JP2001073079A - Extra-low carbon thin steel sheet for deep drawing and extra-low carbon thin steel sheet for deep drawing applied with galvanizing - Google Patents

Extra-low carbon thin steel sheet for deep drawing and extra-low carbon thin steel sheet for deep drawing applied with galvanizing

Info

Publication number
JP2001073079A
JP2001073079A JP2000187838A JP2000187838A JP2001073079A JP 2001073079 A JP2001073079 A JP 2001073079A JP 2000187838 A JP2000187838 A JP 2000187838A JP 2000187838 A JP2000187838 A JP 2000187838A JP 2001073079 A JP2001073079 A JP 2001073079A
Authority
JP
Japan
Prior art keywords
steel sheet
low carbon
deep drawing
thin steel
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000187838A
Other languages
Japanese (ja)
Inventor
Nobue Fujibayashi
亘江 藤林
Yoichi Tobiyama
洋一 飛山
Chiaki Kato
千昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000187838A priority Critical patent/JP2001073079A/en
Publication of JP2001073079A publication Critical patent/JP2001073079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain excellent deep drawability, in an extra-low carbon thin steel sheet for deep drawing contg. C and Ti respectively by specified amounts, by controlling the concn. ratio of precipitated N expressed by (the concn. of precipitated N in the surface layer part from the surface of the steel sheet to a specified depth of the sheet thickness)/(the concn. of precipitated N in the center part of the steel sheet) to the value equal to or below the specified one. SOLUTION: This extra-low carbon thin steel sheet for deep drawing contains, by mass, <=0.005% C and 0.01 to 0.1% Ti, and in which the concn. ratio of precipitated N expressed by (the concn. of precipitated N in the surface layer part from the surface of the steel sheet to 1/100 of the sheet thickness)/(the concn. of precipitated N in the center part of the steel sheet) is <=3.0. It is also preferable that, as to the crystal grains in the position of 100 μm in the sheet thickness direction from the surface of the steel sheet, the shape ratio expressed by (the grain size in the rolling direction)/(the grain (BR) size in the sheet thickness direction) is <=3.0. It is also suitable that the steel sheet is incorporated with at least one kind among Sn, Pb, As, Bi, Te, Se and Sb respectively by 0.001 to 0.10%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として自動車用
または家電用に用いられる、深絞り加工に適した薄鋼板
(熱延鋼板、冷延鋼板)、およびこの鋼板表面に亜鉛系
めっきを施した薄鋼板(亜鉛系電気めっき鋼板、溶融亜
鉛めっき鋼板および合金化溶融亜鉛めっき鋼板など)に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin steel sheet (hot-rolled steel sheet, cold-rolled steel sheet) mainly used for automobiles or home appliances and suitable for deep drawing, and a zinc-based plating applied to the surface of the steel sheet. The present invention relates to thin steel sheets (such as galvanized steel sheets, galvanized steel sheets, and galvannealed steel sheets).

【0002】[0002]

【従来の技術】自動車用や家電用に用いられる薄鋼板
は、通常、プレス成形が施されて製品となる。近年、こ
れら製品の製造コスト削減等のために、より大きな薄鋼
板を成形する、いわゆる一体成形化が進められるように
なって、薄鋼板には一層優れた深絞り性が求められるよ
うになってきた。深絞り用の薄鋼板として、一般には、
極低炭素鋼にTiやNbといった炭窒化物形成元素を添加し
たいわゆるIF(Intersticial free )鋼が用いられて
いる。このような深絞り用の薄鋼板、特に、Tiを添加し
た極低炭素薄鋼板では、スラブを従来の大気雰囲気の下
で加熱する時に、鋼板表層が窒化する現象が見られる。
薄鋼板が窒化すると硬化するために、深絞り特性が劣化
してしまう。そのため、深絞り性を良好に保つために
は、窒化を極力抑制した薄鋼板が必要となる。
2. Description of the Related Art Thin steel sheets used for automobiles and home appliances are usually subjected to press forming to produce products. In recent years, in order to reduce the production costs of these products, so-called integral forming of larger thin steel sheets has been promoted, and thin steel sheets have been required to have better deep drawability. Was. In general, as a steel sheet for deep drawing,
A so-called IF (Intersticial free) steel in which a carbonitride forming element such as Ti or Nb is added to a very low carbon steel. In such a steel sheet for deep drawing, in particular, an ultra-low carbon steel sheet to which Ti is added, when the slab is heated under the conventional atmosphere, a phenomenon in which the surface layer of the steel sheet is nitrided is observed.
When a thin steel sheet is nitrided, it hardens, and the deep drawing properties deteriorate. Therefore, in order to maintain good deep drawability, a thin steel sheet in which nitriding is suppressed as much as possible is required.

【0003】ところで、これまでにも、窒化を抑制する
ための提案がいくつかなされてきた。例えば、特開昭48
−48318 号公報においては、鋼中にSn、Pb、As、Bi、T
e、Se、Sbを添加する方法が開示されている。また、特
に鋼中にSiを添加した珪素鋼板においては、特公昭58−
31366 号公報で、Sn、Sbを添加した技術が、また特開平
2−240214号公報では、Se、Te、Sb、Bi、Pb、Sn、Asを
熱延板に塗布し、非酸化性雰囲気での焼鈍を行う技術な
どが開示されている。また、合金化溶融亜鉛めっき鋼板
を製造するに当たっては、特開平2−38550 号公報で窒
化した鋼板表層を除去する方法が開示されている。
[0003] By the way, several proposals have been made so far for suppressing nitriding. For example, JP
No. 48318, Sn, Pb, As, Bi, T
A method of adding e, Se, and Sb is disclosed. Particularly, in the case of silicon steel sheet with Si added to steel,
No. 31366, the technique of adding Sn and Sb, and in Japanese Patent Application Laid-Open No. Hei 2-240214, Se, Te, Sb, Bi, Pb, Sn, As are applied to a hot-rolled sheet, and the non-oxidizing atmosphere is applied. And the like are disclosed. In producing an alloyed hot-dip galvanized steel sheet, Japanese Patent Application Laid-Open No. 2-38550 discloses a method for removing a surface layer of a nitrided steel sheet.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記既
知技術のうち、鋼中にSbなどの元素を添加する特開昭48
−48318 号公報に開示の方法は専ら低炭素薄鋼板を対象
にして開発された技術であり、また、特公昭58−31366
号公報に開示の技術は珪素鋼板についてのものである。
これに対し、近年自動車用、家電用などとして用いられ
ている薄鋼板は、特に鋼中の炭素を極少量まで低下させ
ることにより延性を向上させた極低炭素(C:0.005 %
以下) 薄鋼板である。かかる極低炭素薄鋼板において
は、Sbなどの添加作用が低炭素薄鋼板(C:0.02〜0.10
%) や珪素鋼板などのそれとは異なった挙動が予測され
るにもかかわらず、これまでのところ、極低炭素薄鋼板
を対象にした報告は見当たらない。また、Sbなどの元素
の塗布や鋼板表層の窒化層の除去を伴う方法は、製造工
程を煩雑にするばかりか、塗布装置、除去装置などの新
規設備の導入を必要とするので、コストの上昇をもたら
すのは否めない。
However, of the above-mentioned known techniques, Japanese Patent Application Laid-Open No.
The method disclosed in Japanese Patent No. 48318 is a technique developed exclusively for low-carbon thin steel sheets.
The technology disclosed in Japanese Patent Application Laid-Open Publication No. H11-163873 relates to a silicon steel sheet.
On the other hand, thin steel sheets used for automobiles and home appliances in recent years have extremely low carbon (C: 0.005%) with improved ductility by reducing the carbon in the steel to a very small amount.
Below) It is a thin steel plate. In such ultra-low carbon steel sheets, the effect of addition of Sb or the like is low carbon steel sheets (C: 0.02 to 0.10).
%) And different behaviors such as silicon steel sheets, so far, no reports have been found on ultra-low carbon steel sheets. In addition, methods involving the application of elements such as Sb and the removal of the nitride layer on the surface of steel sheets not only complicate the manufacturing process, but also require the introduction of new equipment such as coating equipment and removal equipment, thus increasing costs. Cannot be denied.

【0005】本発明の目的は、従来技術が抱える上述し
た問題点を克服するとともに、優れた深絞り性をそなえ
た極低炭素薄鋼板(亜鉛系めっきを施したものを含む)
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the above-mentioned problems of the prior art and to provide an ultra-low carbon thin steel sheet (including a zinc-plated steel sheet) having excellent deep drawability.
Is to provide.

【0006】[0006]

【課題を解決するための手段】発明者らは、上記目的を
達成すべく鋭意研究を重ねた結果、スラブ加熱時および
焼鈍時の窒化を抑制し、薄鋼板表層部における析出Nの
量を抑制することにより、深絞り性が改善できること、
また、析出Nの量を適正範囲に制御すれば、薄鋼板の表
層における結晶粒も異常粒とならず、深絞り性に好影響
をもたらすことがわかった。さらにかかる薄鋼板を素材
として、表面に亜鉛系めっきを施した場合にも、同様な
効果が得られることを確認した。このような知見をもと
に完成した本発明の要旨構成は以下のとおりである。 (1)質量%で、C:0.005 %以下、Ti:0.01〜0.1 %
を含有する深絞り用極低炭素薄鋼板において、(鋼板表
面から板厚の1/100までの表層部における析出N濃
度)/(鋼板中央部における析出N濃度)で表される析
出N濃度比が3.0以下であることを特徴とする、深絞り
用極低炭素薄鋼板。 (2)鋼板表面から板厚方向 100μmの位置における結
晶粒が、(圧延方向の粒径)/(板厚方向の粒径)で表
される形状比にして3.0 以下であることを特徴とする、
上記(1)に記載の深絞り用極低炭素薄鋼板。 (3)鋼板中に、Sn、Pb、As、Bi、Te、Se、Sbのうちの
少なくとも1種を、質量%で、それぞれ0.001 〜0.10%
含有することを特徴とする、上記(1)または(2)に
記載の深絞り用極低炭素薄鋼板。 (4)上記(1)〜(3)のいずれか1つに記載の薄鋼
板を素材とし、電気めっきまたは溶融金属めっきによ
り、亜鉛系めっきを施した深絞り用極低炭素薄鋼板 (5)鋼板表面に合金化溶融亜鉛めっきを施した極低炭
素薄鋼板であって、このめっき層中には、Sn、Pb、As、
Bi、Te、Se、Sbのうちの少なくとも1種を、質量%で、
それぞれ0.0001〜0.01%含有することを特徴とする、上
記(4)に記載の亜鉛系めっきを施した深絞り用極低炭
素薄鋼板。 (6)鋼板表面に合金化溶融亜鉛めっきを施した極低炭
素薄鋼板であって、このめっき層における合金相のX線
回折強度比Dが0.2 以下であることを特徴とする、上記
(4)または(5)に記載の亜鉛系めっきを施した深絞
り用極低炭素薄鋼板。ただし、X線回折強度比D=(Γ
相(222) 面のX線回折強度+Γ1相(444) 面のX線回折
強度)/(δ1相(330) 面のX線回折強度)
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have suppressed nitriding during slab heating and annealing, and suppressed the amount of precipitated N in the surface layer of a thin steel sheet. That the deep drawability can be improved,
Further, it was found that if the amount of precipitated N is controlled in an appropriate range, the crystal grains in the surface layer of the thin steel sheet do not become abnormal grains, and this has a favorable effect on the deep drawability. Further, it was confirmed that a similar effect could be obtained when the surface of the thin steel sheet was plated with zinc. The gist configuration of the present invention completed based on such knowledge is as follows. (1) In mass%, C: 0.005% or less, Ti: 0.01 to 0.1%
In the ultra-low carbon thin steel sheet for deep drawing containing, the ratio of the precipitated N concentration expressed by (precipitated N concentration in the surface layer from the steel sheet surface to 1/100 of the sheet thickness) / (precipitated N concentration in the central part of the steel sheet) Is an ultra-low carbon steel sheet for deep drawing characterized by having a value of 3.0 or less. (2) The crystal grains at a position of 100 μm in the thickness direction from the surface of the steel sheet have a shape ratio represented by (grain size in the rolling direction) / (grain size in the thickness direction) of 3.0 or less. ,
The ultra-low carbon thin steel sheet for deep drawing according to the above (1). (3) In a steel sheet, at least one of Sn, Pb, As, Bi, Te, Se, and Sb is 0.001 to 0.10% by mass%.
The ultra-low carbon steel sheet for deep drawing according to the above (1) or (2), characterized in that it is contained. (4) An ultra-low carbon thin steel sheet for deep drawing, wherein the thin steel sheet according to any one of the above (1) to (3) is used as a material and zinc-plated by electroplating or hot-dip metal plating. Ultra-low carbon thin steel sheet with alloyed hot-dip galvanized steel sheet surface, Sn, Pb, As,
At least one of Bi, Te, Se, and Sb in mass%;
The zinc-plated ultra-low-drawing ultra-low carbon thin steel sheet according to the above (4), characterized by containing 0.0001 to 0.01% each. (6) An ultra-low carbon thin steel sheet whose surface is subjected to alloying hot-dip galvanizing, wherein the X-ray diffraction intensity ratio D of the alloy phase in the plated layer is 0.2 or less. ) Or an ultra-low carbon thin steel sheet for deep drawing, which has been subjected to the zinc plating according to (5). However, the X-ray diffraction intensity ratio D = (Γ
X-ray diffraction intensity of phase (222) plane + X-ray diffraction intensity of Γ1 phase (444) plane / (X-ray diffraction intensity of δ1 phase (330) plane)

【0007】[0007]

【発明の実施の形態】次に、本発明を完成するにいたっ
た経緯を含め、要旨構成を上記範囲に限定した理由につ
いて説明する。発明者らは、質量%(以下、%で表す)
で、C:0.005 %以下、Ti:0.01〜0.1 %を含有する深
絞り用のTi含有極低炭素薄鋼板を製造する際における、
スラブ加熱前後の表層を調査し、スラブ加熱時の窒化挙
動について検討した。この実験では、スラブの加熱条件
を実ラインで1250℃、2時間とし、鉄の酸化物を主体と
する酸化膜を除去した後、表層部の析出物をTEM(透
過型電子顕微鏡)にて観察及び同定を行った。その結
果、加熱前のスラブ表層には少量の析出物が観察され、
その殆どがTiの硫化物であるのに対し、スラブ加熱後の
表層では多量のTi系窒化物と少量のNb、Al、B系窒化物
からなる析出物が観察された。窒化による薄鋼板の深絞
り性の劣化は、スラブ加熱時に生成したこのTi窒化物な
どの析出物に起因しており、圧延等によって発生した歪
みが、この析出物による転位移動阻止作用により、十分
に消滅しなかったためと推定された。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the reason why the gist of the present invention is limited to the above-described range, including the history of completing the present invention, will be described. The inventors have determined the mass% (hereinafter, represented by%).
When manufacturing a Ti-containing ultra-low carbon thin steel sheet for deep drawing containing C: 0.005% or less and Ti: 0.01 to 0.1%,
The surface layer before and after slab heating was investigated, and the nitriding behavior during slab heating was examined. In this experiment, the heating condition of the slab was set at 1250 ° C. for 2 hours on an actual line, and after removing the oxide film mainly composed of iron oxide, the precipitate on the surface layer was observed with a TEM (transmission electron microscope). And identification. As a result, a small amount of precipitate was observed on the slab surface layer before heating,
While most of them were Ti sulfides, precipitates composed of a large amount of Ti-based nitride and small amounts of Nb, Al, and B-based nitride were observed in the surface layer after slab heating. Degradation of the deep drawability of the thin steel sheet due to nitriding is caused by precipitates such as Ti nitrides generated during slab heating, and the strain generated by rolling etc. is sufficiently reduced by the dislocation movement inhibiting action of the precipitates. It was presumed that they did not disappear.

【0008】そこで、スラブ加熱条件と焼鈍条件を種々
変動させて検討した結果、表層の析出N濃度(窒化物と
して析出状態で存在するNの鋼中濃度を言う、以下同
じ)がプレス成形性に関与していることが分かった。図
1に、薄鋼板表層部(板厚表面から板厚の1/100 の位
置)の析出N濃度と中央部(板厚1/3の中央位置)の
析出N濃度との比で表した析出N濃度比が熱延鋼板のr
値に及ぼす影響について示す。図1から析出N濃度比が
3.0 を超えるとr値は低下し、3.0 以下の場合に良好な
r値が得られることがわかる。なお、薄鋼板表層部の析
出N濃度は、鋼板の表面より板厚の1/100 までの部分
を電解により溶解し、窒化物のみをとりだして、その窒
化物のN量を測定し、この値を溶解した全重量で除する
ことにより析出N濃度を求めた。一方、中央部の析出N
量は、薄鋼板の両表面からそれぞれ板厚の1/3を研削
して得られる板厚中央部1/3の部分の、表面から元板
厚の1/100 を電解し、同様の手法にて求めた。得られ
た両析出N濃度の比から析出N濃度比を算出した。
[0008] Therefore, as a result of studying various conditions of the slab heating and annealing conditions, it was found that the concentration of precipitated N in the surface layer (the concentration of N existing in the precipitated state as a nitride in the steel, the same applies hereinafter) was reduced in press formability. Turned out to be involved. In FIG. 1, the precipitation expressed by the ratio of the precipitation N concentration in the surface layer portion of the thin steel sheet (at a position 1 / 100th of the plate thickness from the plate thickness surface) to the precipitation N concentration in the central portion (the center position of 1/3 of the plate thickness) is shown. N concentration ratio is r of hot rolled steel sheet
The effect on the value is shown. From FIG. 1, the deposition N concentration ratio is
It can be seen that when the value exceeds 3.0, the r value decreases, and when the value is less than 3.0, a good r value can be obtained. The concentration of precipitated N in the surface layer of the thin steel sheet is determined by dissolving the portion from the surface of the steel sheet to 1 / 100th of the sheet thickness by electrolysis, extracting only the nitride, and measuring the N content of the nitride. Was divided by the total weight of the dissolved N to determine the precipitated N concentration. On the other hand, the N
The amount is determined by electrolyzing 1/100 of the original sheet thickness from the surface of the center 1/3 of the sheet thickness obtained by grinding 1/3 of the sheet thickness from both surfaces of the thin steel sheet. I asked. The precipitation N concentration ratio was calculated from the obtained ratio of both precipitation N concentrations.

【0009】発明者らはまた、上記析出N濃度比を3.0
以下にする上で、Sn、Pb、As、Bi、Te、Se、Sbの各元素
を鋼中に添加すると、スラブ加熱時における窒化量が減
少し、有利に達成できることを確認した。図2に、Snの
添加量とスラブ加熱時の窒化量の関係を示す。ここで、
窒化量の測定方法は、スラブの表面に生成した酸化膜を
除去した後、表層1mmを研削して分析試料を採取し、
窒素濃度を測定した。そして窒化量は、表層1mmにお
ける加熱前後の窒素濃度の差から求めた。図2から、Sn
を0.001 %以上添加することにより、窒化抑制効果が現
れることがわかる。しかし、このSnを0.1 %を超えて過
度に添加すると深絞り性の劣化が観察された。このため
Snの添加範囲は0.001 〜0.1 %とするのがよい。Sn以外
のPb、As、Bi、Te、Se、Sbも、0.001 〜0.1 %の添加を
行うことにより、Snと同様な効果が得られる。なお、こ
れら元素を2種以上添加する場合には、これら元素の合
計量が0.001 〜0.1 %になるように添加するのが望まし
い。
[0009] The inventors have also set the above-mentioned N concentration ratio to 3.0.
In the following, it was confirmed that when each element of Sn, Pb, As, Bi, Te, Se, and Sb was added to steel, the amount of nitriding during slab heating was reduced, and it could be advantageously achieved. FIG. 2 shows the relationship between the amount of Sn added and the amount of nitriding during slab heating. here,
The method for measuring the amount of nitriding is to remove an oxide film formed on the surface of the slab, grind the surface layer 1 mm, collect an analysis sample,
The nitrogen concentration was measured. The amount of nitriding was determined from the difference in nitrogen concentration before and after heating in the surface layer of 1 mm. From FIG. 2, Sn
It can be seen that the addition of 0.001% or more results in a nitriding suppression effect. However, when Sn was added excessively in excess of 0.1%, deterioration of deep drawability was observed. For this reason
The range of Sn addition is preferably 0.001 to 0.1%. Pb, As, Bi, Te, Se, and Sb other than Sn also have the same effect as Sn by adding 0.001 to 0.1%. When two or more of these elements are added, it is desirable to add them so that the total amount of these elements is 0.001 to 0.1%.

【0010】スラブ加熱や再結晶焼鈍時に窒化が起こる
と、微細な析出物が生成し、この析出物は転位の移動を
阻害して異常結晶粒を生成しやすくする。図3(a) は微
細析出物が少なくて異常結晶粒がない場合の、図3(b)
は微細析出物のために異常結晶粒が生成した場合のそれ
ぞれ圧延方向断面の金属組織である。このような断面組
織の調査を種々の鋼板について行った結果、結晶粒の圧
延方向と板厚方向の粒径の比がr値に影響を及ぼしてい
ることがわかった。そして、鋼板表面から板厚方向 100
μmの位置における薄鋼板表層部の結晶粒が、(圧延方
向の粒径)/(板厚方向の粒径)で表される形状比にし
て3.0 以下のとき、良好なr値が得られることがわかっ
た。なお、形状比は、薄鋼板の圧延方向の断面を光学顕
微鏡で覿察し、表面から厚さ方向 100μm、圧延方向20
0 μmの長さの任意の範囲 ( 20000μm)に存在する
結晶粒について、結晶粒厚さ方向の径と圧延方向の径を
測定し、両者の比の平均から求めた。
[0010] If nitriding occurs during slab heating or recrystallization annealing, fine precipitates are formed, and these precipitates hinder the movement of dislocations and tend to generate abnormal crystal grains. Fig. 3 (a) shows the case where there are few fine precipitates and no abnormal crystal grains.
Is a microstructure of a cross section in the rolling direction when abnormal crystal grains are generated due to fine precipitates. As a result of examining such a cross-sectional structure for various steel sheets, it was found that the ratio of the grain size in the rolling direction of the crystal grains to the sheet thickness direction affected the r-value. Then, from the steel sheet surface in the thickness direction 100
A good r-value is obtained when the crystal ratio of the surface layer of the thin steel sheet at the position of μm is 3.0 or less in terms of the shape ratio expressed by (grain size in the rolling direction) / (grain size in the thickness direction). I understood. The shape ratio was determined from the surface of a thin steel sheet in a rolling direction of 20 μm by using an optical microscope.
With respect to crystal grains existing in an arbitrary range (20000 μm 2 ) having a length of 0 μm, the diameter in the crystal grain thickness direction and the diameter in the rolling direction were measured, and the ratio was obtained from the average of the ratio between the two.

【0011】以上述べたような析出N濃度比、また、こ
れと密接な関係にある結晶粒の形状比がr値に及ぼす傾
向は、熱延鋼板のみでなく、冷延鋼板でも、またこれら
薄鋼板(熱延鋼板、冷延鋼板)を素材をとした亜鉛系電
気めっき鋼板、溶融亜鉛めっき鋼板および合金化溶融亜
鉛めっき鋼板などのめっき鋼板でも同じであった。すな
わち、表層の析出N濃度比を制御することにより良好な
深絞り薄鋼板が得られ、また表層の結晶粒径比を制御す
ることで、より高品質な深絞り薄鋼板が得られる。そし
て、上記薄鋼板は、鋼板にSn、Pb、As、Bi、Te、Se、Sb
のうちの少なくとも1種を0.001 〜0.1 %の範囲で添加
することにより、薄鋼板表層の析出N濃度の低下、析出
N濃度比の低下を有利に実現することができる。
The tendency of the above-mentioned ratio of the concentration of precipitated N and the shape ratio of crystal grains closely related to the r value to the r-value is not only in hot-rolled steel sheets but also in cold-rolled steel sheets. The same was true for galvanized steel sheets, hot-dip galvanized steel sheets, and galvannealed steel sheets made from steel sheets (hot-rolled steel sheets and cold-rolled steel sheets). That is, a good deep drawn thin steel sheet can be obtained by controlling the precipitation N concentration ratio of the surface layer, and a higher quality deep drawn thin steel sheet can be obtained by controlling the crystal grain size ratio of the surface layer. And the above-mentioned thin steel sheet is made of Sn, Pb, As, Bi, Te, Se, Sb
By adding at least one of them in the range of 0.001 to 0.1%, a decrease in the concentration of precipitated N in the surface layer of the thin steel sheet and a decrease in the ratio of the concentration of precipitated N can be advantageously achieved.

【0012】さらに、発明者らが薄鋼板のうち、合金化
溶融亜鉛めっき鋼板について調査したところ、めっき層
中に、Sn、Pb、As、Bi、Te、Se、Sbのうちの少なくとも
1種をそれぞれ0.0001〜0.01%含有させると、良好な深
絞り性とともに優れた表面外観が得られるという事実も
掴んだ。かかる、Sn、Pb、As、Bi、Te、Se、Sb等をめっ
き層中で含有させるには、これら元素が薄鋼板の表層に
濃化した素材を用いて製造すればよく、これら元素が薄
鋼板からめっき層に供給されることにより行われる。な
お、このような元素を含有しない薄鋼板を素材とする場
合には、上記元素から選ばれる少なくとも1種の元素を
溶融亜鉛めっき浴中に添加することで達成できる。
Further, the present inventors have investigated the alloyed hot-dip galvanized steel sheet among the thin steel sheets, and found that at least one of Sn, Pb, As, Bi, Te, Se, and Sb was contained in the coating layer. The inventors also grasped the fact that when the content is 0.0001 to 0.01%, excellent deep drawability and excellent surface appearance can be obtained. In order to contain such Sn, Pb, As, Bi, Te, Se, Sb, etc. in the plating layer, these elements may be manufactured using a material in which the surface layer of a thin steel sheet is concentrated, and these elements are thin. This is performed by supplying the steel sheet to the plating layer. In the case where a thin steel sheet containing no such element is used as a raw material, it can be achieved by adding at least one element selected from the above elements to a hot-dip galvanizing bath.

【0013】なお、上述した表面外観向上のメカニズム
については、必ずしも明らかではないが、Sb、Sn等は、
偏析元素であるために、めっき及び合金化時に鋼板とめ
っき界面に偏析し、局所的な合金化を抑制するからであ
ると考えている。すなわち、粒界などの合金化の速い部
分では、偏析元素によりFeとZnの拡散が抑制され、均一
合金化がはかられて表面外観の向上が達成される。ま
た、発明者らの調査では、合金化溶融亜鉛めっき鋼板の
場合、このめっき層における合金相のX線回折強度比D
〔=(Γ相(222) 面のX線回折強度+Γ1相(444) 面の
X線回折強度)/(δ1相(330) 面のX線回折強度)〕
を0.2 以下になるように調整すると、深絞り性が一層改
善されることもわかった。ここにX線回折強度比Dは、
合金化時の温度と時間により、制御することが可能であ
る。
Although the mechanism for improving the surface appearance described above is not always clear, Sb, Sn, etc.
It is considered that the segregation element segregates at the interface between the steel sheet and the plating during plating and alloying, thereby suppressing local alloying. That is, in a portion where alloying is fast, such as a grain boundary, diffusion of Fe and Zn is suppressed by the segregation element, and uniform alloying is achieved, thereby improving the surface appearance. In addition, according to the investigation by the inventors, in the case of a galvannealed steel sheet, the X-ray diffraction intensity ratio D of the alloy phase in this galvanized layer was determined.
[= (X-ray diffraction intensity of Γ phase (222) plane + X-ray diffraction intensity of Γ1 phase (444) plane) / (X-ray diffraction intensity of δ1 phase (330) plane)]
Was adjusted to be 0.2 or less, the deep drawability was further improved. Here, the X-ray diffraction intensity ratio D is
It can be controlled by the temperature and time during alloying.

【0014】なお、本発明が適用される薄鋼板の成分組
成は、C:0.005 %以下、Ti:0.01〜0.1 %を含有する
ほかは、通常の深絞り用薄鋼板の組成であればよい。そ
の他元素の好適な範囲として、Si:0.1 %以下、Mn:0.
40%以下、Al:0.050 %以下、Nb:0.05%以下、B:0.
0015%以下が挙げられる。また、スラブ加熱時において
窒化を抑制し、鋼板表層部の析出Nを低下させるには、
スラブ加熱時の加熱温度と時間および雰囲気中酸素濃度
を制御することも重要である。具体的には、本発明範囲
を達成するための条件として、例えば、スラブ加熱温度
を1150℃とし、1150℃での加熱時間を60分、その時の雰
囲気中酸素濃度を5%とするのがよい。また、結晶粒の
形状比を本発明範囲に制御するためには、スラブ加熱時
の雰囲気中酸素濃度について配慮することが望ましい。
このようなスラブ加熱条件の制御による薄鋼板の製造
は、Sbなどの元素の塗布や鋼板表層の窒化層の除去を行
う必要がないので、工程の複雑化やコストの上昇を伴う
ことなく実施できる。
The composition of the thin steel sheet to which the present invention is applied may be a normal deep drawing thin steel sheet except that it contains C: 0.005% or less and Ti: 0.01 to 0.1%. As preferable ranges of other elements, Si: 0.1% or less, Mn: 0.
40% or less, Al: 0.050% or less, Nb: 0.05% or less, B: 0.
0015% or less. In addition, in order to suppress nitriding at the time of slab heating and to reduce the precipitation N in the surface layer portion of the steel sheet,
It is also important to control the heating temperature and time during slab heating and the oxygen concentration in the atmosphere. Specifically, as conditions for achieving the scope of the present invention, for example, it is preferable that the slab heating temperature is 1150 ° C., the heating time at 1150 ° C. is 60 minutes, and the oxygen concentration in the atmosphere at that time is 5%. . In addition, in order to control the shape ratio of crystal grains within the range of the present invention, it is desirable to consider the oxygen concentration in the atmosphere during slab heating.
The production of a thin steel sheet by controlling such slab heating conditions can be performed without complicating the process and increasing the cost, since there is no need to apply elements such as Sb or remove the nitride layer on the surface of the steel sheet. .

【0015】[0015]

【実施例】表1に示す極低炭素鋼を転炉にて溶製し、連
続鋳造ラインでスラブとした。このスラブを加熱炉にて
加熱条件(温度、時間、酸素濃度)を変更して加熱し、
板厚3mmまで熱間圧延した。その後、酸洗ラインで鉄
を主体とした酸化層を除去し、熱延鋼板とした。この鋼
板を冷間圧延し、0.6 mm厚の冷延鋼板とし、連続焼鈍
ラインにおいて再結晶焼鈍を行った。電気めっきには、
酸洗後の熱延鋼板、または連続焼鈍後の冷延鋼板を用
い、電気亜鉛めっき、または電気亜鉛ニッケルめっきを
行った。溶融亜鉛めっきには、酸洗後の熱延鋼板と冷間
圧延のままで焼鈍を行わない冷延鋼板を用い、連続溶融
亜鉛めっきラインにおいて、焼鈍、めっき、合金化を行
った。
EXAMPLES Ultra low carbon steel shown in Table 1 was melted in a converter and made into a slab by a continuous casting line. This slab is heated in a heating furnace while changing the heating conditions (temperature, time, oxygen concentration),
Hot rolling was performed to a thickness of 3 mm. Thereafter, an oxide layer mainly composed of iron was removed in a pickling line to obtain a hot-rolled steel sheet. This steel sheet was cold-rolled into a cold-rolled steel sheet having a thickness of 0.6 mm, and recrystallization annealing was performed in a continuous annealing line. For electroplating,
Using a hot-rolled steel sheet after pickling or a cold-rolled steel sheet after continuous annealing, electro-galvanizing or electro-zinc-nickel plating was performed. For hot-dip galvanizing, a hot-rolled steel sheet after pickling and a cold-rolled steel sheet which is not subjected to annealing while being cold-rolled were used for annealing, plating and alloying in a continuous hot-dip galvanizing line.

【0016】得られたこれら薄鋼板について、析出N濃
度比、結晶粒形状比、r値を測定した。析出N濃度比
は、前述の方法と同様な方法で求めた。例えば、板厚3
mmの熱延鋼板の場合、表層部の析出N濃度は、表面よ
り板厚の1/100 にあたる30μmを電解により溶解し、
窒化物のみをとりだして析出Nの量(窒化物としてのN
量)を測定し、これを溶解した全重量で除すことにより
求め、一方、板厚中央部の析出N濃度は、板厚中央の1
/3厚部(中央の1mm厚)表面より30μmを電解によ
り溶解し、同様にして析出N濃度を求めた。前者と後者
の濃度比から析出N濃度比を求めた。同様に、0.6 mm
の冷延鋼板の場合には、表層の析出N素濃度は板厚の1
/100 である6μmを電解し、中央部のそれは0.2 mm
の表面6μmを電解した。めっき鋼板での析出N濃度比
は、三酸化アンチモンを添加した塩酸にてめっき層を溶
解したほかは熱延鋼板または冷延鋼板の場合と同様の方
法で求めた。
With respect to the obtained thin steel sheets, the ratio of the concentration of precipitated N, the shape ratio of crystal grains, and the r value were measured. The concentration ratio of precipitated N was determined by the same method as described above. For example, plate thickness 3
mm hot-rolled steel sheet, the concentration of precipitated N in the surface layer is 30 μm, which is 1 / 100th of the plate thickness from the surface, dissolved by electrolysis,
The amount of precipitated N by taking out only the nitride (N as nitride
Amount), and this was determined by dividing the total weight by the dissolution. On the other hand, the concentration of precipitated N at the center of the plate thickness was 1% at the center of the plate thickness.
30 μm from the surface of the 3 thick part (1 mm thick at the center) was dissolved by electrolysis, and the concentration of precipitated N was determined in the same manner. The precipitated N concentration ratio was determined from the former and the latter concentration ratio. Similarly, 0.6 mm
In the case of the cold rolled steel sheet, the concentration of precipitated N element in the surface layer is 1% of the sheet thickness.
/ 100 is electrolyzed at 6 μm, and that at the center is 0.2 mm
Was electrolyzed to a surface of 6 μm. The precipitation N concentration ratio in the plated steel sheet was determined in the same manner as in the case of the hot-rolled steel sheet or the cold-rolled steel sheet except that the plating layer was dissolved with hydrochloric acid to which antimony trioxide was added.

【0017】また、結晶粒の形状比は以下の方法で求め
た。熱延鋼板、冷延鋼板、めっき鋼板(めっき層除去後
のもの)の各薄鋼板について、圧延方向の断面をダイヤ
モンドバフにて研磨し、1%ナイタール液にてエッチン
グを行い、結晶粒界が観察できるようにした。この断面
を光学顕微鏡にて 400倍で観察し、表面から厚さ方向10
0 μm、圧延方向200 μmに存在する結晶粒について厚
さ方向および圧延方向の粒径を測定し、その比の平均値
を求めた。粒径の測定は、結晶粒のほぼ中心を通るよう
にして行った。r値は、酸洗後の熱延鋼板、冷延焼鈍板
およびめっき鋼板(塩酸−アンチモンでめっさ層を除去
したもの)のそれぞれ圧延方向からJIS 5号試験片を採
取し、引張りにより測定した。
The shape ratio of the crystal grains was determined by the following method. For each of the hot-rolled steel sheet, cold-rolled steel sheet, and plated steel sheet (after removing the plating layer), the cross section in the rolling direction is polished with a diamond buff, and etched with 1% nital liquid, and the grain boundaries are reduced. Observable. Observe this cross section at 400x magnification with an optical microscope and measure
The grain size in the thickness direction and the rolling direction was measured for crystal grains existing at 0 μm and in the rolling direction of 200 μm, and the average value of the ratio was determined. The measurement of the particle size was performed so as to pass through substantially the center of the crystal grain. The r-value is measured by pulling a JIS No. 5 test piece from the rolling direction of each of the hot-rolled steel sheet, cold-rolled annealed sheet, and plated steel sheet (having the plating layer removed with hydrochloric acid-antimony) after pickling, and measuring by pulling did.

【0018】合金化溶融亜鉛めっき鋼板の表面外観は、
その表面を目視にて観察し、合金化むらによる外観不良
がある場合に×、ない場合に○とした。めっき層中合金
相のX線回折強度比D、すなわち(Γ相(222) 面のX線
回折強度+Γ1相(444) 面のX線回折強度)/(δ1相(3
30) 面のX線回折強度)は、理学電機(株)製X線回折
装置(RINT1500)により、管球:Cu、管電
圧:50kV、管電流:250mA、スキャンスピー
ド:4.00度/min、走査軸:2θ/θの条件で、Γ相
(222)面+Γ1 相(444)面は面間隔2.60Åのピ
ーク、δ1 相(330)面は面間隔2.135 Åのピークの
強度を用いてそれらの比からX線回折強度比Dを求め
た。
The surface appearance of the galvannealed steel sheet is as follows:
The surface was visually observed, and was evaluated as x when there was poor appearance due to uneven alloying, and as o when there was no appearance failure. X-ray diffraction intensity ratio D of the alloy phase in the plating layer, that is, (X-ray diffraction intensity of (Γ) phase (222) plane + ΓX-ray diffraction intensity of Γ1 phase (444) plane) / (δ1 phase (3
30) The X-ray diffraction intensity of the surface) was measured by an X-ray diffractometer (RINT 1500) manufactured by Rigaku Corporation with a tube: Cu, a tube voltage: 50 kV, a tube current: 250 mA, a scan speed: 4.00 degree / min, and scanning. Axis: Under the condition of 2θ / θ, the ratio is determined by using the intensity of the peak of the {phase (222) plane + the {1} phase (444) plane at the plane interval of 2.60} and the peak of the δ1 phase (330) plane at the plane interval of 2.135}. X-ray diffraction intensity ratio D was obtained from

【0019】なお、スラブ加熱条件、焼鈍条件を表中
に、それ以外の条件は以下のとおりとした。 熱延条件 最終圧延温度:900 ℃ コイル巻き取り温度:600 ℃ 仕上げ板厚:3mm 冷延条件 板厚:0.6 mm 焼鈍条件 温度×時間: 820℃×60秒 雰囲気:2 vol%水素−窒素、露点−30℃ めっき条件 電気亜鉛めっき:付着量25g/m 電気亜鉛ニッケルめっき:付着量20g/m、Ni10% 溶融亜鉛めっき:付着量80g/m 合金化溶融亜鉛めっき:付着量40g/m、Fe11〜12% 合金化処理条件 温度×時間: 500〜550 ℃×10〜30秒
The slab heating conditions and annealing conditions are shown in the table.
The other conditions were as follows. Hot rolling condition Final rolling temperature: 900 ° C Coil winding temperature: 600 ° C Finished sheet thickness: 3mm Cold rolling condition Sheet thickness: 0.6mm Annealing condition Temperature × time: 820 ° C × 60 seconds Atmosphere: 2 vol% hydrogen-nitrogen, dew point -30 ° C Plating conditions Electrogalvanizing: Coating weight 25g / m2  Electric zinc nickel plating: Adhesion amount 20g / m2, Ni10% hot-dip galvanizing: 80 g / m coating weight2  Alloyed hot-dip galvanizing: 40 g / m coating weight2, Fe11-12% Alloying treatment conditions Temperature x time: 500-550 ° C x 10-30 seconds

【0020】表1の鋼1、2の成分で製造した各薄鋼板
について得られた、析出N濃度比、結晶粒の形状比おお
よびr値の測定結果を製造条件とともに表2に示す。ま
た、表1の鋼2の組成にSnなどの添加元素を添加した薄
鋼板についての結果を表3〜5に示す。表2および表3
〜5より、析出N濃度比が本発明範囲にある発明例は、
優れたr値が得られることがわかる。さらに、表層の結
晶粒の形状比が本発明範囲を満たすことにより一層のr
値の向上が認められる。めっき層にSn、Sbが所定量含有
し、またX線回折強度比Dが適正な発明例は合金むらが
なく外観が優れている。
Table 2 shows the measurement results of the precipitation N concentration ratio, the crystal grain shape ratio, and the r value obtained for each of the steel sheets manufactured using the components of steels 1 and 2 in Table 1 together with the manufacturing conditions. In addition, Tables 3 to 5 show the results of thin steel sheets obtained by adding an additive element such as Sn to the composition of Steel 2 in Table 1. Table 2 and Table 3
From Examples 5 to 5, the invention examples in which the precipitation N concentration ratio is within the range of the present invention are as follows:
It can be seen that an excellent r value can be obtained. Further, when the shape ratio of the crystal grains in the surface layer satisfies the range of the present invention, one layer of r
An improvement in the value is observed. Inventive examples in which Sn and Sb are contained in the plating layer in a predetermined amount and the X-ray diffraction intensity ratio D is appropriate have excellent appearance without alloy unevenness.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【表5】 [Table 5]

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
析出N濃度比を制御することにより、深絞り性に優れる
薄鋼板を提供することができる。また、さらに表層部結
晶粒の形状比を制御することにより一層の深絞り性の向
上が可能になる。なお、この析出N濃度比は、鋼中への
Sbなどの元素添加、スラブ加熱条件 (温度、時間、雰囲
気) 適正化により制御可能である。さらに、合金化溶融
亜鉛めっきを施した薄鋼板では、めっき層中に、上記Sn
などの元素を含有させること、あるいはまた、めっき層
における合金相のX線回折強度比を制限することによ
り、一層良好な品質を得ることができる。したがって、
本発明は、熱延鋼板、冷延鋼板、亜鉛系電気めっき鋼
板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼
板などの各種薄鋼板の加工性とくに深絞り性の改善に大
きく寄与する。
As described above, according to the present invention,
By controlling the precipitation N concentration ratio, a thin steel sheet having excellent deep drawability can be provided. Further, by further controlling the shape ratio of the surface layer crystal grains, it is possible to further improve the deep drawability. In addition, this precipitation N concentration ratio is
It can be controlled by adding elements such as Sb and slab heating conditions (temperature, time, atmosphere). Furthermore, in the case of a thin steel sheet subjected to alloyed hot-dip galvanizing, the above Sn
By further containing an element such as the above, or by limiting the X-ray diffraction intensity ratio of the alloy phase in the plating layer, better quality can be obtained. Therefore,
INDUSTRIAL APPLICABILITY The present invention greatly contributes to improvement of workability, particularly deep drawability, of various thin steel sheets such as hot-rolled steel sheets, cold-rolled steel sheets, galvanized steel sheets, hot-dip galvanized steel sheets, and galvannealed steel sheets.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱延鋼板のr値に及ぼす析出N濃度の影響を示
すグラフである。
FIG. 1 is a graph showing the effect of the concentration of precipitated N on the r value of a hot-rolled steel sheet.

【図2】スラブの窒化量に及ぼすSn添加の影響を示す
グラフである。
FIG. 2 is a graph showing the effect of adding Sn on the nitriding amount of a slab.

【図3】薄鋼板の表層部における代表的な金属組織を表
す図である。
FIG. 3 is a diagram showing a typical metal structure in a surface layer portion of a thin steel plate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C23C 2/06 C23C 2/06 2/28 2/28 (72)発明者 加藤 千昭 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C23C 2/06 C23C 2/06 2/28 2/28 (72) Inventor Chiaki Kato Kurashiki City, Okayama Prefecture Mizushima Kawasaki-dori 1-chome (without address) Kawasaki Steel Corporation Mizushima Works

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.005 %以下、Ti:0.01
〜0.1 %を含有する深絞り用極低炭素薄鋼板において、
(鋼板表面から板厚の1/100までの表層部における
析出N濃度)/(鋼板中央部における析出N濃度)で表
される析出N濃度比が3.0 以下であることを特徴とす
る、深絞り用極低炭素薄鋼板。
(1) In mass%, C: 0.005% or less, Ti: 0.01
Ultra-low carbon steel sheet for deep drawing containing up to 0.1%
A deep drawing wherein a ratio of a precipitated N concentration represented by (precipitated N concentration in the surface layer portion from the steel sheet surface to 1/100 of the sheet thickness) / (precipitated N concentration in the central part of the steel sheet) is 3.0 or less. Ultra-low carbon steel sheet.
【請求項2】 鋼板表面から板厚方向 100μmの位置に
おける結晶粒が、(圧延方向の粒径)/(板厚方向の粒
径)で表される形状比にして3.0 以下であることを特徴
とする、請求項1に記載の深絞り用極低炭素薄鋼板。
2. The method according to claim 1, wherein the crystal grains at a position of 100 μm in the thickness direction from the surface of the steel sheet have a shape ratio represented by (particle size in the rolling direction) / (particle size in the thickness direction) of 3.0 or less. The ultra-low carbon thin steel sheet for deep drawing according to claim 1, wherein:
【請求項3】 鋼板中に、Sn、Pb、As、Bi、Te、Se、Sb
のうちの少なくとも1種を、質量%で、それぞれ0.001
〜0.10%含有することを特徴とする、請求項1または2
に記載の深絞り用極低炭素薄鋼板。
3. The steel sheet contains Sn, Pb, As, Bi, Te, Se, and Sb.
At least one of them is 0.001
3. The composition according to claim 1, wherein the content is 0.10%.
2. An ultra-low carbon steel sheet for deep drawing according to item 1.
【請求項4】 請求項1〜3のいずれか1項に記載の薄
鋼板を素材とし、電気めっきまたは溶融金属めっきによ
り、亜鉛系めっきを施した深絞り用極低炭素薄鋼板
4. An ultra-low carbon steel sheet for deep drawing, wherein the thin steel sheet according to claim 1 is used as a material and zinc-plated by electroplating or hot-dip metal plating.
【請求項5】 鋼板表面に合金化溶融亜鉛めっきを施し
た極低炭素薄鋼板であって、このめっき層中には、Sn、
Pb、As、Bi、Te、Se、Sbのうちの少なくとも1種を、質
量%で、それぞれ0.0001〜0.01%含有することを特徴と
する、請求項4に記載の亜鉛系めっきを施した深絞り用
極低炭素薄鋼板。
5. An ultra-low carbon thin steel sheet having a steel sheet surface subjected to alloyed hot-dip galvanizing, wherein Sn,
The zinc-plated deep drawing according to claim 4, characterized in that at least one of Pb, As, Bi, Te, Se, and Sb is contained in an amount of 0.0001 to 0.01% by mass. Ultra-low carbon steel sheet.
【請求項6】 鋼板表面に合金化溶融亜鉛めっきを施し
た極低炭素薄鋼板であって、このめっき層における合金
相のX線回折強度比Dが0.2 以下であることを特徴とす
る、請求項4または5に記載の亜鉛系めっきを施した深
絞り用極低炭素薄鋼板。ただし、X線回折強度比D=
(Γ相(222) 面のX線回折強度+Γ1相(444) 面のX線
回折強度)/(δ1相(330) 面のX線回折強度)
6. An ultra-low carbon thin steel sheet having a surface of a steel sheet subjected to alloyed hot-dip galvanizing, wherein an X-ray diffraction intensity ratio D of an alloy phase in the plating layer is 0.2 or less. Item 7. An ultra-low carbon thin steel sheet for deep drawing, wherein the zinc-based plating according to item 4 or 5 is applied. However, the X-ray diffraction intensity ratio D =
(X-ray diffraction intensity of Γ phase (222) plane + X-ray diffraction intensity of Γ1 phase (444) plane) / (X-ray diffraction intensity of δ1 phase (330) plane)
JP2000187838A 1999-07-05 2000-06-22 Extra-low carbon thin steel sheet for deep drawing and extra-low carbon thin steel sheet for deep drawing applied with galvanizing Pending JP2001073079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000187838A JP2001073079A (en) 1999-07-05 2000-06-22 Extra-low carbon thin steel sheet for deep drawing and extra-low carbon thin steel sheet for deep drawing applied with galvanizing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19039399 1999-07-05
JP11-190393 1999-07-05
JP2000187838A JP2001073079A (en) 1999-07-05 2000-06-22 Extra-low carbon thin steel sheet for deep drawing and extra-low carbon thin steel sheet for deep drawing applied with galvanizing

Publications (1)

Publication Number Publication Date
JP2001073079A true JP2001073079A (en) 2001-03-21

Family

ID=26506056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000187838A Pending JP2001073079A (en) 1999-07-05 2000-06-22 Extra-low carbon thin steel sheet for deep drawing and extra-low carbon thin steel sheet for deep drawing applied with galvanizing

Country Status (1)

Country Link
JP (1) JP2001073079A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126736A (en) * 2008-11-25 2010-06-10 Sumitomo Metal Ind Ltd Cold-rolled steel sheet
JP2016089221A (en) * 2014-11-05 2016-05-23 新日鐵住金株式会社 Hot-dip galvanized steel sheet excellent in corrosion resistance, metallized hot-dip galvanized steel sheet and method for manufacturing them

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240214A (en) * 1989-03-15 1990-09-25 Nkk Corp Method for hot-rolling and annealing non-grain oriented electrical steel plate
JPH03199344A (en) * 1989-12-28 1991-08-30 Kawasaki Steel Corp Galvanized steel sheet for deep drawing having excellent continuous denting property and secondary operation resistant brittleness resistance
JPH06100979A (en) * 1992-09-21 1994-04-12 Kawasaki Steel Corp Steel sheet press working having high stretch rigidity and excellent in press formability
JPH10168544A (en) * 1996-12-10 1998-06-23 Nkk Corp Cold rolled steel sheet excellent in blanking property and its production
JPH10306361A (en) * 1997-05-02 1998-11-17 Nkk Corp Hot dip galvannealed steel sheet
JP2000226646A (en) * 1999-02-03 2000-08-15 Kawasaki Steel Corp Hot dip galvannealed steel sheet excellent in press formability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240214A (en) * 1989-03-15 1990-09-25 Nkk Corp Method for hot-rolling and annealing non-grain oriented electrical steel plate
JPH03199344A (en) * 1989-12-28 1991-08-30 Kawasaki Steel Corp Galvanized steel sheet for deep drawing having excellent continuous denting property and secondary operation resistant brittleness resistance
JPH06100979A (en) * 1992-09-21 1994-04-12 Kawasaki Steel Corp Steel sheet press working having high stretch rigidity and excellent in press formability
JPH10168544A (en) * 1996-12-10 1998-06-23 Nkk Corp Cold rolled steel sheet excellent in blanking property and its production
JPH10306361A (en) * 1997-05-02 1998-11-17 Nkk Corp Hot dip galvannealed steel sheet
JP2000226646A (en) * 1999-02-03 2000-08-15 Kawasaki Steel Corp Hot dip galvannealed steel sheet excellent in press formability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126736A (en) * 2008-11-25 2010-06-10 Sumitomo Metal Ind Ltd Cold-rolled steel sheet
JP2016089221A (en) * 2014-11-05 2016-05-23 新日鐵住金株式会社 Hot-dip galvanized steel sheet excellent in corrosion resistance, metallized hot-dip galvanized steel sheet and method for manufacturing them

Similar Documents

Publication Publication Date Title
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
KR100747133B1 (en) High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation
JP5943157B1 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
US11965222B2 (en) Method for producing hot-rolled steel sheet and method for producing cold-rolled full hard steel sheet
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
MX2012005953A (en) HIGH-STRENGTH STEEL SHEET HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND MAXIMUM TENSILE STRENGTH OF 900 MPa OR MORE, AND PROCESS FOR PRODUCTION THEREOF.
JPWO2016021193A1 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP2007084913A (en) Galvannealed sheet steel excellent in corrosion resistance, workability and coatability, and its manufacturing method
WO2018142849A1 (en) High-strength molten zinc plating hot-rolled steel sheet, and production method therefor
JP2010138482A (en) Cold rolled steel sheet, hot dip galvannealed steel sheet, and method for producing them
JP4238153B2 (en) High-strength electrogalvanized steel sheet excellent in uniform appearance and method for producing the same
WO2017131052A1 (en) High-strength steel sheet for warm working, and method for producing same
WO2020158228A1 (en) High-strength steel sheet and method for producing same
JP2661409B2 (en) Cold-rolled steel sheet for deep drawing, its galvanized product, and method for producing them
JPH0543982A (en) Cold rolled steel sheet for deep drawing and its production
JP2016132801A (en) Galvanized steel sheet and manufacturing method therefor
JP4957829B2 (en) Cold rolled steel sheet and method for producing the same
JPH11140587A (en) Galvannealed steel sheet excellent in plating adhesion
JP2001073079A (en) Extra-low carbon thin steel sheet for deep drawing and extra-low carbon thin steel sheet for deep drawing applied with galvanizing
JP4846550B2 (en) Steel plate for galvannealed alloy and galvannealed steel plate
JP7468815B1 (en) High-strength plated steel sheet and method for producing same
JP7235165B2 (en) Material cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing hot-dip galvanized steel sheet, and method for manufacturing alloyed hot-dip galvanized steel sheet
JP5092858B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP4598700B2 (en) Alloyed hot-dip galvanized steel with excellent appearance quality and method for producing the same
JP2001192795A (en) High tensile strength hot dip plated steel plate and producing method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041209

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050107