JP2001074850A - Electric surveying method using non-polarizing electrode - Google Patents

Electric surveying method using non-polarizing electrode

Info

Publication number
JP2001074850A
JP2001074850A JP25515299A JP25515299A JP2001074850A JP 2001074850 A JP2001074850 A JP 2001074850A JP 25515299 A JP25515299 A JP 25515299A JP 25515299 A JP25515299 A JP 25515299A JP 2001074850 A JP2001074850 A JP 2001074850A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
potential
ground
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25515299A
Other languages
Japanese (ja)
Inventor
Tetsuma Toshioka
徹馬 利岡
Takeshi Sakurai
健 櫻井
Shichiro Aihara
七郎 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oyo Corp
Original Assignee
Oyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oyo Corp filed Critical Oyo Corp
Priority to JP25515299A priority Critical patent/JP2001074850A/en
Publication of JP2001074850A publication Critical patent/JP2001074850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To make an electrode thin, lightweight, easy to handle, excellent in mass-productivity, and relatively inexpensive, excellent in workability in electrode installation, permitting a precise measurement. SOLUTION: Non-polarizing electrodes 44 each having a sheet type electroconductive polymeric gel body jointed with an electrode element are arranged so that the gel bodies are stuck on a ground 46, and the non-polarizing electrodes detect potentials to analyze the ground structure. For example, non- polarizing electrodes having sheet type conductive macromolecular gel bodies jointed with silver/silver-oxide layers of electrode elements are dispersedly arranged along a measurement line as current electrodes C1 and C2 and potential electrodes P1, P2..., so that the electroconductive polymeric gel bodies are stuck on the ground, and alternate DC currents are supplied from the current electrodes and the potential electrodes detect potentials and their variations to find the specific resistance and charging rate, and the ground structure is analyzed based on them.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無分極電極を用い
て地盤の電気的性質を探査する方法に関し、更に詳しく
述べると、電極エレメントにシート状の導電性高分子ゲ
ル体を接合した構造の無分極電極を用いる電気探査方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for exploring the electrical properties of ground using a non-polarized electrode, and more particularly, to a method for bonding a sheet-like conductive polymer gel to an electrode element. The present invention relates to an electric prospecting method using a non-polarized electrode.

【0002】[0002]

【従来の技術】物理現象を利用して地下構造を探査する
技術の一つとして、地盤の電気的性質に着目して測定す
る電気探査法がある。この電気探査法では、電流の供給
あるいは電位の測定のために、地盤あるいは岩盤に電極
を設置する必要がある。この種の電極としては、通常、
金属電極(ステンレス鋼製あるいは銅製の棒)が用いら
れている。
2. Description of the Related Art As one of techniques for exploring an underground structure using physical phenomena, there is an electric exploration method in which measurement is performed by focusing on the electrical properties of the ground. In this electric prospecting method, it is necessary to install an electrode on the ground or rock for supplying current or measuring potential. This type of electrode is usually
Metal electrodes (rods made of stainless steel or copper) are used.

【0003】金属電極を地盤に打ち込むと、その表面は
地盤中の水分と接触する。地中の水は電解質イオンを含
んでいるため、イオン化傾向の差により、金属電極の表
面から地盤内に金属イオンが僅かに溶解して電極内部に
は電子が残る。このため地盤内では正の電荷が、電極内
では負の電荷がそれぞれ増加して、地盤と電極との間に
電位差(単極電位)が発生する。この単極電位は、地中
の水のイオン濃度によって大きく変化し、水のイオン濃
度は場所により異なるため、単極電位は電極毎に異な
る。更に金属電極2本を用いて直流電流を流すと、地盤
内の広い範囲でイオンの移動が起こる。即ち、陽イオン
は負極へ、陰イオンは正極へと移動し、電極の周囲に集
積する。すると、2本の電極の間に印加された電圧の大
部分は電極の周囲に分配されてしまう(電気化学的分
極)。このように分極が生じた状態では一定の電流を流
すことができず、正しい電位差を測定することができな
い。
When a metal electrode is driven into the ground, its surface comes into contact with moisture in the ground. Since water in the ground contains electrolyte ions, due to the difference in ionization tendency, the metal ions are slightly dissolved in the ground from the surface of the metal electrode, and electrons remain inside the electrode. Therefore, a positive charge increases in the ground and a negative charge increases in the electrode, and a potential difference (monopolar potential) is generated between the ground and the electrode. The unipolar potential varies greatly depending on the ion concentration of water in the ground, and the ion concentration of water varies from place to place. Further, when a direct current is passed using two metal electrodes, ions move in a wide area in the ground. That is, the cations move to the negative electrode and the anions move to the positive electrode, and accumulate around the electrodes. Then, most of the voltage applied between the two electrodes is distributed around the electrodes (electrochemical polarization). In such a state where polarization occurs, a constant current cannot flow, and a correct potential difference cannot be measured.

【0004】最近開発が進められているIP映像法は、
IP(誘導分極)法と比抵抗映像法とを組み合わせたも
ので、比抵抗と充電率の2種類の物理量を測定し解析す
る手法である。IP効果は分極性の物質を含む地盤で顕
著に現れ、そのため、例えば粘土化した岩石を含む断層
破砕帯の位置の推定に有効であると考えられる。また全
体に高比抵抗あるいは低比抵抗のため、比抵抗だけでは
探査の難しい地盤でも充電率にコントラストがあれば詳
細な構造を探査できると期待されている。このような電
気探査では、電極自体が分極効果を生じると、地盤のみ
の分極効果を測定することができない。その他に、無分
極電極が必要な探査手法としては、MT法(地磁気地電
流法:地盤に電磁波が入射するときに誘導される電場と
地下の比抵抗分布を求める手法)あるいは自然電位法な
どがある。
[0004] The IP video method which has been recently developed is
It combines the IP (inductive polarization) method and the specific resistance imaging method, and is a method of measuring and analyzing two kinds of physical quantities of specific resistance and charging rate. The IP effect appears remarkably on the ground containing a polarizable substance, and is therefore considered to be effective in estimating the position of a fault crush zone including, for example, clay-rock. Also, due to the high specific resistance or low specific resistance as a whole, it is expected that a detailed structure can be explored if there is a contrast in the charging rate even in the ground where it is difficult to search only with specific resistance. In such an electric survey, if the electrode itself produces a polarization effect, the polarization effect of only the ground cannot be measured. In addition, as an exploration method that requires a non-polarized electrode, the MT method (geomagnetic earth current method: a method of obtaining an electric field induced when electromagnetic waves enter the ground and a specific resistance distribution underground) or a self-potential method is used. is there.

【0005】そのため、電流供給時に分極が生じず、且
つ単極電位の影響も小さい無分極電極が工夫され使用さ
れている。従来、無分極電極としては、素焼ポット内に
銅電極を挿入し硫酸銅を注入する構成があったが、液体
を使用しているために、また素焼きポットは強度的に問
題があるために、極めて取り扱い難い。そこで最近で
は、無分極電極として鉛−塩化鉛電極が開発されてい
る。これは、例えば下半分が螺旋状をなしている鉛棒を
用い、その螺旋状部分の周囲を石膏と塩化鉛との混合物
で円柱状に固めた構造であり、例えば、直径10cm、高
さ12cmといった大きさである。鉛棒の代わりに鉛板を
用いる構造もある。この種の無電極分極を設置するに
は、地盤を少し掘って水を入れ、どろどろの状態にして
埋設する。
For this reason, non-polarized electrodes which are not polarized when current is supplied and are less affected by the unipolar potential have been devised and used. Conventionally, as a non-polarized electrode, there has been a configuration in which a copper electrode is inserted into a unglazed pot and copper sulfate is injected, but since a liquid is used, and since the unglazed pot has a problem in strength, Extremely difficult to handle. Therefore, recently, a lead-lead chloride electrode has been developed as a non-polarized electrode. This is a structure in which, for example, a lead rod having a spiral shape in the lower half is used, and the periphery of the spiral portion is solidified in a columnar shape with a mixture of gypsum and lead chloride. For example, the diameter is 10 cm and the height is 12 cm. It is the size. There is also a structure using a lead plate instead of a lead bar. In order to install this type of electrodeless polarization, the ground is dug a little, filled with water, buried in a muddy state.

【0006】[0006]

【発明が解決しようとする課題】しかし、このような鉛
−塩化鉛電極も、重く(約1kg)取り扱い難いため、多
数個設置するには多くの労力を必要とする。また、石膏
が乾燥すると性能が低下するため、使用に際しては予め
食塩水に浸しておくことで使用可能な状態にしておく必
要があるが、長期間にわたって食塩水に浸しておくと石
膏がとけて薄くなり、鉛電極が露出してしまう。更に、
塩化鉛はかなり高価なため、それを多量に必要とする電
極も必然的に高価なものとなる。その上、電極の保管な
どにも多くの費用がかかるし、量産性に乏しい。
However, since such a lead-lead chloride electrode is also heavy (about 1 kg) and difficult to handle, it takes a lot of labor to install a large number of such electrodes. In addition, since the performance decreases when the gypsum dries, it is necessary to make the gypsum ready for use by dipping it in a saline solution before use. It becomes thin and the lead electrode is exposed. Furthermore,
Since lead chloride is quite expensive, electrodes that require large amounts of it are necessarily expensive. In addition, much cost is required for storage of the electrodes and the like, and mass productivity is poor.

【0007】また石膏を用いているため、使用する度に
石膏が溶け出し電極の破損が進む。そのため、3箇月程
度使用する度にメンテナンスが必要となり、その修理に
時間がかかる。その際、鉛の構造の違い、石膏と塩化鉛
の組成比の違い、あるいは電極の大きさの違いなどで、
電極性能が異なるため、補修などによって個体差が大き
くなる。そのため、電気探査の測定値にばらつきが生じ
る。
[0007] Further, since gypsum is used, the gypsum melts out each time it is used, and the electrode is damaged. Therefore, maintenance is required every three months of use, and the repair takes time. At that time, due to differences in the structure of lead, differences in the composition ratio of gypsum and lead chloride, or differences in the size of the electrodes,
Since the electrode performance is different, individual differences increase due to repair or the like. As a result, the measured values of the electric survey vary.

【0008】本発明の目的は、無分極電極の設置作業性
が良好で、安価に且つ精度よく測定が行える電気探査方
法を提供することである。
[0008] An object of the present invention is to provide an electric exploration method in which the work of installing a non-polarized electrode is good, and inexpensive and accurate measurement can be performed.

【0009】[0009]

【課題を解決するための手段】本発明は、電極エレメン
トにシート状の導電性高分子ゲル体を接合した無分極電
極を、複数個、前記導電性高分子ゲル体が地盤に粘着す
るように配置し、該無分極電極によって電位を検出する
ことにより地盤構造を解析する電気探査方法である。
According to the present invention, a plurality of non-polarized electrodes each comprising a sheet-shaped conductive polymer gel joined to an electrode element, such that the conductive polymer gel adheres to the ground. This is an electrical exploration method for analyzing the ground structure by arranging and detecting a potential with the non-polarized electrode.

【0010】典型的には本発明は、電極エレメントの銀
/塩化銀の層にシート状の導電性高分子ゲル体を接合し
た無分極電極を、複数個、前記導電性高分子ゲル体が地
盤に粘着するように電流電極及び電位電極として測線上
に沿って分散配置し、電流電極から交替直流を供給し、
電位電極で電位及びその変化を検出することにより比抵
抗及び充電率を求め、それらの計測値から地盤構造を解
析する電気探査方法である。より好ましくは、地盤の電
極設置位置近傍に予め水を散布して湿らせておき、その
湿った地盤表面に無分極電極を粘着し、各無分極電極と
電気ケーブルとの金属製接続部に水が浸透しない状態を
保ちつつ、電流電極から交替直流を供給し、電位電極で
電位及びその変化を検出する。
Typically, the present invention provides a plurality of non-polarized electrodes in which a sheet-like conductive polymer gel is bonded to a silver / silver chloride layer of an electrode element, and the conductive polymer gel is provided on the ground. Distributed along the measurement line as a current electrode and a potential electrode so as to stick to, supply alternating DC from the current electrode,
This is an electrical exploration method in which a specific resistance and a charging rate are obtained by detecting a potential and its change with a potential electrode, and the ground structure is analyzed from the measured values. More preferably, water is sprayed in advance in the vicinity of the electrode installation position on the ground and moistened, non-polarized electrodes are adhered to the moist ground surface, and water is applied to the metal connection between each non-polarized electrode and the electric cable. While maintaining a state in which no permeation occurs, an alternating direct current is supplied from the current electrode, and the potential and its change are detected by the potential electrode.

【0011】本発明で電極として用いる導電性高分子ゲ
ル体は、イオン伝導性によって電気を安定に伝えること
のできる弾力性を有するハイドロゲル体である。これ
は、親水性ポリマーからなる3次元のポリマーネットワ
ーク中に電解質中性塩類を含む親水系溶媒を保持した形
態であり、両者の相互作用によって高イオン導電性能を
呈する構造としたものである。
The conductive polymer gel used as an electrode in the present invention is an elastic hydrogel that can stably transmit electricity by ionic conductivity. This is a form in which a hydrophilic solvent containing an electrolyte neutral salt is held in a three-dimensional polymer network made of a hydrophilic polymer, and has a structure exhibiting high ionic conductivity due to the interaction between the two.

【0012】まず予備実験として、電極エレメントに導
電性高分子ゲル体を接合した無分極電極(以下、「導電
性高分子ゲル体電極」という)と、鉛−塩化鉛からなる
従来構造の無分極電極(以下、「鉛−塩化鉛電極」とい
う)とについて、自然電位、接地抵抗、分極の効果に関
する比較実験を行った。なお、導電性高分子ゲル体電極
は、厚さ約1mm、直径8cmφであり、鉛−塩化鉛電極
は、厚さ約5cm、直径8cmφである。
First, as a preliminary experiment, a non-polarized electrode in which a conductive polymer gel is bonded to an electrode element (hereinafter referred to as a “conductive polymer gel electrode”) and a non-polarized electrode having a conventional structure made of lead-lead chloride. A comparison experiment was performed on the effect of the natural potential, the ground resistance, and the polarization with respect to an electrode (hereinafter, referred to as a “lead-lead chloride electrode”). The conductive polymer gel electrode has a thickness of about 1 mm and a diameter of 8 cmφ, and the lead-lead chloride electrode has a thickness of about 5 cm and a diameter of 8 cmφ.

【0013】(自然電位)土層に深さ3cm、直径30cm
程度の水たまりを作り、電極間隔を10cmに設定して2
個の電極を設置し、その間に発生する電位差をデジタル
ボルトメータで測定した。測定結果は次の通りである。 導電性高分子ゲル体電極…電位差:0.37mV 鉛−塩化鉛電極 …電位差:0.66mV もし、電極に個体差がなければ、その間に発生する自然
電位は0mVになるはずである。僅かな電位差が生じた
が、いずれも十分に小さく且つ安定した値であった。因
みに、ステンレス電極と銅電極についても、同様の実験
を行ったところ、分極の影響が現れて変動が大きく、測
定不可能であった。
(Natural potential) 3 cm deep and 30 cm in diameter in the soil layer
Make a puddle of the size, set the electrode spacing to 10 cm
Each electrode was set, and a potential difference generated between the electrodes was measured with a digital voltmeter. The measurement results are as follows. Conductive polymer gel electrode Potential difference: 0.37 mV Lead-lead chloride electrode Potential difference: 0.66 mV If there is no individual difference between the electrodes, the spontaneous potential generated between them should be 0 mV. Although a slight potential difference occurred, each was a sufficiently small and stable value. By the way, when the same experiment was performed for the stainless steel electrode and the copper electrode, the influence of the polarization appeared, the fluctuation was large, and the measurement was impossible.

【0014】(接地抵抗)接地抵抗の測定にはIP映像
法の測定器を使用した。結果は次の通りである。 導電性高分子ゲル体電極…接地抵抗:0.4kΩ 鉛−塩化鉛電極 …接地抵抗:0.2kΩ この結果から、同一直径で比較すると、鉛−塩化鉛電極
の方が接地抵抗が若干小さい。しかし、導電性高分子ゲ
ル体電極は薄く軽量であるので、寸法(直径)を大きく
することで同等以下の接地抵抗を実現することは十分可
能である。
(Grounding Resistance) A measuring instrument of the IP imaging method was used for measuring the grounding resistance. The results are as follows. Conductive polymer gel electrode: ground resistance: 0.4 kΩ Lead-lead chloride electrode: ground resistance: 0.2 kΩ From these results, the ground resistance of the lead-lead chloride electrode is slightly smaller than that of the same diameter. However, since the conductive polymer gel electrode is thin and lightweight, it is sufficiently possible to realize the same or lower ground resistance by increasing the size (diameter).

【0015】(分極効果)電極間に電流値200mA、
周期4秒のパルス状交替直流(正負の極性の切り替えの
間に電流が流れない区間がある波形)を供給し、電流波
形をモニタすることによって分極の効果を調査した。分
極が大きいと、コンデンサのように、電流を切ったあと
に多くの電荷を放出するため、電荷の放出の少ないこと
が分極効果が小さいことを示している。測定結果を図1
に示す。図1で実線(導電性高分子ゲル体電極の2区間
移動平均)と破線(鉛−塩化鉛電極の2区間移動平均)
との比較から、導電性高分子ゲル体電極の方が、速やか
に0に戻っていることが分かり、若干ではあるが優れて
いることが確認された。
(Polarization effect) A current value between electrodes of 200 mA,
The effect of polarization was investigated by supplying a pulse-like alternating direct current (a waveform having a section where current does not flow during switching between positive and negative polarities) with a period of 4 seconds and monitoring the current waveform. If the polarization is large, a large amount of electric charge is released after the current is cut off, as in a capacitor. Therefore, a small amount of electric charge indicates that the polarization effect is small. Figure 1 shows the measurement results
Shown in In FIG. 1, a solid line (moving average of two sections of the conductive polymer gel electrode) and a broken line (moving average of two sections of the lead-lead chloride electrode)
From the comparison with the above, it was found that the conductive polymer gel electrode quickly returned to 0, and it was confirmed that the electrode was slightly excellent.

【0016】これらのことから、電気的特性の面におい
て、導電性高分子ゲル体電極は、鉛−塩化鉛電極に代わ
る無分極電極として十分使用可能であると評価された。
Based on these facts, it was evaluated that the conductive polymer gel electrode can be sufficiently used as a non-polarized electrode instead of the lead-lead chloride electrode in terms of electrical characteristics.

【0017】[0017]

【発明の実施の態様】本発明で使用する無分極電極は、
図2のAに示すように、電極エレメント10にシート状
の導電性高分子ゲル体12を接合した構造である。厚さ
100μm程度で直径約10cmの円形の樹脂フィルム1
4の片面に、厚さ数〜十数μmの銀/塩化銀コーティン
グ層16を形成する。銀/塩化銀コーティング層16
は、例えば銀/塩化銀を含むインクを塗布し加熱乾燥す
ることで形成できる。その中央に穴を穿設し、該穴に銀
/塩化銀コーティング層16の形成面側から銀/塩化銀
コーティングした樹脂製のホック(オス型)18を挿入
し、反対面側からステンレス鋼製スナップ20を嵌めて
かしめることで電極エレメント10とする。この電極エ
レメント10の銀/塩化銀コーティング層16の形成面
に、シート状の導電性高分子ゲル体12を接合して無分
極電極22とする。実際には、取り扱い易くするため
に、導電性高分子ゲル体12の表面に易剥離性のセパレ
ートフィルム(図示せず)を貼り付けておき、使用時に
それを剥がして地盤面に設置するように構成するのが好
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The non-polarized electrode used in the present invention comprises:
As shown in FIG. 2A, a sheet-like conductive polymer gel body 12 is joined to an electrode element 10. A circular resin film 1 with a thickness of about 100 μm and a diameter of about 10 cm 1
On one side of No. 4, a silver / silver chloride coating layer 16 having a thickness of several to several tens of μm is formed. Silver / silver chloride coating layer 16
Can be formed, for example, by applying an ink containing silver / silver chloride and drying by heating. A hole is formed in the center of the hole, and a resin-made hook (male type) 18 coated with silver / silver chloride is inserted into the hole from the side on which the silver / silver chloride coating layer 16 is formed. The electrode element 10 is obtained by fitting and snapping the snap 20. A sheet-shaped conductive polymer gel body 12 is bonded to the surface of the electrode element 10 on which the silver / silver chloride coating layer 16 is formed, to form a non-polarized electrode 22. Actually, in order to make it easy to handle, an easily peelable separate film (not shown) is stuck on the surface of the conductive polymer gel body 12, and it is peeled off at the time of use so as to be placed on the ground surface. It is preferred to configure.

【0018】使用時には、図2のBに示すように、電気
ケーブル24を接続した雌ボタン26を、前記スナップ
20に嵌め込むことで電気的に接続する。雌ボタン26
は内部に金属製の嵌着部を有し、その外側を樹脂で覆っ
た構造であるが、前記スナップ20も金属製であるの
で、その部分が水に接触すると分極を引き起こす可能性
がある。そのような場合には、スナップ20と雌ボタン
26との間に別の薄い導電性高分子ゲルシート28を介
在させて嵌め込むと、簡単に防水構造になる。
In use, as shown in FIG. 2B, the female button 26 to which the electric cable 24 is connected is electrically connected to the snap 20 by being fitted into the snap 20. Female button 26
Has a metal fitting portion inside and has a structure in which the outside is covered with a resin. However, since the snap 20 is also made of metal, there is a possibility that polarization occurs when the snap portion contacts water. In such a case, if another thin conductive polymer gel sheet 28 is interposed between the snap 20 and the female button 26 and fitted, a waterproof structure can be easily obtained.

【0019】[0019]

【実施例】IP映像法では、地盤内の比抵抗分布と充電
率分布を測定する。地盤に電流を流すと地盤内部に電荷
が蓄えられる。電荷の蓄積が十分になされると電界は定
常状態となり、次に電流を急に切断するとその瞬間から
電荷の放出に伴う電流が流れる。地盤に流した電流を一
次電流、充電あるいは放電に伴って流れる電流を二次電
流といい、それぞれに起因する電位を一次電位、二次電
位という。加えられた電圧に対する放電の電圧の比が充
電率であり、IP効果を示している。なお比抵抗は、一
次電位と一次電流との比として求めることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the IP imaging method, a specific resistance distribution and a charging rate distribution in the ground are measured. When an electric current is applied to the ground, electric charges are stored inside the ground. When the electric charge is sufficiently accumulated, the electric field becomes a steady state, and when the current is suddenly cut off, a current accompanying the discharge of the electric current flows from that moment. The current that flows through the ground is called a primary current, the current that flows with charging or discharging is called a secondary current, and the potential resulting from each is called a primary potential and a secondary potential. The ratio of the voltage of the discharge to the applied voltage is the charge rate, indicating the IP effect. Note that the specific resistance can be obtained as a ratio between a primary potential and a primary current.

【0020】図3に示すような測定器配置で充電率の測
定を行った。一辺が10cmの正方形で深さ5cmの穴30
を4個作成し、それぞれの穴30に導電性高分子ゲル体
電極32を設置し、送信機34と受信機36を接続し
た。なお、電極と電気ケーブルとの接続部分を防水して
いる場合と防水していない場合を想定して、図4のAに
示すように単に導電性高分子ゲル体電極32を設置した
場合と、図4のBに示すように導電性高分子ゲル体電極
32が水没状態となるように配置した場合についても測
定した。測定は、送信周期4秒のパルス状交替直流を用
い、電流値は500mAとした。充電率のタイムウイン
ドウの定義を図5に示す。各タイムウインドウ毎の充電
率の変化を図6に示す。 電流・電位電極とも防水 電流電極のみ防水 電流・電位電極とも防水なし(水没) のいずれの状態の場合も一様に減衰する曲線となる。ま
た、、の順に、充電率の値が小さくなっている。
からの状態へ変化する場合より、からの状態へ
変化する場合の方が充電率の変化が大きい。このこと
は、充電率の測定の場合には、電流電極を防水すること
が重要であることを意味している。
The charging rate was measured with a measuring instrument arrangement as shown in FIG. A hole 30 with a side of 10cm and a depth of 5cm
Were formed, a conductive polymer gel electrode 32 was placed in each hole 30, and a transmitter 34 and a receiver 36 were connected. In addition, assuming a case where the connection portion between the electrode and the electric cable is waterproof and a case where it is not waterproof, a case where the conductive polymer gel electrode 32 is simply installed as shown in FIG. As shown in FIG. 4B, the measurement was also performed when the conductive polymer gel electrode 32 was placed in a submerged state. The measurement was performed using a pulsed alternating DC having a transmission cycle of 4 seconds, and the current value was set to 500 mA. FIG. 5 shows the definition of the time window of the charging rate. FIG. 6 shows changes in the charging rate for each time window. Both the current and potential electrodes are waterproof. Only the current electrode is waterproof. Both the current and potential electrodes are not waterproof (submerged). In addition, the values of the charging rates become smaller in the order of.
The change in the charging rate is larger when changing from the state to than when changing from the state to. This means that it is important to waterproof the current electrode when measuring the charging rate.

【0021】上記、、の状態における平均の充電
率の値を表1に示す。ここでいう平均の充電率とは、1
0個のタイムウインドウの充電率の値を単純に算術平均
したものであり、現在のIP映像法の解析では主にこの
平均した値を用いている。各タイムウインドウの充電率
の値と同様に、、、の順に充電率の値が変化して
いる。からの状態へ変化する場合より、からの
状態へ変化する場合の方が充電率の変化が大きい。この
ことは、充電率の値が、電流波形が電極の分極現象に強
く依存しているものと考えられる。
Table 1 shows the average values of the charging rates in the above states. The average charging rate here is 1
It is a simple arithmetic average of the values of the charging rates of zero time windows, and the current IP video analysis mainly uses this averaged value. Like the value of the charging rate of each time window, the value of the charging rate changes in the order of. The change in the charging rate is larger when changing from the state to than when changing from the state to. This suggests that the value of the charging rate is such that the current waveform strongly depends on the polarization phenomenon of the electrodes.

【0022】[0022]

【表1】 [Table 1]

【0023】これらの結果から、充電率の測定では、電
流電極を防水状態にすることによって、より高精度の測
定が可能になると判断できる。
From these results, it can be determined that the measurement of the charging rate can be performed with higher accuracy by keeping the current electrode in a waterproof state.

【0024】次に、、、の状態における自然電位
の値を表2に示す。この自然電位の値は、受信機が自動
的に計算する電位の直流成分を表す。と、の状態
の間で、自然電位の値に2倍以上の違いが観測された。
との状態の間では、と、との場合よりも自
然電位の値の変化が小さいことが確認された。これらの
ことから、自然電位の値は、電位電極に強く依存するも
のと考えられる。従って、自然電位の測定では、電位電
極を防水状態とすることにより、より高精度の測定が可
能であることが分かる。
Next, Table 2 shows the values of the spontaneous potential in the state (1). The value of this natural potential represents the DC component of the potential automatically calculated by the receiver. A difference of more than twice in the value of the self-potential was observed between and.
It was confirmed that the change in the value of the self potential was smaller between the states of and. From these facts, it is considered that the value of the spontaneous potential strongly depends on the potential electrode. Therefore, it can be seen that in the measurement of the natural potential, a higher precision measurement is possible by setting the potential electrode in a waterproof state.

【0025】[0025]

【表2】 [Table 2]

【0026】これらのことから、電極に防水対策が施さ
れていない場合には、極力、電極と電気ケーブルとの接
続部分に水が入らないように各電極を設置する必要があ
り、設置条件によってどうしても電極本体とケーブルと
の接続部分に水が入り込むような場合には電極接続部分
に導電性高分子ゲル体シートを介在させたり、樹脂やゴ
ムで覆う等の防水対策を施す必要がある。
From these facts, if the electrodes are not waterproofed, it is necessary to install each electrode so that water does not enter the connection between the electrode and the electric cable as much as possible. If water inevitably enters the connection between the electrode body and the cable, it is necessary to take waterproof measures such as interposing a conductive polymer gel sheet at the electrode connection or covering with a resin or rubber.

【0027】IP映像法による電気探査は、図7のよう
な電極配置で行う。一対の電流電極(C1 ,C2 :但
し、一方は遠電極とする)を配置し、多数の電位電極
(P1 ,P2 ,…,Pn )を測線上に等間隔で配置す
る。電流電極間に送信機40を接続し、各電位電極には
受信機42を接続する。各電極には、導電性高分子ゲル
体電極44を用いる。即ち、電極エレメントの銀/塩化
銀の層にシート状の導電性高分子ゲル体を接合した無分
極電極である。送信機40によって電流電極間にパルス
状交替直流を供給し、各電位電極での電位を受信機42
で測定し記録する。各電極は、地盤46の電極設置位置
近傍を平らにならし水で湿らせ、それに導電性高分子ゲ
ル体を密着させることで設置する。電流電極から離れた
電位電極での測定値ほど、地盤の深い部分の情報を表し
ている。
The electric exploration by the IP imaging method is performed with the electrode arrangement as shown in FIG. A pair of current electrodes (C 1 , C 2 : one is a far electrode) is arranged, and a number of potential electrodes (P 1 , P 2 ,..., P n ) are arranged at equal intervals on a measurement line. A transmitter 40 is connected between the current electrodes, and a receiver 42 is connected to each potential electrode. A conductive polymer gel electrode 44 is used for each electrode. That is, it is a non-polarized electrode in which a sheet-like conductive polymer gel is bonded to the silver / silver chloride layer of the electrode element. A pulse-like alternating direct current is supplied between current electrodes by a transmitter 40, and the potential at each potential electrode is measured by a receiver 42.
Measure and record with. Each electrode is installed by leveling the vicinity of the electrode installation position on the ground 46, moistening it with water, and bringing the conductive polymer gel body into close contact therewith. The measured value at the potential electrode farther from the current electrode represents information on a deeper part of the ground.

【0028】これらの測定結果から、比抵抗と充電率を
求める。比抵抗は図8に示す電位波形の一次電圧Vpに
対する電流の比から求まり、充電率は一次電圧に対する
二次電圧の比として求まる。なお実際には、一次電流切
断後の一定時間t1 〜t2 の二次電位の積分値(図8で
斜線で示す面積)と一次電位との比を用いて見掛け充電
率を求めている。この見掛け充電率は、地盤内部の広い
範囲の充電率の平均的な値を示している。比抵抗と充電
率の両方を解析のパラメータとして同時に解析する。適
当な解析のモデリング(例えば有限要素法など)を採用
し、要素の比抵抗と充電率をパラメータとする。モデル
の反復修正のアルゴリズムには非線形最小二乗法を用い
る。比抵抗分布及び充電率分布を描かさせて解釈する。
From these measurement results, the specific resistance and the charging rate are obtained. The specific resistance is obtained from the ratio of the current to the primary voltage Vp of the potential waveform shown in FIG. 8, and the charging rate is obtained as the ratio of the secondary voltage to the primary voltage. Note in fact, seeking integral value (area indicated by hatching in FIG. 8) and the charging rate apparently used a ratio of the primary potential of the secondary voltage of the predetermined time after the primary current cut t 1 ~t 2. The apparent charging rate indicates an average value of the charging rate over a wide range inside the ground. Both the specific resistance and the charging rate are analyzed simultaneously as analysis parameters. Appropriate analysis modeling (for example, finite element method) is adopted, and the specific resistance and the charging rate of the element are used as parameters. The algorithm for iterative modification of the model uses the nonlinear least squares method. A specific resistance distribution and a charging rate distribution are drawn and interpreted.

【0029】[0029]

【発明の効果】本発明では電極エレメントに導電性高分
子ゲル体を接合した無分極電極を用いるため、軽量で比
較的安価であり、量産性に優れ、保管性並びに運搬性が
よく、電極設置作業性が極めて良好である。また、自然
電位も十分小さく且つ安定しており、電極間の個体差が
なく、接地抵抗も小さいために高精度で充電率を測定す
ることができる。そのため、全体に低比抵抗のために比
抵抗だけでは探査の難しい地盤でも、充電率にコントラ
ストがあれば詳細な構造を高精度で探査でき、例えば、
粘土化した岩石を含む断層破砕帯の位置の推定などを効
果的に効率よく調査できる。
According to the present invention, since a non-polarized electrode in which a conductive polymer gel is bonded to an electrode element is used, it is lightweight and relatively inexpensive, has excellent mass productivity, has good storage and transport properties, and has good electrode installation. Workability is extremely good. In addition, the natural potential is sufficiently small and stable, there is no individual difference between the electrodes, and the grounding resistance is small, so that the charging rate can be measured with high accuracy. Therefore, even in the ground where it is difficult to search only by specific resistance due to low specific resistance as a whole, if there is a contrast in charging rate, detailed structure can be searched with high accuracy, for example,
It is possible to effectively and efficiently investigate the estimation of the position of the fault crush zone including clayified rock.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電極の違いによる分極効果の差を示すグラフ。FIG. 1 is a graph showing a difference in polarization effect due to a difference in electrodes.

【図2】導電性高分子ゲル体電極の一例を示す説明図。FIG. 2 is an explanatory view showing an example of a conductive polymer gel electrode.

【図3】測定器配置説明図。FIG. 3 is an explanatory view of a measurement device arrangement.

【図4】電極設置状況の説明図。FIG. 4 is an explanatory diagram of an electrode installation situation.

【図5】充電率のタイムウインドウの定義説明図。FIG. 5 is an explanatory diagram of a definition of a time window of a charging rate.

【図6】防水状態の違いによる各タイムウインドウ毎の
充電率の変化を示す説明図。
FIG. 6 is an explanatory diagram showing a change in a charging rate for each time window due to a difference in a waterproof state.

【図7】IP映像法の測定系の説明図。FIG. 7 is an explanatory diagram of a measurement system of the IP imaging method.

【図8】電流波形と一次電位及び二次電位の説明図。FIG. 8 is an explanatory diagram of a current waveform and primary and secondary potentials.

【符号の説明】[Explanation of symbols]

10 電極エレメント 12 導電性高分子ゲル体 14 樹脂フィルム 16 銀/塩化銀コーティング層 18 ホック 20 スナップ 22 無分極電極 24 電気コード 26 雌ボタン 28 導電性高分子ゲルシート Reference Signs List 10 electrode element 12 conductive polymer gel body 14 resin film 16 silver / silver chloride coating layer 18 hook 20 snap 22 non-polarized electrode 24 electric cord 26 female button 28 conductive polymer gel sheet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電極エレメントにシート状の導電性高分
子ゲル体を接合した無分極電極を、複数個、前記の導電
性高分子ゲル体が地盤に粘着するように配置し、該無分
極電極によって電位を検出することにより地盤構造を解
析することを特徴とする無分極電極を用いる電気探査方
法。
A non-polarized electrode comprising a sheet-shaped conductive polymer gel joined to an electrode element, and a plurality of non-polarized electrodes arranged so that the conductive polymer gel adheres to the ground. An electrical exploration method using a non-polarized electrode, characterized by analyzing a ground structure by detecting a potential by the method.
【請求項2】 電極エレメントの銀/塩化銀の層にシー
ト状の導電性高分子ゲル体を接合した無分極電極を、複
数個、前記導電性高分子ゲル体が地盤に粘着するように
電流電極及び電位電極として測線上に沿って分散配置
し、電流電極から交替直流を供給し、電位電極で電位及
びその変化を検出することにより比抵抗及び充電率を求
め、それらの計測値から地盤構造を解析することを特徴
とする無分極電極を用いる電気探査方法。
2. A plurality of non-polarized electrodes in which a sheet-like conductive polymer gel is bonded to a silver / silver chloride layer of an electrode element, and a current is applied so that the conductive polymer gel adheres to the ground. Electrodes and potential electrodes are distributed along the measurement line, alternating DC is supplied from the current electrodes, and the potential and its change are detected by the potential electrodes to determine the specific resistance and the charging rate. An electrical exploration method using a non-polarized electrode, characterized by analyzing the following.
【請求項3】 地盤の電極設置位置近傍に予め水を散布
して湿らせておき、その湿った地盤表面に無分極電極を
粘着し、各無分極電極と電気ケーブルとの金属製接続部
に水が浸透しない状態を保ちつつ、電流電極から交替直
流を供給し、電位電極で電位及びその変化を検出する請
求項2記載の無分極電極を用いる電気探査方法。
3. Sprinkling water in advance near the electrode installation position on the ground to make it wet, and attaching non-polarized electrodes to the moist ground surface, and attaching the non-polarized electrodes to the metal connection portions between the electric cables and the non-polarized electrodes. 3. The method according to claim 2, wherein an alternating direct current is supplied from the current electrode while the water does not permeate, and the potential and its change are detected by the potential electrode.
JP25515299A 1999-09-09 1999-09-09 Electric surveying method using non-polarizing electrode Pending JP2001074850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25515299A JP2001074850A (en) 1999-09-09 1999-09-09 Electric surveying method using non-polarizing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25515299A JP2001074850A (en) 1999-09-09 1999-09-09 Electric surveying method using non-polarizing electrode

Publications (1)

Publication Number Publication Date
JP2001074850A true JP2001074850A (en) 2001-03-23

Family

ID=17274806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25515299A Pending JP2001074850A (en) 1999-09-09 1999-09-09 Electric surveying method using non-polarizing electrode

Country Status (1)

Country Link
JP (1) JP2001074850A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034539B2 (en) 2003-07-16 2006-04-25 Canon Kabushiki Kaisha Underground exploration apparatus, system and method
KR100945909B1 (en) * 2007-06-26 2010-03-05 신창수 An apparatus for imaging a subsurface structure using waveform inversion in the Laplace domain and methods thereof
WO2010095861A2 (en) * 2009-02-17 2010-08-26 Shin Changsoo Apparatus and method for waveform inversion using multiple transform in the laplace domain
WO2010095859A2 (en) * 2009-02-17 2010-08-26 Shin Changsoo Apparatus and method for imaging subsurface structure
KR101281803B1 (en) * 2007-06-26 2013-07-04 (주)신스지오피직스 Method for velocity analysis using waveform inversion in Laplace domain for geophysical imaging
CN104330831A (en) * 2014-03-21 2015-02-04 中国科学院地质与地球物理研究所 Non-polarized electrode
CN107843930A (en) * 2017-12-22 2018-03-27 中国电力工程顾问集团西北电力设计院有限公司 A kind of solid nonpolarizing electrode and preparation method thereof
CN114062943A (en) * 2021-10-21 2022-02-18 合肥国轩高科动力能源有限公司 Lithium ion battery system polarization abnormity early warning method and system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034539B2 (en) 2003-07-16 2006-04-25 Canon Kabushiki Kaisha Underground exploration apparatus, system and method
KR100945909B1 (en) * 2007-06-26 2010-03-05 신창수 An apparatus for imaging a subsurface structure using waveform inversion in the Laplace domain and methods thereof
KR101281803B1 (en) * 2007-06-26 2013-07-04 (주)신스지오피직스 Method for velocity analysis using waveform inversion in Laplace domain for geophysical imaging
WO2010095859A2 (en) * 2009-02-17 2010-08-26 Shin Changsoo Apparatus and method for imaging subsurface structure
WO2010095859A3 (en) * 2009-02-17 2010-11-18 신스지오스피직스 Apparatus and method for imaging subsurface structure
WO2010095861A3 (en) * 2009-02-17 2010-12-23 신스지오스피직스 Apparatus and method for waveform inversion using multiple transform in the laplace domain
WO2010095861A2 (en) * 2009-02-17 2010-08-26 Shin Changsoo Apparatus and method for waveform inversion using multiple transform in the laplace domain
CN104330831A (en) * 2014-03-21 2015-02-04 中国科学院地质与地球物理研究所 Non-polarized electrode
EP2921884A1 (en) * 2014-03-21 2015-09-23 Institute of Geology and Geophysics, Chinese Academy of Sciences Non-polarized geophysical electrode
US20150270627A1 (en) * 2014-03-21 2015-09-24 Yi Lu Non-polarized geophysical electrode
US9293843B2 (en) * 2014-03-21 2016-03-22 Yi Lu Non-polarized geophysical electrode
CN107843930A (en) * 2017-12-22 2018-03-27 中国电力工程顾问集团西北电力设计院有限公司 A kind of solid nonpolarizing electrode and preparation method thereof
CN114062943A (en) * 2021-10-21 2022-02-18 合肥国轩高科动力能源有限公司 Lithium ion battery system polarization abnormity early warning method and system
CN114062943B (en) * 2021-10-21 2024-02-09 合肥国轩高科动力能源有限公司 Polarization abnormality early warning method and system for lithium ion battery system

Similar Documents

Publication Publication Date Title
US8623185B2 (en) Planar multi-electrode array sensor for localized electrochemical corrosion detection
US20130134994A1 (en) Specification device for water status of soil, and method for same
CN104330831B (en) Unpolarizable electrode
JPS6236176B2 (en)
US11099148B1 (en) Systems and methods for contactless assessment of structures buried in soil
JP2001074850A (en) Electric surveying method using non-polarizing electrode
JP2021535364A (en) Leakage prevention test for car body
JP4137058B2 (en) Corrosion / corrosion protection evaluation method
JP2001215203A (en) Instrument for measuring electric conductivity, method of measuring electric conductivity of soil, and instrument for measuring electric conductivity of soil solution
US6828808B2 (en) Long-life conductivity sensor system and method for using same
WO2017150107A1 (en) Ion concentration measuring device and ion concentration measuring method
KR101266909B1 (en) Device for electrical resistivity survey and method of electrical resistivity survey in using the same
GB2224852A (en) Monitoring corrosion of elements embedded in concrete
KR20180018291A (en) Friction detection system and sensor for external motion
US4281289A (en) Method of determining interwell oil field fluid saturation distribution
Moncelli et al. Test of the Gouy—Chapman theory on phosphatidylcholine-coated mercury from differential capacity measurements
RU2471171C1 (en) Evaluation device of protection against corrosion as to value of deflection from natural potential
JP2011191288A (en) Method and device for estimating current density of damaged coating portion of underground pipe, and method and device for controlling electric protection
RU2480734C2 (en) Measuring device of polarisation potential of pipelines
CN211284549U (en) Reference tube potential detection device
US3856636A (en) Oxygen sensor
RU2748862C2 (en) System for monitoring sealing capacity of waterproofing roof covering layer
JPS5872045A (en) Method of measuring intrusion and leaching process of electric conduction phase in material
JP4278391B2 (en) Reference electrode and potential measuring device
CN105116164A (en) Method of measuring seepage flow velocity by electrolytic polarization