され正電圧の印加された、前記
グリッドの内部に溜め込まれた電子を引き出すための円
筒状引出電極と、該引出電極と協働して形成する電場が
前記引出電極により引き出された電子をサンプルに減速
させて到達させる形態となるように、前記引出電極の外
側に該引出電極より突出させて配置したアース電極とで
光電子分光装置用の電子照射装置を構成するものであ
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a cylindrical grid made of a mesh, and a filament disposed around the grid and having a negative voltage applied to the grid. A cylindrical repeller electrode disposed outside the filament and having a negative voltage of the same potential as the filament applied thereto, for accumulating thermoelectrons generated from the filament inside the grid; and a repeller electrode outside the cylindrical repeller electrode. A cylindrical extraction electrode for extracting the electrons stored in the grid, which is disposed and to which a positive voltage is applied, and an electric field formed in cooperation with the extraction electrode is used to sample the electrons extracted by the extraction electrode. And a ground electrode protruding from the extraction electrode and arranged outside the extraction electrode so as to be decelerated to reach It constitutes a child irradiation device.

【0007】このように構成した電子照射装置において
は、電子源として点光源ではなく、グリッドの内部の一
定の大きさをもったポテンシャルの谷間に捕らえられ溜
め込まれた電子を利用するようになっており、この溜め
込まれた電子を引出電極により引き出して減速させてサ
ンプル面に照射させ、その際、電子が逆戻りしたり発散
したりすることがないような電場(電位分布)を実現す
るように、アース電極を配置しているので、数eV以下
の低エネルギー電子を、大量に且つ均一密度でサンプル
上に照射することが可能となる。
In the electron irradiating apparatus having the above-mentioned structure, not a point light source but an electron trapped and accumulated in a potential valley having a certain size inside the grid is used as an electron source. The accumulated electrons are extracted by an extraction electrode, decelerated, and irradiated onto the sample surface. At that time, an electric field (potential distribution) is realized so that the electrons do not return or diverge. Since the ground electrode is provided, it is possible to irradiate the sample with a large amount of low-energy electrons of several eV or less at a uniform density.

【0008】[0008]

【発明の実施の形態】次に、実施の形態について説明す
る。図1は、本発明に係る光電子分光装置に用いる電子
照射装置の実施の形態を示す断面図である。図1におい
て、1はメッシュで円筒状に作製されたグリッド、2は
該グリッド1の外周に離間して環状に配置されたフィラ
メント、3はフィラメント2の外側に配置された円筒状
のリペラ電極、4はリペラ電極3の外側へ配置された円
筒状のレンズ電極兼用の引出電極、5は更に引出電極4
の外側に配置された円筒状のアース電極である。そし
て、上記各構成部材はそれぞれインシュレータ6に保持
されていて電流導入端子7に接続されるようになってい
る。なお、8は真空容器の取付けポート、9はサンプル
を示している。
Next, an embodiment will be described. FIG. 1 is a sectional view showing an embodiment of an electron irradiation device used for a photoelectron spectroscopy device according to the present invention. In FIG. 1, reference numeral 1 denotes a grid formed in a cylindrical shape with a mesh, 2 denotes a filament arranged annularly apart from the outer periphery of the grid 1, 3 denotes a cylindrical repeller electrode disposed outside the filament 2, Reference numeral 4 denotes a cylindrical extraction electrode which also serves as a lens electrode and is disposed outside the repeller electrode 3. Reference numeral 4 denotes a further extraction electrode 4.
Is a cylindrical ground electrode arranged outside the. Each of the constituent members is held by the insulator 6 and connected to the current introduction terminal 7. In addition, 8 is a mounting port of the vacuum container, and 9 is a sample.

【0009】そして、このような構成の電子照射装置に
は、図2に示すように動作用の電源等が接続されてい
る。すなわち、フィラメント2にはフィラメント加熱電
源11が接続されており、グリッド1にはフィラメント2
から発生した熱電子を効果的にグリッド側に引き込むた
めの、数10V〜 200V程度(好ましくは 150V)の固定
電源12の正端子が接続されており、グリッド1のアース
に対する電位が電子の加速電圧となっている。そして、
最終的にグリッド1に流れ込む電子の電流がエミッショ
ン電流と呼ばれるが、定エミッション回路を用いフィラ
メント2に流す加熱電流は、上記エミッション電流が一
定になるようにフィードバック制御されている。
[0009] As shown in FIG. 2, an operating power supply and the like are connected to the electron irradiation apparatus having such a configuration. That is, the filament heating power supply 11 is connected to the filament 2, and the filament 2 is connected to the grid 1.
A positive terminal of a fixed power supply 12 of several tens of volts to 200 volts (preferably 150 volts) for effectively drawing thermoelectrons generated from the grid side to the grid side is connected. It has become. And
The current of the electrons finally flowing into the grid 1 is called an emission current. The heating current flowing through the filament 2 using a constant emission circuit is feedback-controlled so that the emission current is constant.

【0010】定エミッション回路は、フィラメント2と
グリッド用固定電源12の負端子との間に接続したエミッ
ション電流検出抵抗13と、固定電源12とエミッション電
流検出抵抗13との接続点を一方の入力端子に接続し、他
方の入力端子には、負端子をフィラメント2に接続した
エミッション電流設定電源14の正端子を接続した差動ア
ンプ15とを備え、差動アンプ15の出力でフィラメント加
熱電源11を制御するように構成されている。なお、エミ
ッション電流検出抵抗13とフィラメント2との間にはエ
ミッション電流モニタ用メータ16が接続されている。
The constant emission circuit includes an emission current detection resistor 13 connected between the filament 2 and the negative terminal of the fixed power supply 12 for grid, and a connection point between the fixed power supply 12 and the emission current detection resistor 13 connected to one input terminal. The other input terminal is provided with a differential amplifier 15 having a negative terminal connected to the filament 2 and a positive terminal of an emission current setting power supply 14 connected to the filament 2. An output of the differential amplifier 15 is used to connect the filament heating power supply 11 to the filament heating power supply 11. It is configured to control. An emission current monitoring meter 16 is connected between the emission current detection resistor 13 and the filament 2.

【0011】また、フィラメント2とリペラ電極3に
は、正端子をアースに接続した加速電圧設定電源17の負
端子が接続されており、引出電極4には、負端子をアー
スに接続した引出電圧設定電源18の正端子が接続されて
いる。
The filament 2 and the repeller electrode 3 are connected to a negative terminal of an accelerating voltage setting power source 17 having a positive terminal connected to the ground, and the extraction electrode 4 is connected to an extraction voltage having a negative terminal connected to the ground. The positive terminal of the setting power supply 18 is connected.

【0012】次に、このように構成されている電子照射
装置の動作について説明する。グリッド1の周囲に配置
されたフィラメント2を通電加熱し、フィラメント2か
ら発生した熱電子をグリッド方向に加速する。またフィ
ラメント2の外側にはフィラメント2と同電位のリペラ
電極3が配置されているため、グリッド1をすり抜けて
来る電子は再びグリッド側へ押し返される。このように
して、円筒状グリッド1の内部に電子密度の高い空間
(電子溜め)が生成され、これが電子源となる。この方
式は、基本的にはB−Aタイプと呼ばれる真空ゲージの
イオン化室と同じ動作原理のものであるが、本実施の形
態においてはイオン化ではなく電子の溜めを形成するこ
とが目的になっている。電子溜めの大きさは直径10mm程
度とするのが好ましい。この電子源から発生する電子線
は、フィラメント形状の影響を受けることがなく均一な
電子密度を有するようになるので、サンプル面上での電
子照射面積が大きく、且つ電流密度が均一になる。
Next, the operation of the thus configured electron irradiation apparatus will be described. The filament 2 arranged around the grid 1 is energized and heated, and the thermoelectrons generated from the filament 2 are accelerated in the grid direction. In addition, since the repeller electrode 3 having the same potential as the filament 2 is disposed outside the filament 2, electrons passing through the grid 1 are pushed back to the grid side. In this way, a space (electron reservoir) having a high electron density is generated inside the cylindrical grid 1 and serves as an electron source. This method is basically based on the same operation principle as a vacuum gauge ionization chamber called BA type. However, in the present embodiment, the purpose is not to ionize but to form a reservoir of electrons. I have. The size of the electron reservoir is preferably about 10 mm in diameter. Since the electron beam generated from this electron source has a uniform electron density without being affected by the filament shape, the electron irradiation area on the sample surface is large and the current density is uniform.

【0013】電子源からの電子線は、引出電極4,リペ
ラ電極3及びグリッド1の3者が形成する電場によっ
て、グリッド内部に存在する電子を引き出すことによ
り、発生させる。引き出し部から発生した電子線に対す
るレンズ作用は、引出電極4とアース電極5とによって
形成される電場によって実現される。これにより、数e
V程度の極めて低エネルギーの電子でも、ある程度の集
束性を保ったままサンプルまで到達させることができ
る。
An electron beam from the electron source is generated by extracting electrons existing inside the grid by an electric field formed by the extraction electrode 4, the repeller electrode 3 and the grid 1. The lens action on the electron beam generated from the extraction portion is realized by an electric field formed by the extraction electrode 4 and the ground electrode 5. This gives the number e
Even a very low energy electron of about V can reach the sample while maintaining a certain degree of convergence.

【0014】本件発明者の検討によると、作動距離(電
子照射装置のアース電極の先端からサンプルまでの距
離)にもよるが、 100mm程度の作動距離の場合には、引
出電極4のサンプル側の端に対して10mm程度まで突出す
るようにアース電極5を長くすることにより、レンズ部
で発生している電場がレンズ部だけにとどまらずにサン
プル付近まで滲み出して行くようになり、図3に示すよ
うに、極めて低いエネルギーの電子でも、引き出された
電子21はサンプル面まで到達できる。これに対し、アー
ス電極5の長さをあまり長くすると、図4に示すよう
に、極めてエネルギーの低い電子22はサンプル面に達す
ることができず、引き返してしまうことになる。
According to the study of the present inventor, although it depends on the working distance (the distance from the tip of the ground electrode of the electron irradiation device to the sample), in the case of a working distance of about 100 mm, the extraction electrode 4 on the sample side is not used. By lengthening the earth electrode 5 so that it protrudes to about 10 mm from the end, the electric field generated in the lens portion oozes out to the vicinity of the sample, not only in the lens portion, but as shown in FIG. As shown, even with very low energy electrons, the extracted electrons 21 can reach the sample surface. On the other hand, if the length of the ground electrode 5 is too long, as shown in FIG. 4, the electrons 22 with extremely low energy cannot reach the sample surface and return.

【0015】以上のように、本実施の形態によれば、円
筒状グリッド1の内部に形成される電子溜めを電子源と
して、点光源ではなく、一定の大きさをもつポテンシャ
ル谷間に捕らえられている電子を利用する形態とし、ま
た高圧の印加された引出電極4、リペラ電極3及びグリ
ッド1で形成された電場による電子の引き出し機能と、
引出電極3とアース電極5とで形成される電場による電
子の減速機能とをもたせ、且つアース電極5の突出長さ
を電子がサンプル面に到達する前に逆戻りしたり発散し
たりすることがないような電位分布を実現するように
し、数eV以下の低エネルギー領域でも大きな電子流が
得られるように構成している。したがって、これにより
数eV以下の低エネルギー電子を、大量に且つ均一密度
でサンプル上に照射することができる。
As described above, according to the present embodiment, the electron reservoir formed inside the cylindrical grid 1 is used as an electron source, and is not a point light source but is caught in a potential valley having a certain size. And a function of extracting electrons by an electric field formed by the extraction electrode 4, the repeller electrode 3 and the grid 1 to which a high voltage is applied,
It has a function of decelerating electrons by an electric field formed by the extraction electrode 3 and the earth electrode 5 and does not return or diverge the projected length of the earth electrode 5 before the electrons reach the sample surface. Such a potential distribution is realized so that a large electron flow can be obtained even in a low energy region of several eV or less. Accordingly, the sample can be irradiated with a large amount of low-energy electrons of several eV or less at a uniform density.

【0016】[0016]

【発明の効果】以上実施の形態に基づいて説明したよう
に、本発明によれば、照射される電子の量ができるだけ
多く、その電子のエネルギーができるだけ低く、且つ電
子がサンプル表面上の大きな領域にできるだけ均一に照
射されるようにした電子照射装置を実現することがで
き、光電子分光装置で絶縁性のサンプルが正に帯電し分
析に支障を来すのを有効に防止することが可能となる。
As described above with reference to the embodiments, according to the present invention, the amount of the irradiated electrons is as large as possible, the energy of the electrons is as low as possible, and the electrons are in a large area on the sample surface. An electron irradiator that irradiates the sample as uniformly as possible can be realized, and it is possible to effectively prevent the insulating sample from being positively charged by the photoelectron spectroscopy device and disturbing the analysis. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光電子分光装置用の電子照射装置
の実施の形態を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of an electron irradiation device for a photoelectron spectroscopy device according to the present invention.

【図2】図1に示した実施の形態における各部への動作
用電源の接続態様を示す回路構成図である。
FIG. 2 is a circuit configuration diagram showing a connection mode of an operation power supply to each unit in the embodiment shown in FIG.

【図3】図1に示した実施の形態に係る電子照射装置か
ら引き出された電子がサンプル面に到達する態様を示す
図である。
FIG. 3 is a diagram showing a mode in which electrons extracted from the electron irradiation device according to the embodiment shown in FIG. 1 reach a sample surface.

【図4】アース電極を長く形成した場合に、引き出され
た電子がサンプル面まで到達できず、途中で引き返して
しまう態様を示す図である。
FIG. 4 is a diagram showing a mode in which, when a long ground electrode is formed, extracted electrons cannot reach the sample surface and return in the middle.

【符号の説明】[Explanation of symbols]

1 グリッド 2 フィラメント 3 リペラ電極 4 引出電極 5 アース電極 6 インシュレータ 7 電流導入端子 8 真空容器の取付けポート 9 サンプル 11 フィラメント加熱電源 12 グリッド用固定電源 13 エミッション電流検出抵抗 14 エミッション電流設定電源 15 差動アンプ 16 エミッション電流モニタ用メータ 17 加速電圧設定電源 18 引出電圧設定電源 Reference Signs List 1 grid 2 filament 3 repeller electrode 4 extraction electrode 5 ground electrode 6 insulator 7 current introduction terminal 8 vacuum vessel mounting port 9 sample 11 filament heating power supply 12 grid fixed power supply 13 emission current detection resistor 14 emission current setting power supply 15 differential amplifier 16 Emission current monitor meter 17 Acceleration voltage setting power supply 18 Extraction voltage setting power supply

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 メッシュからなる円筒状グリッドと、該
グリッドの外周囲に配置され該グリッドに対して負電圧
の印加されたフィラメントと、該フィラメントの外側に
配置され該フィラメントと同電位の負電圧の印加され
た、前記フィラメントから発生した熱電子を前記グリッ
ドの内部に溜め込ませるための円筒状リペラ電極と、該
リペラ電極の外側に配置され正電圧の印加された、前記
グリッドの内部に溜め込まれた電子を引き出すための円
筒状引出電極と、該引出電極と協働して形成する電場が
前記引出電極により引き出された電子をサンプルに減速
させて到達させる形態となるように、前記引出電極の外
側に該引出電極より突出させて配置したアース電極とで
構成したことを特徴とする光電子分光装置に用いる電子
照射装置
1. A cylindrical grid formed of a mesh, a filament disposed around the grid and applied with a negative voltage to the grid, and a negative voltage disposed outside the filament and having the same potential as the filament. And a cylindrical repeller electrode for storing thermoelectrons generated from the filament inside the grid, and a thermoelectric electron stored outside the repeller electrode and applied with a positive voltage. A cylindrical extraction electrode for extracting the extracted electrons, so that an electric field formed in cooperation with the extraction electrode has a form in which the electrons extracted by the extraction electrode are decelerated and reach the sample. An electron irradiation device for use in a photoelectron spectroscopy device, comprising: an earth electrode disposed outside and protruding from the extraction electrode.
JP24814299A 1999-09-02 1999-09-02 Electron irradiation device Expired - Fee Related JP3950593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24814299A JP3950593B2 (en) 1999-09-02 1999-09-02 Electron irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24814299A JP3950593B2 (en) 1999-09-02 1999-09-02 Electron irradiation device

Publications (2)

Publication Number Publication Date
JP2001076663A true JP2001076663A (en) 2001-03-23
JP3950593B2 JP3950593B2 (en) 2007-08-01

Family

ID=17173859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24814299A Expired - Fee Related JP3950593B2 (en) 1999-09-02 1999-09-02 Electron irradiation device

Country Status (1)

Country Link
JP (1) JP3950593B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325846A (en) * 1989-06-20 1991-02-04 Fujitsu Ltd Charge neutralization device in ion beam irradiation device
JPH03194838A (en) * 1989-12-22 1991-08-26 Sumitomo Metal Ind Ltd Antistatic method and antistatic device used in same method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325846A (en) * 1989-06-20 1991-02-04 Fujitsu Ltd Charge neutralization device in ion beam irradiation device
JPH03194838A (en) * 1989-12-22 1991-08-26 Sumitomo Metal Ind Ltd Antistatic method and antistatic device used in same method

Also Published As

Publication number Publication date
JP3950593B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
US6259765B1 (en) X-ray tube comprising an electron source with microtips and magnetic guiding means
US6661876B2 (en) Mobile miniature X-ray source
US8592779B2 (en) Ionizing device
JP3616714B2 (en) Apparatus for setting a predetermined surface potential on an insulating sample in an analytical instrument
Chang et al. Electron beam emission from a diamond-amplifier cathode
US9679736B2 (en) Encapsulated structure for X-ray generator with cold cathode and method of vacuuming the same
US8081734B2 (en) Miniature, low-power X-ray tube using a microchannel electron generator electron source
US10614994B2 (en) Electron microscope
DE69913985D1 (en) X-RAY TUBE WITH VARIABLE PICTURE SIZE
JP3810656B2 (en) X-ray source
JP3156763B2 (en) Electrode voltage application method and apparatus for cold cathode mounted electron tube
US9928985B2 (en) Robust emitter for minimizing damage from ion bombardment
US7728520B2 (en) Optical modulator of electron beam
JP2001076663A (en) Electron radiating device used for photoelectron spectrometer
Dworetsky et al. Electron bombardment ion source for low energy beams
JPH0968473A (en) Thermal cathode type vacuum gage
JP2002022899A (en) Electron beam irradiator
JP3147927B2 (en) X-ray generator
JP3535402B2 (en) Ion beam equipment
JPH0665200B2 (en) High-speed atomic beam source device
RU2716825C1 (en) Device and method for formation of multicharged ion beams
KR101869753B1 (en) X-ray tube having electron beam control means
JPH05205691A (en) Ion implantation device
JPH1186778A (en) Ionization apparatus
JP2550033B2 (en) Charged particle attraction mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent or registration of utility model

Ref document number: 3950593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees