JP2001068558A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JP2001068558A
JP2001068558A JP24237299A JP24237299A JP2001068558A JP 2001068558 A JP2001068558 A JP 2001068558A JP 24237299 A JP24237299 A JP 24237299A JP 24237299 A JP24237299 A JP 24237299A JP 2001068558 A JP2001068558 A JP 2001068558A
Authority
JP
Japan
Prior art keywords
gate
mosfet
gate electrode
voltage
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24237299A
Other languages
Japanese (ja)
Inventor
Tatsuya Ishii
達也 石井
Hiroshi Sato
弘 佐藤
Masato Takahashi
正人 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24237299A priority Critical patent/JP2001068558A/en
Publication of JP2001068558A publication Critical patent/JP2001068558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Logic Circuits (AREA)
  • Dram (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor integrated circuit device, in which fine patterning of elements, high reliability and high speed operation up to a low voltage are realized. SOLUTION: A first gate electrode is formed between source S and drain D regions on a semiconductor substrate via a gate insulating film and a second gate electrode is formed on the first gate electrode via an insulating film to constitute an MOSFET. When the MOSFET is turned on through a control circuit, a first voltage is applied to the first gate at a first timing, and a second voltage is applied to the second gate at a second timing delayed behind the first timing. Consequently, the voltage of the first gate has a level equal to the sum of the first and second voltages through capacitive coupling of the first and second gate electrodes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、半導体集積回路
装置に関するものであり、特にMOSFET(絶縁ゲー
ト型電界効果トランジスタ)を用いて構成されるデジタ
ル回路技術に利用して有効な技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device, and more particularly to a technology effective when applied to a digital circuit technology using a MOSFET (insulated gate type field effect transistor). .

【0002】[0002]

【従来の技術】MOSFETにより構成される出力回路
や重い負荷を駆動するドライバの駆動力向上には、ゲー
ト幅W増加し、ゲート長L縮小し、あるいはしきい値電
圧Vth低減させるなどの方法がある。
2. Description of the Related Art To improve the driving force of an output circuit composed of MOSFETs or a driver for driving a heavy load, there are methods such as increasing the gate width W, reducing the gate length L, or decreasing the threshold voltage Vth. is there.

【0003】[0003]

【発明が解決しようとする課題】MOSFETで構成さ
れるメモリや論理論理回路等の半導体集積回路装置で
は、低電圧化が進められている。このような低電圧で動
作するメモリや論理回路において、MOSFETのしき
い値電圧Vthを低減させることは、その駆動能力を高
めて高速動作化する上で有効である。しかし、上記のよ
うなMOSFETの低しきい値電圧化は、反面において
オフ状態でのMOSFETのソース−ドレイン経路に流
れるリーク電流を増大させたり、あるいはゲート絶縁膜
の耐圧を低下させるという問題を生じる。上記ゲート絶
縁膜の低下は、特に入力回路や出力回路におけるゲート
絶縁破壊による素子の信頼性の低下につながる。
The voltage of semiconductor integrated circuit devices such as memories and logic circuits composed of MOSFETs has been reduced. In a memory or a logic circuit operating at such a low voltage, reducing the threshold voltage Vth of the MOSFET is effective in increasing the driving capability and operating at high speed. However, the lowering of the threshold voltage of the MOSFET as described above, on the other hand, causes a problem that the leak current flowing in the source-drain path of the MOSFET in the off state increases or the breakdown voltage of the gate insulating film decreases. . The reduction in the gate insulating film leads to a reduction in the reliability of the element due to gate insulation breakdown particularly in an input circuit or an output circuit.

【0004】この発明の目的は、素子の微細化と高信頼
性及び低電圧までの高速動作化を可能にした半導体集積
回路装置を提供することにある。この発明の前記ならび
にそのほかの目的と新規な特徴は、本明細書の記述およ
び添付図面から明らかになるであろう。
An object of the present invention is to provide a semiconductor integrated circuit device capable of miniaturization of elements, high reliability, and high-speed operation up to low voltage. The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0005】[0005]

【課題を解決するための手段】本願において開示される
発明のうち代表的なものの概要を簡単に説明すれば、下
記の通りである。すなわち、ソース,ドレイン領域に挟
まれた半導体基板上にゲート絶縁膜を介して第1ゲート
電極を形成し、上記第1ゲート電極上に絶縁膜を介して
第2ゲート電極を形成してMOSFETを構成し、制御
回路により上記MOSFETをオン状態にさせるとき、
第1のタイミングで上記第1ゲートに第1の電圧を印加
し、上記第1のタイミングよりより遅れた第2のタイミ
ングで上記第2のゲートに第2の電圧を印加して、上記
第1と第2のゲート電極間の容量結合により上記第1の
ゲート電極の電圧を上記第1と第2の電圧を加えた電圧
にする。
The following is a brief description of an outline of a typical invention among the inventions disclosed in the present application. That is, a first gate electrode is formed on a semiconductor substrate sandwiched between source and drain regions via a gate insulating film, and a second gate electrode is formed on the first gate electrode via an insulating film to form a MOSFET. When the MOSFET is turned on by the control circuit,
A first voltage is applied to the first gate at a first timing, and a second voltage is applied to the second gate at a second timing later than the first timing. The voltage of the first gate electrode is set to a voltage obtained by adding the first and second voltages due to the capacitive coupling between the first gate electrode and the second gate electrode.

【0006】[0006]

【発明の実施の形態】図1には、この発明に係る半導体
集積回路装置に設けられるMOSFETの一実施例の構
成図が示されている。図1(A)には、素子レイアイト
が示され、(B)には、そのA−A’断面が示され、
(C)には、そのB−B’断面が示され、(D)には、
その等価回路が示されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing one embodiment of a MOSFET provided in a semiconductor integrated circuit device according to the present invention. FIG. 1A shows an element layout, FIG. 1B shows an AA ′ cross section thereof,
(C) shows the BB 'cross section, and (D) shows
The equivalent circuit is shown.

【0007】この実施例のMOSFETは、ゲート電極
を構成する第1層目ポリシリコンFGの上に、絶縁膜を
介して第2層目ポリシリコンSGを重ねた二重構造にな
っている。そして、これらの2つのゲート電極SG/F
Gは、(D)の等価回路に示したように独立して電圧を
印加できる入力端子INSGとINFGとを持つように
される。MOSFETの動作でみた場合、上記第1層目
ポリシリコンFGがゲート電極として作用するが、入力
端子INSGとINFGから供給される入力信号でみた
とき、上記第2層目ポリシリコンSGも制御端子として
の作用を行うものである。それ故、上記第2層目ポリシ
リコンSGも実質的にはゲート電極の一種と見做すこと
ができる。
The MOSFET of this embodiment has a double structure in which a second-layer polysilicon SG is stacked on a first-layer polysilicon FG constituting a gate electrode with an insulating film interposed therebetween. Then, these two gate electrodes SG / F
G has input terminals INSG and INFG to which voltages can be independently applied as shown in the equivalent circuit of (D). In the operation of the MOSFET, the first-layer polysilicon FG functions as a gate electrode. However, when viewed from input signals supplied from the input terminals INSG and INFG, the second-layer polysilicon SG also functions as a control terminal. Performs the action of Therefore, the second-layer polysilicon SG can be regarded as a kind of the gate electrode.

【0008】上記(A)ないし(C)において、第1ゲ
ート電極FGは、ソースSとドレインDの間の半導体基
板上に形成された薄いゲート絶縁膜を介して形成され
る。このゲート電極FGの上には層間絶縁膜が設けら
れ、第2ゲート電極SGが形成される。この第2ゲート
電極SGは、特に制限されないが、上記ソースSとドレ
インDと近い位置で上記入力端子INSGに導かれる第
1層目の金属配線層M1とコンタクトCONTにより接
続される。
In the above (A) to (C), the first gate electrode FG is formed between the source S and the drain D via a thin gate insulating film formed on the semiconductor substrate. On this gate electrode FG, an interlayer insulating film is provided, and a second gate electrode SG is formed. Although not particularly limited, the second gate electrode SG is connected to the first metal wiring layer M1 guided to the input terminal INSG at a position near the source S and the drain D by a contact CONT.

【0009】上記第1ゲート電極FGは、上記第2ゲー
ト電極SGと同時に形成される第2層目ポリシリコンS
Gとコンタクトにより接続され、かかる第2層目のポリ
シリコンSGを介在させて、上記ソースSとドレインD
に対して相対的に遠い位置で上記入力端子INFGに導
かれる上記同様な金属配線層M1とコンタクトCONT
により接続される。これにより、(D)に示すように、
この発明に係るMOSFETは、ソースS、ドレインD
と、第1入力端子INFGに接続されたゲートと、上記
第1入力端子INFGと第2入力端子INSGとの間に
設けられたキャパシタCを持つようにされる。
The first gate electrode FG is a second-layer polysilicon S formed simultaneously with the second gate electrode SG.
G and the source S and the drain D via the second-layer polysilicon SG.
The metal wiring layer M1 and the contact CONT which are guided to the input terminal INFG at a position relatively far from
Connected by Thereby, as shown in (D),
The MOSFET according to the present invention has a source S and a drain D
, A gate connected to the first input terminal INFG, and a capacitor C provided between the first input terminal INFG and the second input terminal INSG.

【0010】上記キャパシタCの一方の電極は上記第1
ゲート電極FGであり、上記MOSFETのゲート電極
と同じである。上記キャパシタCの他方の電極は、上記
第2ゲート電極SGであり、キャパシタCの誘電体は上
記第1ゲート電極FGと第2ゲート電極との間の相間絶
縁膜で構成される。
One electrode of the capacitor C is connected to the first electrode.
The gate electrode FG is the same as the gate electrode of the MOSFET. The other electrode of the capacitor C is the second gate electrode SG, and the dielectric of the capacitor C is formed of an interphase insulating film between the first gate electrode FG and the second gate electrode.

【0011】図2には、この発明に係るMOSFETを
用いて構成された出力回路の一実施例の回路図が示され
ている。出力MOSFETは、Nチャンネル型MOSF
ETQ1とPチャンネル型MOSFETQ3の直列回路
から構成され、Nチャンネル型MOSFETQ1のソー
スには回路の接地電位VSSが印加され、Pチャンネル
型MOSFETQ3のソースには、電源電圧VCCが印
加される。そして、MOSFETQ1とQ3のドレイン
が出力端子OUTに共通に接続される。
FIG. 2 is a circuit diagram showing an embodiment of an output circuit constituted by using MOSFETs according to the present invention. The output MOSFET is an N-channel type MOSF
It is composed of a series circuit of an ETQ1 and a P-channel MOSFET Q3. The ground potential VSS of the circuit is applied to the source of the N-channel MOSFET Q1, and the power supply voltage VCC is applied to the source of the P-channel MOSFET Q3. Then, the drains of the MOSFETs Q1 and Q3 are commonly connected to the output terminal OUT.

【0012】上記Nチャンネル型MOSFETQ1の第
1ゲート(INFGN)と入力端子INFGN0との間
には、Nチャンネル型MOSFETQ2のソース−ドレ
イン経路が接続される。このMOSFETQ2のゲート
には、定常的に電源電圧VCCが印加される。そして、
MOSFETQ1の第2ゲートは、入力端子INSGN
に接続される。前記のように、回路として見たときに
は、上記第1ゲート電極と第2ゲート電極とにより構成
されるキャパシタC1が設けられる。
The source-drain path of the N-channel MOSFET Q2 is connected between the first gate (INFGN) of the N-channel MOSFET Q1 and the input terminal INFGN0. Power supply voltage VCC is constantly applied to the gate of MOSFET Q2. And
The second gate of the MOSFET Q1 is connected to the input terminal INSGN.
Connected to. As described above, when viewed as a circuit, the capacitor C1 including the first gate electrode and the second gate electrode is provided.

【0013】上記Pチャンネル型MOSFETQ3の第
1ゲート(INFGP)と入力端子INFGP0との間
には、Pチャンネル型MOSFETQ4のソース−ドレ
イン経路が接続される。このMOSFETQ4のゲート
には、定常的に回路の接地電位VSSが印加される。そ
して、MOSFETQ3の第2ゲートは、入力端子IN
SGPに接続される。上記同様に回路として見たときに
は、上記第1ゲート電極と第2ゲート電極とにより構成
されるキャパシタC2が設けられる。
The source-drain path of the P-channel MOSFET Q4 is connected between the first gate (INFGP) of the P-channel MOSFET Q3 and the input terminal INFGP0. The ground potential VSS of the circuit is constantly applied to the gate of the MOSFET Q4. The second gate of the MOSFET Q3 is connected to the input terminal IN.
Connected to SGP. When viewed as a circuit in the same manner as described above, a capacitor C2 including the first gate electrode and the second gate electrode is provided.

【0014】図3には、上記図2に示した出力回路の動
作の一例を説明するためのタイミング図が示されてい
る。上記各入力信号INFGP0、INSGP、INF
GN0、INSGNがロウレベル(VSS)ときには、
Pチャンネル型MOSFETQ4がオン状態であり、入
力信号INFGP0のロウレベルによりPチャンネル型
の出力MOSFETQ3がオン状態に、Nチャンネル型
MOSFETQ2がオン状態であり、入力信号INFG
N0のロウレベルによりNチャンネル型の出力MOSF
ETQ1がオフ状態にされるので、出力端子OUTは電
源電圧VCCのようなハイレベルになっている。ただ
し、このとき、初期状態としてキャパシタC2の両端の
電位は上記VSSであるとする。
FIG. 3 is a timing chart for explaining an example of the operation of the output circuit shown in FIG. Each of the input signals INFGP0, INSGP, INF
When GN0 and INSGN are low level (VSS),
The P-channel MOSFET Q4 is on, the low level of the input signal INFGP0 turns on the P-channel output MOSFET Q3, the N-channel MOSFET Q2 is on, and the input signal INFG.
N-channel output MOSF by low level of N0
Since the ETQ1 is turned off, the output terminal OUT is at a high level like the power supply voltage VCC. However, at this time, it is assumed that the potential at both ends of the capacitor C2 is VSS as an initial state.

【0015】入力信号INFGP0、INSGP、IN
FGN0がロウレベル(VSS)からハイレベル(VC
C)に変化すると、上記Pチャンネル型MOSFETQ
3が入力信号INFGP0のハイレベルに応じてオフ状
態にされる。そして、入力信号INFGN0のハイレベ
ルがMOSFETQ2を通してMOSFETQ1のゲー
トに伝えられるのでMOSFETQ1がオン状態にされ
る。このとき、MOSFETQ2の有するしきい値電圧
Vthnにより、MOSFETQ1のゲートに供給され
る電圧はVCC−Vthnに制限される。したがって、
MOSFETQ1は、そのゲート,ソース間電圧が上記
のように制限された電圧であるので、それに対応した電
流により出力端子OUTをロウレベルに引き抜く。
The input signals INFGP0, INSGP, IN
FGN0 changes from low level (VSS) to high level (VC
C), the P-channel MOSFET Q
3 is turned off in response to the high level of the input signal INFGP0. Then, since the high level of the input signal INFGN0 is transmitted to the gate of the MOSFET Q1 through the MOSFET Q2, the MOSFET Q1 is turned on. At this time, the voltage supplied to the gate of MOSFET Q1 is limited to VCC-Vthn by threshold voltage Vthn of MOSFET Q2. Therefore,
Since the voltage between the gate and the source of the MOSFET Q1 is limited as described above, the output terminal OUT is pulled down to a low level by a current corresponding to the voltage.

【0016】このような出力MOSFETQ1の動作
は、出力端子におけるボンディングワイヤ等による寄生
インダクタンス成分によるノイズの小さくする上で有益
なものとなる。つまり、MOSFETQ1がオン状態に
なるとき、その電流の変化が大きいとは上記寄生インダ
クタンス成分によって、回路の接地線VSSに大きなノ
イズを発生させてしまうが、上記のようなMOSFET
Q1のゲートには、入力信号INFGN0のハイレベル
から、MOSFETQ2のしきい値電圧Vthnを差し
引いた制限された電圧が供給されることによって、上記
電流の変化が制限されてノイズの発生を抑えることがで
きる。
Such an operation of the output MOSFET Q1 is useful for reducing noise due to a parasitic inductance component due to a bonding wire or the like at the output terminal. That is, when the MOSFET Q1 is turned on, a large change in the current means that a large noise is generated in the ground line VSS of the circuit due to the parasitic inductance component.
The gate of Q1 is supplied with a limited voltage obtained by subtracting the threshold voltage Vthn of the MOSFET Q2 from the high level of the input signal INFGN0, so that the change in the current is limited and the generation of noise is suppressed. it can.

【0017】半導体メモリや論理回路を構成する半導体
集積回路装置では、複数ビットの単位でデータの入出力
を行うものであり、上記同様な出力回路が複数個設けら
れ、その出力動作に同期して一斉に動作するものであ
る。そのため、上記のような複数の出力回路の出力信号
の変化とき、ワーストケースでは全ての出力回路が一斉
にハイレベルからロウレベルに変化し、それが重畳され
て接地線にノイズが発生するものであるため、出力回路
での上記のようにノイズが低減できることは極めて有益
なものとなる。上記のような出力動作ととともに、入力
信号INSGNがまだロウレベルであるために、キャパ
シタC1には上記電圧VCC−Vthnがチャージアッ
プされている。
In a semiconductor integrated circuit device constituting a semiconductor memory or a logic circuit, data is input / output in units of a plurality of bits, and a plurality of output circuits similar to the above are provided. It works all at once. Therefore, when the output signals of the plurality of output circuits change as described above, in the worst case, all the output circuits simultaneously change from the high level to the low level, which is superimposed and generates noise on the ground line. Therefore, it is extremely useful that the noise in the output circuit can be reduced as described above. Since the input signal INSGN is still at the low level together with the output operation as described above, the voltage VCC-Vthn is charged in the capacitor C1.

【0018】上記のような入力信号INFGP0、IN
SGP、INFGN0に対して遅れて入力信号INSG
Nがハイレベル(VCC)に変化すると、キャパシタC
1でのブートストラップ作用によって、MOSFETQ
1の第1ゲート電圧は、2VV−Vthnのような昇圧
された電圧となる。このように第1ゲート電圧が昇圧さ
れることに応じて、MOSFETQ2はオフ状態にされ
る。つまり、上記のような昇圧電圧2VCC−Vthn
に対し、MOSFETQ2のゲートと入力端子INFG
N0が共に電源電圧VCCのような低い電圧にされるた
め、入力端子INFGN0に接続されたノードがソース
として作用し、MOSFETQ2がオフ状態にされる。
これにより、上記のような昇圧電圧2VCC−Vthn
が、入力端子INFGN0に抜けてしまうのを防止す
る。
The input signals INFGP0, IN as described above
The input signal INSG is delayed with respect to SGP and INFGN0.
When N changes to a high level (VCC), the capacitor C
1, the MOSFET Q
One first gate voltage is a boosted voltage such as 2VV-Vthn. In response to the step-up of the first gate voltage, MOSFET Q2 is turned off. That is, the boosted voltage 2VCC-Vthn as described above
In contrast, the gate of the MOSFET Q2 and the input terminal INFG
Since both N0 are set to a low voltage such as the power supply voltage VCC, the node connected to the input terminal INFGN0 acts as a source, and the MOSFET Q2 is turned off.
Thereby, the boosted voltage 2VCC-Vthn as described above is obtained.
To the input terminal INFGN0.

【0019】上記のように出力MOSFETQ1のゲー
ト電極に、昇圧電圧2VCC−Vthnが供給されるこ
とにより、MOSFETQ1のドレイン−ソース経路に
は大きな電流が流れて出力信号OUTを高速にロウレベ
ルVSSに引き抜くことができる。この結果、これによ
り、ゲートに従来より大きな電圧幅の入力信号が供給さ
れてスイツチングすることになり、MOSFETQ1の
駆動力を上げることができる。
Since the boosted voltage 2VCC-Vthn is supplied to the gate electrode of the output MOSFET Q1 as described above, a large current flows in the drain-source path of the MOSFET Q1, and the output signal OUT is rapidly pulled to the low level VSS. Can be. As a result, as a result, an input signal having a larger voltage width than the conventional one is supplied to the gate and switching is performed, so that the driving force of the MOSFET Q1 can be increased.

【0020】次に、入力信号INFGP0、INFGN
0、INSGNをハイレベルからロウレベルに変化させ
ると、入力信号INFGN0のロウレベルによりMOS
FETQ2がオン状態となり、キャパシタC1を放電さ
せつつ上記Nチャンネル型の出力MOSFETQ1のゲ
ート電極をロウレベルとしてオフ状態にする。そして、
入力信号INFGP0のロウレベルがMOSFETQ4
を通してPチャンネル型の出力MOSFETQ3のゲー
トに伝えられるので、かかるMOSFETQ3がオン状
態にされる。
Next, the input signals INFGP0, INFGN
0 and INSGN are changed from the high level to the low level, the MOS signal is changed by the low level of the input signal INFGN0.
The FET Q2 is turned on, and the gate electrode of the N-channel type output MOSFET Q1 is set to a low level while the capacitor C1 is discharged, so that the FET C2 is turned off. And
When the low level of the input signal INFGP0 is the MOSFET Q4
To the gate of the P-channel type output MOSFET Q3, so that the MOSFET Q3 is turned on.

【0021】このとき、MOSFETQ4の有するしき
い値電圧Vthpにより、MOSFETQ3のゲートに
供給される電圧はVSS+Vthpに制限される。した
がって、MOSFETQ3は、そのゲート,ソース間電
圧が上記のように制限された電圧であるので、それに対
応した制限された電流により出力端子OUTをハイレベ
ルに立ち上げ、前記ロウレベルの出力動作の場合と同様
に電源電圧VCCに発生するノイズを低減させる。
At this time, the voltage supplied to the gate of MOSFET Q3 is limited to VSS + Vthp by threshold voltage Vthp of MOSFET Q4. Therefore, since the voltage between the gate and the source of the MOSFET Q3 is limited as described above, the output terminal OUT is raised to a high level by the limited current corresponding to the voltage, and the case of the low-level output operation is different from that in the case of the low-level output operation. Similarly, noise generated in the power supply voltage VCC is reduced.

【0022】上記のような入力信号INFGP0、IN
FGN0、INSGNに対して遅れて入力信号INSG
Pがロウレベル(VSS)に変化すると、キャパシタC
2でのブートストラップ作用によって、MOSFETQ
3の第1ゲート電圧は、−VV+Vthp(Vthpは
負の電圧である)のように負電圧とされる。このように
第1ゲート電圧が負方向に大きくされることに応じて、
MOSFETQ3の駆動力を上げ、かつMOSFETQ
4のオフ状態により、上記のような負電圧−VCC+V
thpが入力端子INFGP0に抜けてしまうのを防止
する。
The input signals INFGP0, IN as described above
The input signal INSG is delayed with respect to FGN0 and INSGN.
When P changes to low level (VSS), the capacitor C
2, the MOSFET Q
The first gate voltage of No. 3 is a negative voltage such as -VV + Vthp (Vthp is a negative voltage). As described above, in response to the first gate voltage being increased in the negative direction,
Increase the driving force of MOSFET Q3 and
4, the negative voltage −VCC + V as described above.
thp is prevented from falling into the input terminal INFGP0.

【0023】上記MOSFETQ2及びQ4を含んで、
図示しない上記入力信号INFGP0、INFGN0、
INSGN、INSGPを形成する回路が出力MOSF
ETQ1とQ2の制御回路を構成するものである。上記
入力信号のうち遅延させられる入力信号INSGNやI
NSGPは、インバータ回路等の遅延回路と論理ゲート
回路の組み合わせで形成することができる。例えば、上
記入力信号INSGNのようにハイレベル(論理0から
論理1)に変化する信号の立ち上がりを遅延させる場合
には、アンドゲート回路に入力信号INFGN0とその
遅延信号を供給して、その出力信号を利用すればよい。
また、上記入力信号INSGPのようにロウレベル(論
理1から論理0)に変化する信号の立ち下がりを遅延さ
せる場合には、オアゲート回路に入力信号INFGP0
とその遅延信号を供給して、その出力信号を利用すれば
よい。上記ゲート回路は、ナンド、ノアゲート回路に置
き換えることも可能である。
Including the MOSFETs Q2 and Q4,
The input signals INFGP0, INFGN0,
A circuit forming INSGN and INSGP is an output MOSF
It constitutes a control circuit for ETQ1 and ETQ2. Of the above input signals, the input signal INSGN or I
NSGP can be formed by a combination of a delay circuit such as an inverter circuit and a logic gate circuit. For example, when delaying the rise of a signal that changes to a high level (logic 0 to logic 1) like the input signal INSGN, the input signal INFGN0 and its delay signal are supplied to the AND gate circuit, and the output signal You can use.
When delaying the fall of a signal that changes to low level (from logic 1 to logic 0) like the input signal INSGP, the input signal INFGP0 is supplied to the OR gate circuit.
And its delay signal, and use the output signal. The gate circuit can be replaced with a NAND or NOR gate circuit.

【0024】上記のようなCMOS出力回路に適用した
場合、電源電圧VCCを3.3Vや2.5V、あるいは
それ以下に低下させた場合でも、出力MOSFETQ1
やQ3のゲートとソース間に印加される電圧は、上記電
源電圧VCCと回路の接地電位VSS間の電圧以上に大
きくすることができる。このため、大きな駆動電流を得
るために、MOSFETのチャンネル幅を大きく形成す
る必要がない。これより、素子の微細化が図られ、高集
積化を実現することができる。
When applied to the above-described CMOS output circuit, even when the power supply voltage VCC is lowered to 3.3 V, 2.5 V, or lower, the output MOSFET Q1
And the voltage applied between the gate and the source of Q3 can be higher than the voltage between the power supply voltage VCC and the ground potential VSS of the circuit. Therefore, it is not necessary to increase the channel width of the MOSFET in order to obtain a large drive current. As a result, the element can be miniaturized, and high integration can be realized.

【0025】例えば、通常の出力回路は、ゲートとソー
ス間の信号振幅はVCC/VSSである。電源電圧VC
C=1.8V、しきい値電圧Vthn=0.4Vのと
き、ゲート,ソース間の信号振幅は、従来のCMOS回
路では1.8Vに対して、本発明に係る出力回路では
3.2Vまで大きくすることができ、駆動力向上が図ら
れることがわかる。
For example, in a normal output circuit, the signal amplitude between the gate and the source is VCC / VSS. Power supply voltage VC
When C = 1.8 V and the threshold voltage Vthn = 0.4 V, the signal amplitude between the gate and the source is 1.8 V in the conventional CMOS circuit and up to 3.2 V in the output circuit according to the present invention. It can be seen that the driving force can be increased and the driving force can be improved.

【0026】この実施例の出力回路では、大きな駆動電
流を得るためにMOSFETのしきい値電圧を小さく形
成する必要がない。これにより、MOSFETをオフ状
態にさせるときに流れるリーク電流を低減できるため、
CMOS回路の消費電流を抑えることができる。そし
て、しきい値電圧を小さくするために、ゲート絶縁膜の
膜厚を薄く形成する必要がないので、ゲート絶縁耐圧を
大きくすることができる。特に、出力回路のように出力
端子に接続されるノードを持つ回路では、半導体集積回
路装置の運搬やハンドリング時に外部端子に発生する静
電気による素子耐圧破壊に対するマージンを大きくで
き、信頼性を高くすることができる。
In the output circuit of this embodiment, it is not necessary to reduce the threshold voltage of the MOSFET in order to obtain a large drive current. As a result, a leakage current flowing when the MOSFET is turned off can be reduced.
The current consumption of the CMOS circuit can be reduced. Since it is not necessary to reduce the thickness of the gate insulating film in order to reduce the threshold voltage, it is possible to increase the gate withstand voltage. In particular, in a circuit having a node connected to an output terminal, such as an output circuit, a margin against breakdown of the element due to static electricity generated in an external terminal during transportation or handling of the semiconductor integrated circuit device can be increased, and reliability can be improved. Can be.

【0027】図4には、この発明に係るMOSFETを
用いて構成された出力回路の他の一実施例の回路図が示
されている。出力MOSFETは、2つのNチャンネル
型MOSFETQ1とQ3の直列回路から構成される。
つまり、前記図2の実施例のPチャンネル型MOSFE
TQ3をNチャンネル型MOSFETに置き換えたもの
である。これに応じて、MOSFETQ4もNチャンネ
ル型に置き換えられ、ゲートに印加される電圧もVCC
とされる。他は、前記説明した実施例回路と同様であ
る。
FIG. 4 is a circuit diagram showing another embodiment of the output circuit constituted by using the MOSFET according to the present invention. The output MOSFET is composed of a series circuit of two N-channel MOSFETs Q1 and Q3.
That is, the P-channel MOSFE of the embodiment of FIG.
TQ3 is replaced with an N-channel MOSFET. Accordingly, MOSFET Q4 is also replaced with an N-channel type, and the voltage applied to the gate is also set to VCC.
It is said. The rest is the same as the above-described embodiment circuit.

【0028】図5には、上記図4に示した出力回路の動
作の一例を説明するためのタイミング図が示されてい
る。上記のように出力MOSFETQ1とQ3をNチャ
ンネル型MOSFETにした場合、前記のようなCMO
S構成とは異なり、電源電圧VCC側の出力MOSFE
TQ3に対する入力信号INFGH0、INSGHと、
回路の接地電位VSS側の出力MOSFETQ1に対す
る入力信号INFGL0とINSGLとは、基本的には
MOSFETQ3とQ1を相補的にスイッチ制御するた
めに相補の関係の信号とされる。そして、第1ゲート電
極に対応した入力端子INFGH0(INFGL0)を
先にハイレベルにし、キャパシタC1(C2)にVCC
−Vthnのプリチャージを行った後に第2ゲート電極
に対応した入力端子INSGH(INSGL)をハイレ
ベルにするものである。
FIG. 5 is a timing chart for explaining an example of the operation of the output circuit shown in FIG. When the output MOSFETs Q1 and Q3 are N-channel MOSFETs as described above,
Unlike the S configuration, the output MOSFE on the power supply voltage VCC side
Input signals INFGH0 and INSGH for TQ3;
The input signals INFGL0 and INSGL to the output MOSFET Q1 on the ground potential VSS side of the circuit are basically signals having a complementary relationship in order to switch-control the MOSFETs Q3 and Q1 in a complementary manner. Then, the input terminal INFGH0 (INFGL0) corresponding to the first gate electrode is first set to the high level, and the capacitor C1 (C2) is connected to VCC.
After the precharge of −Vthn, the input terminal INSGH (INSGL) corresponding to the second gate electrode is set to a high level.

【0029】この実施例のように出力回路においても、
出力MOSFETQ1とQ3のゲートの第1ゲート電極
と第2ゲート電極とで構成されるキャパシタC1とC2
を利用し、それをオン状態にさせるときには実効的なゲ
ート電圧をVCC−Vthnのような第1段階レベル
と、2VCC−Vthnのように昇圧された第2段階レ
ベルにして駆動するものである。これにより、電源電圧
VCCを3.3Vや2.5V、あるいはそれ以下に低下
させた場合でも、出力MOSFETQ1やQ3の駆動能
力を大きくすることができる。
In the output circuit as in this embodiment,
Capacitors C1 and C2 composed of first and second gate electrodes of the gates of output MOSFETs Q1 and Q3
When turning it on, an effective gate voltage is driven at a first stage level such as VCC-Vthn and a boosted second stage level such as 2VCC-Vthn. As a result, even when the power supply voltage VCC is reduced to 3.3 V or 2.5 V or lower, the driving capability of the output MOSFETs Q1 and Q3 can be increased.

【0030】電源電圧VCC側の出力MOSFETをN
チャンネル型MOSFETとしても、その実効的なゲー
トには電源電圧VCC以上に昇圧された電圧2VCC−
Vthnを供給することができるから、出力端子OUT
から出力される出力信号のハイレベルを電源電圧VCC
のようなフル振幅の信号にすることができるものとな
る。このように、出力端子OUTに接続される出力回路
をNチャンネル型MOSFETで構成した場合には、前
記のようなCMOS回路を用いる場合に比べて、2つの
出力MOSFETを電気的に分離させる必要がないこ
と、及び同じ電流を得るためにはNチャンネル型MOS
FETの方がサイズを小さくできること等が相乗的に作
用して高集積化を実現できる。このため、半導体集積回
路装置の出力回路の他に、次に説明するようなワードド
ライバにも適している。
The output MOSFET on the power supply voltage VCC side is set to N
Even as a channel type MOSFET, its effective gate has a voltage of 2 VCC-
Vthn can be supplied to the output terminal OUT
High level of the output signal output from the power supply voltage VCC
A signal having a full amplitude as shown in FIG. As described above, when the output circuit connected to the output terminal OUT is configured by an N-channel MOSFET, it is necessary to electrically separate the two output MOSFETs as compared with the case where the CMOS circuit as described above is used. N-channel MOS to get the same current
The fact that the size of the FET can be made smaller and the like work synergistically, and high integration can be realized. Therefore, the present invention is suitable for a word driver as described below, in addition to the output circuit of the semiconductor integrated circuit device.

【0031】信頼性の観点からみても、CMOS出力回
路の場合には寄生サイリスタ素子によるラッチアップを
防止するよう格別な配慮を必要とするため、上記のよう
にNチャンネル型MOSFETにより構成された出力回
路の方が有利になるものである。もちろん、この実施例
回路においても、前記のCMOS回路の場合と同様に、
素子の微細化やゲート絶縁マージンを大きくできるとい
う利点はそのまま有するものである。
From the standpoint of reliability, CMOS output circuits require special care to prevent latch-up due to parasitic thyristor elements. Therefore, the output composed of N-channel MOSFETs as described above is required. Circuits are more advantageous. Of course, in the circuit of this embodiment, as in the case of the CMOS circuit,
The advantages of miniaturizing the element and increasing the gate insulation margin are directly retained.

【0032】以上説明したように、本発明に係るMOS
FETにおいては、容量結合によりMOSドライバのゲ
ートを昇圧(大きく)でき、ゲート面積(特にゲート
幅)をそれほど増やさずに駆動力を向上させられる。特
に低電圧で高速動作できることにより低消費電力システ
ムを実現できる。
As described above, the MOS according to the present invention
In the FET, the gate of the MOS driver can be boosted (increased) by capacitive coupling, and the driving force can be improved without significantly increasing the gate area (particularly, the gate width). In particular, a low power consumption system can be realized by high speed operation at a low voltage.

【0033】図6には、この発明に係る半導体記憶装置
の一実施例のブロック図が示されている。メモリアレイ
には、メモリセルがワード線とデータ線又はビット線の
交点にメモリセルがマトリッス配置される。Xデコーダ
は、上記メモリアレイのワード線の選択信号を形成する
ものであり、アドレス信号を解読してワード線の選択信
号を形成するデコーダと、選択信号によりワード線を駆
動するワードドライバから構成される。Yデコーダは、
上記メモリアレイのデータ線又はビット線の選択信号を
形成するものであり、必要に応じてY選択ドライバが設
けられる。
FIG. 6 is a block diagram showing one embodiment of the semiconductor memory device according to the present invention. In the memory array, the memory cells are arranged in a matrix at intersections of word lines and data lines or bit lines. The X decoder is for forming a word line selection signal of the memory array, and is composed of a decoder for decoding an address signal to form a word line selection signal and a word driver for driving the word line by the selection signal. You. The Y decoder is
A signal for selecting a data line or a bit line of the memory array is formed, and a Y selection driver is provided as needed.

【0034】上記メモリセルは、特に制限されないが、
上記MOSFETと同じ製造プロセスで形成された第1
ゲート電極と第2ゲート電極とを備え、上記第1ゲート
電極をフローティングゲートとして情報電荷を蓄積する
ものであり、上記第2ゲート電極は、コントロールゲー
トとして上記ワード線に接続される。上記フローティハ
ングゲートへの電荷の蓄積と放出は、書き込みと消去に
対応させ例えばトンネル電流を利用するもの、あるいは
ドレイン近傍でホットエレクトロンを発生させて、そこ
で発生したホットエレクトロンにより上記フローティン
グゲートに電荷を蓄積され、トンネル電流により放出さ
せるという不揮発性メモリとされる。
Although the memory cell is not particularly limited,
The first formed by the same manufacturing process as the above MOSFET
The semiconductor device includes a gate electrode and a second gate electrode, and stores information charges using the first gate electrode as a floating gate. The second gate electrode is connected to the word line as a control gate. The accumulation and release of the electric charge to and from the floating hang gate correspond to writing and erasing, for example, using a tunnel current, or generating hot electrons near the drain, and causing the generated hot electrons to charge the floating gate. It is a non-volatile memory that is stored and released by a tunnel current.

【0035】このような不揮発性メモリにおいは、メモ
リセルが上記のように2層のゲート構造を有するもので
あり、その製造プロセスをそのまま流用し、前記図1に
示した素子を形成して出力回路や上記ワードドライバを
等の周辺回路に用いることにより、動作の高速化を図る
ことができるものとなる。
In such a nonvolatile memory, the memory cell has a two-layer gate structure as described above, and the manufacturing process is diverted as it is to form the element shown in FIG. By using a circuit or the above-described word driver for a peripheral circuit or the like, the operation can be speeded up.

【0036】入力バッファは、アドレス信号、制御信号
のと書き込み用のデータ信号を入力する回路であり、出
力バッファは、読み出し信号を出力する動作を行う。上
記のようなメモリ回路において、ワード線は記憶容量を
大きくするために、高い密度で多数のワード線が形成さ
れる。それ故、ワードドライバも上記ワード線のピッチ
に合わせて高密度で形成される必要がある。したがっ
て、前記図3の実施例で示したようにNチャンネル型M
OSFETで構成される回路(ドライバ)は、大きな駆
動能力を得るとともに高密度実装が可能であるから、上
記のようなワードドライバに適している。
The input buffer is a circuit for inputting an address signal, a control signal, and a data signal for writing, and the output buffer performs an operation of outputting a read signal. In the above memory circuit, a large number of word lines are formed at a high density in order to increase the storage capacity of the word lines. Therefore, the word drivers also need to be formed at a high density in accordance with the pitch of the word lines. Therefore, as shown in the embodiment of FIG.
A circuit (driver) including an OSFET is suitable for the word driver as described above because it can obtain a large driving capability and can be mounted at a high density.

【0037】この実施例では、出力バッファに前記図1
又は図3の回路を用いることに加えて、低VCC検出回
路が搭載される。この低VCC検出回路より、電源電圧
VCCが予め設定された低電圧以外のときには、制御回
路により入力信号を切り替えてゲート昇圧しない通常の
出力バッファや入力バッファとして動作させるようにす
るものである。つまり、本実施例では、VCCが高い場
合には、通常の出力バッファの動作をし、低VCC検出
回路が低VCCを検出したときのみ前記説明したような
本発明の動作を行うように構成する。
In this embodiment, the output buffer shown in FIG.
Alternatively, in addition to using the circuit of FIG. 3, a low VCC detection circuit is mounted. From this low VCC detection circuit, when the power supply voltage VCC is other than a preset low voltage, the control circuit switches the input signal to operate as a normal output buffer or input buffer that does not boost the gate. That is, in the present embodiment, when VCC is high, a normal output buffer operates, and the operation of the present invention as described above is performed only when the low VCC detection circuit detects low VCC. .

【0038】本構成により、従来駆動力が落ちていた低
VCCでのみゲート昇圧を行い、VCC依存の少ない高
速動作を実現できる。また、VCCが高い場合に不要な
ゲート昇圧を行うことによる素子劣化を回避することが
できる。上記VCCが高い場合の動作は、例えば、第1
ゲート電極に対応したINFGと、第2ゲート電極に対
応したINSGとを常に同じ電位で変化させるようにす
ればよい。
According to this configuration, the gate is boosted only at the low VCC where the driving power has been reduced in the past, and a high-speed operation with little dependence on VCC can be realized. In addition, when VCC is high, it is possible to avoid element degradation due to unnecessary gate boosting. The operation when the VCC is high is, for example, the first operation.
The INFG corresponding to the gate electrode and the INSG corresponding to the second gate electrode may always be changed at the same potential.

【0039】図7には、この発明に係る半導体記憶装置
の他の一実施例のブロック図が示されている。この実施
例では、低VCC動作をコントロールチップで形成され
たコマンドによって制御される。つまり、メモリチップ
とコントローラチップの2チップで構成され、低VCC
/高VCC動作の切り替えは、コントローラチップから
のコマンドの切り替えにより行う構成である。
FIG. 7 is a block diagram showing another embodiment of the semiconductor memory device according to the present invention. In this embodiment, the low VCC operation is controlled by a command formed by the control chip. That is, it is composed of two chips, a memory chip and a controller chip, and has a low VCC.
The switching of the / high VCC operation is performed by switching a command from the controller chip.

【0040】コントロールチップは、低VCC検出回路
を備えており、それが搭載されるシステムが低VCCで
動作させられる場合には、マイクロコンピュータCPU
により低VCC用のコマンドを発行し、メモリチップの
入力バッファを通して動作モードの設定を行うものであ
る。この実施例においても、VCC依存の少ない高速動
作を実現でき、また、VCCが高い場合に不要なゲート
昇圧を行うことによる素子劣化を回避することができ
る。さらに、必要に応じてコマンドを使い分けることに
より、VCCが高い場合にも本発明のゲート昇圧動作を
行うことによりさらなる高速動作を実現することができ
る。
The control chip has a low VCC detection circuit. When a system on which the control chip is mounted is operated at a low VCC, a microcomputer CPU is used.
, A command for low VCC is issued, and the operation mode is set through the input buffer of the memory chip. Also in this embodiment, high-speed operation with little dependence on VCC can be realized, and element degradation due to unnecessary gate boosting when VCC is high can be avoided. Further, by using commands as needed, even when VCC is high, a further high-speed operation can be realized by performing the gate boosting operation of the present invention.

【0041】図8には、この発明に係る半導体集積回路
装置に用いられるMOSFETの他の一実施例の構成図
が示されている。この発明に係る半導体集積回路装置で
は、上記図1のようなMOSFETを形成する場合に
は、スタックドゲート構造の不揮発性メモリセルを用い
たフラッシュメモリと同様に複数ポリシリコンゲート形
成プロセスを使って素子を形成する必要がある。しか
し、半導体集積回路装置に搭載される全ての回路におい
て、高速動作が必要であるきは限らない。つまり、動作
速度に影響を与えない回路部分では、上記のような二重
ゲート構造として2つき入力信号を時間差を持って供給
することは必要ない。
FIG. 8 is a block diagram showing another embodiment of the MOSFET used in the semiconductor integrated circuit device according to the present invention. In the semiconductor integrated circuit device according to the present invention, when the MOSFET as shown in FIG. 1 is formed, a plurality of polysilicon gate forming processes are used similarly to a flash memory using a nonvolatile memory cell having a stacked gate structure. It is necessary to form an element. However, not all circuits mounted on the semiconductor integrated circuit device need to operate at high speed. That is, in a circuit portion which does not affect the operation speed, it is not necessary to supply an input signal with a time difference as a double gate structure as described above.

【0042】このような低速の回路では、第1ゲート電
極のみしか持たないMOSFETを用いることが考えら
れる。しかし、この構成では、二種類のMOSFETを
製造することが必要になる。この実施例のMOSFET
のように、MOSFETのゲート構造は、前記図1のゲ
ート構造と同一とし、第1ゲート電極FGと第2ゲート
電極SGの間にコンタクト部を設けて短絡するものであ
る。これにより、第2ゲート電極SGは、入力端子IN
から上記第1ゲート電極FGに至る単なる配線経路の一
部と見做すことができる。これによって、全ての素子を
上記2層のポリシリコンゲート形成プロセスを使って高
速回路及び低速回路の両素子を形成することができ製造
が簡単になる。
In such a low-speed circuit, it is conceivable to use a MOSFET having only the first gate electrode. However, this configuration requires that two types of MOSFETs be manufactured. MOSFET of this embodiment
As described above, the gate structure of the MOSFET is the same as the gate structure of FIG. 1, and a short circuit is provided by providing a contact portion between the first gate electrode FG and the second gate electrode SG. Thereby, the second gate electrode SG is connected to the input terminal IN.
Can be regarded as a part of a simple wiring path from the first gate electrode FG to the first gate electrode FG. As a result, both the high-speed circuit and the low-speed circuit can be formed by using the above-described two-layer polysilicon gate formation process for all the elements, and the manufacturing is simplified.

【0043】上記の実施例から得られる作用効果は、次
の通りである。 (1) ソース,ドレイン領域に挟まれた半導体基板上
にゲート絶縁膜を介して第1ゲート電極を形成し、上記
第1ゲート電極上に絶縁膜を介して第2ゲート電極を形
成してMOSFETを構成し、制御回路により上記MO
SFETをオン状態にさせるとき、第1のタイミングで
上記第1ゲートに第1の電圧を印加し、上記第1のタイ
ミングより遅れた第2のタイミングで上記第2のゲート
に第2の電圧を印加して、上記第1と第2のゲート電極
間の容量結合により上記第1のゲート電極の電圧を上記
第1と第2の電圧を加えた電圧にすることにより、ゲー
ト,ソース間に電源電圧以上の大電圧を供給することが
でき、素子の微細化と高信頼性を図りつつ、ドライブ能
力を大きくして高速化をを図ることができるという効果
が得られる。
The operation and effect obtained from the above embodiment are as follows. (1) A first gate electrode is formed on a semiconductor substrate sandwiched between source and drain regions via a gate insulating film, and a second gate electrode is formed on the first gate electrode via an insulating film. And the above-mentioned MO is controlled by the control circuit.
When the SFET is turned on, a first voltage is applied to the first gate at a first timing, and a second voltage is applied to the second gate at a second timing that is later than the first timing. And applying a voltage between the gate and the source by changing the voltage of the first gate electrode to a voltage obtained by adding the first and second voltages by capacitive coupling between the first and second gate electrodes. A high voltage equal to or higher than the voltage can be supplied, and the effect is obtained that the drive capability can be increased and the speed can be increased while miniaturization and high reliability of the element are achieved.

【0044】(2) 上記第1ゲート電極を第1層目ポ
リシリコン層により構成し、上記第2ゲート電極を少な
くとも上記MOSFETのチャンネル領域上の上記第1
層目ポリシリコン層と上記絶縁膜を介してオーバーラッ
プするよう形成された第2層目ポリシリコン層で構成す
ることにより、不揮発性メモリ等で確立された二重ゲー
トの製造プロセスにより簡単に製造することができると
いう効果が得られる。
(2) The first gate electrode is formed of a first polysilicon layer, and the second gate electrode is formed of at least the first gate electrode on the channel region of the MOSFET.
The second polysilicon layer is formed so as to overlap with the second polysilicon layer with the insulating film interposed therebetween, so that it can be easily manufactured by a double gate manufacturing process established in a nonvolatile memory or the like. The effect is obtained.

【0045】(3) 上記制御回路として、ゲートに定
常的にアクティブレベルの電圧が印加された制御用MO
SFETを含み、上記MOSFETの第1ゲートには上
記制御用MOSFETを介して上記第1のタイミングで
アクティブレベルにされる第1の入力信号を供給し、上
記第2ゲート電極には、上記第1の入力信号により遅れ
た第2のタイミングでアクティブレベルにされる第2の
入力信号が供給することにより、ドライブ能力を大きく
して高速化をを図ることができるという効果が得られ
る。
(3) As the control circuit, a control MO in which an active level voltage is constantly applied to the gate is used.
A first input signal which is set to an active level at the first timing through the control MOSFET to a first gate of the MOSFET, and a first input signal to the second gate electrode; By supplying the second input signal which is set to the active level at the second timing delayed by the input signal, the effect that the drive capability can be increased and the speed can be increased can be obtained.

【0046】(4) 上記MOSFETとして、Nチャ
ンネル型MOSFETとPチャンネル型MOSFETか
らなるCMOS回路を構成し、上記Nチャンネル型MO
SFETとPチャンネル型MOSFETのそれぞれに上
記制御回路を設けることにより、素子の微細化と高信頼
性を図りつつドライブ能力を大きくして高速化を図るこ
とができるという効果が得られる。
(4) A CMOS circuit composed of an N-channel MOSFET and a P-channel MOSFET is constructed as the MOSFET, and the N-channel MO is used.
By providing the control circuit for each of the SFET and the P-channel MOSFET, it is possible to obtain an effect that the drive capability can be increased and the speed can be increased while achieving miniaturization and high reliability of the device.

【0047】(5) 上記CMOS回路は、外部端子へ
出力信号を送出する出力バッファを構成することによ
り、低電圧まで高速に動作する出力動作を行わせること
ができるという効果が得られる。
(5) By forming an output buffer for transmitting an output signal to an external terminal, the CMOS circuit can perform an output operation that operates at a high speed up to a low voltage.

【0048】(6) 上記MOSFETは、電源電圧と
回路の接地電位との間に直列接続されて相補的に動作さ
せられる一対のNチャンネル型MOSFETとし、上記
一対のNチャンネル型MOSFETのそれぞれに上記制
御回路を設けることにより、高集積化と低電圧まで高速
に動作する出力動作を行わせることができるという効果
が得られる。
(6) The MOSFET is a pair of N-channel MOSFETs connected in series between the power supply voltage and the ground potential of the circuit and operated in a complementary manner. By providing the control circuit, it is possible to obtain an effect that high integration and an output operation that operates at high speed up to low voltage can be performed.

【0049】(7) 複数のワード線と複数のビット線
の交点にメモリセルが設けられたメモリアレイを更に備
え、上記一対のNチャンネル型MOSFETは、上記メ
モリアレイのワード線の選択回路に用いることにより、
メモリ回路の高集積化を図りつつ、低電圧まで高速動作
を行うことができるという効果が得られる。
(7) A memory array in which memory cells are provided at intersections of a plurality of word lines and a plurality of bit lines, wherein the pair of N-channel MOSFETs is used for a word line selection circuit of the memory array. By doing
An effect is obtained that high-speed operation can be performed up to a low voltage while achieving high integration of the memory circuit.

【0050】(8) 上記メモリセルとして、上記MO
SFETと同じ製造プロセスで形成された第1ゲート電
極と第2ゲート電極とを備え、上記第1ゲート電極をフ
ローティングゲートとして情報電荷を蓄積するものであ
り、上記第2ゲート電極は、コントロールゲートとして
上記ワード線に接続させることにより、プロセスの増加
無しに低電圧まで高速に動作する不揮発性メモリ回路を
実現できるという効果が得られる。
(8) As the memory cell, the MO
A first gate electrode and a second gate electrode formed by the same manufacturing process as the SFET; and the first gate electrode is used as a floating gate to store information charges. The second gate electrode is used as a control gate. By connecting to the word line, an effect is obtained that a non-volatile memory circuit that operates at high speed to a low voltage without increasing the number of processes can be realized.

【0051】(9) 上記MOSFETと同じ製造プロ
セスで形成された第1ゲート電極と第2ゲート電極とを
備え、かつ、上記第1ゲート電極と第2ゲート電極とを
電気的に接続して1つのゲート電極として用いるMOS
FETを更に備ることにより、高速動作を行う回路と、
高速動作が要求されない回路とを混在させ同一のプロセ
スでそれぞれの動作速度に対応したMOSFETを形成
することが出来るという効果が得られる。
(9) A first gate electrode and a second gate electrode formed by the same manufacturing process as the MOSFET are provided, and the first gate electrode and the second gate electrode are electrically connected to each other. MOS used as two gate electrodes
A circuit that performs high-speed operation by further providing an FET;
An effect is obtained in which circuits that do not require high-speed operation can be mixed and MOSFETs corresponding to each operation speed can be formed in the same process.

【0052】(10) 所定の制御信号により、上記第
1のゲートと第2のゲートに同じ入力信号を供給する回
路を更に設けることにより、同一の回路において素子の
劣化を防止する動作モードと、高速動作を行わせるモー
ドとの選択が可能になるという効果が得られる。
(10) An operation mode for preventing deterioration of elements in the same circuit by further providing a circuit for supplying the same input signal to the first gate and the second gate according to a predetermined control signal; An effect is obtained that a mode for performing a high-speed operation can be selected.

【0053】(11)上記所定の制御信号を電源電圧が
予め決められた所定電圧以上のとき形成するものとする
ことにより、高電源電圧では素子の劣化を防止させ、低
電源電圧では高速動作を実現できるという効果が得られ
る。
(11) By forming the predetermined control signal when the power supply voltage is equal to or higher than a predetermined voltage, deterioration of the element is prevented at a high power supply voltage, and high-speed operation is performed at a low power supply voltage. The effect that it can be realized is obtained.

【0054】以上本発明者よりなされた発明を実施例に
基づき具体的に説明したが、本願発明は前記実施例に限
定されるものではなく、その要旨を逸脱しない範囲で種
々変更可能であることはいうまでもない。例えば、出力
バッファの2つのMOSFETは、双方とも本発明に係
る図1のような素子構造のものを用いるものであるが、
片方の出力MOSFETのみ適用してもよい。例えば、
図3の回路において、電源電圧VCC側の出力MOSF
ETQ3は、前記図1のような構造の素子を用い、接地
電位VSS側の出力MOSFETQ1は、図8のような
構造の素子を用いるものであってもよい。この場合に、
簡単な構成で電源電圧VCCに対応したハイレベルの出
力信号を受けることができる出力回路ないしドライバを
得ることができる。この発明は、MOSFETを用いて
構成される各種半導体集積回路装置に広く利用すること
ができる。
Although the invention made by the inventor has been specifically described based on the embodiment, the invention of the present application is not limited to the embodiment, and various modifications can be made without departing from the gist of the invention. Needless to say. For example, the two MOSFETs of the output buffer both have an element structure as shown in FIG. 1 according to the present invention.
Only one output MOSFET may be applied. For example,
In the circuit of FIG. 3, the output MOSF on the power supply voltage VCC side
The ETQ3 may use an element having a structure as shown in FIG. 1, and the output MOSFET Q1 on the ground potential VSS side may use an element having a structure as shown in FIG. In this case,
An output circuit or driver capable of receiving a high-level output signal corresponding to the power supply voltage VCC with a simple configuration can be obtained. INDUSTRIAL APPLICABILITY The present invention can be widely used for various semiconductor integrated circuit devices configured using MOSFETs.

【0055】[0055]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、下
記の通りである。すなわち、ソース,ドレイン領域に挟
まれた半導体基板上にゲート絶縁膜を介して第1ゲート
電極を形成し、上記第1ゲート電極上に絶縁膜を介して
第2ゲート電極を形成してMOSFETを構成し、制御
回路により上記MOSFETをオン状態にさせるとき、
第1のタイミングで上記第1ゲートに第1の電圧を印加
し、上記第1のタイミングより遅れた第2のタイミング
で上記第2のゲートに第2の電圧を印加して、上記第1
と第2のゲート電極間の容量結合により上記第1のゲー
ト電極の電圧を上記第1と第2の電圧を加えた電圧にす
ることにより、ゲート,ソース間に電源電圧以上の大電
圧を供給することができ、素子の微細化と高信頼性を図
りつつ、ドライブ能力を大きくして高速化をを図ること
ができる。
The effects obtained by typical ones of the inventions disclosed in the present application will be briefly described as follows. That is, a first gate electrode is formed on a semiconductor substrate sandwiched between source and drain regions via a gate insulating film, and a second gate electrode is formed on the first gate electrode via an insulating film to form a MOSFET. When the MOSFET is turned on by the control circuit,
A first voltage is applied to the first gate at a first timing, and a second voltage is applied to the second gate at a second timing that is later than the first timing.
A large voltage equal to or higher than the power supply voltage is supplied between the gate and the source by setting the voltage of the first gate electrode to a voltage obtained by adding the first and second voltages by capacitive coupling between the gate and the second gate electrode. It is possible to increase the drive capability and increase the speed while miniaturizing the element and achieving high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る半導体集積回路装置に設けられ
るMOSFETの一実施例を示す構成図である。
FIG. 1 is a configuration diagram showing one embodiment of a MOSFET provided in a semiconductor integrated circuit device according to the present invention.

【図2】この発明に係るMOSFETを用いて構成され
た出力回路の一実施例を示す回路図である。
FIG. 2 is a circuit diagram showing one embodiment of an output circuit configured using a MOSFET according to the present invention.

【図3】図2の出力回路の動作の一例を説明するための
波形図である。
FIG. 3 is a waveform chart for explaining an example of the operation of the output circuit of FIG. 2;

【図4】この発明に係るMOSFETを用いて構成され
た出力回路の他の一実施例を示す回路図である。
FIG. 4 is a circuit diagram showing another embodiment of an output circuit configured using the MOSFET according to the present invention.

【図5】図3の出力回路の動作の一例を説明するための
波形図である。
FIG. 5 is a waveform chart for explaining an example of the operation of the output circuit of FIG. 3;

【図6】この発明に係る半導体記憶装置の一実施例を示
すブロック図である。
FIG. 6 is a block diagram showing one embodiment of a semiconductor memory device according to the present invention.

【図7】この発明に係る半導体記憶装置の他の一実施例
を示すブロック図である。
FIG. 7 is a block diagram showing another embodiment of the semiconductor memory device according to the present invention.

【図8】この発明に係る半導体集積回路装置に用いられ
るMOSFETの他の一実施例を示す構成図である。
FIG. 8 is a configuration diagram showing another embodiment of the MOSFET used in the semiconductor integrated circuit device according to the present invention.

【符号の説明】[Explanation of symbols]

Q1〜Q4…MOSFET、S…ソース、D…ドレイ
ン、FG…第1層目ポリシリコン、SG…第2層目ポリ
シリコン。
Q1 to Q4: MOSFET, S: source, D: drain, FG: first layer polysilicon, SG: second layer polysilicon.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 27/10 481 H01L 27/08 321K 491 27/10 434 29/78 29/78 301G 21/8247 371 29/788 H03K 19/094 A 29/792 H03K 19/0944 (72)発明者 高橋 正人 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体グループ内 Fターム(参考) 5F001 AA02 AB08 AD12 AG40 5F040 DB03 EA08 EC00 EC07 EC19 EC26 5F048 AA01 AA03 AA08 AB01 AB03 AB04 AB07 AC03 BB01 BB05 5F083 EP02 EP23 GA12 GA23 KA01 LA07 LA10 PR43 PR44 PR53 PR54 5J056 AA03 BB02 BB46 DD13 DD28 DD51 EE03 EE06 FF07 FF09 HH00 KK01 KK02 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01L 27/10 481 H01L 27/08 321K 491 27/10 434 29/78 29/78 301G 21/8247 371 29/788 H03K 19/094 A 29/792 H03K 19/0944 (72) Inventor Masato Takahashi 5-20-1, Josuihonmachi, Kodaira-shi, Tokyo F-term in the Semiconductor Group, Hitachi, Ltd. 5F001 AA02 AB08 AD12 AG40 5F040 DB03 EA08 EC00 EC07 EC19 EC26 5F048 AA01 AA03 AA08 AB01 AB03 AB04 AB07 AC03 BB01 BB05 5F083 EP02 EP23 GA12 GA23 KA01 LA07 LA10 PR43 PR44 PR53 PR54 5J056 AA03 BB02 BB46 DD13 DD28 DD51 EE03 EK06 FF07 KK

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 一対のソース,ドレイン領域に挟まれた
半導体基板上にゲート絶縁膜を介して形成された第1ゲ
ート電極と、上記第1ゲート電極上に絶縁膜を介して形
成された第2ゲート電極とを有するMOSFETと、 上記MOSFETをオン状態にさせるとき、第1のタイ
ミングで上記第1ゲートに第1の電圧を印加し、上記第
1のタイミングより遅れた第2のタイミングで上記第2
のゲートに第2の電圧を印加して、上記第1と第2のゲ
ート電極間の容量結合により上記第1のゲート電極の電
圧を上記第1と第2の電圧を加えた電圧にする制御回路
とを備えてなることを特徴とする半導体集積回路装置。
A first gate electrode formed on a semiconductor substrate sandwiched between a pair of source and drain regions via a gate insulating film; and a first gate electrode formed on the first gate electrode via an insulating film. A MOSFET having two gate electrodes; and when the MOSFET is turned on, applying a first voltage to the first gate at a first timing, and applying a first voltage to the first gate at a second timing later than the first timing. Second
A second voltage is applied to the gate of the first gate electrode, and the voltage of the first gate electrode is set to a voltage obtained by adding the first and second voltages by capacitive coupling between the first and second gate electrodes. A semiconductor integrated circuit device comprising a circuit.
【請求項2】 請求項1において、 上記第1ゲート電極は、第1層目ポリシリコン層により
構成され、 上記第2ゲート電極は、少なくとも上記MOSFETの
チャンネル領域上の上記第1層目ポリシリコン層と上記
絶縁膜を介してオーバーラップするよう形成された第2
層目ポリシリコン層により構成されることを特徴とする
半導体集積回路装置。
2. The first gate electrode according to claim 1, wherein the first gate electrode is formed of a first polysilicon layer, and the second gate electrode is at least a first polysilicon layer on a channel region of the MOSFET. A second layer formed so as to overlap the layer with the insulating film interposed therebetween.
A semiconductor integrated circuit device comprising a polysilicon layer.
【請求項3】 請求項1又は2において、 上記制御回路は、ゲートに定常的にアクティブレベルの
電圧が印加された制御用MOSFETを含み、 上記MOSFETの第1ゲートには上記制御用MOSF
ETを介して上記第1のタイミングでアクティブレベル
にされる第1の入力信号が供給され、上記第2ゲート電
極には、上記第1の入力信号により遅れた第2のタイミ
ングでアクティブレベルにされる第2の入力信号が供給
されることを特徴とする半導体集積回路装置。
3. The control circuit according to claim 1, wherein the control circuit includes a control MOSFET having a gate to which an active-level voltage is constantly applied.
A first input signal that is set to an active level at the first timing is supplied via ET, and the second gate electrode is set to an active level at a second timing that is delayed by the first input signal. A second input signal supplied thereto.
【請求項4】 請求項1ないし3のいずれかにおいて、 上記MOSFETは、Nチャンネル型MOSFETとP
チャンネル型MOSFETからなるCMOS回路を構成
するものであり、 上記Nチャンネル型MOSFETとPチャンネル型MO
SFETのそれぞれに上記制御回路が設けられてなるこ
とを特徴とする半導体集積回路装置。
4. The device according to claim 1, wherein the MOSFET is an N-channel MOSFET and a P-channel MOSFET.
The N-channel MOSFET and the P-channel MOSFET constitute a CMOS circuit composed of a channel MOSFET.
A semiconductor integrated circuit device, wherein each of the SFETs is provided with the control circuit.
【請求項5】 請求項4において、 上記CMOS回路は、外部端子へ出力信号を送出する出
力バッファを構成するものであることを特徴とする半導
体集積回路装置。
5. The semiconductor integrated circuit device according to claim 4, wherein said CMOS circuit forms an output buffer for transmitting an output signal to an external terminal.
【請求項6】 請求項1ないし3のいずれかにおいて、 上記MOSFETは、電源電圧と回路の接地電位との間
に直列接続されて相補的に動作させられる一対のNチャ
ンネル型MOSFETからなり、 上記一対のNチャンネル型MOSFETのそれぞれに上
記制御回路が設けられてなることを特徴とする半導体集
積回路装置。
6. The MOSFET according to claim 1, wherein the MOSFET comprises a pair of N-channel MOSFETs connected in series between a power supply voltage and a ground potential of the circuit and operated complementarily. A semiconductor integrated circuit device, wherein the control circuit is provided for each of a pair of N-channel MOSFETs.
【請求項7】 請求項6において、 複数のワード線と複数のビット線の交点にメモリセルが
設けられたメモリアレイを更に備え、 上記一対のNチャンネル型MOSFETは、上記メモリ
アレイのワード線の選択回路を構成することを特徴とす
る半導体集積回路装置。
7. The memory array according to claim 6, further comprising a memory array provided with a memory cell at an intersection of a plurality of word lines and a plurality of bit lines, wherein the pair of N-channel MOSFETs is connected to a word line of the memory array. A semiconductor integrated circuit device comprising a selection circuit.
【請求項8】 請求項7において、 上記メモリセルは、上記MOSFETと同じ製造プロセ
スで形成された第1ゲート電極と第2ゲート電極とを備
え、上記第1ゲート電極をフローティングゲートとして
情報電荷を蓄積するものであり、上記第2ゲート電極
は、コントロールゲートとして上記ワード線に接続され
ることを特徴とする半導体集積回路装置。
8. The memory cell according to claim 7, wherein the memory cell includes a first gate electrode and a second gate electrode formed by the same manufacturing process as the MOSFET, and stores the information charge using the first gate electrode as a floating gate. A semiconductor integrated circuit device for accumulating data, wherein the second gate electrode is connected to the word line as a control gate.
【請求項9】 請求項1ないし8のいずれかにおいて、 上記MOSFETと同じ製造プロセスで形成された第1
ゲート電極と第2ゲート電極とを備え、かつ、上記第1
ゲート電極と第2ゲート電極とを電気的に接続して1つ
のゲート電極として用いるMOSFETを更に備えてな
ることを特徴とする半導体集積回路装置。
9. The method according to claim 1, wherein the first MOSFET is formed by the same manufacturing process as the MOSFET.
A gate electrode and a second gate electrode;
A semiconductor integrated circuit device, further comprising a MOSFET electrically connected to a gate electrode and a second gate electrode and used as one gate electrode.
【請求項10】 請求項1において、 所定の制御信号により、上記第1のゲートと第2のゲー
トに同じ入力信号を供給する回路を更に備えてなること
を特徴とする半導体集積回路装置。
10. The semiconductor integrated circuit device according to claim 1, further comprising a circuit for supplying the same input signal to the first gate and the second gate according to a predetermined control signal.
【請求項11】 請求項10において、 上記所定の制御信号は、電源電圧が予め決められた所定
電圧以上のとき形成さるものであることを特徴とする半
導体集積回路装置。
11. The semiconductor integrated circuit device according to claim 10, wherein the predetermined control signal is formed when a power supply voltage is equal to or higher than a predetermined voltage.
JP24237299A 1999-08-30 1999-08-30 Semiconductor integrated circuit device Pending JP2001068558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24237299A JP2001068558A (en) 1999-08-30 1999-08-30 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24237299A JP2001068558A (en) 1999-08-30 1999-08-30 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JP2001068558A true JP2001068558A (en) 2001-03-16

Family

ID=17088202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24237299A Pending JP2001068558A (en) 1999-08-30 1999-08-30 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP2001068558A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043740A (en) * 2003-02-12 2007-02-15 Semiconductor Energy Lab Co Ltd Semiconductor device, electronic apparatus and method for driving semiconductor device
US7528643B2 (en) 2003-02-12 2009-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device having the same, and driving method of the same
US8541879B2 (en) 2007-12-13 2013-09-24 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US8549455B2 (en) 2007-08-02 2013-10-01 Tela Innovations, Inc. Methods for cell phasing and placement in dynamic array architecture and implementation of the same
US8552509B2 (en) 2008-03-13 2013-10-08 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with other transistors positioned between cross-coupled transistors
US8653857B2 (en) 2006-03-09 2014-02-18 Tela Innovations, Inc. Circuitry and layouts for XOR and XNOR logic
US8658542B2 (en) 2006-03-09 2014-02-25 Tela Innovations, Inc. Coarse grid design methods and structures
US8661392B2 (en) 2009-10-13 2014-02-25 Tela Innovations, Inc. Methods for cell boundary encroachment and layouts implementing the Same
US8667443B2 (en) 2007-03-05 2014-03-04 Tela Innovations, Inc. Integrated circuit cell library for multiple patterning
US8680626B2 (en) 2007-10-26 2014-03-25 Tela Innovations, Inc. Methods, structures, and designs for self-aligning local interconnects used in integrated circuits
US8756551B2 (en) 2007-08-02 2014-06-17 Tela Innovations, Inc. Methods for designing semiconductor device with dynamic array section
US8759985B2 (en) 2008-03-27 2014-06-24 Tela Innovations, Inc. Methods for multi-wire routing and apparatus implementing same
US8823062B2 (en) 2006-03-09 2014-09-02 Tela Innovations, Inc. Integrated circuit with offset line end spacings in linear gate electrode level
JP2014523659A (en) * 2011-06-01 2014-09-11 ピクストロニクス,インコーポレイテッド MEMS display pixel control circuit and method
US8839175B2 (en) 2006-03-09 2014-09-16 Tela Innovations, Inc. Scalable meta-data objects
US8863063B2 (en) 2009-05-06 2014-10-14 Tela Innovations, Inc. Finfet transistor circuit
US9035359B2 (en) 2006-03-09 2015-05-19 Tela Innovations, Inc. Semiconductor chip including region including linear-shaped conductive structures forming gate electrodes and having electrical connection areas arranged relative to inner region between transistors of different types and associated methods
US9122832B2 (en) 2008-08-01 2015-09-01 Tela Innovations, Inc. Methods for controlling microloading variation in semiconductor wafer layout and fabrication
US9159627B2 (en) 2010-11-12 2015-10-13 Tela Innovations, Inc. Methods for linewidth modification and apparatus implementing the same
US9202779B2 (en) 2008-01-31 2015-12-01 Tela Innovations, Inc. Enforcement of semiconductor structure regularity for localized transistors and interconnect
US9230910B2 (en) 2006-03-09 2016-01-05 Tela Innovations, Inc. Oversized contacts and vias in layout defined by linearly constrained topology
US9563733B2 (en) 2009-05-06 2017-02-07 Tela Innovations, Inc. Cell circuit and layout with linear finfet structures
US9754878B2 (en) 2006-03-09 2017-09-05 Tela Innovations, Inc. Semiconductor chip including a chip level based on a layout that includes both regular and irregular wires

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043740A (en) * 2003-02-12 2007-02-15 Semiconductor Energy Lab Co Ltd Semiconductor device, electronic apparatus and method for driving semiconductor device
US7528643B2 (en) 2003-02-12 2009-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device having the same, and driving method of the same
JP4732294B2 (en) * 2003-02-12 2011-07-27 株式会社半導体エネルギー研究所 Semiconductor device
US8258847B2 (en) 2003-02-12 2012-09-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device having the same, and driving method of the same
JP2014239551A (en) * 2003-02-12 2014-12-18 株式会社半導体エネルギー研究所 Semiconductor device
JP2016034150A (en) * 2003-02-12 2016-03-10 株式会社半導体エネルギー研究所 Semiconductor device, display device, module and electronic apparatus
JP2021013191A (en) * 2003-02-12 2021-02-04 株式会社半導体エネルギー研究所 Liquid crystal display device
JP2016178692A (en) * 2003-02-12 2016-10-06 株式会社半導体エネルギー研究所 Semiconductor device, display device, module and electronic apparatus
US8786349B2 (en) 2003-02-12 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device having the same, and driving method of the same
US9673825B2 (en) 2006-03-09 2017-06-06 Tela Innovations, Inc. Circuitry and layouts for XOR and XNOR logic
US8839175B2 (en) 2006-03-09 2014-09-16 Tela Innovations, Inc. Scalable meta-data objects
US10186523B2 (en) 2006-03-09 2019-01-22 Tela Innovations, Inc. Semiconductor chip having region including gate electrode features formed in part from rectangular layout shapes on gate horizontal grid and first-metal structures formed in part from rectangular layout shapes on at least eight first-metal gridlines of first-metal vertical grid
US10141334B2 (en) 2006-03-09 2018-11-27 Tela Innovations, Inc. Semiconductor chip including region having rectangular-shaped gate structures and first-metal structures
US10141335B2 (en) 2006-03-09 2018-11-27 Tela Innovations, Inc. Semiconductor CIP including region having rectangular-shaped gate structures and first metal structures
US8921896B2 (en) 2006-03-09 2014-12-30 Tela Innovations, Inc. Integrated circuit including linear gate electrode structures having different extension distances beyond contact
US9917056B2 (en) 2006-03-09 2018-03-13 Tela Innovations, Inc. Coarse grid design methods and structures
US8653857B2 (en) 2006-03-09 2014-02-18 Tela Innovations, Inc. Circuitry and layouts for XOR and XNOR logic
US8658542B2 (en) 2006-03-09 2014-02-25 Tela Innovations, Inc. Coarse grid design methods and structures
US8946781B2 (en) 2006-03-09 2015-02-03 Tela Innovations, Inc. Integrated circuit including gate electrode conductive structures with different extension distances beyond contact
US9230910B2 (en) 2006-03-09 2016-01-05 Tela Innovations, Inc. Oversized contacts and vias in layout defined by linearly constrained topology
US9905576B2 (en) 2006-03-09 2018-02-27 Tela Innovations, Inc. Semiconductor chip including region having rectangular-shaped gate structures and first metal structures
US9859277B2 (en) 2006-03-09 2018-01-02 Tela Innovations, Inc. Methods, structures, and designs for self-aligning local interconnects used in integrated circuits
US9240413B2 (en) 2006-03-09 2016-01-19 Tela Innovations, Inc. Methods, structures, and designs for self-aligning local interconnects used in integrated circuits
US9009641B2 (en) 2006-03-09 2015-04-14 Tela Innovations, Inc. Circuits with linear finfet structures
US9754878B2 (en) 2006-03-09 2017-09-05 Tela Innovations, Inc. Semiconductor chip including a chip level based on a layout that includes both regular and irregular wires
US9741719B2 (en) 2006-03-09 2017-08-22 Tela Innovations, Inc. Methods, structures, and designs for self-aligning local interconnects used in integrated circuits
US9711495B2 (en) 2006-03-09 2017-07-18 Tela Innovations, Inc. Oversized contacts and vias in layout defined by linearly constrained topology
US9035359B2 (en) 2006-03-09 2015-05-19 Tela Innovations, Inc. Semiconductor chip including region including linear-shaped conductive structures forming gate electrodes and having electrical connection areas arranged relative to inner region between transistors of different types and associated methods
US10230377B2 (en) 2006-03-09 2019-03-12 Tela Innovations, Inc. Circuitry and layouts for XOR and XNOR logic
US8952425B2 (en) 2006-03-09 2015-02-10 Tela Innovations, Inc. Integrated circuit including at least four linear-shaped conductive structures having extending portions of different length
US9336344B2 (en) 2006-03-09 2016-05-10 Tela Innovations, Inc. Coarse grid design methods and structures
US9425145B2 (en) 2006-03-09 2016-08-23 Tela Innovations, Inc. Oversized contacts and vias in layout defined by linearly constrained topology
US9425272B2 (en) 2006-03-09 2016-08-23 Tela Innovations, Inc. Semiconductor chip including integrated circuit including four transistors of first transistor type and four transistors of second transistor type with electrical connections between various transistors and methods for manufacturing the same
US9589091B2 (en) 2006-03-09 2017-03-07 Tela Innovations, Inc. Scalable meta-data objects
US10217763B2 (en) 2006-03-09 2019-02-26 Tela Innovations, Inc. Semiconductor chip having region including gate electrode features of rectangular shape on gate horizontal grid and first-metal structures of rectangular shape on at least eight first-metal gridlines of first-metal vertical grid
US8921897B2 (en) 2006-03-09 2014-12-30 Tela Innovations, Inc. Integrated circuit with gate electrode conductive structures having offset ends
US9425273B2 (en) 2006-03-09 2016-08-23 Tela Innovations, Inc. Semiconductor chip including integrated circuit including at least five gate level conductive structures having particular spatial and electrical relationship and method for manufacturing the same
US9443947B2 (en) 2006-03-09 2016-09-13 Tela Innovations, Inc. Semiconductor chip including region having integrated circuit transistor gate electrodes formed by various conductive structures of specified shape and position and method for manufacturing the same
US8823062B2 (en) 2006-03-09 2014-09-02 Tela Innovations, Inc. Integrated circuit with offset line end spacings in linear gate electrode level
US9633987B2 (en) 2007-03-05 2017-04-25 Tela Innovations, Inc. Integrated circuit cell library for multiple patterning
US8667443B2 (en) 2007-03-05 2014-03-04 Tela Innovations, Inc. Integrated circuit cell library for multiple patterning
US10074640B2 (en) 2007-03-05 2018-09-11 Tela Innovations, Inc. Integrated circuit cell library for multiple patterning
US8966424B2 (en) 2007-03-07 2015-02-24 Tela Innovations, Inc. Methods for cell phasing and placement in dynamic array architecture and implementation of the same
US9595515B2 (en) 2007-03-07 2017-03-14 Tela Innovations, Inc. Semiconductor chip including integrated circuit defined within dynamic array section
US9424387B2 (en) 2007-03-07 2016-08-23 Tela Innovations, Inc. Methods for cell phasing and placement in dynamic array architecture and implementation of the same
US9910950B2 (en) 2007-03-07 2018-03-06 Tela Innovations, Inc. Methods for cell phasing and placement in dynamic array architecture and implementation of the same
US8759882B2 (en) 2007-08-02 2014-06-24 Tela Innovations, Inc. Semiconductor device with dynamic array sections defined and placed according to manufacturing assurance halos
US8756551B2 (en) 2007-08-02 2014-06-17 Tela Innovations, Inc. Methods for designing semiconductor device with dynamic array section
US8549455B2 (en) 2007-08-02 2013-10-01 Tela Innovations, Inc. Methods for cell phasing and placement in dynamic array architecture and implementation of the same
US10734383B2 (en) 2007-10-26 2020-08-04 Tela Innovations, Inc. Methods, structures, and designs for self-aligning local interconnects used in integrated circuits
US8680626B2 (en) 2007-10-26 2014-03-25 Tela Innovations, Inc. Methods, structures, and designs for self-aligning local interconnects used in integrated circuits
US10461081B2 (en) 2007-12-13 2019-10-29 Tel Innovations, Inc. Super-self-aligned contacts and method for making the same
US8541879B2 (en) 2007-12-13 2013-09-24 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US9281371B2 (en) 2007-12-13 2016-03-08 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US8951916B2 (en) 2007-12-13 2015-02-10 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US9818747B2 (en) 2007-12-13 2017-11-14 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US9202779B2 (en) 2008-01-31 2015-12-01 Tela Innovations, Inc. Enforcement of semiconductor structure regularity for localized transistors and interconnect
US9530734B2 (en) 2008-01-31 2016-12-27 Tela Innovations, Inc. Enforcement of semiconductor structure regularity for localized transistors and interconnect
US8742463B2 (en) 2008-03-13 2014-06-03 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with outer positioned gate contacts
US8592872B2 (en) 2008-03-13 2013-11-26 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors with two transistors of different type having gate electrodes formed by common gate level feature with shared diffusion regions on opposite sides of common gate level feature
US9117050B2 (en) 2008-03-13 2015-08-25 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with gate contact position and offset specifications
US8552509B2 (en) 2008-03-13 2013-10-08 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with other transistors positioned between cross-coupled transistors
US8552508B2 (en) 2008-03-13 2013-10-08 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with shared diffusion regions on opposite sides of two-transistor-forming gate level feature and electrical connection of transistor gates through linear interconnect conductors in single interconnect layer
US8872283B2 (en) 2008-03-13 2014-10-28 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with shared diffusion regions on opposite sides of two-transistor-forming gate level feature
US9208279B2 (en) 2008-03-13 2015-12-08 Tela Innovations, Inc. Semiconductor chip including digital logic circuit including linear-shaped conductive structures having electrical connection areas located within inner region between transistors of different type and associated methods
US9213792B2 (en) 2008-03-13 2015-12-15 Tela Innovations, Inc. Semiconductor chip including digital logic circuit including at least six transistors with some transistors forming cross-coupled transistor configuration and associated methods
US8866197B2 (en) 2008-03-13 2014-10-21 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with at least two gate electrodes electrically connected to each other through another transistor forming gate level feature
US10727252B2 (en) 2008-03-13 2020-07-28 Tela Innovations, Inc. Semiconductor chip including integrated circuit having cross-coupled transistor configuration and method for manufacturing the same
US10658385B2 (en) 2008-03-13 2020-05-19 Tela Innovations, Inc. Cross-coupled transistor circuit defined on four gate electrode tracks
US9245081B2 (en) 2008-03-13 2016-01-26 Tela Innovations, Inc. Semiconductor chip including digital logic circuit including at least nine linear-shaped conductive structures collectively forming gate electrodes of at least six transistors with some transistors forming cross-coupled transistor configuration and associated methods
US10651200B2 (en) 2008-03-13 2020-05-12 Tela Innovations, Inc. Cross-coupled transistor circuit defined on three gate electrode tracks
US8853793B2 (en) 2008-03-13 2014-10-07 Tela Innovations, Inc. Integrated circuit including gate electrode level region including cross-coupled transistors having gate contacts located over inner portion of gate electrode level region and offset gate level feature line ends
US8853794B2 (en) 2008-03-13 2014-10-07 Tela Innovations, Inc. Integrated circuit within semiconductor chip including cross-coupled transistor configuration
US8847331B2 (en) 2008-03-13 2014-09-30 Tela Innovations, Inc. Semiconductor chip including region having cross-coupled transistor configuration with offset electrical connection areas on gate electrode forming conductive structures and at least two different inner extension distances of gate electrode forming conductive structures
US8558322B2 (en) 2008-03-13 2013-10-15 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with at least two gate electrodes electrically connected to each other through gate level feature
US8847329B2 (en) 2008-03-13 2014-09-30 Tela Innovations, Inc. Cross-coupled transistor circuit defined having diffusion regions of common node on opposing sides of same gate electrode track with at least two non-inner positioned gate contacts
US8835989B2 (en) 2008-03-13 2014-09-16 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with gate electrode placement specifications
US8836045B2 (en) 2008-03-13 2014-09-16 Tela Innovations, Inc. Cross-coupled transistor circuit having diffusion regions of common node on opposing sides of same gate electrode track
US8564071B2 (en) 2008-03-13 2013-10-22 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with at least two different gate level feature extensions beyond contact
US8816402B2 (en) 2008-03-13 2014-08-26 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with gate level feature layout channel including single transistor
US8785979B2 (en) 2008-03-13 2014-07-22 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with two inside positioned gate contacts and two outside positioned gate contacts and electrical connection of cross-coupled transistors through same interconnect layer
US8785978B2 (en) 2008-03-13 2014-07-22 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with electrical connection of cross-coupled transistors through same interconnect layer
US8569841B2 (en) 2008-03-13 2013-10-29 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with at least one gate level feature extending into adjacent gate level feature layout channel
US9536899B2 (en) 2008-03-13 2017-01-03 Tela Innovations, Inc. Semiconductor chip including integrated circuit having cross-coupled transistor configuration and method for manufacturing the same
US8575706B2 (en) 2008-03-13 2013-11-05 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with at least two different gate level features inner extensions beyond gate electrode
US8772839B2 (en) 2008-03-13 2014-07-08 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with four inside positioned gate contacts having offset and aligned relationships and electrical connection of transistor gates through linear interconnect conductors in single interconnect layer
US8581303B2 (en) 2008-03-13 2013-11-12 Tela Innovations, Inc. Integrated circuit including cross-coupled trasistors having gate electrodes formed within gate level feature layout channels with four inside positioned gate contacts having offset relationships and electrical connection of cross-coupled transistors through same interconnect layer
US8742462B2 (en) 2008-03-13 2014-06-03 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with gate contact position specifications
US8735944B2 (en) 2008-03-13 2014-05-27 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with serially connected transistors
US8581304B2 (en) 2008-03-13 2013-11-12 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with four inside positioned gate contacts having offset and aligned relationships
US8735995B2 (en) 2008-03-13 2014-05-27 Tela Innovations, Inc. Cross-coupled transistor circuit defined on three gate electrode tracks with diffusion regions of common node on opposing sides of same gate electrode track
US8729643B2 (en) 2008-03-13 2014-05-20 Tela Innovations, Inc. Cross-coupled transistor circuit including offset inner gate contacts
US8729606B2 (en) 2008-03-13 2014-05-20 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels
US8587034B2 (en) 2008-03-13 2013-11-19 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with four inside positioned gate contacts and electrical connection of transistor gates through linear interconnect conductors in single interconnect layer
US8680583B2 (en) 2008-03-13 2014-03-25 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within at least nine gate level feature layout channels
US8669594B2 (en) 2008-03-13 2014-03-11 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within at least twelve gate level feature layout channels
US9871056B2 (en) 2008-03-13 2018-01-16 Tela Innovations, Inc. Semiconductor chip including integrated circuit having cross-coupled transistor configuration and method for manufacturing the same
US8669595B2 (en) 2008-03-13 2014-03-11 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with gate contact position, alignment, and offset specifications
US10020321B2 (en) 2008-03-13 2018-07-10 Tela Innovations, Inc. Cross-coupled transistor circuit defined on two gate electrode tracks
US9081931B2 (en) 2008-03-13 2015-07-14 Tela Innovations, Inc. Cross-coupled transistor circuit having diffusion regions of common node on opposing sides of same gate electrode track and gate node connection through single interconnect layer
US9779200B2 (en) 2008-03-27 2017-10-03 Tela Innovations, Inc. Methods for multi-wire routing and apparatus implementing same
US8759985B2 (en) 2008-03-27 2014-06-24 Tela Innovations, Inc. Methods for multi-wire routing and apparatus implementing same
US9390215B2 (en) 2008-03-27 2016-07-12 Tela Innovations, Inc. Methods for multi-wire routing and apparatus implementing same
US9122832B2 (en) 2008-08-01 2015-09-01 Tela Innovations, Inc. Methods for controlling microloading variation in semiconductor wafer layout and fabrication
US10446536B2 (en) 2009-05-06 2019-10-15 Tela Innovations, Inc. Cell circuit and layout with linear finfet structures
US9563733B2 (en) 2009-05-06 2017-02-07 Tela Innovations, Inc. Cell circuit and layout with linear finfet structures
US8863063B2 (en) 2009-05-06 2014-10-14 Tela Innovations, Inc. Finfet transistor circuit
US9269702B2 (en) 2009-10-13 2016-02-23 Tela Innovations, Inc. Methods for cell boundary encroachment and layouts implementing the same
US8661392B2 (en) 2009-10-13 2014-02-25 Tela Innovations, Inc. Methods for cell boundary encroachment and layouts implementing the Same
US9530795B2 (en) 2009-10-13 2016-12-27 Tela Innovations, Inc. Methods for cell boundary encroachment and semiconductor devices implementing the same
US9159627B2 (en) 2010-11-12 2015-10-13 Tela Innovations, Inc. Methods for linewidth modification and apparatus implementing the same
US9704845B2 (en) 2010-11-12 2017-07-11 Tela Innovations, Inc. Methods for linewidth modification and apparatus implementing the same
JP2014523659A (en) * 2011-06-01 2014-09-11 ピクストロニクス,インコーポレイテッド MEMS display pixel control circuit and method
US9235047B2 (en) 2011-06-01 2016-01-12 Pixtronix, Inc. MEMS display pixel control circuits and methods

Similar Documents

Publication Publication Date Title
JP2001068558A (en) Semiconductor integrated circuit device
US5335200A (en) High voltage negative charge pump with low voltage CMOS transistors
US6643183B2 (en) Channel-erase nonvolatile semiconductor memory device
US5394372A (en) Semiconductor memory device having charge-pump system with improved oscillation means
US6456541B2 (en) Booster circuit for raising voltage by sequentially transferring charges from input terminals of booster units to output terminals thereof in response to clock signals having different phases
US7372739B2 (en) High voltage generation and regulation circuit in a memory device
US5532971A (en) Nonvolatile semiconductor memory having enhanced speed for erasing and programming
US6288941B1 (en) Electrically erasable semiconductor non-volatile memory device having memory cell array divided into memory blocks
US6781890B2 (en) Nonvolatile memory and processing system
JPH09233699A (en) Pcmcia power interface device and its operating method
EP0280883B1 (en) Nonvolatile semiconductor memory
JP3192344B2 (en) Semiconductor storage device
US6608782B2 (en) Booster circuit capable of achieving a stable pump operation for nonvolatile semiconductor memory device
US5930175A (en) Voltage pump switch
US7382177B2 (en) Voltage charge pump and method of operating the same
US6738292B2 (en) Nonvolatile semiconductor storage device
US4905314A (en) Semiconductor integrated circuit device having an object circuit to which output voltages of the sub- and main booster circuits are applied
WO1997022971A1 (en) A negative voltage switch architecture for a nonvolatile memory
WO1997022971A9 (en) A negative voltage switch architecture for a nonvolatile memory
EP1627392B1 (en) Circuit configuration for a current switch of a bit/word line of a mram device
US6456559B1 (en) Semiconductor integrated circuit
JPS6027118B2 (en) semiconductor memory device
JP3097200B2 (en) Semiconductor device
JP3718040B2 (en) Output voltage generator circuit device
US6025748A (en) Precharge device for semiconductor integrated circuit device