JP2001072701A - Manufacture of tapioca starch and production of amino acid by fermentation - Google Patents

Manufacture of tapioca starch and production of amino acid by fermentation

Info

Publication number
JP2001072701A
JP2001072701A JP2000163874A JP2000163874A JP2001072701A JP 2001072701 A JP2001072701 A JP 2001072701A JP 2000163874 A JP2000163874 A JP 2000163874A JP 2000163874 A JP2000163874 A JP 2000163874A JP 2001072701 A JP2001072701 A JP 2001072701A
Authority
JP
Japan
Prior art keywords
starch
fermentation
tapioca starch
amino acid
tapioca
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000163874A
Other languages
Japanese (ja)
Inventor
Noriko Sakurai
紀子 櫻井
Harufumi Miwa
治文 三輪
Yasushi Yamamoto
泰 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2000163874A priority Critical patent/JP2001072701A/en
Publication of JP2001072701A publication Critical patent/JP2001072701A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for separating and collecting tapioca starch efficiently from cassava roots and an industrially advantageous method for producing amino acids by fermenting the tapioca starch as the starting material. SOLUTION: A tapioca starch manufacturing method is presented, in which cassava roots are crushed in a conventional starch collecting process into 1-10 mm diameter grains, and then ground mechanically into 50 mesh passable granules or subjected to a cellulase-aided enzymatic process after being ground mechanically. Trash is removed from the starch suspension, and starch is finally collected from the starch suspension. An amino acid producing method by fermentation is also presented, in which the thus collected tapioca starch is treated with a starch liquefying enzyme and with saccharogenic amylase for development into a high-concentration saccharide solution usable as the material for an amino acid producing fermentation process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、キャッサバ芋に機
械的磨砕または酵素的処理を施してタピオカ澱粉を収率
よく分離取得する方法並びにこのようにして製造取得し
たタピオカ澱粉を酵素糖化して糖液となし、これを発酵
原料に用いるアミノ酸の発酵生産方法に関する。
The present invention relates to a method for separating and obtaining tapioca starch with good yield by subjecting cassava potatoes to mechanical grinding or enzymatic treatment, and enzymatic saccharification of the tapioca starch thus obtained and obtained. The present invention relates to a method for producing amino acids by fermentation using a sugar solution as a fermentation raw material.

【0002】[0002]

【従来の技術】タピオカは、キャッサバ芋から生産され
る澱粉であり、酵素糖化によりグルコースに変換され、
L−グルタミン酸モノナトリウム塩、L−リジン等のア
ミノ酸発酵製品の主要原料として使われている。
2. Description of the Related Art Tapioca is a starch produced from cassava potato, which is converted into glucose by enzymatic saccharification.
It is used as a main raw material for amino acid fermentation products such as L-glutamic acid monosodium salt and L-lysine.

【0003】従来、タピオカはキャッサバ芋を粉砕し、
芋の中に蓄えられた澱粉の微粒子を繊維質等のカスから
分離採取し、乾燥することによって製造されている。一
般的に、原料であるキャッサバ芋(生芋)に対し20〜
25%の収率でタピオカが得られており、これとほぼ同
量のカスが排出されているのが現状である。
[0003] Conventionally, tapioca crushes cassava potatoes,
It is manufactured by separating and collecting starch fine particles stored in potatoes from scum such as fibrous material and drying. Generally, the cassava potato (raw potato) as a raw material is 20 to
Tapioca is obtained at a yield of 25%, and at present, almost the same amount of scum is discharged.

【0004】キャッサバ芋の破砕は、通常ラスパー等に
よって行われているが、破砕された芋組織は澱粉粒子に
比較し数百〜数千倍も大きく澱粉粒子の分離には充分と
は言えず、澱粉の収率に顕著な向上が認められない。
[0004] Cassava potatoes are usually crushed by a raspar or the like, but the crushed potato tissue is several hundred to several thousand times larger than starch particles and cannot be said to be sufficient for separating starch particles. No significant improvement in starch yield is observed.

【0005】ラスパーでのキャッサバ芋の破砕と同様の
状態を実験室で再現するために、図7に示すフローシー
トに従っておろし金でキャッサバ芋をすりおろし、澱粉
製造実験を行い、最終的に得られた澱粉、カスの各重量
を測定し、澱粉の収率(抽出率)を求めた。同一条件で
3回の実験を行った結果を表1に示す。
[0005] In order to reproduce the same state as crushing of cassava potato in a laboratory, cassava potatoes were grated with a grater according to a flow sheet shown in FIG. 7, and a starch production experiment was carried out. Each weight of starch and scum was measured to determine the starch yield (extraction rate). Table 1 shows the results of three experiments performed under the same conditions.

【0006】[0006]

【表1】 [Table 1]

【0007】表1に示すように、いずれの回も得られた
澱粉重量とカスの重量はほぼ同じであり、実際のタピオ
カ澱粉工場で製品であるタピオカとほぼ同量のカスが排
出されている状況とよく一致している。
[0007] As shown in Table 1, the weight of the starch and the weight of the scum obtained each time are almost the same, and almost the same amount of scum as the product tapioca is discharged from the actual tapioca starch factory. Well matched with the situation.

【0008】ところが、キャッサバ芋の澱粉含量を分析
したところ、生芋(水分約50%)の40〜45%が澱
粉であり、従って、相当量の澱粉が抽出されずに、排出
される繊維質等のカスの中に残留していることになる。
事実、前述の実験で得たカスを走査性電子顕微鏡(SE
M)で観察し、そのSEM写真を図5(400倍)、図
6(1000倍)に示したように、ほぼ均質で球状の澱粉
粒がびっしり存在し、多数の澱粉粒子が膜状のもので覆
われているのがわかる。このように、おろし金ですりお
ろした芋からのカスの中でも多くの澱粉粒子が残留し、
膜状のもので覆われているため、澱粉採取のための通常
の破砕処理においても同様、澱粉の得量に大きな制約を
受け、キャッサバ芋中の澱粉が充分に抽出できない。
However, when the starch content of cassava potato was analyzed, 40-45% of the raw potato (water content: about 50%) was starch. Etc. will remain in the residue.
In fact, the scum obtained in the above experiment was used for scanning electron microscopy (SE
M), as shown in FIGS. 5 (400 ×) and FIG. 6 (1000 ×), the SEM photographs show that almost homogeneous and spherical starch granules are present closely and many starch particles are in the form of a film. You can see that it is covered with. In this way, many starch particles remain in the dregs from potatoes grated with a grater,
Since it is covered with a film-like material, even in the usual crushing treatment for collecting starch, similarly, the amount of starch obtained is greatly restricted, and the starch in cassava potato cannot be sufficiently extracted.

【0009】[0009]

【発明が解決しようとする課題】そこで、カスの中に存
在する澱粉粒子を覆う膜状のセルロースやヘミセルロー
スを破損、切断もしくは分解させれば、澱粉粒子が漏れ
出し、収率の向上につながり、ひいてはアミノ酸発酵工
業の大幅のコストダウンに寄与するものと考えられ、本
発明はかかる観点に着目してなされたもので、キャッサ
バ芋から澱粉を効率よく分離取得する方法並びにこのよ
うにして製造取得したタピオカ澱粉を酵素糖化して糖液
となし、これを発酵原料に用いるアミノ酸の発酵生産方
法を提供することを目的としている。
If the cellulose or hemicellulose in the film covering the starch particles existing in the residue is damaged, cut or decomposed, the starch particles leak out, leading to an improvement in the yield. In turn, it is thought to contribute to a significant cost reduction of the amino acid fermentation industry, and the present invention has been made by paying attention to such a viewpoint, and a method for efficiently separating and obtaining starch from cassava potato and manufacturing and obtaining in this way. An object of the present invention is to provide a fermentative production method for amino acids using tapioca starch as an enzymatic saccharification to form a sugar solution, which is used as a fermentation raw material.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意検討した結果、澱粉採取のための
通常の破砕処理を施したキャッサバ芋にさらに機械的磨
砕を施し、または機械的磨砕を施した後にセルラーゼを
作用させることにより、澱粉粒子を覆う膜が破損、切断
もしくは分解され、その結果、澱粉が効率よく抽出し得
ること、そしてタピオカ澱粉の収率向上に伴ない、これ
を出発原料とする工業的に有利なアミノ酸発酵プロセス
の確立に成功し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors further mechanically grind cassava potatoes which have been subjected to ordinary crushing treatment for starch collection, Alternatively, the cellulase is acted after mechanical grinding to break, cut or decompose the membrane covering the starch particles. As a result, the starch can be efficiently extracted and the yield of tapioca starch is improved. The present invention succeeded in establishing an industrially advantageous amino acid fermentation process using this as a starting material, and completed the present invention.

【0011】すなわち、本請求項1に係る発明は、キャ
ッサバ芋に澱粉採取のための通常の破砕処理を施して粒
径1〜10mmに粉砕し、次いで機械的磨砕を施して5
0メッシュパスとした後、澱粉懸濁液とカスを分離し、
澱粉懸濁液より澱粉を回収することを特徴とするタピオ
カ澱粉の製造方法であり、請求項2に係る発明は、キャ
ッサバ芋に澱粉採取のための通常の破砕処理を施して粒
径1〜10mmに粉砕し、次いで機械的磨砕を施した
後、セルラーゼによる酵素的処理を施し、次いで澱粉懸
濁液とカスを分離し、澱粉懸濁液より澱粉を回収するこ
とを特徴とするタピオカ澱粉の製造方法であり、請求項
3に係る発明は、請求項1または2記載の製造方法によ
って得られたタピオカ澱粉を水に懸濁してスラリーと
し、これに澱粉液化酵素および糖化酵素を作用させて製
造された糖液を発酵原料に用いるアミノ酸の発酵生産方
法である。
That is, according to the first aspect of the present invention, cassava potatoes are subjected to a usual crushing treatment for collecting starch, crushed to a particle size of 1 to 10 mm, and then subjected to mechanical grinding to obtain a cassava potato.
After the 0 mesh pass, the starch suspension and scum were separated,
A method for producing tapioca starch, comprising recovering starch from a starch suspension. The invention according to claim 2 is characterized in that cassava potatoes are subjected to a normal crushing treatment for collecting starch to obtain a particle size of 1 to 10 mm. After mechanically grinding, then enzymatic treatment with cellulase, separating the starch suspension and scum, and recovering the starch from the starch suspension. The invention according to claim 3 is a production method, wherein tapioca starch obtained by the production method according to claim 1 or 2 is suspended in water to form a slurry, which is then reacted with starch liquefying enzyme and saccharifying enzyme. This is a fermentation production method for amino acids using the obtained sugar solution as a fermentation raw material.

【0012】[0012]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明において、原料として使用されるキャッサ
バ芋は、収穫した生芋の他に、皮を剥いだ芋でもよい。
また、乾燥した芋を用いてもよい。これらを常法に従っ
てラスパー等を用いて1〜10mmの粒子に粉砕する。
粉砕されたキャッサバ芋はさらに機械的磨砕を施すか、
または機械的磨砕を施した後にセルラーゼを作用させ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. In the present invention, the cassava potato used as a raw material may be a peeled potato in addition to a harvested raw potato.
Alternatively, a dried potato may be used. These are pulverized into particles of 1 to 10 mm using a raspar or the like according to a conventional method.
The crushed cassava potatoes are subjected to further mechanical grinding,
Alternatively, cellulase is allowed to act after mechanical grinding.

【0013】本発明における機械的磨砕は、これによっ
て芋組織が200μm以下にまで細かくされた状態にす
る任意の方法が適用される。例えば、後記実施例によっ
て示された「おろし金ですりおろす」/「乳鉢にて磨砕
する」の組み合わせのように異なった二段の機械的磨砕
処理によって効果的に行うことができる。
For the mechanical grinding in the present invention, any method for making the potato tissue finely reduced to 200 μm or less is applied. For example, it can be effectively performed by a different two-stage mechanical grinding treatment such as a combination of "grate with a grater" / "grind with a mortar" shown in the examples described later.

【0014】工業的規模での大量処理に際し、機械的磨
砕を行う装置としては、ホモジナイザー、ボールミル等
が挙げられる。ジェットミル等の湿式微粉砕機も使用可
能である。
Apparatuses for performing mechanical grinding in large-scale processing on an industrial scale include a homogenizer and a ball mill. A wet pulverizer such as a jet mill can also be used.

【0015】この磨砕処理により、1〜10mmに粉砕
された芋粉を磨砕するが、磨砕の程度としては、50メ
ッシュパスが好ましく、100メッシュパスが特に好ま
しい。
[0015] By this grinding treatment, the potato flour crushed to 1 to 10 mm is crushed, and the degree of grinding is preferably 50 mesh pass, particularly preferably 100 mesh pass.

【0016】機械的な磨砕処理に加えてセルラーゼを作
用させる場合、「CELLULASE YC」(商品
名、キッコーマン社製)等の市販のセルラーゼが使用可
能であり、トリコデルマ属のカビの産出するセルラーゼ
が好適に使用される。使用量は濾紙崩壊活性で10以上
程度であればよい。反応は、40〜50℃の温度範囲で
pH5〜7で行われる。反応時間は通常1〜5時間でよ
い。
When a cellulase is allowed to act in addition to the mechanical grinding treatment, a commercially available cellulase such as "CELLULASE YC" (trade name, manufactured by Kikkoman Corporation) can be used, and cellulase produced by fungi of the genus Trichoderma can be used. It is preferably used. The amount used may be about 10 or more in terms of filter paper disintegration activity. The reaction is carried out at a temperature in the range of 40-50 ° C. and pH 5-7. The reaction time may be generally 1 to 5 hours.

【0017】機械的磨砕または機械的磨砕/セルラーゼ
反応を行った後、澱粉懸濁液とカスと分離され、澱粉懸
濁液を例えば、濃縮、濾過あるいは、遠心分離等の固液
分離操作によって澱粉が原料生芋に基づいて35〜40
%の好収率で分離取得することができる。
After mechanical grinding or mechanical grinding / cellulase reaction, the starch suspension is separated from scum, and the starch suspension is subjected to a solid-liquid separation operation such as concentration, filtration or centrifugation. Starch is 35 to 40 based on raw potato
% In a good yield.

【0018】アミノ酸発酵用原料として利用するには、
カスと分別した澱粉懸濁液に直接澱粉液化酵素および糖
化酵素を作用させて澱粉を液化・糖化する。また、分離
取得した澱粉を用いる場合には、水を加えて澱粉懸濁液
を調製し、これに液化酵素および糖化酵素を作用させる
と、澱粉は液化・糖化してグルコースとなり可溶化す
る。
For use as a raw material for amino acid fermentation,
The starch liquefaction enzyme and the saccharification enzyme act directly on the starch suspension separated from the scum to liquefy and saccharify the starch. When the starch obtained by separation is used, water is added to prepare a starch suspension, and when a liquefaction enzyme and a saccharification enzyme are allowed to act on the suspension, the starch is liquefied and saccharified to become glucose and solubilized.

【0019】液化酵素を含有する液に液化すべき澱粉の
全量を一度に添加せずに少量ずつ分けて添加すると、4
5〜55g/dlの高濃度に懸濁できるので、40〜5
0%の高濃度糖化液を製造することができる。
The total amount of starch to be liquefied is not added all at once to the liquid containing the liquefying enzyme, but is added in small portions.
Since it can be suspended at a high concentration of 5-55 g / dl,
A high-concentration saccharified solution of 0% can be produced.

【0020】液化酵素、例えば「T−5」〔商品名、大
和化成(株)製〕を粉末1g当たり20になるように添
加し、85〜95℃で1時間加熱攪拌する。放冷し、希
硫酸にてpHを4.2に調整したならば、引き続き、糖
化酵素、例えば「NC−4.2」〔商品名、天野製薬
(株)製〕を粉末1g当たり2〜5単位になるように添加
し、55〜65℃に加熱し、同温度に保ちながら40〜
48時間加熱攪拌して酵素反応を完結させる。
A liquefying enzyme, for example, "T-5" (trade name, manufactured by Daiwa Kasei Co., Ltd.) is added so as to be 20 per gram of powder, and the mixture is heated and stirred at 85 to 95 ° C. for 1 hour. After allowing to cool and adjusting the pH to 4.2 with dilute sulfuric acid, the saccharification enzyme, for example, "NC-4.2" [trade name, Amano Pharmaceutical Co., Ltd.]
Co., Ltd.] was added in an amount of 2 to 5 units per 1 g of powder, and heated to 55 to 65 ° C.
Heat and stir for 48 hours to complete the enzyme reaction.

【0021】また、澱粉を水に懸濁する際に、あらかじ
め液化酵素を20ユニット/粉末g添加しておいた方が
液化が早く進行する。40〜60℃で液化酵素含有液に
澱粉粉末を徐々に添加することにより液化・糖化効率が
あがり、高濃度(45〜55g/dl)の澱粉を糖化し
てグルコース濃度40〜55g/dlの糖液を製造する
ことができる。この方法により、澱粉の95%以上が糖
化可能である。
When the starch is suspended in water, liquefaction proceeds more quickly if 20 units / g of powdered liquefaction enzyme are added in advance. The liquefaction and saccharification efficiency is increased by gradually adding the starch powder to the liquefied enzyme-containing solution at 40 to 60 ° C., and the starch having a high concentration (45 to 55 g / dl) is saccharified to form a sugar having a glucose concentration of 40 to 55 g / dl. A liquid can be produced. By this method, more than 95% of the starch can be saccharified.

【0022】本発明においては、更にこのようにして得
られた糖液をアミノ酸発酵原料に用いるところに特徴が
ある。
The present invention is further characterized in that the sugar solution thus obtained is used as a raw material for amino acid fermentation.

【0023】アミノ酸発酵の種類は問わないが、例えば
グルタミン酸、リジン、メチオニン、トリプトファン、
スレオニン、セリン、プロリン、アラニン、バリン、ロ
イシン、フェニルアラニン、ヒスチジン、アルギニン、
オルニチン、グルタミン、アスパラギン酸等のアミノ酸
の発酵を例に挙げることができる。
The type of amino acid fermentation is not limited. For example, glutamic acid, lysine, methionine, tryptophan,
Threonine, serine, proline, alanine, valine, leucine, phenylalanine, histidine, arginine,
Fermentation of amino acids such as ornithine, glutamine and aspartic acid can be mentioned as an example.

【0024】これらの発酵に用いられる微生物はそれぞ
れの発酵に公知のものを用いることができる。例を挙げ
れば、次のとおりである。 L−グルタミン酸発酵:ブレビバクテリウム・ラクトフ
ェルメンタムATCC 13869 L−リジン発酵:ブレビバクテリウム・ラクトフェルメ
ンタムATCC 21800 L−トリプトファン発酵:エシェリヒア・コリAGX1
7(PGX44)[NRRL B−12263] L−フェニルアラニン発酵:ブレビバクテリウム・ラク
トフェルメンタムAJ 12637(FERM BP−4
160)フランス特許出願公開第2,686,898号参
照 L−チロシン発酵:ブレビバクテリウム・ラクトファー
メンタムAJ 12081(FERM P−7249)特
開昭60−70093号公報参照 L−スレオニン発酵:コリネバクテリウム・アセトアシ
ドフィラムAJ 12318(FERM BP−117
2)米国特許第5,188,945号参照 L−イソロイシン発酵:ブレビバクテリウム・フラバム
AJ 12149(FERM BP−759)米国特許第
4,656,135号参照
As the microorganism used for these fermentations, those known for each fermentation can be used. An example is as follows. L-glutamic acid fermentation: Brevibacterium lactofermentum ATCC 13869 L-lysine fermentation: Brevibacterium lactofermentum ATCC 21800 L-tryptophan fermentation: Escherichia coli AGX1
7 (PGX44) [NRRL B-12263] L-phenylalanine fermentation: Brevibacterium lactofermentum AJ 12637 (FERM BP-4)
160) See French Patent Application Publication No. 2,686,898 L-Tyrosine fermentation: Brevibacterium lactofermentum AJ 12081 (FERM P-7249) See JP-A-60-70093 L-threonine fermentation: Corynebacterium Um acetoacidophilum AJ 12318 (FERM BP-117)
2) See US Patent No. 5,188,945 L-isoleucine fermentation: Brevibacterium flavum AJ 12149 (FERM BP-759) See US Patent No. 4,656,135.

【0025】発酵に用いる培地も炭素源として本発明の
糖液を用いるほかは公知の培地と同様でよい。上記の糖
液は炭素源の全量に使用してもよく、その1部に使用し
てもよい。1部に使用する場合の残余の炭素源は従来用
いていたものと同様でよい。発酵方法も従来と同様でよ
い。
The medium used for fermentation may be the same as a known medium except that the sugar solution of the present invention is used as a carbon source. The above sugar solution may be used for the entire amount of the carbon source, or may be used for a part thereof. The remaining carbon source when used for one part may be the same as that used conventionally. The fermentation method may be the same as the conventional one.

【0026】リジン等のアミノ酸の場合には主な用途が
飼料である。そこで、リジン等を飼料に用いる場合には
発酵液をそのまま乾燥して飼料添加物とすることができ
る。
In the case of amino acids such as lysine, the main use is as feed. Therefore, when lysine or the like is used for the feed, the fermented liquid can be dried as it is to obtain a feed additive.

【0027】[0027]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれに限定されるものではない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.

【0028】実施例1:タピオカ澱粉の製造 キャッサバ芋10gをおろし金を用いてするおろし、数
mm程度の大きさにする。水30mlに懸濁し、これを
乳鉢を用いて磨砕を行った。処理時間は2分及び15分
とした。約40メッシュの金網で濾した。濾液に網上残
渣を水20mlで洗浄処理した処理水を合わせて300
0rpm、10minの条件で遠心分離し、得られた沈
殿(澱粉)を減圧下、60℃で24時間乾燥した。ま
た、網上残渣(カス)を同様な条件で乾燥した。
Example 1 Production of Tapioca Starch 10 g of cassava potatoes are grated using a grater to a size of about several mm. The suspension was suspended in 30 ml of water, and this was ground using a mortar. The processing time was 2 minutes and 15 minutes. It was filtered through a wire mesh of about 40 mesh. The filtrate was combined with treated water obtained by washing the net residue with 20 ml of water, and the combined amount was 300
The mixture was centrifuged at 0 rpm for 10 minutes, and the obtained precipitate (starch) was dried at 60 ° C. for 24 hours under reduced pressure. The residue (waste) on the net was dried under the same conditions.

【0029】得られた結果を表2に示したとおりで、乳
鉢による機械磨砕を加えないで行った結果(表1)と比
較し、澱粉の得量が上がり、カスの量が減少した。2分
の機械処理で10.4%の収率向上、15分の機械処理
で32.9%の収率向上となった。
The obtained results are shown in Table 2. Compared with the results (Table 1) obtained without mechanical grinding using a mortar, the yield of starch increased and the amount of scum decreased. The mechanical treatment for 2 minutes improved the yield by 10.4%, and the mechanical treatment for 15 minutes improved the yield by 32.9%.

【0030】[0030]

【表2】 [Table 2]

【0031】15分の機械的磨砕処理を行って得たカス
のSEM写真は、図1(400倍)、図2(1000倍)
に示す。この場合においてもかなりの澱粉粒子が残って
いる状態が観察されるも、機械的磨砕を加えないで行っ
た結果(図5、図6)に比較して、所々澱粉粒子を覆う
膜状の物質が破れたり、ちぎれ去ったりしている様子が
窺える。
FIG. 1 (400 ×), FIG. 2 (1000 ×)
Shown in Even in this case, a state in which a considerable amount of starch particles remain is observed. However, as compared with the results obtained without mechanical grinding (FIGS. 5 and 6), a film-like shape covering the starch particles in some places was obtained. It can be seen that the material has been torn or torn away.

【0032】実施例2:タピオカ澱粉の製造 実施例1において、おろし金を用いてすりおろしたキャ
ッサバ芋の懸濁液に乳鉢を用いて2分間磨砕処理を施し
たものに、下記表3に示す条件で酵素処理を行い、その
後の澱粉とカスとの分離操作を実施例1と同様に行っ
た。得られた結果は表4に示す。
Example 2 Production of Tapioca Starch In Example 1, a suspension of cassava potatoes grated using a grater was subjected to a grinding treatment for 2 minutes using a mortar, and the results are shown in Table 3 below. Enzyme treatment was performed under the conditions, and the subsequent operation of separating starch and scum was performed in the same manner as in Example 1. Table 4 shows the obtained results.

【0033】[0033]

【表3】 注) * :セルラーゼは「CELLULASE YC」
(商品名、キッコーマン社製)を用いた。 **:プルラナーゼは「DEXTROZYME plu
s L」(商品名、ノボ社製)を用いた。
[Table 3] Note) *: Cellulase is "CELLULASE YC"
(Trade name, manufactured by Kikkoman Corporation) was used. **: Pullulanase is "DEXTROZYME plu"
s L "(trade name, manufactured by Novo) was used.

【0034】[0034]

【表4】 [Table 4]

【0035】表4に示した結果から、セルラーゼ処理を
加えることにより、実施例1と同様に澱粉の得量が上が
り、カスの量が減少し、収率が向上することが判明した
が、澱粉に作用するプルラナーゼ(澱粉枝きり酵素)処
理では、澱粉の得量や収率は機械的処理による向上以上
の有意な効果は認められなかった。
From the results shown in Table 4, it was found that the addition of cellulase treatment increased the amount of starch, decreased the amount of scum, and improved the yield in the same manner as in Example 1. In pullulanase (starch debranching enzyme) treatment, which acts on pulp, no significant effect was observed on the yield and yield of starch over the improvement by mechanical treatment.

【0036】セルラーゼ処理を加えた場合のカスについ
てのSEM写真は、図3(400倍)、図4(1000
倍)に示す。セルラーゼ処理により、機械的磨砕処理と
同様澱粉粒子を覆っている膜状物質は除去されており、
残った膜も非常に薄くなっている。このことから、セル
ラーゼにより、この膜状物質は溶かされたものと考えら
れる。
SEM photographs of the residue after cellulase treatment are shown in FIG. 3 (400 times) and FIG.
Times). The cellulase treatment removes the film-like substance covering the starch particles as in the mechanical grinding treatment,
The remaining film is also very thin. From this, it is considered that this film-like substance was dissolved by the cellulase.

【0037】参考例1:糖液製造 実施例1で得たタピオカ澱粉450gを水に懸濁し、全
容が1Lになるように調整した。これを攪拌しつつ85
℃に加熱し、液化酵素「T−5」を1.5ml添加し、
1時間液化反応を行った。液化終了後、60℃まで冷や
した時点で希硫酸にてpHを4.5に調整し、糖化酵素
「NC−4.2」を0.5ml添加した。糖化反応は、
60℃で48時間振とう攪拌により行った。糖液中のグ
ルコース濃度は44.5g/dl(糖化率97%)であ
った。
Reference Example 1 Production of Sugar Solution 450 g of tapioca starch obtained in Example 1 was suspended in water and adjusted to a total volume of 1 L. While stirring this 85
C., and 1.5 ml of liquefaction enzyme "T-5" was added.
The liquefaction reaction was performed for 1 hour. After the completion of liquefaction, when the temperature was cooled to 60 ° C., the pH was adjusted to 4.5 with dilute sulfuric acid, and 0.5 ml of saccharifying enzyme “NC-4.2” was added. The saccharification reaction is
This was performed by shaking and stirring at 60 ° C. for 48 hours. The glucose concentration in the sugar solution was 44.5 g / dl (saccharification rate 97%).

【0038】実施例3:L−グルタミン酸発酵 培地には、市販のグルコース60g/L及びMgSO
1g/L、KHPO1g/L、大豆蛋白酸加水分解物1
5ml/L、ビオチン300μg/Lを含む基質溶液2
70mlを120℃で15分間加熱殺菌してS型ジャー
に張込んだ。
Example 3 L-glutamic acid fermentation medium contains 60 g / L of commercially available glucose and MgSO 4
1 g / L, KH 2 PO 4 1 g / L, soybean protein acid hydrolyzate 1
Substrate solution 2 containing 5 ml / L and biotin 300 μg / L
70 ml of the mixture was sterilized by heating at 120 ° C. for 15 minutes, and then filled into an S-shaped jar.

【0039】これに予め培養しておいたグルタミン酸生
産菌ブレビバクテリウム・ラクトフェルメンタム(AT
CC 13869)の種培養液30mlを加えて全量30
0mlとし、発酵を開始した。発酵は1〜1.2krp
mの攪拌と1/1vvmの通気をし、pHをアンモニア
で7.5に維持して行った。発酵温度は30℃にし、培
養開始後5時間目にポリオキシエチレンソルビタンモノ
パルミテート2000mg/L濃度になるよう添加し
た。
Glutamate-producing bacterium Brevibacterium lactofermentum (AT
CC 13869) and a total volume of 30 ml.
The volume was 0 ml, and the fermentation was started. Fermentation is 1 to 1.2 krp
m and agitation at 1/1 vvm, and the pH was maintained at 7.5 with ammonia. The fermentation temperature was set at 30 ° C., and 5 hours after the start of the culture, polyoxyethylene sorbitan monopalmitate was added to a concentration of 2000 mg / L.

【0040】糖液には参考例1で得られた糖液をグルコ
ース換算で42g/dlとなるように希釈し、120℃
で15分間加熱殺菌して用いた。糖液はポリオキシエチ
レンソルビタンモノパルミテートを2000mg/Lに
なるよう添加して基質溶液として発酵液中の糖濃度を1
〜2g/dlに保つように連続供給した。発酵結果は収
率が56%であった。
The sugar solution obtained in Reference Example 1 was diluted to 42 g / dl in terms of glucose at 120 ° C.
For 15 minutes. The sugar solution was prepared by adding polyoxyethylene sorbitan monopalmitate to a concentration of 2000 mg / L, and reducing the sugar concentration in the fermentation solution to 1 as a substrate solution.
連 続 2 g / dl was continuously supplied. As a result of the fermentation, the yield was 56%.

【0041】上記で得られた発酵液を市販の中空糸ペン
シル型膜モジュールで膜分離した。膜透過液に塩酸を添
加してpH3.2に調整してグルタミン酸結晶を晶析分
離した。
The fermented liquor obtained above was subjected to membrane separation using a commercially available hollow fiber pencil type membrane module. Hydrochloric acid was added to the membrane permeate to adjust the pH to 3.2, and glutamic acid crystals were separated by crystallization.

【0042】発酵例2:L−リジン発酵 市販のグルコース30g/L、塩化アンモニウム10g
/L、尿素3g/L、KH PO1g/L、MgSO
7HO100mg/L,FeSO・7HO10m
g/L,MnSO・4HO8mg/L,大豆蛋白酸
加水分解物(窒素として)1g/L、サイアミン塩酸塩
0.1mg/L及びビオチン0.3mg/Lを含有する
培地(pH7.0)を、500ml容振とうフラスコ3
本に各20mLづつ分注した。115℃で10分間加熱
殺菌後、この培地に、予めブイヨンスラント上で48時間
生育させたブレビバクテリウム・ラクトフェルメンタム
(ATCC21800)を1白金耳接種し、31.5℃
で24時間振糖培養した。以上は種培養である。廃糖蜜
として80g/L、硫酸アンモニウム50g/L、KH P
O1g/L、MgSO・7HO1g/L、大豆蛋
白質加水分解物(窒素として)100mg/L、サイア
ミン塩酸塩0.1mg/L、及びビオチン0.3mg/
Lを含有する培地(pH7.0)を、3基の1L容ガラ
ス製小型発酵槽に300mLづつ分注し、120℃15
分間加熱殺菌した。31.5℃まで冷却後、上記のフラ
スコ培養終了液を発酵槽1基当り15mLづつ添加し、
温度31.5℃、通気量1/2vvm、攪拌数700r
pmの条件で培養を行った。培養液中の糖濃度が5g/
L以下になった時点よりフィード培地のフィードを開始
した。培地は参考例1で得られた糖液をグルコース換算
で40g/dlとなるように調整した糖液、大豆蛋白質
加水分解物(窒素として100mg/L)、サイアミン
塩酸塩(0.1mg/L)及びビオチン(0.3mg/
L)を含有していた。培養液中の糖濃度が5g/L以下
になるようにフィード培地のフィード速度を調節しつつ
培養を続け、100mLのフィード培地をフィード終了
後、培養液中の糖が消費し尽くされた時点で培養を終了
し、培養液中に蓄積したL−リジン濃度を定量した。培
養の結果は収率が35%であった。
Fermentation example 2: L-lysine fermentation Commercially available glucose 30 g / L, ammonium chloride 10 g
/ L, urea 3g / L, KH 2PO41g / L, MgSO4
7H2O100mg / L, FeSO4・ 7H2O10m
g / L, MnSO4・ 4H2O8mg / L, soy protein acid
Hydrolyzate (as nitrogen) 1 g / L, thiamine hydrochloride
Contains 0.1 mg / L and biotin 0.3 mg / L
The medium (pH 7.0) was added to a 500 ml shake flask 3
20 mL each was dispensed into the book. Heat at 115 ° C for 10 minutes
After sterilization, add this medium to a broth slant for 48 hours in advance.
Brevibacterium lactofermentum grown
(ATCC 21800) inoculated with one platinum loop and 31.5 ° C
For 24 hours. The above is a seed culture. Molasses
80g / L, ammonium sulfate 50g / L, KH 2P
O41g / L, MgSO4・ 7H2O1g / L, soybeans
White matter hydrolyzate (as nitrogen) 100mg / L, Sia
Min hydrochloride 0.1 mg / L and biotin 0.3 mg / L
L-containing medium (pH 7.0) was added to three 1-L glassware.
Into small fermenters made of stainless steel at 300 ° C for 15 minutes.
Heat sterilization for minutes. After cooling to 31.5 ° C,
The sco culture end solution is added at a rate of 15 mL per fermenter,
Temperature 31.5 ° C, aeration rate 1 / 2vvm, stirring number 700r
Culture was performed under pm conditions. The sugar concentration in the culture solution is 5 g /
Start feeding the feed medium from the point when the volume falls below L
did. For the culture medium, the sugar solution obtained in Reference Example 1 was converted to glucose.
Sugar solution, soy protein adjusted to 40 g / dl with
Hydrolysate (100 mg / L as nitrogen), thiamine
Hydrochloride (0.1 mg / L) and biotin (0.3 mg / L
L). Sugar concentration in culture solution is 5g / L or less
While adjusting the feed speed of the feed medium so that
Continue culturing and finish feeding 100mL of feed medium
After that, the culture is terminated when the sugar in the culture solution has been consumed.
Then, the concentration of L-lysine accumulated in the culture solution was quantified. Culture
As a result of the nutrition, the yield was 35%.

【0043】[0043]

【発明の効果】本発明によれば、通常の破砕処理に更に
機械的磨砕処理を加えることにより、膜状の物質の一部
が破壊され、そこに包まれていた澱粉粒子が抽出されて
その分の収率が向上した。また、機械的磨砕処理に加え
てセルラーゼ処理を施すことにより、この膜状の物質が
分解され、ほとんどの澱粉粒子が抽出されてくるため、
収率は大きく向上するという利点を享受できる。澱粉は
引き続き直接酵素液化・糖化することにより、40%以
上の高濃度の糖液を効率よく製造することができ、この
糖液を用いてアミノ酸を高い収率で取得することができ
る。このように、本発明によりキャッサバ澱粉のほとん
どを糖化させてアミノ酸発酵原料に利用することができ
る。
According to the present invention, a part of the film-like substance is destroyed by further mechanical grinding in addition to the usual crushing, and the starch particles wrapped therein are extracted. The yield improved accordingly. In addition, by performing cellulase treatment in addition to mechanical attrition treatment, this film-like substance is decomposed, and most starch particles are extracted.
The advantage that the yield is greatly improved can be enjoyed. By continuously liquefying and saccharifying the starch, a sugar solution having a high concentration of 40% or more can be efficiently produced, and amino acids can be obtained at a high yield using the sugar solution. As described above, according to the present invention, most of cassava starch can be saccharified and used as a raw material for amino acid fermentation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1における機械的磨砕処理(15分)
を行って得たカスのSEM写真(400倍)を示す。
FIG. 1 Mechanical grinding treatment in Example 1 (15 minutes)
Shows a SEM photograph (× 400) of the residue obtained by performing the above.

【図2】 実施例1における機械的磨砕処理(15分)
を行って得たカスのSEM写真(1000倍)を示す。
FIG. 2 shows a mechanical grinding treatment in Example 1 (15 minutes).
A SEM photograph (1000 times) of the residue obtained by performing the above is shown.

【図3】 実施例2におけるセルラーゼ処理を行って得
たカスのSEM写真(400倍)を示す。
FIG. 3 shows an SEM photograph (× 400) of a residue obtained by performing a cellulase treatment in Example 2.

【図4】 実施例2におけるセルラーゼ処理を行って得
たカスのSEM写真(1000倍)を示す。
FIG. 4 shows an SEM photograph (× 1000) of a scum obtained by performing a cellulase treatment in Example 2.

【図5】 比較例におけるカスのSEM写真(400
倍)を示す。
FIG. 5 is an SEM photograph (400) of a waste in a comparative example.
Times).

【図6】 比較例におけるカスのSEM写真(1000
倍)を示す。
FIG. 6 is an SEM photograph (1000
Times).

【図7】 キャッサバ芋から澱粉及びカスの製造例を示
すフローシート。
FIG. 7 is a flow sheet showing an example of producing starch and scum from cassava potatoes.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12S 3/02 C12S 3/02 (72)発明者 山本 泰 東京都中央区京橋一丁目15番1号 味の素 株式会社内 Fターム(参考) 4B064 AE19 AE25 AF12 CA02 CA21 CB07 CE06 DA10 4C090 AA04 BA13 BC10 CA01 DA27Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C12S 3/02 C12S 3/02 (72) Inventor Yasushi Yamamoto 1-15-1, Kyobashi, Chuo-ku, Tokyo Ajinomoto Co., Inc. F term (reference) 4B064 AE19 AE25 AF12 CA02 CA21 CB07 CE06 DA10 4C090 AA04 BA13 BC10 CA01 DA27

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 キャッサバ芋に澱粉採取のための通常の
破砕処理を施して粒径1〜10mmに粉砕し、次いで機
械的磨砕を施して50メッシュパスとした後、澱粉懸濁
液とカスを分離し、澱粉懸濁液より澱粉を回収すること
を特徴とするタピオカ澱粉の製造方法。
1. A cassava potato is subjected to a usual crushing treatment for collecting starch, crushed to a particle size of 1 to 10 mm, and then mechanically ground to a 50-mesh pass. And recovering the starch from the starch suspension.
【請求項2】 機械的磨砕を施した後、セルラーゼによ
る酵素的処理を施すことを特徴とする請求項1記載のタ
ピオカ澱粉の製造方法。
2. The method for producing tapioca starch according to claim 1, wherein after mechanical grinding, an enzymatic treatment with cellulase is performed.
【請求項3】 請求項1または2記載の製造方法によっ
て得られたタピオカ澱粉を水に懸濁してスラリーとし、
これに澱粉液化酵素および糖化酵素を作用させて製造さ
れた糖液を発酵原料に用いるアミノ酸の発酵生産方法。
3. Tapioca starch obtained by the method according to claim 1 or 2 is suspended in water to form a slurry,
A fermentative production method for amino acids using a sugar liquid produced by allowing a starch liquefying enzyme and a saccharifying enzyme to act on the fermented raw material.
JP2000163874A 1999-06-29 2000-06-01 Manufacture of tapioca starch and production of amino acid by fermentation Pending JP2001072701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000163874A JP2001072701A (en) 1999-06-29 2000-06-01 Manufacture of tapioca starch and production of amino acid by fermentation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-183043 1999-06-29
JP18304399 1999-06-29
JP2000163874A JP2001072701A (en) 1999-06-29 2000-06-01 Manufacture of tapioca starch and production of amino acid by fermentation

Publications (1)

Publication Number Publication Date
JP2001072701A true JP2001072701A (en) 2001-03-21

Family

ID=26501615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000163874A Pending JP2001072701A (en) 1999-06-29 2000-06-01 Manufacture of tapioca starch and production of amino acid by fermentation

Country Status (1)

Country Link
JP (1) JP2001072701A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309751A (en) * 2000-05-02 2001-11-06 Ajinomoto Co Inc Additive for feed
JP2009517012A (en) * 2005-11-28 2009-04-30 ビーエーエスエフ ソシエタス・ヨーロピア Fermentative production of organic compounds
JP2009517011A (en) * 2005-11-28 2009-04-30 ビーエーエスエフ ソシエタス・ヨーロピア Fermentative production of organic compounds using dextrin-containing substances
JP2009517010A (en) * 2005-11-28 2009-04-30 ビーエーエスエフ ソシエタス・ヨーロピア Fermentative production of organic compounds
WO2010129648A3 (en) * 2009-05-07 2010-12-29 Danisco Us Inc. Starch separation process
DE102009028549A1 (en) 2009-08-14 2011-02-17 Acs Agrochemische Systeme Gmbh Preparing glucose solution from starch comprises e.g. transferring starch milk into liquefaction container containing amylase, maintaining at specified temperatures, and transferring into saccharification container comprising glucoamylase
CN102226141A (en) * 2011-04-27 2011-10-26 湖南农业大学 Production method of purple sweet potato health care vinegar
US9109244B2 (en) 2004-05-28 2015-08-18 Basf Se Fermentative production of fine chemicals
CN105124518A (en) * 2015-09-09 2015-12-09 湖州新天字味精有限公司 Technology of producing monosodium glutamate from potato starch
WO2017025482A1 (en) * 2015-08-07 2017-02-16 Novozymes A/S Starch extraction

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141299A (en) * 1981-02-27 1982-09-01 Agency Of Ind Science & Technol Agent for treating starchy raw material before saccharification
JPS57141297A (en) * 1981-02-23 1982-09-01 Mitsui Eng & Shipbuild Co Ltd Separation and purification of potato starch using enzyme
JPH06237779A (en) * 1993-02-16 1994-08-30 Ajinomoto Co Inc Production of l-glutamic acid by fermentation method
JPH09271382A (en) * 1996-04-05 1997-10-21 Ajinomoto Co Inc Production of l-amino acid by fermentation method using ectoine
JPH10150996A (en) * 1996-11-21 1998-06-09 Ajinomoto Co Inc Production of l-glutamic acid by continuous fermentation
JPH10248588A (en) * 1997-03-14 1998-09-22 Ajinomoto Co Inc Production of l-serine by fermentation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141297A (en) * 1981-02-23 1982-09-01 Mitsui Eng & Shipbuild Co Ltd Separation and purification of potato starch using enzyme
JPS57141299A (en) * 1981-02-27 1982-09-01 Agency Of Ind Science & Technol Agent for treating starchy raw material before saccharification
JPH06237779A (en) * 1993-02-16 1994-08-30 Ajinomoto Co Inc Production of l-glutamic acid by fermentation method
JPH09271382A (en) * 1996-04-05 1997-10-21 Ajinomoto Co Inc Production of l-amino acid by fermentation method using ectoine
JPH10150996A (en) * 1996-11-21 1998-06-09 Ajinomoto Co Inc Production of l-glutamic acid by continuous fermentation
JPH10248588A (en) * 1997-03-14 1998-09-22 Ajinomoto Co Inc Production of l-serine by fermentation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6010055601; 澱粉科学ハンドブック , 19780301, p.398-401, 株式会社朝倉書店 *
JPN6010055603; Starch-Staerke Vol.30(9), 1978, p.299-306 *
JPN6011057710; Biotechnol. Tech. Vol.6 No.1, 1992, p.65-68 *
JPN6011057714; 化学大辞典5縮刷版 , 19870215, p.400, 共立出版株式会社 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309751A (en) * 2000-05-02 2001-11-06 Ajinomoto Co Inc Additive for feed
US9109244B2 (en) 2004-05-28 2015-08-18 Basf Se Fermentative production of fine chemicals
US8728773B2 (en) 2005-11-28 2014-05-20 Matthias Boy Fermentative production of organic compounds using substances containing dextrin
JP2009517012A (en) * 2005-11-28 2009-04-30 ビーエーエスエフ ソシエタス・ヨーロピア Fermentative production of organic compounds
JP2009517011A (en) * 2005-11-28 2009-04-30 ビーエーエスエフ ソシエタス・ヨーロピア Fermentative production of organic compounds using dextrin-containing substances
JP2009517010A (en) * 2005-11-28 2009-04-30 ビーエーエスエフ ソシエタス・ヨーロピア Fermentative production of organic compounds
US8741599B2 (en) 2005-11-28 2014-06-03 Basf Se Fermentative production of organic compounds
US8728762B2 (en) 2005-11-28 2014-05-20 Basf Se Fermentative production of organic compounds
WO2010129648A3 (en) * 2009-05-07 2010-12-29 Danisco Us Inc. Starch separation process
CN102414322A (en) * 2009-05-07 2012-04-11 丹尼斯科美国公司 Starch separation process
DE102009028549A1 (en) 2009-08-14 2011-02-17 Acs Agrochemische Systeme Gmbh Preparing glucose solution from starch comprises e.g. transferring starch milk into liquefaction container containing amylase, maintaining at specified temperatures, and transferring into saccharification container comprising glucoamylase
CN102226141B (en) * 2011-04-27 2012-06-20 湖南农业大学 Production method of purple sweet potato health care vinegar
CN102226141A (en) * 2011-04-27 2011-10-26 湖南农业大学 Production method of purple sweet potato health care vinegar
WO2017025482A1 (en) * 2015-08-07 2017-02-16 Novozymes A/S Starch extraction
CN107922510A (en) * 2015-08-07 2018-04-17 诺维信公司 Starch isolation
CN105124518A (en) * 2015-09-09 2015-12-09 湖州新天字味精有限公司 Technology of producing monosodium glutamate from potato starch
CN105124518B (en) * 2015-09-09 2018-02-09 广东百味佳味业科技股份有限公司 A kind of technique of potato starch manufacture monosodium glutamate

Similar Documents

Publication Publication Date Title
JP2001275693A (en) Method for producing saccharide solution of high concentration and fermentation production process for amino acids using the saccharide solution
CN109504719B (en) Method for improving acid production rate and extraction rate of glutamic acid
CN110035991B (en) Preparation of (R) -3-hydroxybutyric acid or its salt by one-step fermentation
FR2491495A1 (en) PROCESS FOR THE PRODUCTION OF AMINO ACIDS BY AEROBIC FERMENTATION
US5135765A (en) Process for producing protein-rich product, fibrous product and/or vegetable oil from brewer's spent grain
CN104212870B (en) Process for fermentation production of lysine hydrochloride
JP2001072701A (en) Manufacture of tapioca starch and production of amino acid by fermentation
CN105969819B (en) A kind of method of Production by Enzymes l-tyrosine
TW200745342A (en) Fermentative production of nonvolatile microbial metabolites in solid form
CN109628513B (en) Amino acid fermentation medium and preparation method thereof
CN101555502A (en) Method for preparing L-tryptophan by enzymatic conversion
TWI515297B (en) Utilization of agro residual substrates for fermentative production of l-arginine
JP2001309751A (en) Additive for feed
CN107418897A (en) A kind of technique for effectively discarding mycoprotein using glutamic acid fermentation
CN1322139C (en) Method for preparing L-omithine through immobilized ectocellular enzyme method
AU639809B2 (en) Method for purification of amino acids, nucleic acids or derivatives thereof
CN109136298B (en) Preparation method of D-amino acid
US6544791B2 (en) Nitrogenous composition resulting from the hydrolysis of maize gluten and a process for the preparation thereof
CN111202246A (en) Soybean oligopeptide powder and preparation method thereof
JP2003164275A (en) Method for preparing self-sufficient fermentation medium
JP2003259892A (en) Method for producing sugar solution by direct liquefaction method of starch-stored harvest and method for fermentative production of amino acid with the sugar solution
FR2686898A1 (en) Method for the production of L-phenylalanine
FR2550224A1 (en) PROCESS FOR THE PREPARATION OF L-AMINOACIDS AND METHOD FOR THE BIOLOGICAL CONVERSION OF ALPHA-KETOACIDES PRECURSORS TO L-AMINOACIDS
JP4723325B2 (en) Method for producing pure shochu
JP4167736B2 (en) Method for producing glutamic acid and method using protein hydrolyzate in this method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120926