JP2001070926A - Hazardous substance fixing material - Google Patents

Hazardous substance fixing material

Info

Publication number
JP2001070926A
JP2001070926A JP24800899A JP24800899A JP2001070926A JP 2001070926 A JP2001070926 A JP 2001070926A JP 24800899 A JP24800899 A JP 24800899A JP 24800899 A JP24800899 A JP 24800899A JP 2001070926 A JP2001070926 A JP 2001070926A
Authority
JP
Japan
Prior art keywords
weight
parts
amount
added
comparative example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24800899A
Other languages
Japanese (ja)
Inventor
Atsushi Ichikawa
淳 市川
Hiromichi Kato
弘通 加藤
Tsukasa Kamei
司 亀井
Teruo Urano
輝男 浦野
Kosuke Mori
宏介 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Sogyo Kk
Murakashi Lime Industry Co Ltd
Original Assignee
Fuji Sogyo Kk
Murakashi Lime Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Sogyo Kk, Murakashi Lime Industry Co Ltd filed Critical Fuji Sogyo Kk
Priority to JP24800899A priority Critical patent/JP2001070926A/en
Publication of JP2001070926A publication Critical patent/JP2001070926A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Abstract

PROBLEM TO BE SOLVED: To inexpensively and surely fix hazardous substances such as heavy metals by mixing a substance having a rehydration property, obtained by heating treatment of calcium sulfoaluminate hydrate, and one or more kinds among an inorganic acid salt of iron, a sulfide or hydrosulfide of an alkali metal or an alkaline earth metal, and a thiourea. SOLUTION: For producing a fixing material, first of all calcium sulfoaluminate hydrate is synthesized and then is subjected to a heating treatment, so that its crystal structure is destroyed and converted to an amorphous state. Subsequently the substance after the heating treatment is mixed with one or more kinds among an inorganic acid salt of iron, a sulfide or hydrosulfide of an alkali metal or an alkaline earth metal, and a thiourea, thereby improving a hazardous substances fixing property. At this time, selecting the materials under condition that they are available and inexpensive, iron sulfate is preferable as the inorganic acid salt of iron, and sodium sulfide, calcium sulfide, etc., are preferable as the sulfide or hydrosulfide of the alkali metal or the alkaline earth metal. As a result, hazardous substances such as heavy metals are fixed surely and inexpensively to be detoxified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】我々の産業活動及び生活活動
の結果に伴って排出される廃棄物、汚泥、都市の再開発
時に発生する汚染土壌などは増加の傾向にあり、これら
を無害化処理して埋め立て処分あるいは再利用を図るこ
とが急務となっている。本発明は、これらの廃棄物、汚
泥、都市の再開発時に発生する汚染土壌などに含まれて
いる有害物質を固定化することにより無害安定化し、埋
立処分あるいは再利用できるようにする材料を提供する
ものである。
BACKGROUND OF THE INVENTION Waste, sludge, and contaminated soil generated during the redevelopment of urban areas are increasing as a result of our industrial and living activities. There is an urgent need for landfill or reuse. The present invention provides a material that stabilizes harmless substances contained in such wastes, sludge, and contaminated soil generated at the time of redevelopment of a city, thereby stabilizing the harmful substances, and enabling landfill disposal or reuse. Is what you do.

【0002】[0002]

【従来の技術】従来、廃棄物、汚泥、都市の再開発時に
発生する汚染土壌中に含まれる有害物質(主として重金
属類)の無害化処理法としては、固化処理による方法が
行われており、固化処理技術としては、セメント固化、
アスファルト固化、溶融固化などの方法がある。また、
液体キレート剤を廃棄物中の重金属類と反応させて、不
溶性の重金属キレート化合物とする薬剤処理の方法も行
われている。
2. Description of the Related Art Conventionally, as a method for detoxifying harmful substances (mainly heavy metals) contained in waste, sludge, and contaminated soil generated at the time of redevelopment of a city, a solidification method has been used. Solidification technology includes cement solidification,
There are methods such as asphalt solidification and melt solidification. Also,
There is also a method of chemical treatment in which a liquid chelating agent is reacted with heavy metals in waste to form an insoluble heavy metal chelating compound.

【0003】セメントによる固化処理は、廃棄物とセメ
ントを所定の配合になるように計量し、所定量の水を添
加した後、混練し成型する方法が広く用いられている。
セメントによる固化処理は、セメント中のアルカリ成分
により重金属類を安定な水酸化物として不溶化させる効
果とセメントの固化に伴う吸着や物理的封じ込め作用に
より固定化するものである。したがって固化の対象とな
る有害物質は、カドミウム、鉛、水銀、砒素、セレンな
どの重金属類であり、シアンや六価クロム等の固化は困
難で、このような有害物質を含む廃棄物を処理する場合
は前処理が必要とされている。また、環境庁告示第5号
では、「金属等を含む廃棄物の固型化に関する基準」と
して、1m当たり150kg以上の水硬性セメントを
加えることが示されている。
[0003] For the solidification treatment with cement, a method is widely used in which waste and cement are weighed so as to have a predetermined ratio, a predetermined amount of water is added, and the mixture is kneaded and molded.
In the solidification treatment with cement, the effect of insolubilizing heavy metals as a stable hydroxide by an alkali component in the cement and the effect of adsorption and physical containment accompanying the solidification of the cement are used for immobilization. Therefore, the harmful substances to be solidified are heavy metals such as cadmium, lead, mercury, arsenic, and selenium, and it is difficult to solidify such as cyanogen and hexavalent chromium, and treat waste containing such harmful substances. Pre-processing is required in the case. Further, the Environment Agency Notification No. 5, as the "Standards for solid of waste containing metal or the like", it is shown that the addition of 1 m 3 per 150kg or more hydraulic cement.

【0004】アスファルトによる固化は、アスファルト
の結合材としての接着性、含浸性、撥水性、耐水性、耐
薬品性に優れていることに着目し、廃棄物と混練し、水
との接触を防ぐことにより有害物質の溶出を抑制する処
理法である。アスファルトによる固化は、汚泥、放射性
廃棄物、ごみ焼却灰などを対象に行われているが、コス
ト面とアスファルトの取扱の不具合からセメント方式に
比べ実施されている例は少ない。
Solidification by asphalt focuses on excellent asphalt adhesiveness, impregnation, water repellency, water resistance and chemical resistance, and is kneaded with waste to prevent contact with water. This is a treatment method that suppresses the elution of harmful substances. Solidification with asphalt is performed for sludge, radioactive waste, refuse incineration ash, etc. However, due to the cost and inadequate handling of asphalt, there are few cases where it is implemented compared to the cement method.

【0005】溶融処理は、廃棄物を1400〜1600
℃の高温になるまで加熱することによって、有機物は分
解し、重金属類を生成するスラグに封じ込み固定化する
ものである。この方式は安全性は最も高いとされている
が、溶融処理時に水銀、鉛、砒素、カドミウムなどの沸
点の比較的低い重金属類がガス中に揮散し、飛灰として
回収されることから飛灰の処理の問題が新たに発生する
等の欠点がある。また処理コストが最も高いことも問題
となっている。
[0005] In the melting treatment, the waste is reduced to 1400 to 1600.
By heating to a high temperature of ° C., organic matter is decomposed and sealed and fixed in slag that generates heavy metals. This method is considered to have the highest safety, but heavy metals with relatively low boiling points such as mercury, lead, arsenic, and cadmium volatilize in the gas during the melting process and are collected as fly ash. Is disadvantageous in that a new processing problem occurs. Another problem is that the processing cost is the highest.

【0006】液体キレート剤による固定化は、窒素と硫
黄系の有機系キレート剤や硫黄を含まない無機系薬剤を
廃棄物と混練し重金属類を固定化するものであるが、キ
レート剤は高価であるため、セメント固化との併用が一
般的である。また、有機系キレート剤の場合、長期安定
性(例えば酸性雨や生分解性)の面で問題がある。
The immobilization with a liquid chelating agent involves kneading a nitrogen and sulfur organic chelating agent or a sulfur-free inorganic chemical with waste to immobilize heavy metals, but the chelating agent is expensive. For this reason, it is common to use it together with cement solidification. In the case of an organic chelating agent, there is a problem in terms of long-term stability (for example, acid rain and biodegradability).

【0007】[0007]

【発明が解決しようとする課題】本発明は、前述のよう
な現状に鑑み、安価で長期的に安定に重金属類を固定化
する有害物質固定化材を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide an inexpensive material for fixing harmful substances which stably fixes heavy metals over a long period of time.

【0008】[0008]

【課題を解決するための手段】本発明に係る有害物質固
定化材は、カルシウムサルホアルミネート水和物の加熱
処理により得られる再水和性を有する物質と、鉄の無機
酸塩、アルカリ金属又はアルカリ土類金属の硫化物又は
水硫化物、チオ尿素のうちの一種以上との混合物である
ことを特徴とする。
The harmful substance fixing material according to the present invention comprises a rehydratable substance obtained by heat treatment of calcium sulfoaluminate hydrate, an inorganic acid salt of iron, and an alkali metal. Alternatively, it is a mixture with at least one of sulfide or hydrosulfide of alkaline earth metal and thiourea.

【0009】本発明の固定化材を製造するには、最初に
出発物質であるカルシウムサルホアルミネート水和物を
合成する必要がある。カルシウムサルホアルミネート水
和物には、トリサルフェート型(3CaO・Al
・3CaSO・32HO)およびモノサルフェート
型(3CaO・Al・CaSO・12HO)
が存在する。トリサルフェート型はエトリンガイトと呼
ばれ、天然にも産出し本発明の原料として使用すること
も可能である。これらのカルシウムサルホアルミネート
水和物は、溶液又はスラリーで合成する湿式法や、原料
を混合して焼成し水和させて合成する固相法によって得
られる。しかし、経済性を考慮すれば、熱エネルギーコ
ストが低い湿式法を適用することが好ましい。
In order to produce the immobilizing material of the present invention, it is necessary to first synthesize calcium sulphoaluminate hydrate as a starting material. Calcium sulfoaluminate hydrate includes trisulfate type (3CaO.Al 2 O 3
· 3CaSO 4 · 32H 2 O) and mono sulfate type (3CaO · Al 2 O 3 · CaSO 4 · 12H 2 O)
Exists. The trisulfate type is called ettringite, which is naturally produced and can be used as a raw material of the present invention. These calcium sulfoaluminate hydrates can be obtained by a wet method of synthesizing a solution or a slurry, or a solid-phase method of synthesizing by mixing and baking and hydrating raw materials. However, in consideration of economy, it is preferable to apply a wet method with low heat energy cost.

【0010】このカルシウムサルホアルミネート水和物
をそのまま廃棄物に添加しても有害物質の固定化効果は
期待できないため、カルシウムサルホアルミネート水和
物を加熱処理し、結晶構造を壊した非晶質状態にする必
要がある。エトリンガイトの場合は150℃以上、モノ
サルフェートの場合は200℃以上の温度で加熱処理を
行う。この加熱処理によって、カルシウムサルホアルミ
ネート水和物は、付着水及び結晶水が脱離して結晶構造
が壊れた非晶質状態となる。そして、これらの加熱処理
物は容易に水と反応して(再水和反応)もとのカルシウ
ムサルホアルミネート水和物に戻る。加熱処理温度が4
00℃以上になると石膏が遊離して結晶化してくるが本
固定化材の性能に影響はない。また、高温での加熱処理
を行っても有害物質の固定化材としての性能に影響はな
いが、1000℃以上で加熱すると石膏の一部が生石灰
と三酸化硫黄(SO)への分解反応を起こし、SO
が揮発して組成に狂いが生じてしまうこと、あるいは熱
エネルギーコストを考慮すると、1000℃以下のでき
るだけ低温で熱処理を行うことが好ましい。
Since the effect of immobilizing harmful substances cannot be expected even if this calcium sulfoaluminate hydrate is added to waste as it is, the calcium sulfoaluminate hydrate is heat-treated to remove the amorphous structure. Need to be in quality. Heat treatment is performed at a temperature of 150 ° C. or more for ettringite and 200 ° C. or more for monosulfate. By this heat treatment, the calcium sulfoaluminate hydrate becomes an amorphous state in which the attached water and the water of crystallization are desorbed and the crystal structure is broken. These heat-treated products easily react with water (rehydration reaction) to return to the original calcium sulfoaluminate hydrate. Heat treatment temperature is 4
When the temperature exceeds 00 ° C., gypsum is released and crystallized, but this does not affect the performance of the fixing material. Heat treatment at a high temperature does not affect the performance of the harmful substance as an immobilizing material, but when heated at 1000 ° C. or more, part of the gypsum decomposes into quicklime and sulfur trioxide (SO 3 ). Cause SO 3
It is preferable to perform the heat treatment at as low a temperature as 1000 ° C. or less in consideration of the volatilization resulting in a disorder in the composition or the heat energy cost.

【0011】カルシウムサルフォアルミネート水和物の
加熱処理物(以下、単に熱処理物と呼ぶ)は効率的に重
金属類を固定化するが、しかし当該熱処理物のみでは埋
立基準等の溶出基準値を満たすように重金属類を固定化
することは容易でない。
Heat-treated calcium sulfoaluminate hydrate (hereinafter simply referred to as a heat-treated product) efficiently fixes heavy metals. It is not easy to immobilize heavy metals to fill.

【0012】そこで、前記熱処理物に、鉄の無機酸塩、
アルカリ金属又はアルカリ土類金属の硫化物又は水硫化
物、チオ尿素のうちの一種以上を添加併用することによ
って有害物質の固定化能を向上させることができる。入
手易く安価であることを条件とすると、鉄の無機酸塩と
しては硫酸鉄又は塩化鉄が好ましく、アルカリ金属又は
アルカリ土類金属の硫化物又は水硫化物としては硫化ナ
トリウム、ポリ硫化ナトリウム、硫化カルシウム、ポリ
硫化カルシウム、水硫化ナトリウム、水硫化カルシウム
などが好ましく使用される。これらの薬剤は、基本的に
重金属類と反応して溶解度の小さい難溶性化合物を形成
する。これらの添加量は、固定化処理対象物100重量
部に対して、鉄の無機酸塩は5〜30重量部、アルカリ
金属又はアルカリ土類金属の硫化物又は水硫化物並びに
チオ尿素は例えば0.5〜30重量部、好ましくは1〜
20重量部の範囲になるように添加することにより固定
化効果が向上する。これらの薬剤を添加することによっ
て固定化材の主物質である熱処理物の使用量が削減し、
固定化処理で発生する固化体の量を減容化できるだけで
なく、それぞれを単独で固定化処理に利用するよりも遙
かに固定化能が高く、溶出基準値を満たすことが容易に
なる。固定化処理対象物100重量部に対し熱処理物2
0重量部を添加する(後述の表1参照)ことを前提とす
れば、本発明の有害物質固定化材中の熱処理物と鉄の無
機酸塩との混合比率は20:5〜30、好ましくは2
0:10〜30、熱処理物とアルカリ金属又はアルカリ
土類金属の硫化物又は水硫化物或いはチオ尿素との混合
比率は20:0.5〜2、好ましくは1〜2と言うこと
になる。
Therefore, an inorganic acid salt of iron,
By adding and using one or more of a sulfide or hydrosulfide of an alkali metal or an alkaline earth metal and thiourea, the ability to immobilize harmful substances can be improved. On the condition that it is easily available and inexpensive, iron sulfate or iron chloride is preferred as the inorganic acid salt of iron, and sodium sulfide, sodium polysulfide, sodium sulfide as sulfides or hydrosulfides of alkali metals or alkaline earth metals. Calcium, calcium polysulfide, sodium bisulfide, calcium bisulfide and the like are preferably used. These drugs basically react with heavy metals to form poorly soluble compounds with low solubility. The amount of these additives is 5 to 30 parts by weight of the inorganic acid salt of iron, sulfide or hydrosulfide of alkali metal or alkaline earth metal, and thiourea is 0 to 100 parts by weight of the object to be fixed. 0.5 to 30 parts by weight, preferably 1 to
By adding so as to be in the range of 20 parts by weight, the immobilization effect is improved. The addition of these agents reduces the amount of heat-treated material that is the main substance of the immobilization material,
Not only can the volume of the solidified body generated in the immobilization treatment be reduced, but also the immobilization ability is much higher than when each is used alone for the immobilization treatment, and the elution standard value can be easily satisfied. Heat treated material 2 for 100 parts by weight of the object to be fixed
Assuming that 0 parts by weight are added (see Table 1 described later), the mixing ratio of the heat-treated product and the inorganic acid salt of iron in the harmful substance fixing material of the present invention is preferably 20: 5 to 30, and is preferably 20: 5 to 30. Is 2
The mixing ratio of the heat-treated product to the alkali metal or alkaline earth metal sulfide or hydrosulfide or thiourea is 20: 0.5 to 2, preferably 1 to 2.

【0013】次に、本有害物質固定化材の固定化機能に
ついて説明する。カルシウムサルホアルミネート水和物
であるエトリンガイトは{Ca〔Al(OH)]・
12HO}3+なる柱状構造がC軸方向に伸びた骨格
を形成しており、この間にSO四面体と水分子が入り
込んだ結晶構造をしている。多量の結晶水を保持するこ
とも特徴であるが、結晶化の際Al原子の位置にイオン
半径の近いTi、Cr、Pb、Cd、Mn、Feなどの
金属イオンと容易に置換することが知られている。また
{Ca〔Al(OH)]・12HO}3+の柱状
構造間に介在するSO 2−イオンも、CrO 2−
Cr 2−、AsO 3−、AsO 3−、SeO
2−、Cl、F、NO 、NO 、CO
2−、PO 3−イオンなどと置換することも可能であ
る。一方、モノサルフェートも、〔CaAl(OH)
・2HO〕の層状構造を持ち、結晶化の際Al原
子の位置にイオン半径の近い重金属イオンを取り込むこ
とはエトリンガイトの場合と同じであるが、骨格構造中
にOH+2HOの空位があるので、この位置にOH
、AsO 3−、AsO 3−、Cl、S
2−、PO 3−、NO が取り込まれる。
Next, the immobilizing function of the material for immobilizing harmful substances will be described.
explain about. Calcium sulfoaluminate hydrate
Ettringite is {Ca3[Al (OH)6] ・
12H2O}3+Skeleton whose columnar structure extends in the C-axis direction
Are formed, during which SO4Contains tetrahedrons and water molecules
It has an embedded crystal structure. Keep a large amount of water of crystallization
In the crystallization, the ion is located at the position of the Al atom.
Ti, Cr, Pb, Cd, Mn, Fe
It is known to easily replace metal ions. Also
{Ca3[Al (OH)6] ・ 12H2O}3+Pillar shape
SO interposed between structures4 2-The ions are also CrO4 2-,
Cr2O7 2-, AsO3 3-, AsO 4 3-, SeO
3 2-, Cl, F, NO3 , NO2 , CO3
2-, PO 4 3-It is also possible to substitute
You. On the other hand, monosulfate is also [Ca2Al (OH)
6・ 2H2O]+With a layered structure of
Heavy metal ions with similar ionic radii can be
Is the same as for ettringite, but in the skeletal structure
OH+ 2H2Since there is a vacancy of O, OH
, AsO3 3-, AsO4 3-, Cl, S
O4 2-, PO4 3-, NO2 Is taken in.

【0014】カルシウムサルホアルミネート水和物の有
害物質固定化機構は、特に結晶の生成・育成時に有害物
質が結晶格子中に置換・固溶されるため、水和物の状態
で有害物質を含有する廃棄物などに添加しても固定化能
はほとんど期待できない。本発明では、水和物を加熱処
理して結晶の構造を一度非晶質化し、再水和反応の際に
有害物質と接触させることによって、生成するカルシウ
ムサルフォアルミネート水和物の結晶格子中に効果的に
有害物質を置換・固溶させるものである。従って、有害
物質の単なる吸着や物理的固定でないので、セメント等
の物理的吸着・固定化剤より有害物質を強固に固定でき
る。さらに、カルシウムサルホアルミネート水和物は、
溶解度が極めて小さく、且つ無機物であり、長期にわた
って安定に存在することが知られているので、有害物質
の固定化の持続性・耐久性の点でも優れている。
The mechanism of immobilizing harmful substances of calcium sulfoaluminate hydrate is that harmful substances are contained in a hydrated state because the harmful substances are replaced and solid-solved in the crystal lattice, particularly when crystals are formed and grown. The immobilization ability can hardly be expected even if it is added to waste that is generated. In the present invention, the crystal lattice of calcium sulphoaluminate hydrate formed by heat-treating the hydrate to make the crystal structure amorphous once and contacting it with a harmful substance during the rehydration reaction It effectively substitutes and dissolves harmful substances into it. Therefore, the harmful substance is not simply adsorbed or physically fixed, so that the harmful substance can be more firmly fixed than a physical adsorbing and fixing agent such as cement. In addition, calcium sulfoaluminate hydrate
It is known that it has extremely low solubility, is inorganic, and stably exists over a long period of time, and is therefore excellent in the durability and durability of immobilizing harmful substances.

【0015】鉄の無機酸塩(硫酸第一鉄、塩化第一鉄、
硫酸第二鉄、塩化第二鉄)は、上述した作用以外にも、
還元剤としての機能や、水酸化鉄の沈殿を形成すると同
時に共沈のような形で重金属類を不溶化させる機能を持
つと考えられる。ただし、これらの鉄塩は固化材を酸性
にして分解することや、陰イオンによる急結作用がある
ため、固定化処理対象物100重量部に対して30重量
部以上になるように添加することは好ましくない。
Inorganic acid salts of iron (ferrous sulfate, ferrous chloride,
Ferric sulfate, ferric chloride)
It is thought to have a function as a reducing agent and a function to form a precipitate of iron hydroxide and at the same time insolubilize heavy metals in a form like co-precipitation. However, since these iron salts have the effect of decomposing the solidifying material by acidification and have a rapid setting action by anions, the iron salt should be added in an amount of 30 parts by weight or more with respect to 100 parts by weight of the object to be fixed. Is not preferred.

【0016】アルカリ金属又はアルカリ土類金属の硫化
物又は水硫化物、チオ尿素は、主としてカドミウム、
鉛、水銀、クロム等の重金属類を難溶性の硫化物塩とす
る機能を有している。ただし、これらは水中の有害重金
属イオンの沈殿剤には使用されているが、形成する粒子
が微細であることが多く、前記熱処理物と併用しない場
合は水と一緒に流出してしまう可能性があるため固形廃
棄物からの溶出防止は困難であり、使用対象物も限られ
ている。
Alkali metal or alkaline earth metal sulfides or hydrosulfides, thioureas are mainly cadmium,
It has the function of converting heavy metals such as lead, mercury, and chromium into hardly soluble sulfide salts. However, these are used as a precipitant for harmful heavy metal ions in water, but the particles to be formed are often fine, and when not used in combination with the heat-treated product, there is a possibility that they will flow out with water. For this reason, it is difficult to prevent elution from solid waste, and the objects to be used are also limited.

【0017】本発明の有害物質固定化材は、熱処理物
と、鉄の無機酸塩、アルカリ金属又はアルカリ土類金属
の硫化物又は水硫化物、チオ尿素のうちの一種以上とを
併用することにより、それぞれの特徴を生かし弱点を補
強した一層強力な重金属類の固定化が出来ると同時に、
固化体の減容化、広範な廃棄物への適用などの様々な効
果を発揮する。
The harmful substance fixing material of the present invention is obtained by using a heat-treated material and at least one of an inorganic acid salt of iron, a sulfide or hydrosulfide of an alkali metal or an alkaline earth metal, and thiourea in combination. As a result, more powerful heavy metals can be immobilized, taking advantage of their characteristics and reinforcing their weak points.
It exerts various effects such as volume reduction of solidified material and application to a wide range of waste.

【0018】[0018]

【発明の実施の形態】以下、実施例により本発明の固定
化材の具体例及びその効果を説明するが、本発明は下記
の実施例に限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific examples and effects of the fixing material of the present invention will be described with reference to examples, but the present invention is not limited to the following examples.

【0019】水酸化カルシウム(特級試薬)570重量
部と、無水硫酸アルミニウム(特級試薬)430重量
部、及び蒸留水4000重量部をステンレス容器に秤量
し、50℃以上に加温しながら5時間混合撹拌し反応を
進行させた。さらに24時間室温で熟成させ、反応終了
後、固相を濾過し50℃で乾燥させて、固形分1730
重量部を得た。得られた固形分は、粉末X線回析によっ
て結晶相を同定した結果、「エトリンガイト」であっ
た。次に得られた固形分を電気炉を使用して500℃で
3時間加熱処理し、加熱処理品“A”1000重量部を
得た。
570 parts by weight of calcium hydroxide (special grade reagent), 430 parts by weight of anhydrous aluminum sulfate (special grade reagent), and 4000 parts by weight of distilled water are weighed in a stainless steel container and mixed for 5 hours while heating to 50 ° C. or higher. Stirring was allowed to proceed. After further aging at room temperature for 24 hours, after completion of the reaction, the solid phase was filtered and dried at 50 ° C.
Parts by weight were obtained. As a result of identifying a crystal phase by powder X-ray diffraction, the obtained solid was “ettringite”. Next, the obtained solid content was subjected to a heat treatment at 500 ° C. for 3 hours using an electric furnace to obtain 1000 parts by weight of a heat-treated product “A”.

【0020】水酸化カルシウム(特級試薬)460重量
部、水酸化アルミニウム(特級試薬)320重量部、硫
酸カルシウム二水和物(特級試薬)340重量部及び蒸
留水4000重量部をステンレス容器に秤量し、50℃
以上に加温しながら5時間混合撹拌し反応を進行させ
た。さらに24時間室温で熟成させ、反応終了後、固相
を濾過し50℃で乾燥させて固形分1260重量部を得
た。得られた固形分は、粉末X線回析によって結晶相を
同定した結果、「モノサルフェート」であった。次に得
られた固形分を電気炉を使用して500℃で3時間加熱
処理し、加熱処理品“B”1000重量部を得た。
460 parts by weight of calcium hydroxide (special grade reagent), 320 parts by weight of aluminum hydroxide (special grade reagent), 340 parts by weight of calcium sulfate dihydrate (special grade reagent) and 4000 parts by weight of distilled water are weighed in a stainless steel container. , 50 ° C
The mixture was stirred for 5 hours while heating as described above, and the reaction was allowed to proceed. After further aging at room temperature for 24 hours, after completion of the reaction, the solid phase was filtered and dried at 50 ° C. to obtain 1,260 parts by weight of a solid content. As a result of identifying the crystal phase by powder X-ray diffraction, the obtained solid was “monosulfate”. Next, the obtained solid content was subjected to a heat treatment at 500 ° C. for 3 hours using an electric furnace to obtain 1000 parts by weight of a heat-treated product “B”.

【0021】[0021]

【比較例1】表1に記載したPb溶出量を示す飛灰(ご
み焼却炉飛灰)100重量部に対して、“A”を10,
20,50,100,200重量部および水を適量加え
て混練した後5日間室温で養生し、養生後固定化処理品
を乳鉢で粉砕し、粒径0.5〜5mmに粒度調整したも
のについて環境庁告示13号に基づき溶出試験を行っ
た。抽出液はJIS K 0102に基づいて溶出成分
の定量分析を行い、その結果は表1に示した。その結
果、Pb溶出量は低減されたが、対象物と等量部以上添
加しなければPb溶出量を埋立基準(0.3mg/L)
以下にできなかった。なお表1以降において、「ND」
は検出限界以下を意味する。
Comparative Example 1 For 100 parts by weight of fly ash (garbage incinerator fly ash) having a Pb elution amount shown in Table 1, "A" was 10, and
After adding 20, 50, 100, 200 parts by weight and an appropriate amount of water and kneading the mixture, curing the mixture at room temperature for 5 days, pulverizing the fixed product after curing in a mortar, and adjusting the particle size to 0.5 to 5 mm. A dissolution test was performed based on the Environment Agency Notification No. 13. The extract was subjected to quantitative analysis of eluted components based on JIS K0102, and the results are shown in Table 1. As a result, the amount of Pb eluted was reduced, but the amount of Pb eluted was reduced to the landfill standard (0.3 mg / L) unless it was added in an equivalent amount or more to the object.
I couldn't go below. In Table 1 and subsequent tables, "ND"
Means below the detection limit.

【0022】[0022]

【比較例2】表1に示した飛灰100重量部に対して、
“B”を10,20,50,100,200重量部およ
び水を適量加えて混練し、以下比較例1と同様に試験を
行った。その結果(表1)、“A”同様、対象物と等量
以上添加しなければPb溶出量を埋立基準以下にできな
かった。
Comparative Example 2 For 100 parts by weight of fly ash shown in Table 1,
10, 20, 50, 100, 200 parts by weight of "B" and an appropriate amount of water were added and kneaded, and the same test as in Comparative Example 1 was conducted. As a result (Table 1), as in "A", the Pb elution amount could not be reduced below the landfill standard unless it was added in an amount equal to or greater than the target.

【0023】[0023]

【比較例3】表1に示した飛灰100重量部に対して、
普通セメント“C”を10,20,50,100,20
0重量部および水を適量加えて混練し、以下比較例1と
同様に試験を行った。その結果(表1)、Pb溶出量は
低減されたが埋立基準を満足するには至らなかった。
Comparative Example 3 For 100 parts by weight of fly ash shown in Table 1,
10, 20, 50, 100, 20 of ordinary cement "C"
An appropriate amount of 0 parts by weight and water were added and kneaded, and a test was performed in the same manner as in Comparative Example 1. As a result (Table 1), the Pb elution amount was reduced, but did not satisfy the landfill standard.

【0024】[0024]

【比較例4】表1に示した飛灰100重量部に対して、
硫酸第一鉄(FeSO)を5,10,15,20,3
0重量部および水を適量加えて混練し、以下比較例1と
同様に試験を行った。その結果(表1)、Pb溶出量は
低減されたが埋立基準を満足するには至らず、添加量が
30重量部になると再び溶出量が増大する傾向にあっ
た。また、硫酸第一鉄の添加量が10重量部以上では、
固定化処理品が泥状またはスラリー状になってしまい、
硫酸第一鉄単独での固定化は困難であった。
Comparative Example 4 With respect to 100 parts by weight of fly ash shown in Table 1,
Ferrous sulfate (FeSO 4 ) was added to 5,10,15,20,3
An appropriate amount of 0 parts by weight and water were added and kneaded, and a test was performed in the same manner as in Comparative Example 1. As a result (Table 1), the elution amount of Pb was reduced but did not satisfy the landfill standard, and the elution amount tended to increase again when the added amount became 30 parts by weight. If the amount of ferrous sulfate added is 10 parts by weight or more,
The immobilized product becomes mud or slurry,
It was difficult to immobilize ferrous sulfate alone.

【0025】[0025]

【比較例5】表1に示した飛灰100重量部に対して、
硫化ナトリウム(NaS)を0.5,1,2,3,5
重量部および水を適量加えて混練し、以下比較例1と同
様に試験を行った。その結果(表1)、Pb溶出量は低
減されたが埋立基準を満足するには至らず、添加量が3
重量部以上では溶出量が変わらなくなった。これは、硫
化ナトリウムのみでは、溶出試験で反応生成物が流出す
るためと考えられる。
Comparative Example 5 For 100 parts by weight of fly ash shown in Table 1,
Sodium sulfide (Na 2 S) is 0.5, 1, 2, 3, 5
An appropriate amount of water and water were added and kneaded, and a test was conducted in the same manner as in Comparative Example 1. As a result (Table 1), the amount of Pb eluted was reduced, but did not satisfy the landfill standard.
At more than parts by weight, the elution amount did not change. This is considered to be due to the reaction product flowing out in the dissolution test using only sodium sulfide.

【0026】[0026]

【実施例1】表1に示した飛灰100重量部に対して、
“A”を20重量部、硫酸第一鉄を5,10,20,3
0重量部および水を適量加えて混練し、以下比較例1と
同様に試験を行った。その結果(表1)、Pb溶出量は
低減され、“A”20重量部に硫酸第一鉄10重量部以
上を添加することにより、溶出量は埋立基準以下となっ
た。“A”や硫酸第一鉄を単独で使用した場合よりも添
加量が少量で、高い溶出防止効果が得られた。
Example 1 With respect to 100 parts by weight of fly ash shown in Table 1,
20 parts by weight of "A" and 5,10,20,3 ferrous sulfate
An appropriate amount of 0 parts by weight and water were added and kneaded, and a test was performed in the same manner as in Comparative Example 1. As a result (Table 1), the elution amount of Pb was reduced, and by adding 10 parts by weight or more of ferrous sulfate to 20 parts by weight of "A", the elution amount was below the landfill standard. The addition amount was smaller than when "A" or ferrous sulfate was used alone, and a high elution prevention effect was obtained.

【0027】[0027]

【実施例2】表1に示した飛灰100重量部に対して、
“B”を20重量部、硫酸第一鉄を5,10,20,3
0重量部および水を適量加えて混練し、以下比較例1と
同様に試験を行った。その結果(表1)、実施例1と同
様にPb溶出量は低減され、“B”20重量部に硫酸第
一鉄10重量部以上を添加することにより、溶出量は埋
立基準以下となった。
Example 2 For 100 parts by weight of fly ash shown in Table 1,
20 parts by weight of "B" and 5,10,20,3 ferrous sulfate
An appropriate amount of 0 parts by weight and water were added and kneaded, and a test was performed in the same manner as in Comparative Example 1. As a result (Table 1), the elution amount of Pb was reduced as in Example 1, and the elution amount was below the landfill standard by adding 10 parts by weight or more of ferrous sulfate to 20 parts by weight of "B". .

【0028】[0028]

【比較例6】表1に示した飛灰100重量部に対して、
“C”を20重量部、硫酸第一鉄を5,10,20,3
0重量部および水を適量加えて混練し、以下比較例1と
同様に試験を行った。その結果(表1)、“C”を単独
で使用した場合よりもPb溶出量は低減されたが、埋立
基準を満足するには至らなかった。
Comparative Example 6 For 100 parts by weight of fly ash shown in Table 1,
20 parts by weight of "C" and 5,10,20,3 of ferrous sulfate
An appropriate amount of 0 parts by weight and water were added and kneaded, and a test was performed in the same manner as in Comparative Example 1. As a result (Table 1), the amount of Pb eluted was reduced as compared with the case where "C" was used alone, but did not satisfy the landfill standard.

【0029】[0029]

【実施例3】表1に示した飛灰100重量部に対して、
“A”を20重量部、硫化ナトリウムを0.5,1,
1.5,3重量部および水を適量加えて混練し、以下比
較例1と同様に試験を行った。その結果、Pb溶出量は
低減され、“A”20重量部に硫化ナトリウム1.5重
量部以上を添加することにより、溶出量は埋立基準以下
となった。“A”や硫化ナトリウムを単独で使用した場
合よりも添加量が少量で、高い溶出防止効果が得られ
た。
Embodiment 3 For 100 parts by weight of fly ash shown in Table 1,
20 parts by weight of “A” and 0.5, 1,
1.5, 3 parts by weight and an appropriate amount of water were added and kneaded, and a test was conducted in the same manner as in Comparative Example 1. As a result, the amount of Pb eluted was reduced, and by adding 1.5 parts by weight or more of sodium sulfide to 20 parts by weight of "A", the amount of eluted was below the landfill standard. The addition amount was smaller than when "A" or sodium sulfide was used alone, and a high elution prevention effect was obtained.

【0030】[0030]

【比較例7】表1に示した飛灰100重量部に対して、
“C”を20重量部、硫化ナトリウムを0.5,1,
1.5,3重量部および水を適量加えて混練し、以下比
較例1と同様に試験を行った。その結果、“C”を単独
で使用した場合よりもPb溶出量は低減されたが、埋立
基準を満足するには至らなかった。
Comparative Example 7 For 100 parts by weight of fly ash shown in Table 1,
20 parts by weight of “C” and 0.5, 1,
1.5, 3 parts by weight and an appropriate amount of water were added and kneaded, and a test was conducted in the same manner as in Comparative Example 1. As a result, the Pb elution amount was reduced as compared with the case where “C” was used alone, but did not satisfy the landfill standard.

【0031】[0031]

【実施例4】表1に示した飛灰100重量部に対して、
“A”を20重量部、硫酸第一鉄を5重量部、硫化ナト
リウムを1重量部および水を適量加えて混練し、以下比
較例1と同様に試験を行った。その結果(表1)、Pb
溶出量は検出限界以下となった。しかも、これらの固定
化材を単独で固定化した時、または“A”に硫酸第一
鉄、硫化ナトリウムのどちらかを添加して使用した時よ
りも少量の使用量で非常に有効な効果が得られた。
Example 4 For 100 parts by weight of fly ash shown in Table 1,
20 parts by weight of "A", 5 parts by weight of ferrous sulfate, 1 part by weight of sodium sulfide and an appropriate amount of water were added and kneaded. The test was carried out in the same manner as in Comparative Example 1. As a result (Table 1), Pb
The elution amount was below the detection limit. In addition, a very effective effect can be obtained with a smaller amount than when these fixing materials are used alone or when “A” is added with either ferrous sulfate or sodium sulfide. Obtained.

【0032】[0032]

【比較例8】表1に示した飛灰100重量部に対して、
“C”を20重量部、硫酸第一鉄を5重量部、硫化ナト
リウムを1重量部および水を適量加えて混練し、以下比
較例1と同様に試験を行った。その結果(表1)、これ
らの固定化材を単独で固定化した時、または“C”に硫
酸第一鉄、硫化ナトリウムのどちらかを添加して固定化
した時よりも高い効果が得られたが、埋立基準を満足す
るには至らなかった。
Comparative Example 8 For 100 parts by weight of fly ash shown in Table 1,
20 parts by weight of "C", 5 parts by weight of ferrous sulfate, 1 part by weight of sodium sulfide and an appropriate amount of water were added and kneaded, and the same test as in Comparative Example 1 was conducted. As a result (Table 1), a higher effect can be obtained than when these immobilizing materials were immobilized by themselves or by adding either ferrous sulfate or sodium sulfide to "C". However, they did not meet the landfill standards.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【比較例9】表2に記載した重金属含有量および複数の
重金属が同時に溶出する燃え殻(ガラス溶融炉煙道清掃
残渣)100重量部に対して、“A”を20,50,1
00重量部および水を適量加えて混練し、以下比較例1
と同様に試験を行った。試験結果は表2に示した。C
d、Pb、Cr6+、As、Seの溶出量は低減した
が、埋立基準以下にするには“A”を多量に添加しなけ
ればならなかった。
Comparative Example 9 "A" was 20, 50, 1 with respect to 100 parts by weight of the crust (glass melting furnace flue cleaning residue) in which the heavy metal content and the plurality of heavy metals eluted simultaneously as described in Table 2 were eluted.
An appropriate amount of 00 parts by weight and water were added and kneaded.
The test was performed in the same manner as in the above. The test results are shown in Table 2. C
Although the elution amounts of d, Pb, Cr 6+ , As, and Se were reduced, a large amount of “A” had to be added in order to reach the landfill standard.

【0035】[0035]

【比較例10】表2に示した燃え殻100重量部に対し
て、“B”を20,50,100重量部および水を適量
加えて混練し、以下比較例1と同様に試験を行った。そ
の結果(表2)、溶出量を埋立基準以下にするには
“B”を多量に添加しなければならなかった。
Comparative Example 10 To 100 parts by weight of the cinder shown in Table 2, 20, 50 and 100 parts by weight of "B" and an appropriate amount of water were added and kneaded, and the same test as in Comparative Example 1 was conducted. As a result (Table 2), a large amount of "B" had to be added to make the elution amount below the landfill standard.

【0036】[0036]

【比較例11】表2に示した燃え殻100重量部に対し
て、“C”を20,50,100重量部および水を適量
加えて混練し、以下比較例1と同様に試験を行った。そ
の結果(表2)、溶出量は低減したが埋立基準を満足す
るには至らなかった。また、Pbは“C”に含まれるア
ルカリ性分と反応して可溶性塩を形成したと考えられ、
溶出量が増加した。
Comparative Example 11 To 100 parts by weight of the cinder shown in Table 2, 20, 50 and 100 parts by weight of "C" and an appropriate amount of water were added and kneaded, and the same test as in Comparative Example 1 was conducted. As a result (Table 2), the elution amount was reduced, but did not satisfy the landfill standard. Further, it is considered that Pb reacted with an alkaline component contained in “C” to form a soluble salt,
The elution volume increased.

【0037】[0037]

【実施例5】表2に示した燃え殻100重量部に対し
て、“A”を20重量部、硫酸第一鉄を5,10,15
重量部および水を適量加えて混練し、以下比較例1と同
様に試験を行った。その結果(表2)、重金属類の溶出
量は低減し、“A”20重量部に硫酸第一鉄10重量部
以上を添加した場合、分析した全ての重金属類の溶出量
が埋立基準以下となった。また、“A”を単独で使用し
た場合よりも添加量が少量で、高い溶出防止効果が得ら
れた。
Example 5 20 parts by weight of "A" and 5, 10, 15 ferrous sulfate were added to 100 parts by weight of the cinder shown in Table 2.
An appropriate amount of water and water were added and kneaded, and a test was conducted in the same manner as in Comparative Example 1. As a result (Table 2), the elution amount of heavy metals decreased, and when 10 parts by weight or more of ferrous sulfate was added to 20 parts by weight of "A", the elution amount of all analyzed heavy metals was below the landfill standard. became. In addition, the addition amount was smaller than when "A" was used alone, and a high elution prevention effect was obtained.

【0038】[0038]

【実施例6】表2に示した燃え殻100重量部に対し
て、“B”を20重量部、硫酸第一鉄を5,10,15
重量部および水を適量加えて混練し、以下比較例1と同
様に試験を行った。その結果(表2)、実施例5と同様
に重金属類の溶出量は低減し、“B”20重量部に硫酸
第一鉄10重量部以上を添加することにより、分析した
全ての重金属類の溶出量が埋立基準以下となった。
EXAMPLE 6 20 parts by weight of "B" and 5, 10, 15 ferrous sulfate were added to 100 parts by weight of the cinder shown in Table 2.
An appropriate amount of water and water were added and kneaded, and a test was conducted in the same manner as in Comparative Example 1. As a result (Table 2), the elution amount of heavy metals was reduced as in Example 5, and by adding 10 parts by weight or more of ferrous sulfate to 20 parts by weight of "B", all the heavy metals analyzed were reduced. The elution amount was below the landfill standard.

【0039】[0039]

【比較例12】表2に示した燃え殻100重量部に対し
て、“C”を20重量部、硫酸第一鉄を15重量部およ
び水を適量加えて混練し、以下比較例1と同様に試験を
行った。その結果(表2)、重金属類の溶出量は低減し
たが、Pbの溶出量は、硫酸第一鉄の添加効果によって
低減させることが出来た。その他の重金属では埋立基準
を満たすには至らなかった。
Comparative Example 12 To 100 parts by weight of the cinder shown in Table 2, 20 parts by weight of "C", 15 parts by weight of ferrous sulfate and an appropriate amount of water were added and kneaded. The test was performed. As a result (Table 2), the elution amount of heavy metals was reduced, but the elution amount of Pb was able to be reduced by the effect of adding ferrous sulfate. Other heavy metals did not meet the landfill standards.

【0040】[0040]

【実施例7】表2に示した燃え殻100重量部に対し
て、“A”を20重量部、水硫化ナトリウム(NaS
H)を0.5,1,2重量部および水を適量加えて混練
し、以下比較例1と同様に試験を行った。その結果(表
2)、重金属類の溶出量は低減し、少ない添加量でも
“A”を多量に使用した時と同程度の効果が得られた。
Example 7 20 parts by weight of "A" and 100 parts by weight of cinder shown in Table 2
H), 0.5, 1, 2 parts by weight and an appropriate amount of water were added and kneaded, and the same test as in Comparative Example 1 was conducted. As a result (Table 2), the elution amount of heavy metals was reduced, and the same effect as when a large amount of "A" was used was obtained with a small amount of addition.

【0041】[0041]

【実施例8】表2に示した燃え殻100重量部に対し
て、“B”を20重量部、水硫化ナトリウムを2重量部
および水を適量加えて混練し、以下比較例1と同様に試
験を行った。その結果(表2)、実施例7と同様に重金
属類の溶出量は低減した。
Example 8 20 parts by weight of "B", 2 parts by weight of sodium hydrosulfide and an appropriate amount of water were added to 100 parts by weight of the cinder shown in Table 2 and kneaded, followed by the same test as in Comparative Example 1. Was done. As a result (Table 2), the elution amount of heavy metals was reduced as in Example 7.

【0042】[0042]

【比較例13】表2に示した燃え殻100重量部に対し
て、“C”を20重量部、水硫化ナトリウムを2重量部
および水を適量加えて混練し、以下比較例1と同様に試
験を行った。その結果(表2)、重金属類の溶出量は低
減したが、Pbの溶出量は、水硫化ナトリウム添加によ
る効果によって低減したにも関わらず、埋立基準を満た
すには至らなかった。
Comparative Example 13 20 parts by weight of "C", 2 parts by weight of sodium hydrosulfide and an appropriate amount of water were added to 100 parts by weight of the cinder shown in Table 2, and kneaded. Was done. As a result (Table 2), although the elution amount of heavy metals was reduced, the elution amount of Pb was not satisfied with the landfill standard although the elution amount of Pb was reduced by the effect of adding sodium hydrosulfide.

【0043】[0043]

【実施例9】表2に示した燃え殻100重量部に対し
て、“A”を20重量部、硫酸第一鉄を10重量部、水
硫化ナトリウムを1重量部および水を適量加えて混練
し、以下比較例1と同様に試験を行った。その結果(表
2)、分析した全ての重金属類の溶出量は検出限界以下
となった。しかも、“A”または“A”に硫酸第一鉄、
水硫化ナトリウムのどちらかを添加して使用した時より
も少量の使用量で非常に有効な効果が得られた。
EXAMPLE 9 20 parts by weight of "A", 10 parts by weight of ferrous sulfate, 1 part by weight of sodium hydrosulfide and an appropriate amount of water were added to 100 parts by weight of the cinder shown in Table 2 and kneaded. A test was conducted in the same manner as in Comparative Example 1. As a result (Table 2), the elution amounts of all analyzed heavy metals were below the detection limit. And "A" or "A" is ferrous sulfate,
A very effective effect was obtained with a smaller amount of use than when either of sodium hydrosulfide was used.

【0044】[0044]

【比較例14】表2に示した燃え殻100重量部に対し
て、“C”を20重量部、硫酸第一鉄を10重量部、水
硫化ナトリウムを1重量部および水を適量加えて混練
し、以下比較例1と同様に試験を行った。その結果(表
2)、“C”または“C”に硫酸第一鉄、水硫化ナトリ
ウムのどちらかを添加して固定化した時よりは高い効果
が得られたが、埋立基準を満足するには至らなかった。
Comparative Example 14 To 100 parts by weight of the cinder shown in Table 2, 20 parts by weight of "C", 10 parts by weight of ferrous sulfate, 1 part by weight of sodium hydrosulfide and an appropriate amount of water were added and kneaded. A test was conducted in the same manner as in Comparative Example 1. As a result (Table 2), a higher effect was obtained than when either ferrous sulfate or sodium hydrosulfide was added and immobilized to "C" or "C", but the landfill standard was satisfied. Did not reach.

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【比較例15】表3に記載した総水銀(T−Hg)の溶
出量を示す廃蛍光灯(ガラス屑)100重量部に対し
て、“A”を20,100重量部および水を適量加えて
混練し、以下比較例1と同様に試験を行った。試験結果
は表3に示した。溶出量は低減したが、“A”添加量を
増やしても埋立基準を満たすには至らなかった。
Comparative Example 15 20,100 parts by weight of "A" and an appropriate amount of water were added to 100 parts by weight of a waste fluorescent lamp (glass waste) showing the amount of total mercury (T-Hg) eluted as shown in Table 3. Then, the same test as in Comparative Example 1 was performed. The test results are shown in Table 3. Although the elution amount was reduced, even if the added amount of “A” was increased, the landfill standard was not satisfied.

【0047】[0047]

【比較例16】表3に示した廃蛍光灯100重量部に対
して、“B”を20,100重量部および水を適量加え
て混練し、以下比較例1と同様に試験を行った。その結
果(表3)、比較例15と同様に溶出量は低減したが、
添加量を増やしても埋立基準を満たすには至らなかっ
た。
Comparative Example 16 To 100 parts by weight of the waste fluorescent lamp shown in Table 3, 20,100 parts by weight of "B" and an appropriate amount of water were added and kneaded, and the same test as in Comparative Example 1 was conducted. As a result (Table 3), the elution amount was reduced as in Comparative Example 15, but
Increasing the amount did not meet the landfill standards.

【0048】[0048]

【比較例17】表3に示した廃蛍光灯100重量部に対
して、“C”を20,100重量部および水を適量加え
て混練し、以下比較例1と同様に試験を行ったが(表
3)、溶出量は殆ど低減しなかった。
Comparative Example 17 20,100 parts by weight of "C" and an appropriate amount of water were added to 100 parts by weight of the waste fluorescent lamp shown in Table 3 and kneaded, and a test was conducted in the same manner as in Comparative Example 1. (Table 3), the elution amount was hardly reduced.

【0049】[0049]

【実施例10】表3に示した廃蛍光灯100重量部に対
して、“A”を20重量部、硫化ナトリウムを1重量部
および水を適量加えて混練し、以下比較例1と同様に試
験を行った。その結果(表3)、T−Hgの溶出量は低
減し、埋立基準以下となった。
Example 10 20 parts by weight of "A", 1 part by weight of sodium sulfide and an appropriate amount of water were added to 100 parts by weight of the waste fluorescent lamp shown in Table 3 and kneaded. The test was performed. As a result (Table 3), the amount of T-Hg eluted was reduced to be below the landfill standard.

【0050】[0050]

【実施例11】表3に示した廃蛍光灯100重量部に対
して、“B”を20重量部、硫化ナトリウムを1重量部
および水を適量加えて混練し、以下比較例1と同様に試
験を行った。その結果(表3)、実施例10と同様に溶
出量は埋立基準以下となった。
Example 11 20 parts by weight of "B", 1 part by weight of sodium sulfide, and an appropriate amount of water were added to 100 parts by weight of the waste fluorescent lamp shown in Table 3 and kneaded. The test was performed. As a result (Table 3), the elution amount was lower than the landfill standard as in Example 10.

【0051】[0051]

【比較例18】表3に示した廃蛍光灯100重量部に対
して、“C”を20重量部、硫化ナトリウムを1重量部
および水を適量加えて混練し、以下比較例1と同様に試
験を行った。その結果(表3)、硫化ナトリウムを添加
することによってT−Hgの溶出量は低減したが、埋立
基準を満たすには至らなかった。
Comparative Example 18 To 100 parts by weight of the waste fluorescent lamp shown in Table 3, 20 parts by weight of "C", 1 part by weight of sodium sulfide and an appropriate amount of water were added and kneaded. The test was performed. As a result (Table 3), the amount of T-Hg eluted was reduced by adding sodium sulfide, but did not satisfy the landfill standard.

【0052】[0052]

【実施例12】表3に示した廃蛍光灯100重量部に対
して、“A”を20重量部、チオ尿素を1重量部および
水を適量加えて混練し、以下比較例1と同様に試験を行
った。その結果(表3)、“A”単独で使用した場合よ
りも少ない添加量でT−Hgの溶出量は埋立基準を満足
する値となった。
Example 12 20 parts by weight of "A", 1 part by weight of thiourea and an appropriate amount of water were added to 100 parts by weight of the waste fluorescent lamp shown in Table 3 and kneaded. The test was performed. As a result (Table 3), the elution amount of T-Hg was a value satisfying the landfill standard with a smaller amount of addition than when "A" was used alone.

【0053】[0053]

【比較例19】表3に示した廃蛍光灯100重量部に対
して、“C”を20重量部、チオ尿素を1重量部および
水を適量加えて混練し、以下比較例1と同様に試験を行
った。その結果(表3)、チオ尿素を添加することによ
ってT−Hgの溶出量は低減したが、埋立基準を満たす
には至らなかった。
Comparative Example 19 To 100 parts by weight of the waste fluorescent lamp shown in Table 3, 20 parts by weight of "C", 1 part by weight of thiourea and an appropriate amount of water were added and kneaded. The test was performed. As a result (Table 3), the addition of thiourea reduced the elution amount of T-Hg, but did not meet the landfill criteria.

【0054】[0054]

【実施例13】表3に示した廃蛍光灯100重量部に対
して、“A”を20重量部、硫酸第一鉄を5重量部、硫
化ナトリウムを1重量部および水を適量加えて混練し、
以下比較例1と同様に試験を行った。その結果(表
3)、T−Hgの溶出量は検出限界以下となった。
Embodiment 13 To 100 parts by weight of the waste fluorescent lamp shown in Table 3, 20 parts by weight of "A", 5 parts by weight of ferrous sulfate, 1 part by weight of sodium sulfide and an appropriate amount of water were added and kneaded. And
The test was performed in the same manner as in Comparative Example 1. As a result (Table 3), the elution amount of T-Hg was below the detection limit.

【0055】[0055]

【比較例20】表3に示した廃蛍光灯100重量部に対
して、“C”を20重量部、硫酸第一鉄を5重量部、硫
化ナトリウムを1重量部および水を適量加えて混練し、
以下比較例1と同様に試験を行った。その結果(表
3)、硫酸第一鉄と硫化ナトリウムを併用することで埋
立基準以下の溶出量となった。
Comparative Example 20 To 100 parts by weight of the waste fluorescent lamp shown in Table 3, 20 parts by weight of "C", 5 parts by weight of ferrous sulfate, 1 part by weight of sodium sulfide and an appropriate amount of water were added and kneaded. And
The test was performed in the same manner as in Comparative Example 1. As a result (Table 3), the combined use of ferrous sulfate and sodium sulfide resulted in an elution amount below the landfill standard.

【0056】[0056]

【表3】 [Table 3]

【0057】[0057]

【比較例21】表4に記載したPb溶出量およびPb含
有量を示す汚泥100重量部に対して、“A”を50,
100重量部および水を適量加えて混練した後5日間室
温で養生し、以下比較例1と同様に試験を行った。その
結果(表4)、Pbの溶出量を低減させることが出来た
が、埋立基準を満足させるには“A”を多量に添加しな
ければならなかった。
Comparative Example 21 "A" was 50 and 100 parts by weight of the sludge showing the Pb elution amount and Pb content shown in Table 4.
After 100 parts by weight and an appropriate amount of water were added and kneaded, the mixture was cured at room temperature for 5 days, and the same test as in Comparative Example 1 was conducted. As a result (Table 4), the amount of Pb eluted could be reduced, but a large amount of "A" had to be added to satisfy the landfill standard.

【0058】[0058]

【比較例22】表4に示した汚泥100重量部に対し
て、“C”を50,100重量部および水を適量加えて
混練した後5日間室温で養生し、以下比較例1と同様に
試験を行った。その結果(表4)、“C”の添加量が増
加するに従って、Pbの溶出量も増加してしまった。こ
れは、“C”に含まれる遊離した水酸化カルシウムと汚
泥中のPbが反応して易溶解性化合物を形成したためと
考えられる。
Comparative Example 22 To 100 parts by weight of the sludge shown in Table 4, 50 and 100 parts by weight of "C" and an appropriate amount of water were added and kneaded, followed by curing at room temperature for 5 days. The test was performed. As a result (Table 4), the amount of Pb eluted increased as the amount of “C” added increased. This is presumably because free calcium hydroxide contained in "C" and Pb in the sludge reacted to form a readily soluble compound.

【0059】[0059]

【実施例14】表4に示した汚泥100重量部に対し
て、“A”を50重量部、塩化第二鉄(FeCl)5
重量および部水を適量加えて混練した後5日間室温で養
生し、以下比較例1と同様に試験を行った。その結果
(表4)、“A”を100重量部で固定化を行った場合
よりも高い溶出防止効果が得られ、Pbの溶出量は埋立
基準以下となった。
EXAMPLE 14 50 parts by weight of "A" and 5 parts of ferric chloride (FeCl 3 ) were added to 100 parts by weight of sludge shown in Table 4.
After adding an appropriate amount of water and a suitable amount of water and kneading, the mixture was cured at room temperature for 5 days, and the same test as in Comparative Example 1 was performed. As a result (Table 4), a higher elution prevention effect was obtained than when "A" was immobilized at 100 parts by weight, and the elution amount of Pb was below the landfill standard.

【0060】[0060]

【比較例23】表4に示した汚泥100重量部に対し
て、“C”を50重量部、塩化第二鉄5重量および部水
を適量加えて混練した後5日間室温で養生し、以下比較
例1と同様に試験を行った。その結果(表4)、“C”
に塩化第二鉄を添加してもPbの溶出量は殆ど変わら
ず、僅かに溶出を防止するにとどまった。
Comparative Example 23 To 100 parts by weight of the sludge shown in Table 4, 50 parts by weight of "C", 5 parts by weight of ferric chloride and an appropriate amount of water were added and kneaded, and the mixture was cured at room temperature for 5 days. The test was performed in the same manner as in Comparative Example 1. As a result (Table 4), "C"
When ferric chloride was added, the elution amount of Pb hardly changed, and the elution was only slightly prevented.

【0061】[0061]

【表4】 [Table 4]

【0062】[0062]

【発明の効果】本発明品を有害物質を含む廃棄物や廃水
に添加することによって、従来行われているセメントや
アスファルトによる固定化処理よりも著しく有害物質の
溶出を低下させることができ、工業的意義は大きい。
Industrial Applicability By adding the product of the present invention to waste or wastewater containing harmful substances, the elution of harmful substances can be significantly reduced as compared with the conventional fixation treatment using cement or asphalt. The significance is significant.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // A62D 3/00 B09B 3/00 304J (72)発明者 亀井 司 神奈川県平塚市大神2120−4 (72)発明者 浦野 輝男 栃木県佐野市石塚町775−3 (72)発明者 森 宏介 栃木県佐野市出流原町968パピヨン佐野C 207 Fターム(参考) 2E191 BA02 BB01 BD01 4D004 AA18 AA22 AA36 AA37 AA41 CA15 CA34 CA45 CC03 CC06 CC11 CC15 DA03 DA10 4D059 AA11 BG00 BJ00 DA01 DA02 DA03 DA15 DA23 DA24 DA31 DA34 DA70 DB21 DB40 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // A62D 3/00 B09B 3/00 304J (72) Inventor Tsukasa Kamei 2120-4 Ogami, Hiratsuka-shi, Kanagawa 72) Inventor Teruo Urano 775-3 Ishizuka-cho, Sano City, Tochigi Prefecture (72) Inventor Kosuke Mori, 968 Papillon Sano C207 Furuhara-cho, Sano City, Tochigi Prefecture F-term (reference) 2E191 BA02 BB01 BD01 4D004 AA18 AA22 AA36 AA37 AA41 CA15 CA34 CA45 CC03 CC06 CC11 CC15 DA03 DA10 4D059 AA11 BG00 BJ00 DA01 DA02 DA03 DA15 DA23 DA24 DA31 DA34 DA70 DB21 DB40

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 カルシウムサルホアルミネート水和物の
加熱処理により得られる再水和性を有する物質と、鉄の
無機酸塩、アルカリ金属又はアルカリ土類金属の硫化物
又は水硫化物、チオ尿素のうちの一種以上との混合物で
あることを特徴とする有害物質固定化材。
1. A rehydratable substance obtained by heat treatment of calcium sulfoaluminate hydrate, an inorganic acid salt of iron, a sulfide or hydrosulfide of an alkali metal or an alkaline earth metal, and thiourea. A material for immobilizing harmful substances, which is a mixture with at least one of the following.
JP24800899A 1999-09-01 1999-09-01 Hazardous substance fixing material Pending JP2001070926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24800899A JP2001070926A (en) 1999-09-01 1999-09-01 Hazardous substance fixing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24800899A JP2001070926A (en) 1999-09-01 1999-09-01 Hazardous substance fixing material

Publications (1)

Publication Number Publication Date
JP2001070926A true JP2001070926A (en) 2001-03-21

Family

ID=17171832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24800899A Pending JP2001070926A (en) 1999-09-01 1999-09-01 Hazardous substance fixing material

Country Status (1)

Country Link
JP (1) JP2001070926A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273994A (en) * 2006-10-18 2008-11-13 Murakashi Sekkai Kogyo Kk Composition for insolubilizing harmful substance
EP3228610A1 (en) * 2016-04-07 2017-10-11 Seche Eco Industries Method for treating elemental mercury contained in waste by immobilisation
CN111085162A (en) * 2019-12-31 2020-05-01 安徽海螺新材料科技有限公司 Superfine arsenic removal adsorbent, preparation method thereof and arsenic removal method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273994A (en) * 2006-10-18 2008-11-13 Murakashi Sekkai Kogyo Kk Composition for insolubilizing harmful substance
EP3228610A1 (en) * 2016-04-07 2017-10-11 Seche Eco Industries Method for treating elemental mercury contained in waste by immobilisation
CN111085162A (en) * 2019-12-31 2020-05-01 安徽海螺新材料科技有限公司 Superfine arsenic removal adsorbent, preparation method thereof and arsenic removal method
CN111085162B (en) * 2019-12-31 2023-01-24 安徽海螺材料科技股份有限公司 Superfine arsenic removal adsorbent, preparation method thereof and arsenic removal method

Similar Documents

Publication Publication Date Title
Donatello et al. An assessment of Mercury immobilisation in alkali activated fly ash (AAFA) cements
JP2003225640A (en) Solidifying and insolubilizing agent for contaminated soil
JP5205844B2 (en) Method for producing granular material using coal ash containing harmful chemical substances, and granular material and resource material obtained by the method
JP2011136311A (en) Development of adsorbent-insolubilizer for arsenic and heavy metals using natural zeolite as main raw material, and contaminated-soil reforming method
JP6267922B2 (en) Hazardous substance treatment chemical
Zhan et al. Co-stabilization/solidification of heavy metals in municipal solid waste incineration fly ash and electrolytic manganese residue based on self-bonding characteristics
JP3969617B2 (en) Hazardous substance immobilization material
JP2005232341A (en) Treatment agent of hexavalent chromium-containing soil
JP4014518B2 (en) Soil improvement material
JP3919577B2 (en) Hazardous heavy metal reducing material and method for reducing harmful heavy metal using the same
JP2001070926A (en) Hazardous substance fixing material
JP2006015290A (en) Fixing method for heavy metal in fly ash using no mixing nor kneading apparatus
JP3897727B2 (en) Hazardous material collector
JPH11244815A (en) Contaminated metal fixing and stabilizing agent and its treatment
JP3818446B2 (en) Heavy metal fixing agent
Shi Hydraulic cement systems for stabilization/solidification
JP3867002B2 (en) Detoxification method for contaminated soil
JP2004051410A (en) Solidifier and process for cleaning contaminated soil using this
Shin et al. Cement based stabilization/solidification of organic contaminated hazardous wastes using Na‐bentonite and silica‐fume
JPH08192128A (en) Chemical agent for treating harmful waste and treatment method using the same
JP3804950B2 (en) Hazardous heavy metal collector
JP4036723B2 (en) Hazardous heavy metal reducing material
JP3841738B2 (en) Hazardous heavy metal reducing material
JPH09309749A (en) Incinerator ash solidifier and solidified composition
Wang et al. Green and Sustainable Stabilization/Solidification

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040414

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040806

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040806

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216