JP2001070743A - Gas separation apparatus - Google Patents

Gas separation apparatus

Info

Publication number
JP2001070743A
JP2001070743A JP24788599A JP24788599A JP2001070743A JP 2001070743 A JP2001070743 A JP 2001070743A JP 24788599 A JP24788599 A JP 24788599A JP 24788599 A JP24788599 A JP 24788599A JP 2001070743 A JP2001070743 A JP 2001070743A
Authority
JP
Japan
Prior art keywords
gas
electrode
separation
tapered opening
ionized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24788599A
Other languages
Japanese (ja)
Other versions
JP3679280B2 (en
Inventor
Takao Ito
隆夫 伊藤
Jun Emi
準 江見
Yoshio Otani
吉生 大谷
Norikazu Namiki
則和 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Dan Co Ltd
Original Assignee
Dai Dan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Dan Co Ltd filed Critical Dai Dan Co Ltd
Priority to JP24788599A priority Critical patent/JP3679280B2/en
Publication of JP2001070743A publication Critical patent/JP2001070743A/en
Application granted granted Critical
Publication of JP3679280B2 publication Critical patent/JP3679280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To separate gas molecule components contained in air current, take out purified air and separated gases and improve an effect of saving energy by ionizing the air current, applying an electric field to the ionized gases by electrodes, and separating cations and anions from each other. SOLUTION: Air containing impurity gas molecule components is introduced into a cylindtical chamber 11 through a gas inlet member 16 and the gases are ionized by α ray from a radiation source 17. At that time, the respective gas outlet flow rates of a plurality of gas outlet members 14, 15 are properly adjusted by respective valves. Voltage is applied to a plurality of parallel flat electrodes 12, 13 from a d.c. power source to generate parallel electric fields in the cylindrical chamber 11. Consequently, electrostatic force of the electric fields is utilized to ionize the gas components and separate cations with the cathode 13 and anions with the anode 12. On the other hand, neutral gas components which are not ionized are taken out while being distributed to a plurality of the gas outlet members 14, 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、人に不快感をあた
えるにおいやたばこのガス、さらには化学物質過敏症を
引き起こすとされるホルムアルデヒドや揮発性有機化合
物を空気中から取り除くことが望まれている施設や空間
において利用される空気清浄装置、または、燃焼時に発
生するNOx,SOx,COxなどの排ガスや化学プロ
セスなどで発生する排気ガスの中から有害物質のみ取り
除く必要がある時に利用される排ガス処理装置、また
は、複数の成分が混在するガスから単一のガス成分を取
り出す場合に利用されるガス抽出装置、または、高純度
ガスが必要な設備・装置のガス流路内の不純物成分を取
り除く場合に利用される高純度ガス生成装置等に適用す
るガス分離装置に関する。
FIELD OF THE INVENTION The present invention is directed to removing odors and tobacco gases which cause discomfort to humans, as well as formaldehyde and volatile organic compounds which are supposed to cause chemical sensitivity. Air purification equipment used in existing facilities and spaces, or exhaust gas used when it is necessary to remove only harmful substances from exhaust gas such as NOx, SOx, COx generated during combustion or exhaust gas generated in chemical processes Removal of impurity components in the gas flow path of processing equipment or gas extraction equipment used when extracting a single gas component from a gas in which a plurality of components are mixed, or equipment or equipment that requires high-purity gas The present invention relates to a gas separation device applied to a high-purity gas generation device used in such a case.

【0002】[0002]

【従来の技術】工業や産業、自動車等の各種機械からの
排ガス(窒素酸化物、硫黄酸化物)は排出が規制されて
いるため、排ガスの処理技術が数多く開発・提案されて
いる。また医療空間や居住空間でもたばこのガスやシッ
クビル症候群を引き起こす有機化合物など、人体に悪影
響を及ぼすガスの捕集・除去の要求が高まっている。
2. Description of the Related Art Exhaust gas (nitrogen oxides, sulfur oxides) from various machines such as industry, industry, and automobiles is regulated in emission, and a number of exhaust gas treatment technologies have been developed and proposed. In medical and living spaces, there is an increasing demand for collecting and removing gases that have an adverse effect on the human body, such as tobacco gas and organic compounds that cause sick building syndrome.

【0003】しかし現状の排ガスの処理技術では、大量
のガスを処理する場合に装置が巨大化するとともに処理
費用が莫大なものになるという問題がある。たばこ等の
ガスや有機ガス、アンモニアなどのガス処理には活性炭
やイオン交換繊維などの除去材が使用されるが、性能が
不十分であるとともに、大量の空気を処理すると吸着し
た後の吸着剤が大量に廃棄物として残る。光触媒などの
分解材でも大量の空気処理には多くの触媒と光源が必要
である。また光電子によるガスの粒子化を利用した方法
はガスのすべてが粒子にならないため、どうしても処理
効率が悪くなるとともに、ガスを粒子に成長させるのに
時間がかかる。
[0003] However, the current exhaust gas processing technology has a problem that when processing a large amount of gas, the apparatus becomes large and the processing cost becomes enormous. Removers such as activated carbon and ion exchange fibers are used to treat gases such as tobacco and organic gases, and ammonia. However, their performance is insufficient. Remains in large quantities as waste. Decomposing materials such as photocatalysts require a large number of catalysts and light sources to process a large amount of air. Further, in the method utilizing the gasification of gas by photoelectrons, not all of the gas is converted into particles, so that the processing efficiency is inevitably reduced and it takes time to grow the gas into particles.

【0004】また微粒子を取り除く方法として電気集塵
機があるが、帯電微粒子は除去できるものの、イオンの
場合には電極に吸着した後に生ずる電荷交換により中性
のガス成分にもどり再飛散してしまう問題がある。また
イオンの分離方法として大気圧下での質量分析法がある
が、全体のガスの一部をイオン化し移動度から検出器に
よりスペクトルを得るのみで分離した成分を取り出すこ
とはできない。放電によりガスを分解する装置では、分
子間力以上の大きなエネルギーが必要となるためかなり
の消費電力を必要とする。X線を利用した方法(特開平
10−337495号)はX線で生成したイオンを微粒
子に付着させて帯電粒子とし、その帯電粒子を電界で捕
集するため、ガス分子をイオンにしたものは電極で中和
されて再飛散してしまう。また放電と電界を利用した方
法(特開平5−96124号)は、放電部の直後に分離
部で電界をかけて分離するため、放電部から分離部に至
る経路でのイオンの損失がある。
There is an electric precipitator as a method for removing fine particles. However, although charged fine particles can be removed, in the case of ions, there is a problem that the ions are returned to a neutral gas component by charge exchange generated after being adsorbed on an electrode and re-scattered. is there. As a method for separating ions, there is a mass spectrometry method under the atmospheric pressure. However, a part of the whole gas is ionized and a spectrum is obtained only from a mobility and a detector is obtained. A device that decomposes a gas by electric discharge requires a large amount of energy greater than the intermolecular force, and thus requires a considerable amount of power consumption. In a method using X-rays (Japanese Patent Laid-Open No. Hei 10-337495), ions generated by X-rays are attached to fine particles to form charged particles, and the charged particles are collected by an electric field. Neutralized by the electrode and scattered again. In the method using discharge and an electric field (Japanese Patent Laid-Open No. 5-96124), since an electric field is applied to the separation unit immediately after the discharge unit to separate, there is a loss of ions in a path from the discharge unit to the separation unit.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の事情に
鑑みてなされたもので、廃棄物を減らすために分離吸着
や化学吸着を利用することなく分離により空気の清浄化
を行う場合や、大量の空気を処理するために空気中の不
純物分子成分を選択して取り出し、取り出した少量の不
純物成分のみを除去装置に送るような前処理装置が必要
な場合、不純物ガス分子成分を分離して一方から必要な
ガス分子成分のみを取り出す場合などに、放射線、コロ
ナ放電等によりガス分子成分をイオン化し、イオン−分
子反応によりさらに2次的にイオンを発生し、直流の電
圧をかけた電極で発生した電界によりイオン化と同時に
イオンを分離し、空気中に含まれる不純物分子を取り除
くことにより、ガスの分解を伴わない低エネルギーのイ
オン化源による省エネルギー効率の高いガス分離装置を
提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and has been made in the case of purifying air by separation without using separation adsorption or chemical adsorption in order to reduce waste, In order to process a large amount of air, select and remove the impurity molecular components in the air, and if a pretreatment device that sends only the extracted small amount of impurity components to the removal device is necessary, separate the impurity gas molecular components. In the case of extracting only the necessary gas molecule components from one side, the gas molecule components are ionized by radiation, corona discharge, etc., and ions are generated secondarily by an ion-molecule reaction. The generated electric field separates ions at the same time as ionization and removes impurity molecules contained in the air, thereby saving energy with a low-energy ionization source that does not involve gas decomposition. And an object thereof is to provide a energy efficient gas separation apparatus.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明のガス分離装置は、空気流をイオン化し、電極
により電離状態の気体に電界をかけ、陽イオンと陰イオ
ンに分離することで、空気流に含まれるガス分子成分を
分離し、清浄な空気および/または分離されたガスを取
り出すことを特徴とするものである。
According to the present invention, there is provided a gas separation apparatus for ionizing an air flow, applying an electric field to an ionized gas by an electrode, and separating the gas into cations and anions. And separating gas molecule components contained in the air stream to take out clean air and / or separated gas.

【0007】また本発明は、上記ガス分離装置におい
て、イオン化するための手段として、放射性同位体、X
線、光線、放電を起こす装置の中の一つまたは複数の装
置を組み合わせて利用することを特徴とするものであ
る。
Further, according to the present invention, in the above gas separation apparatus, as a means for ionizing, a radioisotope, X
It is characterized in that one or a plurality of devices among the devices that generate a line, a light beam, and a discharge are used in combination.

【0008】また本発明は、上記ガス分離装置におい
て、イオン化するための手段として、針状の電極および
テーパ状開口を有するテーパ状開口型電極を設け、針電
極をテーパ状開口型電極の間に設けるとともにテーパ状
開口部の下流側に分離板を設け、針電極とテーパ状開口
型電極で放電を発生させてテーパ状開口部内部を流れる
空気流をイオン化し、テーパ状開口部先端からイオンを
吹き出すことを特徴とするものである。
Further, according to the present invention, in the above-mentioned gas separation apparatus, a needle-shaped electrode and a tapered opening-type electrode having a tapered opening are provided as means for ionization, and the needle electrode is placed between the tapered opening-type electrodes. A separator is provided on the downstream side of the tapered opening, and a discharge is generated by the needle electrode and the tapered opening electrode to ionize the air flow flowing inside the tapered opening, and ions are emitted from the tip of the tapered opening. It is characterized by blowing out.

【0009】また本発明は、上記ガス分離装置におい
て、分離板はテーパ状開口型電極と同一極性を有する電
極であって、針電極とテーパ状開口型電極及び分離板で
放電を発生させてテーパ状開口部内部を流れる空気流を
イオン化することを特徴とするものである。
According to the present invention, in the above gas separation apparatus, the separation plate is an electrode having the same polarity as the tapered opening type electrode, and the discharge is generated by the needle electrode, the tapered opening type electrode and the separation plate. It is characterized in that the air flow flowing inside the opening is ionized.

【0010】また本発明は、上記ガス分離装置におい
て、分離部に平行平板電極を用いたことを特徴とするも
のである。
Further, the present invention is characterized in that in the above-mentioned gas separation device, a parallel plate electrode is used for the separation part.

【0011】また本発明は、上記ガス分離装置におい
て、平行平板電極に清浄な空気または分離されたガスを
取り出すガス出口を設けることを特徴とするものであ
る。
Further, the present invention is characterized in that, in the above-mentioned gas separation device, a gas outlet for taking out clean air or separated gas is provided in the parallel plate electrode.

【0012】また本発明は、上記ガス分離装置におい
て、分離板が分離部の電極間に設けられることを特徴と
するものである。
Further, the present invention is characterized in that in the above gas separation device, a separation plate is provided between the electrodes of the separation portion.

【0013】また本発明は、上記ガス分離装置におい
て、分離板を複数設置しガス固有の電気移動度を利用し
て単一の成分を取り出すことを特徴とするものである。
Further, the present invention is characterized in that, in the above-mentioned gas separation apparatus, a plurality of separation plates are provided, and a single component is taken out by utilizing the electric mobility inherent in the gas.

【0014】また本発明は、上記ガス分離装置におい
て、清浄な空気および/または分離されたガスを取り出
す出口の出口流量を制御することを特徴とするものであ
る。
Further, the present invention is characterized in that, in the above-mentioned gas separation device, an outlet flow rate of an outlet for extracting clean air and / or separated gas is controlled.

【0015】また本発明は、上記ガス分離装置におい
て、電離状態の気体に電界をかける電極の極性を切り替
える手段および/または電極の電解強度を変化させる手
段を有することを特徴とするものである。
Further, the present invention is characterized in that in the above-mentioned gas separation apparatus, there is provided a means for switching the polarity of an electrode for applying an electric field to the ionized gas and / or a means for changing the electrolytic strength of the electrode.

【0016】また本発明のガス分離装置は、上記いずれ
かのガス分離装置を並列や直列、または直並列に多数配
置することを特徴とするものである。
The gas separation device of the present invention is characterized in that any one of the above gas separation devices is arranged in parallel, in series, or in series and parallel.

【0017】すなわち、不純物成分を含む空気流中にお
いて、ガスを放射線や光、放電等でイオン化し、電離領
域を直流の電圧をかけた電極間ではさむことで、電界に
よる静電気力でイオン化すると同時に分離することを特
徴とする。その分離したガスをそれぞの電極側に設けた
出口からとりだすことで、一方の電極からは入口よりも
清浄な空気が取り出すことができる。その時もう一方の
出口からは不純物分子成分を濃縮した空気が出てくる。
分離部に分離板を設ければ、電界で移動中のイオン化し
たガス分子が途中で中和して反対側に戻ってくることを
防ぐことができる。イオンの電気移動度は物質により異
なるため、単位時間あたりに移動する距離は成分ごとで
違う。そのため分離板を複数設置すれば単一の成分のみ
を取り出すことができる。分子を分解するほどのエネル
ギーは必要なく、分子から電子を一つ取り除くだけの小
さなエネルギーで済み、粒子化(クラスター化)のよう
な大イオンではなく、一次や二次の小イオンで分離する
ため効率がよい。またこの装置を多数設置すれば処理能
力の高いガス分離装置となる。ガスの分解を伴わない低
エネルギーの直流や交流のコロナ放電を利用すれば消費
電力の少ない分離が可能である。パルス放電を利用した
装置では、立ち上がりが1μs以下の高速高周波数の高
電圧パルスを利用すると、電子のみが強い放電電界の影
響を受けイオンが加速する前に放電の電界がなくなるた
め、効率よくイオンが生成できると共に、放電による電
場が分離電界に与える影響がなくなるため、イオンが効
率よく分離できる。またイオン化と分離を同時に行うた
めイオンの搬送に伴う損失をなくした効率のよいガス分
離装置ができる。
That is, in an air stream containing an impurity component, a gas is ionized by radiation, light, discharge, or the like, and the ionization region is sandwiched between electrodes to which a DC voltage is applied, thereby ionizing by an electrostatic force due to an electric field and simultaneously. It is characterized by being separated. By taking out the separated gas from outlets provided on the respective electrode sides, cleaner air can be taken out from one electrode than the inlet. At that time, air enriched with impurity molecular components comes out from the other outlet.
By providing a separation plate in the separation part, it is possible to prevent ionized gas molecules moving in the electric field from being neutralized in the middle and returning to the opposite side. Since the electrical mobility of ions varies depending on the substance, the distance traveled per unit time varies depending on the component. Therefore, if a plurality of separation plates are provided, only a single component can be taken out. It does not need enough energy to decompose a molecule, only a small energy to remove one electron from the molecule, and separates it into primary and secondary small ions instead of large ions such as particles (clustering). Efficient. If a large number of these devices are installed, a gas separation device having a high processing capacity can be obtained. If low-energy DC or AC corona discharge without gas decomposition is used, separation with low power consumption is possible. In a device using pulse discharge, when a high-voltage pulse with a high speed and a high frequency of 1 μs or less is used, only electrons are affected by a strong discharge electric field, and the electric field of the discharge disappears before the ions are accelerated. Can be generated and the effect of the electric field due to the discharge on the separation electric field is eliminated, so that the ions can be efficiently separated. In addition, since ionization and separation are performed simultaneously, an efficient gas separation device that eliminates the loss associated with ion transport can be provided.

【0018】イオン化する分子量にはばらつきがあるた
め、低流量下ではイオン風により出口流量が安定しない
が、センサ付属の自動制御バルブを設けることにより低
流量でも出口流量を安定させることができる。また自動
制御バルブは出口流量比を簡単に任意設定できるように
してもよい。
Since the molecular weight to be ionized varies, the outlet flow rate is not stabilized at a low flow rate due to ion wind, but the outlet flow rate can be stabilized at a low flow rate by providing an automatic control valve attached to the sensor. Further, the automatic control valve may be configured so that the outlet flow ratio can be easily set arbitrarily.

【0019】[0019]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態例を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings.

【0020】図1は本発明のイオン化部に放射線を利用
した実施形態例である。石英ガラスよりなる内径40m
mの円筒型チャンバー11は軸方向をほぼ水平にして設
置され、前記円筒型チャンバー11の左右の両端開口部
にはそれぞれ対応して金属製の平板電極12,13が開
口部を塞ぐように距離50mm離してほぼ平行に設置さ
れる。前記各平板電極12,13のそれぞれ中央部には
内径6mmの円筒型ガス出口部材14,15が円筒型チ
ャンバー11の内部を外部に開口して設けられ、前記円
筒型チャンバー11の周面中央上部には内径6mmの円
筒型ガス入口部材16が円筒型チャンバー11の内部を
外部に開口して設けられる。前記円筒型チャンバー11
の周面中央下部の内部には例えば放射性同位体241
mなどの放射線源17が前記ガス入口部材16に対向し
て設置される。前記平板電極12,13には直流電源1
8が電極12を陽極、電極13を陰極にして接続され
る。前記円筒型ガス出口部材14,15および円筒型ガ
ス入口部材16にはそれぞれガス流量調整用のバルブが
設けられる。
FIG. 1 shows an embodiment of the present invention in which radiation is used in the ionization section. 40m inner diameter made of quartz glass
The cylindrical chamber 11 of m is installed with the axial direction being substantially horizontal, and the left and right openings at the left and right ends of the cylindrical chamber 11 correspond to the metal plate electrodes 12 and 13 respectively so as to close the openings. They are installed approximately parallel at a distance of 50 mm. Cylindrical gas outlet members 14 and 15 having an inner diameter of 6 mm are provided at the center of each of the plate electrodes 12 and 13 so as to open the inside of the cylindrical chamber 11 to the outside. A cylindrical gas inlet member 16 having an inner diameter of 6 mm is provided to open the inside of the cylindrical chamber 11 to the outside. The cylindrical chamber 11
For example, the radioactive isotope 241 A
A radiation source 17 such as m is installed facing the gas inlet member 16. DC power source 1 is applied to the plate electrodes 12 and 13.
8 is connected using the electrode 12 as an anode and the electrode 13 as a cathode. Each of the cylindrical gas outlet members 14, 15 and the cylindrical gas inlet member 16 is provided with a valve for adjusting a gas flow rate.

【0021】すなわち、不純物ガス分子成分を含む空気
を入口部材16から円筒型チャンバー11内に導入し、
放射線源17である放射性同位体241Amのα線でガ
スをイオン化する。各ガス出口部材14,15のそれぞ
れ出口流量はバルブによりあらかじめ同量が流れるよう
に調整しているが、ガスに含まれる成分によりガス出口
部材14,15それぞれの出口流量比を調整したほうが
よい。平行平板電極12,13には直流電源18から電
圧がかけられ円筒型チャンバー11内にほぼ平行な電界
を形成し、この電界の静電気力により、ガス成分がイオ
ン化すると同時に、イオンは陽イオンが陰電極13に陰
イオンが陽電極12に分離することができる。その時イ
オン化していない中性のガス成分は、ガス出口部材1
4,15の流量が同量に調整してあるため、移動したイ
オンの量と出口流量を調整するように二つのガス出口部
材14,15に分けられ取り出される。VOCなどの有
機系のガスは陽イオンになりやすく、またイオン化ポテ
ンシャルが通常の空気分子である窒素や酸素よりもかな
り低いため優先的にイオン化し分離することができる。
NOxやSOxなどは陰イオンとして有機系のガスとは
逆のガス出口から取り出すことができる。平行平板電極
12,13にかかる電圧をかえれば分離効率を変化させ
ることができる。
That is, air containing an impurity gas molecular component is introduced into the cylindrical chamber 11 from the inlet member 16,
The gas is ionized with α rays of the radioisotope 241 Am, which is the radiation source 17. The outlet flow rate of each of the gas outlet members 14 and 15 is adjusted by a valve so that the same amount flows in advance, but it is better to adjust the outlet flow ratio of each of the gas outlet members 14 and 15 by the components contained in the gas. A voltage is applied to the parallel plate electrodes 12 and 13 from a DC power supply 18 to form a substantially parallel electric field in the cylindrical chamber 11. The electrostatic force of the electric field ionizes the gas components and simultaneously converts the cations into negative ions. Anions at the electrode 13 can be separated at the positive electrode 12. The neutral gas component which has not been ionized at that time is supplied to the gas outlet member 1.
Since the flow rates of the ions 4 and 15 are adjusted to the same amount, they are separated and taken out by the two gas outlet members 14 and 15 so as to adjust the amount of the moved ions and the outlet flow rate. Organic gases such as VOCs tend to become cations, and can be preferentially ionized and separated because their ionization potential is much lower than that of normal air molecules such as nitrogen and oxygen.
NOx, SOx, and the like can be extracted as anions from the gas outlet opposite to the organic gas. By changing the voltage applied to the parallel plate electrodes 12 and 13, the separation efficiency can be changed.

【0022】図2(a),(b)は図1のガス分離装置
で行った実施結果である。図2(a)は入口トルエン濃
度に対する陰電極側の出口濃度の測定結果で、図2
(b)は入口トルエン濃度に対する陽電極側の出口濃度
の測定結果である。窒素ガス内で5ppmのトルエン分
子を分離した時の分離結果である。なお窒素とトルエン
はどちらも陽イオンになりやすいため、陰電極から陽イ
オンが取り出され、陽電極からは若干の陰イオンと中性
分子が取り出される。ここでトルエンのイオン化ポテン
シャルは窒素の約半分程度であるため、トルエンのほう
がイオンになりやすい。図の縦軸は入口流量を変化させ
たときの各電圧での分離効果を入口濃度に対する出口濃
度比で表した。横軸は入口流量である。測定はガスクロ
マトグラフィーで実施した。流量を少なくすることでイ
オン化する分子が増えるため分離効率があがる。この結
果から陽イオンが大半をしめる流体下においてイオン化
ポテンシャルの低い成分を取り出すことができることが
わかる。また無極性の芳香族炭化水素など分解しにくい
ガス分子でも、イオン化するだけで分離除去できること
がわかる。
FIGS. 2 (a) and 2 (b) show the results obtained by the gas separation apparatus shown in FIG. FIG. 2A shows the measurement results of the concentration of the exit at the cathode side with respect to the concentration of the toluene at the entrance.
(B) is the measurement result of the outlet concentration on the positive electrode side with respect to the inlet toluene concentration. It is a separation result when 5 ppm of toluene molecules are separated in nitrogen gas. Since both nitrogen and toluene are likely to become cations, cations are extracted from the negative electrode, and some anions and neutral molecules are extracted from the positive electrode. Here, since the ionization potential of toluene is about half that of nitrogen, toluene is more likely to become an ion. The vertical axis of the figure represents the separation effect at each voltage when the inlet flow rate was changed, as a ratio of outlet concentration to inlet concentration. The horizontal axis is the inlet flow rate. The measurement was performed by gas chromatography. Decreasing the flow rate increases the number of molecules to be ionized, thereby increasing the separation efficiency. From this result, it can be seen that a component having a low ionization potential can be extracted under a fluid in which most cations are contained. Further, it can be seen that even gas molecules that are difficult to decompose, such as nonpolar aromatic hydrocarbons, can be separated and removed only by ionization.

【0023】図3は本発明のイオン化部に紫外線または
X線を用いた実施形態例である。真鍮製の中空箱型チャ
ンバー31の両側部にはそれぞれ対応してバルブ付出口
部材32,33が設けられ、前記中空箱型チャンバー3
1の上部にはバルブ付入口部材34が設けられる。前記
中空箱型チャンバー31の正面側には例えばキセノンラ
ンプ等の紫外線光源またはX線源35が紫外線またはX
線を中空箱型チャンバー31内部に照射するようにして
設けられる。前記紫外線光源またはX線源35から紫外
線またはX線を中空箱型チャンバー31内部に照射する
ことにより、入口部材34から中空箱型チャンバー31
内部に入ったガスをイオン化して出口部材32,33か
ら外部に取り出す。尚、中空箱型チャンバー31の内部
に紫外線光源またはX線源を設置してもよい。
FIG. 3 shows an embodiment of the present invention in which ultraviolet rays or X-rays are used in the ionization section. On both sides of the hollow box-shaped chamber 31 made of brass, outlet members 32 and 33 with valves are respectively provided correspondingly, and the hollow box-shaped chamber 3 is provided.
An inlet member 34 with a valve is provided on the upper part of the first member 1. An ultraviolet light source such as a xenon lamp or an X-ray source 35
The wire is provided so as to irradiate the inside of the hollow box-shaped chamber 31. By irradiating the inside of the hollow box-shaped chamber 31 with ultraviolet rays or X-rays from the ultraviolet light source or the X-ray source 35, the hollow box-shaped chamber 31
The gas that has entered inside is ionized and taken out through the outlet members 32 and 33. Incidentally, an ultraviolet light source or an X-ray source may be installed inside the hollow box type chamber 31.

【0024】図4は本発明の複数のイオン化方法を併用
した場合の実施形態例である。図3と同様な構成のガス
分離装置において、中空箱型チャンバー31の内部に例
えば放射性同位体241Am等の放射線源41を設置
し、中空箱型チャンバー31の側部からX線または紫外
線を照射し、放射線とX線または紫外線の両方でガスを
イオン化する。単位時間あたりのイオン発生量が増加す
るため、ガス分離装置内の流量を増加させることができ
る。
FIG. 4 shows an embodiment in which a plurality of ionization methods of the present invention are used in combination. 3, a radiation source 41 such as a radioisotope 241 Am is installed inside a hollow box-shaped chamber 31, and X-rays or ultraviolet rays are irradiated from the side of the hollow box-shaped chamber 31. Then, the gas is ionized by both radiation and X-rays or ultraviolet rays. Since the amount of ions generated per unit time increases, the flow rate in the gas separation device can be increased.

【0025】図5は図1のガス分離装置を多数利用した
実施形態例である。1段目の3個のガス分離装置51,
52,53のそれぞれ一方の出口を2段目の3個のガス
分離装置54,55,56の入口にそれぞれ対応して接
続し、前記ガス分離装置51,52,53の入口を共通
に接続する。前記ガス分離装置54,55,56の一方
の出口を共通にしてコントロールバルブ57に接続し、
前記ガス分離装置51,52,53の他方の出口および
前記ガス分離装置54,55,56の他方の出口をコン
トロールバルブ58に接続する。前記コントロールバル
ブ57,58は設定器59に接続される。このように、
ガス分離装置を多段設けることで分離能力の向上をはか
り、より清浄な空気をとりだすことができる。さらにこ
れを並列に配置することで処理流量を増やすことができ
る。
FIG. 5 shows an embodiment in which a number of the gas separation devices shown in FIG. 1 are used. First three gas separation devices 51,
One outlet of each of 52 and 53 is connected to each of the inlets of the three gas separators 54, 55 and 56 in the second stage, and the inlets of the gas separators 51, 52 and 53 are connected in common. . One of the outlets of the gas separators 54, 55, 56 is connected in common to a control valve 57,
The other outlets of the gas separators 51, 52, 53 and the other outlets of the gas separators 54, 55, 56 are connected to a control valve 58. The control valves 57, 58 are connected to a setting device 59. in this way,
By providing the gas separation device in multiple stages, the separation capacity can be improved, and more clean air can be taken out. Further, by disposing them in parallel, the processing flow rate can be increased.

【0026】図6は本発明に係る出口流量を調節するセ
ンサー付き自動制御バルブを分離装置出口に取り付けた
実施形態例で、ガス分離装置の出口部材61には流量セ
ンサー62および流量制御バルブ63がガス流域に沿っ
て設けられ、前記流量センサー62および流量制御バル
ブ63は制御回路64を介して設定器65に接続され
る。前記流量センサー62からの流量出力66が制御回
路64を介して設定器65に送られ、前記設定器65か
ら流量設定信号67が制御回路64を介して流量制御バ
ルブ63に送られる。前記制御回路64および設定器6
5には駆動電源68が供給される。前記設定器65から
の流量設定信号67で左右の出口流量を自動で制御でき
る。また前記流量センサー62で流量を感知し補正する
ためイオン風による流量の乱れを防ぐことができる。
FIG. 6 shows an embodiment in which an automatic control valve with a sensor for adjusting the outlet flow rate according to the present invention is mounted at the outlet of the separator. A flow sensor 62 and a flow control valve 63 are provided at the outlet member 61 of the gas separator. Provided along the gas flow area, the flow sensor 62 and the flow control valve 63 are connected to a setter 65 via a control circuit 64. A flow output 66 from the flow sensor 62 is sent to a setting device 65 via a control circuit 64, and a flow setting signal 67 is sent from the setting device 65 to a flow control valve 63 via a control circuit 64. The control circuit 64 and the setting device 6
5 is supplied with a driving power supply 68. The left and right outlet flow rates can be automatically controlled by the flow rate setting signal 67 from the setting device 65. Further, since the flow rate is detected and corrected by the flow rate sensor 62, it is possible to prevent the flow rate from being disturbed by the ion wind.

【0027】図7は本発明の分離効率をあげるために、
ノズル吹き出し口と分離板を利用し、放電でイオン化す
る実施形態例を示す構成説明斜視図である。図8は同じ
く構成説明断面図である。角筒型チャンバー71のガス
入口付近には対向した2枚の曲がった金属板よりなる放
電電極72,73が下流に行くにしたがって間隔を狭め
るようにテーパ状開口部に構成される。前記放電電極7
2,73はガス流路の幅をなめらかに絞り、ほぼ水平な
スリット状に吹き出すことを可能にした金属製ノズルの
吹出口で構成される。前記放電電極72,73間のほぼ
中央には針状の電極よりなる放電針74が水平に複数個
並べて設置される。放電電極72,73よりなるノズル
をはさむように平行平板の電極75,76を上下に取り
付け、この平行平板電極75,76間の任意の位置に、
非常に薄く先端の尖った金属製の分離板77を、放電電
極72,73よりなるノズルから少し距離をとって設置
する。前記放電電極72,73、放電針74および分離
板77には放電用電源79が接続され、前記平行平板電
極75,76には連動切替スイッチ80を介して分離用
直流電源81が接続される。ガスが分解しないような低
エネルギーの直流パルス電源、交流電源または直流電源
から電圧を針電極74に印加し、針電極74と放電電極
72,73、分離板77でパルス直流放電、交流放電ま
たは直流放電を起こす。電離した気体はビーム状に放電
電極72,73よりなるノズルから吹き出される。イオ
ンビームに電界による静電気力を加えると、電気移動度
の大きいイオンほど電極75,76側に移動し、電気移
動度の小さいイオンは中央に残る。これが陽と陰のイオ
ンで起こるのでイオンビームが放射状に上下に広がるこ
とで、電気移動度の違うガス成分を分離することができ
る。またこのとき分離板77を複数並列に設置すれば、
任意の電気移動度のガスを取り出す事もできる。
FIG. 7 shows a graph for improving the separation efficiency of the present invention.
FIG. 4 is a configuration explanatory perspective view showing an embodiment in which a nozzle outlet and a separation plate are used to ionize by discharge. FIG. 8 is a cross-sectional view for explaining the configuration in the same manner. Disposed near the gas inlet of the rectangular cylindrical chamber 71 are two opposed discharge electrodes 72 and 73 made of a bent metal plate, each having a tapered opening so as to narrow the gap toward the downstream. The discharge electrode 7
Reference numerals 2 and 73 denote metal nozzle outlets that smoothly narrow the width of the gas flow path and allow the gas to be blown out in a substantially horizontal slit shape. At a substantially center between the discharge electrodes 72 and 73, a plurality of discharge needles 74 formed of needle-like electrodes are horizontally arranged. Parallel plate electrodes 75 and 76 are mounted vertically so as to sandwich the nozzle composed of the discharge electrodes 72 and 73, and at any position between the parallel plate electrodes 75 and 76,
A very thin and sharp metal separation plate 77 is set at a distance from the nozzle composed of the discharge electrodes 72 and 73. A discharge power supply 79 is connected to the discharge electrodes 72 and 73, the discharge needle 74 and the separation plate 77, and a separation DC power supply 81 is connected to the parallel plate electrodes 75 and 76 via an interlocking switch 80. A voltage is applied to the needle electrode 74 from a low-energy DC pulse power supply, AC power supply or DC power supply that does not cause decomposition of the gas, and pulse DC discharge, AC discharge or DC discharge is performed by the needle electrode 74, the discharge electrodes 72 and 73, and the separator 77. Causes discharge. The ionized gas is blown out in a beam form from a nozzle composed of the discharge electrodes 72 and 73. When an electrostatic force due to an electric field is applied to the ion beam, ions having higher electric mobility move toward the electrodes 75 and 76, and ions having lower electric mobility remain at the center. Since this occurs with positive and negative ions, the ion beam spreads radially up and down, so that gas components having different electric mobilities can be separated. At this time, if a plurality of separation plates 77 are installed in parallel,
A gas having an arbitrary electric mobility can be taken out.

【0028】さらに連動した4つのスイッチ80で電極
75,76にかかる電圧の設定を自由に正負反転できる
装置を持つため、後から清浄空気を取り出す出口を変え
たい時など配線をつなぎ変えることなく容易に設定を入
れ替えることができる。
Further, since there is a device which can freely reverse the setting of the voltage applied to the electrodes 75 and 76 by the four interlocked switches 80, it is easy to change the outlet for taking out the clean air later without changing the wiring. The settings can be switched.

【0029】尚、前記放電電極72,73と放電針7
4、もしくは放電針74と分離板77で放電を起こすよ
うにしてもよい。
The discharge electrodes 72 and 73 and the discharge needle 7
Alternatively, a discharge may be caused between the discharge needle 74 and the separation plate 77.

【0030】以上のように、本発明のガス分離装置は空
気流中のガス成分を電離し、電界による静電気力を利用
して電離したガス成分を分離することができる。また本
発明のガス分離装置を多数並列および直列に配置するこ
とにより、大量の空気を処理でき、また高純度の空気を
精製できる。さらに、本発明のガス分離装置は分離する
部分に分離板を設けて、分離した後のガスが中和して反
対側に流れないようにすることで、分離能力の向上をは
かった。また分離板を複数もうけることにより単一の成
分を取り出すことができる。また本発明のガス分離装置
はイオン化したガスをノズルから吹き出すことで分離効
率を向上させることができる。
As described above, the gas separation device of the present invention ionizes gas components in an air flow, and can separate the ionized gas components by utilizing electrostatic force generated by an electric field. Further, by arranging a large number of gas separation devices of the present invention in parallel and in series, a large amount of air can be processed and high-purity air can be purified. Further, in the gas separation device of the present invention, a separation plate is provided at a portion to be separated, and the separated gas is neutralized so as not to flow to the opposite side, thereby improving the separation capability. A single component can be taken out by providing a plurality of separation plates. Further, the gas separation device of the present invention can improve the separation efficiency by blowing out the ionized gas from the nozzle.

【0031】尚、上記実施形態例に基づき説明したが、
本発明は上記実施形態例に限定されるものではなく、そ
の要旨を逸脱しない範囲で種々の変形が可能である。例
えば、空気流をイオン化し、電離状態の気体に電界をか
ける電極は、極性を切り換えるようにしてもよく、また
電界強度を変化するようにしてもよい。
Although the description has been given based on the above embodiment,
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the invention. For example, the electrodes that ionize the air flow and apply an electric field to the ionized gas may switch polarity or change the electric field strength.

【0032】[0032]

【発明の効果】以上述べたように本発明によれば、汚染
ガス成分を含む空気などの気体を放射線、紫外線、X
線、放電等の方法やまたはそれらを組み合わせることに
よりイオン化すると同時に発生したイオンを、電極間に
電圧をかけて生じた電界により省エネルギーかつ高効率
で分離することができる。また放電電極となったノズル
によりイオンビームを吹き出し、分離板を分離電極間に
設置することで、分離効率をあげることができる。さら
には分離板を多数設置し、電界下での分子固有の電気移
動度を利用することにより単一の成分のみを選択して効
率良く取り出すことができる。これにより、汚染ガス成
分を含む空気から清浄な空気を取り出して供給すること
が可能となる。また、不純物成分を含むガスから所定の
成分を取り出して抽出または排出することも可能とな
る。さらに、本発明は同じ構成で異なる用途、すなわ
ち、空気清浄装置、排ガス処理装置、ガス抽出装置、高
純度ガス生成装置などとして利用することも可能であ
る。
As described above, according to the present invention, a gas such as air containing a pollutant gas component is irradiated with radiation, ultraviolet rays, X-rays, or the like.
Ions that are simultaneously ionized by a method such as wire or discharge or a combination thereof can be separated with high efficiency and energy saving by an electric field generated by applying a voltage between the electrodes. Separation efficiency can be improved by blowing out an ion beam from a nozzle serving as a discharge electrode and placing a separation plate between the separation electrodes. Furthermore, by installing a large number of separation plates and utilizing the electric mobility inherent in molecules under an electric field, it is possible to select only a single component and extract it efficiently. This makes it possible to extract and supply clean air from the air containing the pollutant gas component. Further, it is also possible to extract a predetermined component from the gas containing the impurity component and extract or discharge the extracted component. Further, the present invention can be used in different applications having the same configuration, that is, as an air purifier, an exhaust gas treatment device, a gas extraction device, a high-purity gas generation device, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のイオン化部に放射線を利用した実施形
態例を示す構成説明図である。
FIG. 1 is a configuration explanatory view showing an embodiment in which radiation is used in an ionization section of the present invention.

【図2】(a)は図1のガス分離装置においてトルエン
を含む窒素ガスでのトルエンの分離結果である入口トル
エン濃度に対する陰電極側の出口濃度の測定結果の一例
を示す特性図であり、(b)は同じく入口トルエン濃度
に対する陽電極側の出口濃度の測定結果の一例を示す特
性図である。
FIG. 2A is a characteristic diagram showing an example of a measurement result of an outlet concentration on a cathode side with respect to an inlet toluene concentration, which is a separation result of toluene with a nitrogen gas containing toluene in the gas separation device of FIG. (B) is a characteristic diagram showing an example of a measurement result of the outlet concentration on the positive electrode side with respect to the inlet toluene concentration.

【図3】本発明のイオン化部に光またはX線を利用した
場合の実施形態例を示す構成説明図である。
FIG. 3 is a configuration explanatory view showing an example of an embodiment in a case where light or X-rays are used in an ionization unit of the present invention.

【図4】本発明の複数のイオン化方法を併用した場合の
実施形態例として、放射線と光の両方でイオン化する場
合を示す構成説明図である。
FIG. 4 is a configuration explanatory view showing a case where ionization is performed using both radiation and light as an embodiment example in which a plurality of ionization methods of the present invention are used in combination.

【図5】本発明に係る複数個のガス分離装置をつなぎ合
わせたときの実施形態例を示す構成説明図である。
FIG. 5 is a configuration explanatory view showing an embodiment when a plurality of gas separation devices according to the present invention are connected.

【図6】図5の出口流量制御部を示す構成説明図であ
る。
FIG. 6 is an explanatory diagram illustrating a configuration of an outlet flow control unit in FIG. 5;

【図7】本発明に係るノズル電極による放電と分離板を
利用した実施形態例を示す構成説明図である。
FIG. 7 is a configuration explanatory view showing an example of an embodiment using a discharge by a nozzle electrode and a separation plate according to the present invention.

【図8】本発明に係るノズル電極による放電と分離板を
利用し電界方向切り替え手段を持つ場合の実施形態例を
示す構成説明図である。
FIG. 8 is a configuration explanatory view showing an example of an embodiment in the case of having an electric field direction switching means using a discharge by a nozzle electrode and a separation plate according to the present invention.

【符号の説明】[Explanation of symbols]

11 円筒型チャンバー 12,13 平板電極 14,15 円筒型ガス出口部材 16 ガス入口部材 17 放射線源 18 直流電源 DESCRIPTION OF SYMBOLS 11 Cylindrical chamber 12,13 Plate electrode 14,15 Cylindrical gas outlet member 16 Gas inlet member 17 Radiation source 18 DC power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大谷 吉生 石川県金沢市小立野2丁目40番20号 金沢 大学内 (72)発明者 並木 則和 石川県金沢市小立野2丁目40番20号 金沢 大学内 Fターム(参考) 4G075 AA03 BA08 BB05 CA14 CA15 CA18 CA32 CA38 EC21  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Yoshio Otani, Kanazawa University, 2-40-20 Kotano, Kanazawa-shi, Ishikawa Prefecture F term (reference) 4G075 AA03 BA08 BB05 CA14 CA15 CA18 CA32 CA38 EC21

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 空気流をイオン化し、電極により電離状
態の気体に電界をかけ、陽イオンと陰イオンに分離する
ことで、空気流に含まれるガス分子成分を分離し、清浄
な空気および/または分離されたガスを取り出すことを
特徴とするガス分離装置。
1. An air flow is ionized, an electric field is applied to an ionized gas by an electrode, and the gas is separated into cations and anions, whereby gas molecules contained in the air flow are separated, and clean air and / or clean air are separated. Alternatively, a gas separation device for extracting a separated gas.
【請求項2】 イオン化するための手段として、放射性
同位体、X線、光線、放電を起こす装置の中の一つまた
は複数の装置を組み合わせて利用することを特徴とする
請求項1記載のガス分離装置。
2. The gas according to claim 1, wherein the means for ionizing is a combination of one or more of radioisotopes, X-rays, light, and a device for generating electric discharge. Separation device.
【請求項3】 イオン化するための手段として、針状の
電極およびテーパ状開口を有するテーパ状開口型電極を
設け、針電極をテーパ状開口型電極の間に設けるととも
にテーパ状開口部の下流側に分離板を設け、針電極とテ
ーパ状開口型電極で放電を発生させてテーパ状開口部内
部を流れる空気流をイオン化し、テーパ状開口部先端か
らイオンを吹き出すことを特徴とする請求項1記載のガ
ス分離装置。
3. As a means for ionizing, a needle-shaped electrode and a tapered opening-type electrode having a tapered opening are provided, and the needle electrode is provided between the tapered opening-type electrodes and downstream of the tapered opening. A discharge plate generated by the needle electrode and the tapered opening type electrode to ionize an air flow flowing inside the tapered opening, and eject ions from the tip of the tapered opening. The gas separation device as described in the above.
【請求項4】 分離板を電極とするとともに針電極およ
び/またはテーパ状開口型電極を前記分離板電極の対向
極として放電を発生させてテーパ状開口部内部を流れる
空気流をイオン化することを特徴とする請求項3記載の
ガス分離装置。
4. A method for generating an electric discharge by using a separator as an electrode and using a needle electrode and / or a tapered opening type electrode as a counter electrode of the separator electrode to ionize an air flow flowing inside the tapered opening. 4. The gas separation device according to claim 3, wherein:
【請求項5】 分離部に平行平板電極を用いたことを特
徴とする請求項1、2、3又は4記載のガス分離装置。
5. The gas separation device according to claim 1, wherein a parallel plate electrode is used for the separation part.
【請求項6】 平行平板電極に清浄な空気または分離さ
れたガスを取り出すガス出口を設けることを特徴とする
請求項5記載のガス分離装置。
6. The gas separator according to claim 5, wherein a gas outlet for taking out clean air or separated gas is provided in the parallel plate electrode.
【請求項7】 分離板が分離部の電極間に設けられるこ
とを特徴とする請求項1ないし6のいずれかに記載のガ
ス分離装置。
7. The gas separation device according to claim 1, wherein a separation plate is provided between the electrodes of the separation unit.
【請求項8】 分離板を複数設置しガス固有の電気移動
度を利用して単一の成分を取り出すことを特徴とする請
求項7記載のガス分離装置。
8. The gas separation apparatus according to claim 7, wherein a plurality of separation plates are provided, and a single component is taken out by utilizing electric mobility specific to gas.
【請求項9】 清浄な空気および/または分離されたガ
スを取り出す出口の出口流量を制御することを特徴とす
る請求項1ないし8のいずれかに記載のガス分離装置。
9. The gas separation device according to claim 1, wherein an outlet flow rate of an outlet for extracting clean air and / or separated gas is controlled.
【請求項10】 電離状態の気体に電界をかける電極の
極性を切り替える手段および/または電極の電解強度を
変化させる手段を有することを特徴とする請求項1ない
し9のいずれかに記載のガス分離装置。
10. The gas separation according to claim 1, further comprising means for switching the polarity of the electrode for applying an electric field to the ionized gas and / or means for changing the electrolytic strength of the electrode. apparatus.
【請求項11】 請求項1ないし10のいずれかに記載
のガス分離装置を並列や直列、または直並列に多数配置
することを特徴とするガス分離装置。
11. A gas separation device comprising a plurality of the gas separation devices according to claim 1 arranged in parallel, in series, or in series-parallel.
JP24788599A 1999-09-01 1999-09-01 Gas separator Expired - Fee Related JP3679280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24788599A JP3679280B2 (en) 1999-09-01 1999-09-01 Gas separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24788599A JP3679280B2 (en) 1999-09-01 1999-09-01 Gas separator

Publications (2)

Publication Number Publication Date
JP2001070743A true JP2001070743A (en) 2001-03-21
JP3679280B2 JP3679280B2 (en) 2005-08-03

Family

ID=17170055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24788599A Expired - Fee Related JP3679280B2 (en) 1999-09-01 1999-09-01 Gas separator

Country Status (1)

Country Link
JP (1) JP3679280B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030060691A (en) * 2002-01-11 2003-07-16 주식회사 래디언테크 apparatus for gas purifying
WO2003082443A1 (en) * 2002-03-28 2003-10-09 Dai-Dan Co., Ltd. Apparatus for separating gas into gas components using ionization
WO2004008464A1 (en) * 2002-07-17 2004-01-22 Kanomax Japan Incorporated Aerosol particle charging equipment
WO2004007057A1 (en) * 2002-07-12 2004-01-22 Komad Parsa Continuous gas separation in an open system
EP1671021A2 (en) * 2003-10-06 2006-06-21 Parsa Investments, L.P. System and method for conditioning of intake air for an internal combustion engine
JP2006520259A (en) * 2003-02-03 2006-09-07 アドバンスト・エレクトロン・ビームズ・インコーポレーテッド Method and apparatus for treating gas by irradiation
US7318858B2 (en) 2002-07-12 2008-01-15 Parsa Investment, L.P. Gas separator for providing an oxygen-enriched stream
US7473079B2 (en) 2002-12-06 2009-01-06 Panasonic Corporation Electric compressor with inverter
CN104624023A (en) * 2013-11-06 2015-05-20 松下知识产权经营株式会社 Method and apparatus for separating solvent
CN113534232A (en) * 2020-04-16 2021-10-22 中国科学院国家空间科学中心 Device and method for synchronously measuring ionized layer neutral molecules and charged particles

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030060691A (en) * 2002-01-11 2003-07-16 주식회사 래디언테크 apparatus for gas purifying
WO2003082443A1 (en) * 2002-03-28 2003-10-09 Dai-Dan Co., Ltd. Apparatus for separating gas into gas components using ionization
WO2004007057A1 (en) * 2002-07-12 2004-01-22 Komad Parsa Continuous gas separation in an open system
US7318858B2 (en) 2002-07-12 2008-01-15 Parsa Investment, L.P. Gas separator for providing an oxygen-enriched stream
WO2004008464A1 (en) * 2002-07-17 2004-01-22 Kanomax Japan Incorporated Aerosol particle charging equipment
US7522703B2 (en) 2002-07-17 2009-04-21 Kanomax Japan Incorporated Aerosol particle charging device
KR100842851B1 (en) * 2002-07-17 2008-07-02 니폰 카노막스 가부시키가이샤 Aerosol particle charging equipment
US7473079B2 (en) 2002-12-06 2009-01-06 Panasonic Corporation Electric compressor with inverter
JP2006520259A (en) * 2003-02-03 2006-09-07 アドバンスト・エレクトロン・ビームズ・インコーポレーテッド Method and apparatus for treating gas by irradiation
EP1671021A2 (en) * 2003-10-06 2006-06-21 Parsa Investments, L.P. System and method for conditioning of intake air for an internal combustion engine
EP1671021A4 (en) * 2003-10-06 2007-09-19 Parsa Investments L P System and method for conditioning of intake air for an internal combustion engine
CN104624023A (en) * 2013-11-06 2015-05-20 松下知识产权经营株式会社 Method and apparatus for separating solvent
CN104624023B (en) * 2013-11-06 2017-05-24 松下知识产权经营株式会社 Method and apparatus for separating solvent
US9731299B2 (en) 2013-11-06 2017-08-15 Panasonic Intellectual Property Management Co., Ltd. Method and apparatus for separating solvent
CN113534232A (en) * 2020-04-16 2021-10-22 中国科学院国家空间科学中心 Device and method for synchronously measuring ionized layer neutral molecules and charged particles
CN113534232B (en) * 2020-04-16 2024-04-09 中国科学院国家空间科学中心 Device and method for synchronously measuring ionized layer neutral molecules and charged particles

Also Published As

Publication number Publication date
JP3679280B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
US8361402B2 (en) Apparatus for air purification and disinfection
US3653185A (en) Airborne contaminant removal by electro-photoionization
EP1658900B1 (en) Gas treating apparatus
US4657738A (en) Stack gas emissions control system
KR102302355B1 (en) Air purifier with improved removal property of harmful substances and viruses in the air
WO2012023665A1 (en) Dust-collecting system
KR20140030124A (en) Device and method for purifying air from non-desired components and for eliminating such components
JP3679280B2 (en) Gas separator
KR20200067380A (en) Air purifier using automatically irradiatable x-rays
US9381267B2 (en) Apparatus for air purification and disinfection
US11117138B2 (en) Systems and methods for gas cleaning using electrostatic precipitation and photoionization
RU2313732C2 (en) Method of and device to increase speed of electric wind
JPH0724357A (en) Removal of aerosol by radiation effect
JP2004351310A (en) Air cleaner
KR101174137B1 (en) A device treating air pollutants with plasma
KR20200067388A (en) Air purifier using x-rays
AU2012201738B2 (en) Apparatus for air purification and disinfection
CN218235209U (en) Electric field device and VOCs gas treatment device
JP2002361029A (en) Gas ionizing separation apparatus
KR19980034985A (en) Industrial deodorization and harmful gas removal device
JP2005246353A (en) Gas reforming apparatus
JP5784969B2 (en) Deodorizing device, deodorizing method, air cleaning device and air cleaning method
AU2014218382A1 (en) Apparatus for air purification and disinfection
JPH0478456A (en) Air cleaner
JP2005246352A (en) Gas reforming apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050512

R150 Certificate of patent or registration of utility model

Ref document number: 3679280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees