JP2001072965A - Mixed coolant and refrigeration cycle device using it - Google Patents

Mixed coolant and refrigeration cycle device using it

Info

Publication number
JP2001072965A
JP2001072965A JP25438199A JP25438199A JP2001072965A JP 2001072965 A JP2001072965 A JP 2001072965A JP 25438199 A JP25438199 A JP 25438199A JP 25438199 A JP25438199 A JP 25438199A JP 2001072965 A JP2001072965 A JP 2001072965A
Authority
JP
Japan
Prior art keywords
refrigerant
coolant
refrigeration cycle
mixed
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25438199A
Other languages
Japanese (ja)
Inventor
Yuji Yoshida
雄二 吉田
Noriho Okaza
典穂 岡座
Shozo Funakura
正三 船倉
Mitsuharu Matsuo
光晴 松尾
Fumitoshi Nishiwaki
文俊 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25438199A priority Critical patent/JP2001072965A/en
Publication of JP2001072965A publication Critical patent/JP2001072965A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an alternative coolant to R22 and R502 which coolant forms an azeotropic composition and has a high critical temperature by mixing propylene, difluoromethane and pentafluoroethane. SOLUTION: A mixed coolant for a refrigeration cycle device is obtained by blending not more than 40 wt.% of propylene (R1270), difluoromethane (R32) and pentafluoroethane (R125). This mixed coolant has an almost-equal cooling capacity to a non-azeotropic mixed coolant, R410A, consisting of 50 wt.% of R32 and 50 wt.% of R125, at a normal temperature. Because this mixed coolant contains R1270, which has a small coolant density, the amount of the coolant for filling can be reduced. A detrimental effect on the stratosphere ozone layer can be avoided with this mixed coolant and the global warming coefficient can be reduced in comparison with R410A. A refrigeration cycle device with this mixed coolant can be operated reliably by using a dryer for removing moisture.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プロピレンとジフ
ルオロメタンとペンタフルオロエタンからなる混合冷
媒、および、それを用いたエアコン、冷凍機等の冷凍サ
イクル装置に関するものである。
The present invention relates to a mixed refrigerant comprising propylene, difluoromethane and pentafluoroethane, and to a refrigeration cycle device such as an air conditioner or a refrigerator using the mixed refrigerant.

【0002】[0002]

【従来の技術】従来、エアコン、冷凍機等の冷凍サイク
ル装置は、圧縮機、必要に応じて四方弁、凝縮器、キャ
ピラリーチューブや膨張弁等の絞り装置、蒸発器、アキ
ュームレータ等を配管接続して冷凍サイクルを構成し、
その内部に冷媒を循環させることにより、冷却または加
熱作用を行っている。これらの冷凍サイクル装置におけ
る冷媒としては、フロン類(以下R○○またはR○○○
と記すことが、米国ASHRAE34規格により規定さ
れている)と呼ばれるメタンまたはエタンから誘導され
たハロゲン化炭化水素が知られている。
2. Description of the Related Art Conventionally, a refrigeration cycle device such as an air conditioner or a refrigerator is connected to a compressor, if necessary, a four-way valve, a condenser, a throttle device such as a capillary tube or an expansion valve, an evaporator, an accumulator, and the like. Constitute a refrigeration cycle,
Cooling or heating is performed by circulating a cooling medium inside. As the refrigerant in these refrigeration cycle devices, chlorofluorocarbons (hereinafter referred to as ROO or ROO)
Halogenated hydrocarbons derived from methane or ethane are known, which are defined by the American ASHRAE 34 standard.

【0003】エアコン、空調機等においては、利用温度
としては凝縮温度は実質上50℃、蒸発温度は実質上0
℃の範囲において通常使用され、中でもR22(クロロ
ジフルオロメタン、CHClF2、沸点−40.8℃)が冷媒
として幅広く用いられている。また冷凍機等において
は、利用温度はやや低いが、中でもR502(R22と
R115:クロロペンタフルオロエタンの共沸冷媒、沸
点−45.6℃)が冷媒として幅広く用いられてきた。
このR22は塩素を含むフッ化炭化水素類(HCFC冷
媒)、R502の成分であるR115は水素を含まない
フッ化塩化炭素類(CFC冷媒)であり、成層圏オゾン
破壊能力があるため、すでにモントリオール議定書によ
って使用量及び生産量の規制が決定されている。成層圏
オゾン層に及ぼす影響をほとんどなくするためには、分
子構造中に塩素を含まないことが必要条件とされてお
り、この可能性のあるものとして別の塩素を含まないフ
ッ化炭化水素類(HFC冷媒)の代替冷媒や、フッ素も
含まない炭化水素類(HC冷媒)の代替冷媒が提案され
ている。
In an air conditioner, an air conditioner or the like, a condensing temperature is substantially 50 ° C. and an evaporating temperature is substantially 0 as a use temperature.
° C. is usually used in a range of, inter alia R22 (chlorodifluoromethane, CHClF 2, boiling point -40.8 ° C.) is widely used as a refrigerant. Further, in refrigerators and the like, although the utilization temperature is somewhat low, R502 (R22 and R115: an azeotropic refrigerant of chloropentafluoroethane, boiling point −45.6 ° C.) has been widely used as a refrigerant.
R22 is a fluorocarbon containing chlorine (HCFC refrigerant) and R115, a component of R502, is a fluorocarbon containing no hydrogen (CFC refrigerant) and has a stratospheric ozone depleting ability. The regulations on the amount of use and the amount of production have been determined. In order to have almost no effect on the stratospheric ozone layer, it is necessary that the molecular structure does not contain chlorine, and another possibility is that chlorine-free fluorocarbons ( Alternative refrigerants for HFC refrigerants and alternative refrigerants for hydrocarbons containing no fluorine (HC refrigerants) have been proposed.

【0004】塩素を含まないフッ化炭化水素類(HFC
冷媒)としては、ジフルオロメタン(CH2F2、R32、
沸点−51.7℃)、ペンタフルオロエタン(CF3-CH
F2、R125、沸点−48.1℃)、1,1,1−トリ
フルオロエタン(CF3-CH3、R143a、沸点−47.
2℃)、1,1,1,2−テトラフルオロエタン(CF3-
CH2F、R134a、沸点−26.1℃)、1,1−ジフ
ルオロエタン(CHF2-CH3、R152a、沸点−24.0
℃)等からなる混合冷媒が、代替冷媒候補として考えら
れている。すなわち、R22の代替冷媒としては、R3
2、R125、R134a等からなる混合冷媒、R50
2の代替冷媒としては、R125、R143a、R13
4a等からなる混合冷媒が、採用されだしている。例え
ば、23重量%のR32、25重量%のR125、52
重量%のR134aからなる非共沸混合冷媒は、米国A
SHRAE34規格においてR407Cの番号が付与さ
れて、R22の代替冷媒としてパッケージエアコン等
に、50重量%のR32、50重量%のR125からな
る非共沸混合冷媒は、米国ASHRAE34規格におい
てR410Aの番号が付与されて、R22の代替冷媒と
してルームエアコン等に、採用されだしている。
[0004] Chlorine-free fluorinated hydrocarbons (HFCs)
As the refrigerant, difluoromethane (CH 2 F 2 , R32,
Boiling point -51.7 ℃), pentafluoroethane (CF 3 -CH
F 2, R125, boiling point -48.1 ℃), 1,1,1- trifluoroethane (CF 3 -CH 3, R143a, boiling -47.
2 ° C.), 1,1,1,2-tetrafluoroethane (CF 3
CH 2 F, R134a, boiling point −26.1 ° C.), 1,1-difluoroethane (CHF 2 —CH 3 , R152a, boiling point −24.0)
C.) is considered as an alternative refrigerant candidate. That is, as an alternative refrigerant to R22, R3
2, a mixed refrigerant consisting of R125, R134a, etc., R50
R125, R143a, R13
A mixed refrigerant composed of 4a or the like is being adopted. For example, 23% by weight of R32, 25% by weight of R125, 52
A non-azeotropic mixed refrigerant consisting of R134a by weight is US
R407C number is given in the SHRAE34 standard, and a non-azeotropic mixed refrigerant consisting of 50% by weight of R32 and 50% by weight of R125 is given a number of R410A in the US ASHRAE34 standard for packaged air conditioners and the like as an alternative refrigerant to R22. Then, it has begun to be used in room air conditioners and the like as an alternative refrigerant to R22.

【0005】HFC冷媒の欠点は、地球環境問題のもう
一つの課題である地球温暖化に対する影響を示す地球温
暖化係数(以下GWPと記す)が、従来のHCFC冷媒
のR22と同程度以上に大きいことである。1998年
のIPCC(Intergovernmental Panel on Climate
Change、気候変動政府間パネル)報告によれば、炭酸
ガス(CO2)のGWPを1としたときの積算時水平軸
100年の比較値は、R22のGWPは1900、HF
C冷媒の内、R32のGWPは880、R125のGW
Pは3800、R143aのGWPは5400、R13
4aのGWPは1600、R152aのGWPは190
とされている。従って、これらを混合したR407Cの
GWPは2000、R410AのGWPは2300と試
算される。
A disadvantage of the HFC refrigerant is that its global warming potential (hereinafter referred to as GWP), which is an effect on global warming which is another problem of the global environment, is at least as large as R22 of the conventional HCFC refrigerant. That is. 1998 IPCC (Intergovernmental Panel on Climate)
Change, Intergovernmental Panel on Climate Change) According to the report, when the GWP of carbon dioxide (CO 2 ) is set to 1, the comparison value of 100 years on the horizontal axis at the time of integration is 1900 for R22 and HF for R22.
Of the C refrigerant, the GWP of R32 is 880, and the GW of R125
P is 3800, GWP of R143a is 5400, R13
GWP of 4a is 1600, GWP of R152a is 190
It has been. Therefore, the GWP of R407C obtained by mixing them is 2,000, and the GWP of R410A is 2,300.

【0006】[0006]

【発明が解決しようとする課題】R410Aは、特に暖
房運転時の能力等に優れるため、ルームエアコン等に採
用されだしているものであるが、冷房運転時等において
は、以下のような課題をもっている。すなわち、50重
量%のR32と50重量%のR125からなるR410
Aは、冷媒の臨界温度が約72℃と低いため、高外気温
度の冷房運転時等においては、冷凍サイクル装置の凝縮
温度が上昇して、臨界温度に近づくため、冷凍能力(冷
房能力)が低下し、成績係数も極端に低下するものであ
った。
R410A has been adopted for a room air conditioner or the like because of its excellent performance especially in a heating operation. However, R410A has the following problems in a cooling operation and the like. I have. That is, R410 consisting of 50% by weight of R32 and 50% by weight of R125.
In A, since the critical temperature of the refrigerant is as low as about 72 ° C., during a cooling operation at a high outside air temperature, the condensing temperature of the refrigeration cycle device rises and approaches the critical temperature. And the coefficient of performance was extremely low.

【0007】本発明は、炭化水素類(HC冷媒)である
プロピレン(R1270)が、40重量%以下の範囲
で、R32とR125からなる混合物と共沸様組成を作
り、これらの3成分系混合冷媒の臨界温度が高くなるも
のであり、R22やR502の代替冷媒として用いるこ
とができる。
According to the present invention, propylene (R1270), which is a hydrocarbon (HC refrigerant), forms an azeotropic composition with a mixture of R32 and R125 within a range of 40% by weight or less, The refrigerant has a higher critical temperature, and can be used as a substitute refrigerant for R22 and R502.

【0008】ここでプロピレン(CH3-CH=CH2、R127
0、沸点−47.7℃)は、フッ素も含まない炭化水素
類(HC冷媒)であり、分子構造に二重結合をもつ。従
来、プロピレン(R1270)は、特開平7−1501
34に見られるように、フッ化炭化水素類(HFC冷
媒)の内では、R125と共沸様組成を作ることが知ら
れていた。R1270(沸点−47.7℃)とR 12
5(沸点−48.1℃)は、沸点が近いこともあって、
R1270とR 125から2成分系混合冷媒はほとん
どの混合組成で共沸様組成となる。
Here, propylene (CH 3 —CH = CH 2 , R127
0, boiling point-47.7 ° C.) are hydrocarbons containing no fluorine (HC refrigerant) and have a double bond in the molecular structure. Conventionally, propylene (R1270) has been disclosed in
As shown in No. 34, among fluorinated hydrocarbons (HFC refrigerants), it was known to form an azeotropic composition with R125. R1270 (boiling point-47.7 ° C) and R12
5 (boiling point-48.1 ° C) has a similar boiling point,
From R1270 and R125, the binary mixed refrigerant has an azeotropic composition in most of the mixed compositions.

【0009】[0009]

【課題を解決するための手段】本発明になる請求項1
は、プロピレン(R1270)と、ジフルオロメタン
(R32)と、ペンタフルオロエタン(R125)から
なる冷凍サイクル装置に用いる混合冷媒である。
According to the present invention, there is provided the present invention.
Is a mixed refrigerant used for a refrigeration cycle apparatus composed of propylene (R1270), difluoromethane (R32), and pentafluoroethane (R125).

【0010】本発明になる請求項2は、プロピレン(R
1270)が40重量%以下からなる請求項1記載の冷
凍サイクル装置に用いる混合冷媒である。
[0010] Claim 2 according to the present invention relates to propylene (R
1270) is a mixed refrigerant used in the refrigeration cycle apparatus according to claim 1, comprising 40% by weight or less.

【0011】本発明になる請求項3は、水分を除去する
ためのドライヤを備えることを特徴とする請求項1記載
の混合冷媒を用いる冷凍サイクル装置である。
According to a third aspect of the present invention, there is provided a refrigeration cycle apparatus using a mixed refrigerant according to the first aspect, further comprising a dryer for removing moisture.

【0012】[0012]

【発明の実施の形態】本発明の混合冷媒は、R1270
とR32とR125からなる3成分系混合冷媒であり、
R410Aよりも高い臨界温度をもつため、高外気温度
の冷房運転時等においても、冷凍能力(冷房能力)や成
績係数の低下が緩和されるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The mixed refrigerant of the present invention is R1270.
And a ternary mixed refrigerant consisting of R32 and R125,
Since it has a higher critical temperature than R410A, a decrease in the refrigerating capacity (cooling capacity) and coefficient of performance is alleviated even during a cooling operation at a high outside air temperature.

【0013】また、本発明の混合冷媒は、R1270が
40重量%以下からなる3成分系混合冷媒であり、冷凍
サイクル装置の凝縮器や蒸発器の両方において、温度勾
配を小さくすることができる共沸様混合組成として扱え
る。
Further, the mixed refrigerant of the present invention is a ternary mixed refrigerant having R1270 of 40% by weight or less, and can reduce the temperature gradient in both the condenser and the evaporator of the refrigeration cycle apparatus. It can be handled as a boiling-like mixed composition.

【0014】また、本発明の混合冷媒は、通常の温度条
件においてはR410Aとほぼ同等の冷凍性能をもつ。
さらに冷凍サイクル装置の冷媒として用いられる場合に
は、冷媒密度が小さいR1270を含むため、冷媒充填
量を低減できる。
The refrigerant mixture of the present invention has a refrigerating performance substantially equal to that of R410A under normal temperature conditions.
Further, when used as a refrigerant of a refrigeration cycle device, R1270 having a low refrigerant density is included, so that the refrigerant charge amount can be reduced.

【0015】また、本発明の混合冷媒は、R1270を
含む混合冷媒であるため、化学構造的に近い従来の鉱油
やアルキルベンゼン油からなる圧縮機用潤滑油と溶解性
があり、HFC冷媒のみからなる混合冷媒のように、エ
ステル油やエーテル油を用いる必要がない。さらには、
R32やR125のHFC冷媒よりも多くR1270が
潤滑油へ溶解するために、充填した混合組成よりもR1
270の少ない循環組成となるが、本発明の組成範囲で
は、R1270とR32とR125の共沸性は維持され
るものである。
Further, since the mixed refrigerant of the present invention is a mixed refrigerant containing R1270, it is soluble in the conventional lubricating oil for compressors composed of mineral oil or alkylbenzene oil which is close in chemical structure, and consists only of HFC refrigerant. There is no need to use an ester oil or an ether oil as in a mixed refrigerant. Moreover,
R1270 is more soluble in lubricating oil than R32 or R125 HFC refrigerants, so R1
Although the circulating composition is as low as 270, the azeotropic property of R1270, R32, and R125 is maintained in the composition range of the present invention.

【0016】また、本発明の混合冷媒は、炭化水素類
(HC冷媒)であるR1270と、フッ化炭化水素類
(HFC冷媒)であるR32およびR125を含む混合
物となすことにより、成層圏オゾン層に及ぼす影響をな
くすることを可能とするものである。さらにかかる混合
物は、GWPがほとんどない炭化水素類のR1270を
含むため、R1270とR32とR125からなる混合
冷媒のGWPは、R410Aに比べ低減できるものであ
る。
Further, the mixed refrigerant of the present invention forms a mixture containing R1270, which is a hydrocarbon (HC refrigerant), and R32 and R125, which are fluorinated hydrocarbons (HFC refrigerant). It is possible to eliminate the influence. Further, since such a mixture contains R1270, which is a hydrocarbon having almost no GWP, the GWP of the mixed refrigerant composed of R1270, R32, and R125 can be reduced as compared with R410A.

【0017】また、本発明になる冷凍サイクル装置は、
水分を除去するためのドライヤを備えることを特徴とす
る冷凍サイクル装置である。本発明になる混合冷媒は、
R1270とR32とR125からなるものであるが、
これらの単一冷媒は、冷凍サイクル装置中の水分と結合
してクラスレートを生成することが知られているため、
こられからなる混合冷媒もクラスレートを生成すること
が予想され、圧縮機に付設したアキュームレータの潤滑
油の戻し穴を氷結させる恐れがあり、水分を除去するた
めのドライヤを備えることにより、信頼性のある運転を
行うことができる。
Further, the refrigeration cycle apparatus according to the present invention comprises:
A refrigeration cycle device comprising a dryer for removing water. The mixed refrigerant according to the present invention,
It consists of R1270, R32 and R125,
Because these single refrigerants are known to combine with the moisture in the refrigeration cycle device to produce clathrates,
It is expected that the refrigerant mixture will also produce clathrate, which may freeze the lubricating oil return hole of the accumulator attached to the compressor, and by providing a dryer for removing moisture, Operation with a certainty can be performed.

【0018】(実施の形態1)第1の実施の形態は、R
1270とR32とR125からなる3成分系混合冷媒
の臨界温度を説明するものである。すなわち、R127
0とR32とR125のそれぞれの臨界温度は、R12
70が92.4℃、R32が78.1℃、R125が6
6.2℃である。ここで、50重量%のR32、50重
量%のR125からなるR410Aの臨界温度は、約7
2℃であることを前述したが、これはR32とR125
の臨界温度の平均値とほぼ一致する。したがって、R3
2とR125からなる混合物に、臨界温度の高いR12
70の混合割合を増加させるほど、R1270とR32
とR125からなる3成分系混合冷媒の臨界温度も増大
する。R1270とR32とR125からなる3成分系
混合冷媒は、高い冷凍サイクル装置の凝縮温度において
も、臨界温度に近づくことが少なくなり、冷凍能力(冷
房能力)や成績係数の低下が緩和されるものである。
(Embodiment 1) In the first embodiment, R
It explains the critical temperature of the ternary mixed refrigerant composed of 1270, R32 and R125. That is, R127
0, the critical temperature of each of R32 and R125 is R12
70 at 92.4 ° C, R32 at 78.1 ° C, R125 at 6
6.2 ° C. Here, the critical temperature of R410A consisting of 50% by weight of R32 and 50% by weight of R125 is about 7%.
It was mentioned above that the temperature was 2 ° C.
Almost coincides with the average value of the critical temperature. Therefore, R3
2 and R125 are mixed with R12 having a high critical temperature.
As the mixing ratio of R70 increases, R1270 and R32
The critical temperature of the ternary mixed refrigerant composed of R125 and R125 also increases. The three-component mixed refrigerant composed of R1270, R32, and R125 is less likely to approach the critical temperature even at a high condensing temperature of the refrigeration cycle apparatus, and the decrease in the refrigerating capacity (cooling capacity) and the coefficient of performance is moderated. is there.

【0019】(実施の形態2)第2の実施の形態は、R
1270とR32とR125からなる3成分系混合冷媒
の温度特性を説明するものである。すなわち、凝縮平均
温度が50℃、蒸発平均温度が0℃となるようにした場
合の温度勾配を調査した実施例を図1に示す。図1中に
記載された上下2組の数値において、上段は凝縮平均温
度が50℃とした場合の温度勾配、下段は蒸発平均温度
が0℃とした場合の温度勾配である。図1に示されるよ
うに、プロピレン(R1270)が40重量%以下から
なるR1270とR32とR125からなる3成分系混
合冷媒は、冷凍サイクル装置の凝縮器や蒸発器の両方に
おいて、温度勾配をほぼ2deg程度までと小さくする
ことができる共沸様混合組成として扱える。
(Embodiment 2) In a second embodiment, R
It explains the temperature characteristics of a three-component mixed refrigerant composed of 1270, R32 and R125. That is, FIG. 1 shows an example in which the temperature gradient was investigated when the average condensation temperature was 50 ° C. and the average evaporation temperature was 0 ° C. In the two sets of upper and lower numerical values shown in FIG. 1, the upper row shows the temperature gradient when the average condensation temperature is 50 ° C., and the lower row shows the temperature gradient when the average evaporation temperature is 0 ° C. As shown in FIG. 1, a ternary mixed refrigerant composed of R1270, R32, and R125 containing propylene (R1270) in an amount of 40% by weight or less has almost a temperature gradient in both the condenser and the evaporator of the refrigeration cycle apparatus. It can be treated as an azeotropic mixture composition that can be reduced to about 2 deg.

【0020】(実施の形態3)第3の実施の形態は、R
1270とR32とR125からなる3成分系混合冷媒
の冷凍性能を示し、冷凍サイクル装置の冷媒として用い
る場合の特性を示すものである。すなわち、凝縮平均温
度が50℃、蒸発平均温度が0℃となるようにして、3
成分系混合冷媒の混合組成を変化させて、R502やH
FC系代替冷媒であるR410Aの冷凍性能と一緒に、
R22と比較したものである。なお、この温度条件にお
けるR22の圧縮機吐出温度は、71.7℃である。
(表1)の組成は、40重量%以下のR1270の範囲
でランダムに選択した混合組成であるが、R1270/
R32/R125(0/50/50重量%)の組成物は
R410Aのことである。(表1)の冷凍サイクル装置
の冷凍能力はR410AやR502よりも上回り、成績
係数はR410AやR502を下回る。しかしながら、
同一冷凍能力においては、R410AやR502とほぼ
同等の成績係数を維持できるものである。20重量%の
R1270では、冷凍サイクル装置の凝縮器や蒸発器の
温度勾配は、2deg以下であり、R410Aと同様に
ほとんど共沸様混合組成として扱える。
(Embodiment 3) In a third embodiment, R
It shows the refrigeration performance of a ternary mixed refrigerant consisting of 1270, R32, and R125, and shows characteristics when used as a refrigerant in a refrigeration cycle device. That is, by setting the average condensation temperature to 50 ° C. and the average evaporation temperature to 0 ° C.
By changing the mixed composition of the component-based mixed refrigerant, R502 or H
Together with the refrigerating performance of R410A, which is an FC-based alternative refrigerant,
This is a comparison with R22. The compressor discharge temperature of R22 under these temperature conditions is 71.7 ° C.
The composition in Table 1 is a mixture composition randomly selected within the range of R1270 of 40% by weight or less.
The composition of R32 / R125 (0/50/50% by weight) refers to R410A. The refrigeration capacity of the refrigeration cycle apparatus shown in Table 1 is higher than R410A and R502, and the coefficient of performance is lower than R410A and R502. However,
At the same refrigeration capacity, it is possible to maintain a coefficient of performance substantially equal to that of R410A or R502. With 20% by weight of R1270, the temperature gradient of the condenser or evaporator of the refrigeration cycle apparatus is 2 deg or less, and can be treated almost as an azeotropic mixture like R410A.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】以上の説明から明らかなように、本発明
においては以下の効果を有する。すなわち、 (1)R410Aよりも高い臨界温度をもつため、高外
気温度の冷房運転時等においても、冷凍能力(冷房能
力)や成績係数の低下が緩和される。 (2)冷凍サイクル装置の凝縮器や蒸発器の両方におい
て、温度勾配を小さくできる共沸様混合組成として扱え
る。 (3)通常の温度条件においてはR410Aとほぼ同等
の冷凍性能をもつ。さらに冷凍サイクル装置の冷媒とし
て用いられる場合には、冷媒密度が小さいR1270を
含むため、冷媒充填量を低減できる。 (4)R1270を含む混合冷媒であるため、化学構造
的に近い従来の鉱油やアルキルベンゼン油からなる圧縮
機用潤滑油と溶解性がある。 (5)炭化水素類(HC冷媒)であるR1270と、フ
ッ化炭化水素類(HFC冷媒)であるR32およびR1
25からなる混合物となすことにより、成層圏オゾン層
に及ぼす影響をなくすることを可能とする。 (6)R1270とR32とR125からなる混合冷媒
のGWPは、R410A比べ低減できる。 (7)水分を除去するためのドライヤを備えることによ
り、信頼性のある運転を行うことができる。
As is apparent from the above description, the present invention has the following effects. (1) Since it has a higher critical temperature than R410A, even during a cooling operation at a high outside air temperature, a decrease in the refrigerating capacity (cooling capacity) and the coefficient of performance are alleviated. (2) Both the condenser and the evaporator of the refrigeration cycle apparatus can be treated as an azeotropic mixture composition that can reduce the temperature gradient. (3) Under normal temperature conditions, it has a refrigerating performance almost equivalent to that of R410A. Further, when used as a refrigerant of a refrigeration cycle device, R1270 having a low refrigerant density is included, so that the refrigerant charge amount can be reduced. (4) Since it is a mixed refrigerant containing R1270, it is soluble with conventional lubricating oils for compressors composed of mineral oil or alkylbenzene oil which are close in chemical structure. (5) R1270 which is a hydrocarbon (HC refrigerant) and R32 and R1 which are fluorinated hydrocarbons (HFC refrigerant)
By making the mixture of 25, the influence on the stratospheric ozone layer can be eliminated. (6) The GWP of the mixed refrigerant composed of R1270, R32, and R125 can be reduced as compared with R410A. (7) By providing a dryer for removing moisture, reliable operation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になるR1270/R32/R125の
3成分系混合冷媒の温度勾配を示す図であり、上下2組
の数値において、上段は凝縮平均温度が50℃とした場
合の温度勾配、下段は蒸発平均温度が0℃とした場合の
温度勾配を示す図
FIG. 1 is a diagram showing a temperature gradient of a ternary mixed refrigerant of R1270 / R32 / R125 according to the present invention. In the upper and lower two numerical values, the upper graph shows a temperature gradient when the condensation average temperature is 50 ° C. The lower part shows the temperature gradient when the average evaporation temperature is 0 ° C.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 船倉 正三 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松尾 光晴 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 西脇 文俊 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shozo Funakura 1006 Kazuma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. 72) Inventor Fumitoshi Nishiwaki 1006 Kazuma Kadoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 プロピレンと、ジフルオロメタンと、ペ
ンタフルオロエタンからなる冷凍サイクル装置に用いる
混合冷媒。
1. A refrigerant mixture for use in a refrigeration cycle apparatus comprising propylene, difluoromethane, and pentafluoroethane.
【請求項2】 プロピレンが40重量%以下からなる請
求項1記載の冷凍サイクル装置に用いる混合冷媒。
2. The mixed refrigerant used in the refrigeration cycle apparatus according to claim 1, wherein the propylene comprises 40% by weight or less.
【請求項3】 水分を除去するためのドライヤを備える
ことを特徴とする請求項1記載の混合冷媒を用いる冷凍
サイクル装置。
3. The refrigeration cycle apparatus using a mixed refrigerant according to claim 1, further comprising a dryer for removing water.
JP25438199A 1999-09-08 1999-09-08 Mixed coolant and refrigeration cycle device using it Pending JP2001072965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25438199A JP2001072965A (en) 1999-09-08 1999-09-08 Mixed coolant and refrigeration cycle device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25438199A JP2001072965A (en) 1999-09-08 1999-09-08 Mixed coolant and refrigeration cycle device using it

Publications (1)

Publication Number Publication Date
JP2001072965A true JP2001072965A (en) 2001-03-21

Family

ID=17264204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25438199A Pending JP2001072965A (en) 1999-09-08 1999-09-08 Mixed coolant and refrigeration cycle device using it

Country Status (1)

Country Link
JP (1) JP2001072965A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439278B1 (en) * 2001-07-12 2004-07-07 에이씨엠텍(주) The composition of refrigerant mixtures for alternating refrigerant r-502
JP2009511697A (en) * 2005-10-14 2009-03-19 アルケマ フランス Hydrofluorocarbon-based compositions
WO2009157320A1 (en) * 2008-06-24 2009-12-30 三菱電機株式会社 Refrigerating cycle apparatus, and air conditioning apparatus
WO2013146549A1 (en) * 2012-03-30 2013-10-03 出光興産株式会社 Refrigerant composition and method for suppressing decomposition of fluorohydrocarbon

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439278B1 (en) * 2001-07-12 2004-07-07 에이씨엠텍(주) The composition of refrigerant mixtures for alternating refrigerant r-502
JP2009511697A (en) * 2005-10-14 2009-03-19 アルケマ フランス Hydrofluorocarbon-based compositions
WO2009157320A1 (en) * 2008-06-24 2009-12-30 三菱電機株式会社 Refrigerating cycle apparatus, and air conditioning apparatus
JPWO2009157320A1 (en) * 2008-06-24 2011-12-08 三菱電機株式会社 Refrigeration cycle apparatus and air conditioner
WO2013146549A1 (en) * 2012-03-30 2013-10-03 出光興産株式会社 Refrigerant composition and method for suppressing decomposition of fluorohydrocarbon
JP2013209589A (en) * 2012-03-30 2013-10-10 Idemitsu Kosan Co Ltd Refrigerant composition, and decomposition control method of fluorinated hydrocarbon

Similar Documents

Publication Publication Date Title
AU2018392389B2 (en) Refrigerant-containing composition, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11421137B2 (en) Refrigerant-containing composition, heat transfer medium, and heat cycle system
JP2869038B2 (en) Heat pump device using ternary mixed refrigerant
WO2019124402A1 (en) Coolant-containing composition, use for same, refrigerator having same, and method for operating refrigerator
TW200923060A (en) Compositions containing difluoromethane
US20190153282A1 (en) Low gwp heat transfer compositions
JP2002540246A (en) Composition of difluoromethane, pentafluoroethane, 1,1,1,2-tetrafluoroethane and hydrocarbon
KR20150089026A (en) Low gwp heat transfer compositions
JP2010002074A (en) Mixed refrigerant and refrigerating cycle device using the same
JP2016514187A (en) Compositions and methods for cooling
CN110878196B (en) Quaternary mixed environment-friendly refrigerant and composition
TW202037585A (en) Composition containing trans-1,2-difluoroethylene
RU2335522C2 (en) Cooling composition, cooling method, cooling apparatus
JP2002228307A (en) Mixed refrigerant filling method and apparatus filled with mixed refrigerant
WO2020213697A1 (en) Composition including refrigerant, use thereof, refrigerator having same, and method for operating said refrigerator
JPH11199863A (en) Mixed working fluid
JP2022519506A (en) Composition of Fluoroolefins and Fluoroalkanes
WO2002020689A1 (en) The composition of refrigerant mixtures for low back pressure condition
JP2001072965A (en) Mixed coolant and refrigeration cycle device using it
JP2001072966A (en) Mixed coolant and refrigeration cycle device using it
KR19990053764A (en) Composition of refrigerant mixtures for refrigerator/ air conditioner
JPH10306289A (en) Cycling refrigerator
JP2001329254A (en) Mixed refrigerant and refrigeration cycle apparatus
JPH0841448A (en) Freezing cycle using hfc-based non-azeotropic cooling medium mixture and freezing apparatus
JP7137104B2 (en) COMPOSITION CONTAINING A REFRIGERANT, USE THEREOF, AND REFRIGERATION HAVING THEREOF AND METHOD OF OPERATING THEREFRIGERATION