JP2001062950A - Composite material and manufacture thereof - Google Patents

Composite material and manufacture thereof

Info

Publication number
JP2001062950A
JP2001062950A JP24380299A JP24380299A JP2001062950A JP 2001062950 A JP2001062950 A JP 2001062950A JP 24380299 A JP24380299 A JP 24380299A JP 24380299 A JP24380299 A JP 24380299A JP 2001062950 A JP2001062950 A JP 2001062950A
Authority
JP
Japan
Prior art keywords
core material
composite material
core
resin
foamed resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24380299A
Other languages
Japanese (ja)
Inventor
Koji Motoi
孝治 本居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP24380299A priority Critical patent/JP2001062950A/en
Publication of JP2001062950A publication Critical patent/JP2001062950A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a composition material which is lightweight, and is of a sufficient breaking strength so that the progress of a breaking phenomenon is gradually underway by winding filaments helically around the longer side of a core at a specific angle and integrating both filaments and core in one piece through a foamed resin binder. SOLUTION: In the composite material 10, filaments 2 are wound around the longer side of a core 1 in a helical fashion at an angle of 30-70 deg. and both filaments 2 and core 1 are integrated in one piece through a foamed resin binder 3. The core 1 to be used is an extruded resin molding, a continuously supplied resin concrete of paper. The filament 2 to be used is for example, monofilament, fibrillated fiber or weaving yarn, and is preferably glass fiber or carbon fiber in terms of reinforcing effects. The content of the filament of a surface layer made up of a formed molding 4 in the composite material 10 is preferably 5-40 vol.%. For the foamed resin binder 3, a heat-curable foamed resin is used and especially a polyurethane foam is preferably used as it is of a high mechanical strength and is non-water absorbable due to its nature to form closed cells during foaming.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複合材およびその
製造法に関する。
[0001] The present invention relates to a composite material and a method for producing the same.

【0002】[0002]

【従来の技術】一般に、外観的に天然木材と酷似しかつ
物性的に天然木材と同等以上の性能を示すように繊維強
化された熱硬化性発泡樹脂成形品が、建材、構造部材、
水回り板材等の構造体として、また特に枕木として使用
されている。
2. Description of the Related Art In general, thermosetting foamed resin molded articles which are fiber-reinforced so as to be very similar in appearance to physical wood and exhibit properties equal to or higher than those of natural wood are used for building materials, structural members,
It is used as a structure, such as a water board, and especially as a sleeper.

【0003】従来、熱硬化性発泡樹脂成形品は、例えば
特開平5−138797号公報に開示されているよう
に、板状または棒状の熱硬化性樹脂発泡体からなる芯材
を、表面材によって2面以上で挟んだものであり、表面
材は、長手方向に沿う長繊維によって補強された熱硬化
性発泡樹脂からなるものであった。
Conventionally, a thermosetting foamed resin molded product has a core material made of a plate-like or rod-like thermosetting resin foam, which is formed by a surface material, as disclosed in, for example, JP-A-5-138797. It was sandwiched between two or more surfaces, and the surface material was made of a thermosetting foamed resin reinforced by long fibers along the longitudinal direction.

【0004】一方、長繊維による繊維補強において、
長手方向に対し3次元的に補強する方法としては、FR
P製品で用いられるワインディング技術が存在する。
On the other hand, in fiber reinforcement by long fibers,
As a method of three-dimensionally reinforcing in the longitudinal direction, FR
There are winding techniques used for P products.

【0005】[0005]

【発明が解決しようとする課題】上記の従来の複合材
は、充分な曲げ強度を有してはいるが、破壊応力に至っ
た場合、一方向に揃えられた繊維の方向に平行な方向
に、発泡樹脂表面材や芯材部分で剪断により破壊し、そ
の破壊は、瞬時に発生するために、構造部材としての使
用において、信頼性に乏しいという問題があった。
The above-mentioned conventional composite material has a sufficient bending strength, but when a fracture stress is reached, the composite material in a direction parallel to the direction of the fibers aligned in one direction. The foamed resin surface material and the core material are broken by shearing, and the breakage occurs instantaneously, so that there is a problem in that the reliability is poor when used as a structural member.

【0006】また上記の長繊維のワインディングによ
る繊維補強は、従来よりポリエステル、エポキシ樹脂等
の非発泡性樹脂に対する樹脂強化法として確立されてお
り、発泡樹脂については長繊維の巻付け工程と、発泡工
程との制御が難しく、繊維が局在化するために実用化さ
れていないのが、現状であった。
[0006] Fiber reinforcement by winding long fibers has been established as a method for reinforcing non-foamable resins such as polyester and epoxy resin. At present, it is difficult to control the process and the fiber has been localized, so that it has not been put to practical use.

【0007】本発明は、従来の複合材におけるこのよう
な問題点に着目してなされたものであり、その目的とす
るところは、発泡樹脂が長繊維で3次元的に補強されて
おり、軽量で、充分な破壊強度を有するとともに、破壊
形態が徐々に進行する信頼性の高い複合材を提供するこ
と、およびこのように優れた性質を有する複合材を簡単
に成形することができる、複合材の製造法を提供するこ
とにある。
[0007] The present invention has been made in view of such problems in the conventional composite material, and an object thereof is to reduce the weight of the foamed resin by three-dimensionally reinforcing it with long fibers. A composite material having sufficient fracture strength and providing a highly reliable composite material in which the fracture mode gradually progresses, and a composite material having such excellent properties can be easily formed. It is to provide a manufacturing method of.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1記載の複合材は、芯材の表面に発
泡樹脂バインダと長繊維からなる発泡倍率1.1〜10
倍の発泡成形体が積層された複合材であって、長繊維が
芯材の長手方向に対し30〜70度の角度で螺旋状に巻
き付けられ、発泡樹脂バインダを介して長繊維と芯材と
が一体化されたことを特徴としている。
In order to achieve the above object, a composite material according to claim 1 of the present invention has a foaming ratio of 1.1 to 10 comprising a foamed resin binder and long fibers on the surface of a core material.
A composite material in which double-foamed molded articles are laminated, wherein long fibers are spirally wound at an angle of 30 to 70 degrees with respect to the longitudinal direction of the core material, and the long fibers and the core material are interposed via a foamed resin binder. Are integrated.

【0009】また本発明の請求項2記載の複合材の製造
法は、芯材に対して発泡性樹脂バインダを含浸させた長
繊維樹脂を、芯材の長手方向に対し30〜70度の角度
で螺旋状に巻き付ける工程と、発泡性樹脂バインダを発
泡させる工程とを有し、さらに、その外周に複数回上記
工程を繰り返し、型内に導き賦形させることを特徴とし
ている。
According to a second aspect of the present invention, there is provided a method of manufacturing a composite material, wherein a long fiber resin impregnated with a foamable resin binder is impregnated into a core material at an angle of 30 to 70 degrees with respect to the longitudinal direction of the core material. , And a step of foaming the foamable resin binder. Further, the above steps are repeated a plurality of times on the outer periphery of the foamed resin binder, and the resin is guided into a mold and shaped.

【0010】ここで、発泡性樹脂には、熱硬化性樹脂と
発泡性樹脂粒子を用いることが好ましい。
Here, it is preferable to use a thermosetting resin and foamable resin particles as the foamable resin.

【0011】本発明による複合材の用途としては、例え
ば合成枕木があげられる。
Applications of the composite according to the invention include, for example, synthetic sleepers.

【0012】[0012]

【発明の実施の形態】つぎに、本発明の実施の形態を、
図面を参照して説明する。
Next, an embodiment of the present invention will be described.
This will be described with reference to the drawings.

【0013】まず図4と図5を参照すると、本発明によ
る複合材(10)は、芯材(1) の表面に発泡樹脂バインダ
(3) と長繊維(2) からなる発泡倍率1.1〜10倍の発
泡成形体(4) が積層されたものであって、長繊維(2) が
芯材(1) の長手方向に対し30〜70度の角度で螺旋状
に巻き付けられ、発泡樹脂バインダ(3) を介して長繊維
(2) と芯材(1) とが一体化されたものである。
Referring first to FIGS. 4 and 5, a composite material (10) according to the present invention comprises a foamed resin binder on the surface of a core material (1).
A foam molded product (4) having an expansion ratio of 1.1 to 10 comprising (3) and a long fiber (2) is laminated, and the long fiber (2) extends in the longitudinal direction of the core material (1). On the other hand, it is spirally wound at an angle of 30 to 70 degrees, and is made of long fibers through a foamed resin binder (3).
(2) and the core material (1) are integrated.

【0014】ここで、芯材(1) としては、これを長手方
向に連続供給するため、樹脂を押し出し成形したもの、
レジンコンクリートを連続に供給したもの、紙芯等が挙
げられる。また芯材(1) は中空であっても良い。
Here, the core material (1) is formed by extruding a resin to continuously supply the core material in the longitudinal direction.
Examples thereof include resin concrete supplied continuously, and paper cores. The core (1) may be hollow.

【0015】また長繊維(2) としては、補強繊維として
の機能を有しておれば、その形状は限定されず、例えば
モノフィラメント、フィブリル化(髭状の繊維が突き出
たもの)繊維、織り糸が挙げられ、補強効果の点で、ガ
ラス繊維あるいは炭素繊維が好適である。
The shape of the long fiber (2) is not limited as long as it has a function as a reinforcing fiber. For example, a monofilament, a fibrillated (protruding beard-like fiber) fiber, or a woven yarn may be used. Glass fibers or carbon fibers are preferred in terms of the reinforcing effect.

【0016】上記複合材(10)の発泡成形体(4) よりなる
表面層中の長繊維(2) の占める割合は、とくに限定され
ないが、5〜40容量%が好ましい。ここで、長繊維
(2) の割合が5容量%未満であれば、曲げ強度などの補
強効果がなく、また40容量%を越えると、例えば複合
材(10)を枕木等に使用する際、釘打ち時に繊維の平行な
方向にひび割れが生じる恐れがあるので、好ましくな
い。
The proportion occupied by the long fibers (2) in the surface layer of the composite material (10) composed of the foamed molded product (4) is not particularly limited, but is preferably 5 to 40% by volume. Where the long fiber
If the ratio of (2) is less than 5% by volume, there is no reinforcing effect such as bending strength, and if it exceeds 40% by volume, for example, when the composite material (10) is used for sleepers, etc. It is not preferable because cracks may occur in parallel directions.

【0017】また発泡樹脂バインダ(3) としては、熱硬
化性発泡樹脂であって、硬質または半硬質ポリウレタン
フォーム、フェノールフォーム、低倍率ポリエステルフ
ォームが挙げられる。とくに、ポリウレタンフォーム
は、比較的高い機械強度を有し発泡時に独立気泡を形成
するために非吸水性に優れるという特徴があり、好適に
使用される。
The foamed resin binder (3) is a thermosetting foamed resin, such as a rigid or semi-rigid polyurethane foam, a phenol foam, and a low-magnification polyester foam. In particular, polyurethane foam has a relatively high mechanical strength, and is characterized by being excellent in non-water absorption because of forming closed cells at the time of foaming, and is preferably used.

【0018】上記において、発泡成形体(4) の発泡倍率
が1.1倍未満であれば、重量化により、例えば複合材
(10)を枕木等に使用する際、釘が打ち込み難く、複合材
(10)の木材類似の使用が困難であるので、好ましくな
い。また10倍を越えると、圧縮強度が不足し、打ち込
まれた釘を保持することができず、やはり複合材(10)の
木材類似の使用が困難であるので、好ましくない。
In the above, if the expansion ratio of the foamed molded article (4) is less than 1.1 times, for example, the composite material
When using (10) for sleepers, nails are difficult to drive, and composite materials
It is not preferable because it is difficult to use wood similar to (10). On the other hand, if the ratio exceeds 10 times, the compressive strength is insufficient, and the nail that has been driven cannot be held, and it is difficult to use the composite material (10) like wood, which is not preferable.

【0019】また、長繊維(2) の巻付け角度(θ)が芯
材(4) の長手方向に対して30度未満であれば、複合材
(10)の長手方向曲げ強度が不足し、木材類似の使用が困
難であり、また70度を越えると、曲げに対する複合材
(10)の側面の剪断強度が不足するし、製法においても一
巻きの移動距離が長く、不合理であるので、好ましくな
い。なお、巻付け角度(θ)の最も好ましい範囲は、4
5〜60度である。
If the winding angle (θ) of the long fiber (2) is less than 30 degrees with respect to the longitudinal direction of the core material (4), the composite material
(10) Insufficient bending strength in the longitudinal direction, making it difficult to use wood-like materials.
It is not preferable because the shear strength of the side surface of (10) is insufficient, and the length of movement of one turn is long and irrational in the manufacturing method. The most preferable range of the winding angle (θ) is 4
5 to 60 degrees.

【0020】本発明による複合材(10)は、いわゆるバッ
チ式で、芯材(1) に発泡性樹脂バインダ含浸長繊維(2)
を巻き付けるワインディングを行なって製造しても良い
し、連続的に製造しても構わない。
The composite material (10) according to the present invention is of a so-called batch type, in which a core material (1) has a foamable resin binder impregnated filament (2).
And may be manufactured by winding, or may be manufactured continuously.

【0021】連続式の製造方法としては、図1と図2に
示すように、連続的に送る芯材(1)に対し、ワインダー
(11)から補強繊維となる多数の長繊維(2) を送り出し、
発泡性樹脂を噴霧しながら長繊維(2) 群の中央部に芯材
(1) を導き、発泡性熱硬化性樹脂液が含浸された長繊維
(2) 群でスパイラル状に30〜70度の角度で包囲され
るように連続的にかつ芯材(1) にほとんど張力を発生さ
せない状態で巻き付ける。巻き付けにより発泡性樹脂液
を繊維束内に浸透させる。この場合、液状発泡性樹脂を
噴霧浸透させ、あるいは押し圧ロール等で強制的に樹脂
浸透を促す等の方法により、長繊維(2) に発泡性樹脂を
付着させる。
As a continuous manufacturing method, as shown in FIGS. 1 and 2, a core material (1) fed continuously is fed to a winder.
From (11), send out many long fibers (2) to be reinforcing fibers,
While spraying foaming resin, core material is applied to the center of the long fiber (2) group.
Long fiber impregnated with foaming thermosetting resin liquid derived from (1)
(2) The group is wound continuously and spirally at an angle of 30 to 70 degrees and in a state where little tension is generated around the core material (1). The winding causes the foamable resin liquid to penetrate into the fiber bundle. In this case, the foamable resin is adhered to the long fibers (2) by a method such as spraying and infiltrating the liquid foamable resin or forcibly encouraging the resin penetration with a pressing roll or the like.

【0022】図示のワインダー(11)は、大きい円形軌道
(13)に沿って芯材(1) の周囲を回るように移動して補強
繊維となる多数の長繊維(2) を送り出すロービングボー
ル(12)と、小さい円形軌道(16)に沿って芯材(1) の周囲
を回るように移動して発泡性液状樹脂を噴霧する噴霧機
構(15)と、芯材(1) を長繊維(2) 群の中央部に導くため
の角筒状の型(14)とを具備している。ワインダー(11)は
合計3段配置されており、発泡性樹脂含浸長繊維(2) の
巻き付けにより外形が順次大きくなるために、下流側の
ものほどその中央部の角筒状の型(14)のサイズが、順に
大きいものとなされている。
The illustrated winder (11) has a large circular orbit.
A roving ball (12) that moves around the core (1) along (13) and sends out a number of long fibers (2) that serve as reinforcing fibers, and a core along a small circular orbit (16). A spray mechanism (15) that moves around the material (1) and sprays the foamable liquid resin, and a square tubular shape for guiding the core material (1) to the center of the long fiber (2) group And a mold (14). The winder (11) is arranged in a total of three stages, and the outer shape is gradually increased by winding of the foamed resin impregnated filament (2). Are made larger in order.

【0023】なお、図示のワインダー(11)は3段である
が、ワインダー(11)は4段以上配置されていても、勿論
良い。そして、図示のように、ワインダー(11)による長
繊維(2) の巻回は、例えば1段目は芯材(1) に対し左回
りに、2段目は同右回りに、3段目は同左回りに、とい
うように交互に巻回方向を変えて、重なり合う長繊維
(2)(2)同士が互いに交差するように行なうのが、望まし
い。
Although the illustrated winder (11) has three stages, the winder (11) may of course be arranged in four or more stages. As shown in the figure, the winding of the long fiber (2) by the winder (11) is performed, for example, in the first stage counterclockwise with respect to the core material (1), in the second stage clockwise with the same, and in the third stage. The filaments overlap by changing the winding direction alternately, such as counterclockwise.
(2) It is preferable that (2) be performed so that they cross each other.

【0024】ここで、発泡性樹脂の発泡を制御して、複
合材(10)の製造を容易にするためには、発泡性樹脂とし
て、液状の熱硬化性樹脂と発泡性樹脂ビーズとの混合物
を用いるのが好ましい。この場合、熱硬化性樹脂の硬化
時の加熱温度と、発泡性樹脂ビーズの発泡温度とをほゞ
等しくするのが好ましく、このような液状熱硬化性樹脂
と発泡性樹脂ビーズとの混合物を用いることにより、発
泡性樹脂ビーズの発泡および長繊維(2) のワインディン
グの調整が行ないやすいという利点がある。
Here, in order to control the foaming of the foamable resin and facilitate the production of the composite material (10), a mixture of a liquid thermosetting resin and foamable resin beads is used as the foamable resin. It is preferable to use In this case, it is preferable that the heating temperature at the time of curing the thermosetting resin and the foaming temperature of the foamable resin beads be substantially equal, and a mixture of such a liquid thermosetting resin and foamable resin beads is used. This has the advantage that the foaming of the foamable resin beads and the winding of the long fiber (2) can be easily adjusted.

【0025】上記発泡性樹脂としては、熱分解型発泡
剤、フロン等の溶解性発泡剤、反応硬化時に気体が副生
成するものなどの発泡剤を含む熱硬化性樹脂液からなり
かつ硬質または半硬質ポリウレタンフォーム、フェノー
ルフォーム、低倍率ポリエステルフォームを形成するも
のが挙げられる。とくにポリウレタンフォームは、比較
的高い機械強度を有し発泡時に独立気泡を形成するため
に非吸水性に優れるという特徴があり、好適に使用され
る。
The foamable resin is a hard or semi-hard thermosetting resin solution containing a foaming agent such as a pyrolytic foaming agent, a soluble foaming agent such as chlorofluorocarbon, and a gaseous by-product during reaction curing. Examples thereof include those which form rigid polyurethane foam, phenol foam, and low-magnification polyester foam. In particular, polyurethane foam has a relatively high mechanical strength, and is characterized by being excellent in non-water-absorbing properties because it forms closed cells during foaming, and is preferably used.

【0026】また非発泡の樹脂に対し、発泡性樹脂粒子
として発泡性スチレンビーズ、発泡性PVC中空ビーズ
を混入し、発泡性樹脂を得ることが製法上好適である。
It is preferable in terms of the production method to mix foamable styrene beads and foamable PVC hollow beads as foamable resin particles with the non-foamed resin to obtain a foamable resin.

【0027】上記3段のワインダー(11)に続いて、樹脂
含浸長繊維(2) が巻き付けられた芯材(1) を、角筒形の
賦形金型(5) を組み込んだベルト式加熱成形装置(6) に
導き、発泡性樹脂を発泡硬化させる。なお発泡は、金型
(5) に導かれるまで開始しないようにする方法も用いる
ことができる。
Following the above three-stage winder (11), the core material (1) wound with the resin-impregnated filaments (2) is heated by a belt-type heating device incorporating a square cylindrical shaping die (5). It is led to a molding device (6) to foam and cure the foamable resin. In addition, foam is a mold
A method of not starting until guided to (5) can also be used.

【0028】図3は、上記ワインディングおよび樹脂発
泡硬化の工程のうち、各段階での芯材(1) に対する樹脂
含浸長繊維(2) の巻き付け状態を示すものである。ここ
で、同図(a)は1番目のワインダー(11)による第1段
階の樹脂含浸長繊維(2) の巻き付け状態を示し、同図
(b)は2番目のワインダー(11)による第2段階の樹脂
含浸長繊維(2) の巻き付け状態を示し、同図(c)は3
番目のワインダー(11)による第3段階の樹脂含浸長繊維
(2) の巻き付け状態を示し、同図(d)はベルト式加熱
成形装置(6) の賦形金型(5) 内における樹脂発泡後の状
態を示しており、樹脂含浸長繊維(2) が巻き付けられた
芯材(1) は、下流側のものほどサイズが大きいものとな
っている。
FIG. 3 shows the winding state of the resin-impregnated filament (2) around the core (1) in each of the winding and resin foaming and curing steps. Here, FIG. 3A shows a state in which the first impregnated filament (2) is wound by the first winder (11), and FIG. 3 (b) shows the second state by the second winder (11). The winding state of the resin-impregnated long fiber (2) at the stage is shown, and FIG.
Third stage resin impregnated filaments by the second winder (11)
(D) shows the wound state of the resin-impregnated filament (2), and FIG. (D) shows the state after resin foaming in the shaping mold (5) of the belt-type heat forming apparatus (6). The core material (1) on which is wound is larger in size on the downstream side.

【0029】樹脂の発泡硬化後、複合材(10)をベルト式
引取機(7) により引き取り、ついで複合材(10)を切断機
(8) により例えば枕木として所定の長さに切断するもの
である。
After foaming and curing of the resin, the composite material (10) is taken up by a belt type take-up machine (7), and then the composite material (10) is cut by a cutting machine.
According to (8), for example, a sleeper is cut to a predetermined length.

【0030】[0030]

【実施例】つぎに、本発明の実施例を図面を参照して説
明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0031】実施例1 図1と図2に示す製造装置を使用して、本発明による複
合材(10)を製造した。芯材(1) としては、硬質ポリウレ
タンとガラス繊維とからなる横断面長方形の押出材を使
用した。この芯材(1) の密度は、0.5g/cm3 であ
った。
Example 1 A composite material (10) according to the present invention was manufactured using the manufacturing apparatus shown in FIGS. As the core material (1), an extruded material having a rectangular cross section made of hard polyurethane and glass fiber was used. The density of the core material (1) was 0.5 g / cm 3 .

【0032】一方、長繊維(2) としては、直径13μm
のモノフィラメント集束9000本を1ストランドとし
て巻き取ったE−ガラス繊維ロービングを使用した。こ
の長繊維(2) の密度は、2.6g/cm3 であった。
On the other hand, the long fiber (2) has a diameter of 13 μm.
E-glass fiber roving was used in which 9000 monofilament bundles were wound up as one strand. The density of the long fiber (2) was 2.6 g / cm 3 .

【0033】また、発泡樹脂バインダ(3) としては、硬
質ポリウレタン樹脂を使用した。この樹脂の密度は、
1.1g/cm3 であった。そして、発泡性熱硬化性樹
脂原料として、ポリジフェニルメタンジイソシアネー
ト、ポリオール、水(発泡剤)、整泡剤、および反応促
進剤を所定の割合で調整したものを使用した。なお、賦
形後の発泡成形体(4) の発泡倍率は2倍であった。
As the foamed resin binder (3), a hard polyurethane resin was used. The density of this resin is
1.1 g / cm 3 . And, as the foaming thermosetting resin raw material, polydiphenylmethane diisocyanate, polyol, water (foaming agent), a foam stabilizer, and a reaction accelerator adjusted at a predetermined ratio were used. The expansion ratio of the foamed molded article (4) after shaping was 2 times.

【0034】そして、連続的に送る芯材(1) に対し、ワ
インダー(11)から補強繊維となる多数の長繊維(2) を送
り出し、発泡性樹脂を噴霧しながら長繊維(2) 群の中央
部に芯材(1) を導き、発泡性熱硬化性樹脂液が含浸され
た長繊維(2) 群でスパイラル状に54度の角度で包囲さ
れるように交互に連続してかつ芯材(1) にほとんど張力
を発生させない状態で巻き付けた。この巻付けと発泡性
樹脂液の含浸とを、25℃の雰囲気下で12回行なっ
た。上記ワインダー(11)に続いて、樹脂含浸長繊維(2)
が巻き付けられた芯材(1) を、角筒形の賦形金型(5) を
組み込んだベルト式加熱成形装置(6) に導き、金型温度
80℃で発泡硬化させた。
Then, a large number of long fibers (2) serving as reinforcing fibers are sent out from the winder (11) to the continuously fed core material (1), and a group of long fibers (2) is formed while spraying a foaming resin. The core material (1) is led to the center part, and the continuous fibers are alternately and continuously surrounded by a group of long fibers (2) impregnated with the foaming thermosetting resin liquid at a 54 ° angle. (1) was wound with almost no tension. The winding and the impregnation with the foaming resin liquid were performed 12 times in an atmosphere at 25 ° C. Following the winder (11), a resin-impregnated filament (2)
The core material (1) wound with was wound into a belt-type heat forming apparatus (6) incorporating a square cylindrical shaping die (5), and was foamed and cured at a die temperature of 80 ° C.

【0035】こうして得られた本発明による複合材(10)
は横断面長方形を有し、その外形寸法は、縦200mm
×横150mmであり、また芯材(1) の寸法は縦160
mm×横110mmであった。芯材(1) 外層の発泡成形
体(4) は20mmの厚みを有し、かつその密度は0.8
g/cm3 であった。また複合材(10)の全体密度は、
0.63g/cm3 であった。
The composite material (10) according to the present invention thus obtained.
Has a rectangular cross section, and its outer dimensions are 200 mm in height.
× 150 mm in width, and the size of the core material (1) is 160
mm × width 110 mm. Core material (1) The foamed molded article (4) of the outer layer has a thickness of 20 mm and a density of 0.8 mm.
g / cm 3 . The overall density of the composite (10) is
It was 0.63 g / cm 3 .

【0036】実施例2 実施例1の場合と同様に行なうが、芯材(1) としてエポ
キシ樹脂とガラス質発泡体と珪砂からなるレジンコンク
リートの棒状の発泡成形体を使用した。この芯材(1) の
密度は、1.2g/cm3 であった。
Example 2 The same procedure as in Example 1 was carried out, except that a rod-shaped foamed resin concrete body made of epoxy resin, vitreous foam and silica sand was used as the core material (1). The density of the core material (1) was 1.2 g / cm 3 .

【0037】一方、長繊維(2) としては、直径9μmの
モノフィラメント集束9000本を1ストランドとして
巻き取ったピッチ系炭素繊維ロービングを使用した。こ
の長繊維(2) の密度は、2.5g/cm3 であった。
On the other hand, as the long fiber (2), a pitch-based carbon fiber roving obtained by winding 9000 monofilaments having a diameter of 9 μm as one strand was used. The density of the long fiber (2) was 2.5 g / cm 3 .

【0038】また、発泡樹脂バインダ(3) としては、硬
質ポリウレタン樹脂を使用した。この樹脂の密度は、
0.45g/cm3 であった。そして、発泡性熱硬化性
樹脂原料として、ポリジフェニルメタンジイソシアネー
ト、ポリオール、フロン系発泡剤、発泡性スチレンビー
ズ4容量%、および反応促進剤を所定の割合で調整した
ものを使用した。なお、賦形後のビーズの発泡倍率は3
0倍であるが、賦形後の発泡成形体(4) 全体の発泡倍率
は2.3倍であった。
A rigid polyurethane resin was used as the foamed resin binder (3). The density of this resin is
It was 0.45 g / cm 3 . As the foamable thermosetting resin raw material, a material prepared by adjusting a predetermined ratio of polydiphenylmethane diisocyanate, a polyol, a fluorocarbon-based foaming agent, 4% by volume of foamable styrene beads, and a reaction accelerator was used. In addition, the expansion ratio of beads after shaping is 3
Although it was 0 times, the expansion ratio of the whole foamed molded article (4) after shaping was 2.3 times.

【0039】そして、連続的に送る芯材(1) に対し、ワ
インダー(11)から補強繊維となる多数の長繊維(2) を送
り出し、発泡性樹脂を噴霧しながら長繊維(2) 群の中央
部に芯材(1) を導き、発泡性熱硬化性樹脂液が含浸され
た長繊維(2) 群でスパイラル状に55度の角度で包囲さ
れるように交互に連続してかつ芯材(1) にほとんど張力
を発生させない状態で巻き付けた。この巻付けと発泡性
樹脂液の含浸とを、25℃の雰囲気下で16回行なっ
た。上記ワインダー(11)に続いて、樹脂含浸長繊維(2)
が巻き付けられた芯材(1) を、金型温度90℃で発泡硬
化させた。
Then, a large number of long fibers (2) serving as reinforcing fibers are sent out from the winder (11) to the continuously fed core material (1), and the group of long fibers (2) is formed while spraying the foaming resin. The core material (1) is led to the center part, and is continuously and alternately surrounded by a group of long fibers (2) impregnated with the foamable thermosetting resin liquid in a spiral manner at an angle of 55 degrees. (1) was wound with almost no tension. The winding and the impregnation with the foaming resin liquid were performed 16 times in an atmosphere at 25 ° C. Following the winder (11), a resin-impregnated filament (2)
Was wound and cured at a mold temperature of 90 ° C.

【0040】こうして得られた本発明による複合材(10)
の外形寸法、芯材(1) の寸法、芯材(1) 外層の発泡成形
体(4) の厚みは、上記実施例1の場合と同様であり、ま
た発泡成形体(4) の密度は0.9g/cm3 、複合材(1
0)の全体密度は、1.12g/cm3 であった。
The composite material (10) according to the present invention thus obtained.
The external dimensions of the core material (1), the dimensions of the core material (1), and the thickness of the outer layer of the foamed molded product (4) are the same as those in Example 1 above, and the density of the foamed molded product (4) is 0.9 g / cm 3 , composite material (1
The overall density of 0) was 1.12 g / cm 3 .

【0041】比較例1 つぎに比較のために、上記実施例1の芯材と長繊維とを
用いて同様に行なうが、実施例1の場合と異なる点は、
発泡樹脂バインダの原料として、ポリジフェニルメタン
ジイソシアネート、ポリオール、水(発泡剤)、整泡
剤、および反応促進剤に加えて、タルク35重量%を混
合調整したものを使用するとともに、長繊維を、連続的
に送られる芯材に対し、芯材の長手方向に配列した。
Comparative Example 1 Next, for comparison, the same procedure was carried out using the core material and the long fiber of Example 1 described above.
As a raw material for the foamed resin binder, in addition to polydiphenylmethane diisocyanate, polyol, water (foaming agent), a foam stabilizer, and a reaction accelerator, a mixture prepared by mixing and adjusting 35% by weight of talc is used. The core material was arranged in the longitudinal direction of the core material with respect to the core material to be sent.

【0042】こうして得られた比較例1の複合材は、そ
の外形寸法、芯材の寸法、また芯材外層の発泡成形体の
厚み、その密度、および複合材の全体密度は、すべて実
施例1の複合材(10)と同じであった。
The composite material of Comparative Example 1 obtained in this manner has the same external dimensions, core dimensions, thickness of the foam molded product as the outer layer of the core material, its density, and overall density of the composite material. Of the composite material (10).

【0043】比較例2 比較のために、実施例2の芯材を用いて同様に行なう
が、上記実施例2の場合と異なる点は、長繊維として、
直径9μmのモノフィラメント集束5000本を1スト
ランドとして巻き取った炭素繊維ロービングの6束を1
つのワインダーで供給し、連続的に送られる芯材に対
し、不飽和ポリエステルよりなる熱硬化性樹脂液が含浸
された長繊維群でスパイラル状に52度の角度で包囲さ
れるように交互に連続して巻き付けた。この巻付けと発
泡性樹脂液の含浸とを、25℃の雰囲気下で4回行なっ
た。
Comparative Example 2 For comparison, the same procedure was carried out using the core material of Example 2, but the difference from Example 2 was that long fibers were used.
Six bundles of carbon fiber rovings, each wound with 5000 monofilament bundles having a diameter of 9 μm as one strand, are taken as 1 bundle.
The core material fed by two winders and continuously fed alternately so that it is surrounded by a group of long fibers impregnated with a thermosetting resin solution made of unsaturated polyester in a spiral at a 52 degree angle. And wound it. The winding and the impregnation with the foaming resin liquid were performed four times in an atmosphere at 25 ° C.

【0044】こうして得られた比較例2の複合材の外形
寸法は、上記実施例2の場合と同様であるが、芯材の寸
法は縦172mm×横142mmであり、また発泡成形
体の厚みは4mmであった。また発泡成形体の密度は
1.6g/cm3 、複合材の全体密度は、1.35g/
cm3 と大きいものであった。
The outer dimensions of the composite material of Comparative Example 2 thus obtained are the same as those of Example 2 above, but the dimensions of the core material are 172 mm in length × 142 mm in width, and the thickness of the foamed molded product is 4 mm. The density of the foamed molded article was 1.6 g / cm 3 , and the overall density of the composite material was 1.35 g / cm 3 .
cm 3 was large.

【0045】つぎに、上記実施例1と2および比較例1
と2で得られた各複合材から試験片を作成し、これらの
試験片について、長手方向曲げ強度、釘打ち亀裂発生の
有無、および釘抜き強度の試験を行ない、合成枕木とし
ての適性を観察した。
Next, the above Examples 1 and 2 and Comparative Example 1
Test pieces were prepared from the composite materials obtained in Steps 2 and 3, and the test pieces were subjected to tests for bending strength in the longitudinal direction, occurrence of nailing cracks, and nail pullout strength, and their suitability as synthetic sleepers was observed. .

【0046】ここで、長手方向曲げ強度の試験はJIS
−Z2101に準拠して行なった。また釘打ち亀裂発生
試験は、試験片に穿孔口径23mm、深さ60mmの下
孔をあけたのち、ネジ釘をねじ込み、その際の亀裂発生
の有無を目視により観察した。釘抜き強度試験は、試験
片にねじ込まれたネジ釘を引き抜く際の抵抗力(引抜き
強さ)を測定した。得られた結果を、各試験片の密度と
共に表1に示した。
Here, the test of the bending strength in the longitudinal direction was conducted according to JIS.
Performed according to -Z2101. In the nailing crack generation test, a pilot hole having a bore diameter of 23 mm and a depth of 60 mm was drilled in a test piece, and a screw nail was screwed into the test piece. The occurrence of cracking at that time was visually observed. In the nail pulling strength test, a resistance (pulling strength) at the time of pulling out a screw nail screwed into the test piece was measured. The obtained results are shown in Table 1 together with the density of each test piece.

【0047】[0047]

【表1】 上記表1から明らかなように、本発明による実施例1と
2の複合材(10)は、長手方向の曲げに対する破壊強度に
優れ、また釘打ちによる亀裂発生が無く、釘抜き強度に
も優れており、従って、破壊形態が徐々に進行するため
に、例えば合成枕木の用途に優れた適性を有するととも
に、信頼性が高いものであった。
[Table 1] As is clear from Table 1 above, the composite materials (10) of Examples 1 and 2 according to the present invention have excellent breaking strength against bending in the longitudinal direction, no cracking due to nailing, and excellent nail pulling strength. Therefore, since the fracture mode gradually progressed, it had excellent suitability for use in, for example, synthetic sleepers and was highly reliable.

【0048】これに対し、比較例1の複合材は、長手方
向の曲げに対する破壊強度および釘抜き強度がいずれも
劣っていて、合成枕木の用途に使用困難であり、また比
較例2の複合材では、釘打ちによる亀裂発生が見られ、
また密度が非常に大きいために重く、合成枕木の用途に
は不敵当なものであった。
On the other hand, the composite material of Comparative Example 1 is inferior in both breaking strength and nail pull-out strength against bending in the longitudinal direction, and is difficult to use for synthetic sleepers. , Cracks due to nailing are seen,
In addition, it was heavy because of its very high density, and was unsuitable for synthetic sleepers.

【0049】[0049]

【発明の効果】本発明は、上述のように、芯材の表面に
発泡樹脂バインダと長繊維からなる発泡倍率1.1〜1
0倍の発泡成形体が積層された複合材であって、長繊維
が芯材の長手方向に対し30〜70度の角度で螺旋状に
巻き付けられ、発泡樹脂バインダを介して長繊維と芯材
とが一体化されたもので、本発明の複合材によれば、発
泡樹脂が長繊維で3次元的に補強されていて、軽量で、
充分な破壊強度を有するとともに、破壊形態が徐々に進
行するため、例えば合成枕木の用途に用いた場合、非常
に信頼性が高いという効果を奏する。
As described above, according to the present invention, the expansion ratio of the foamed resin binder and the long fiber is 1.1 to 1 on the surface of the core material.
A composite material in which a foam molded article of 0 times is laminated, wherein long fibers are spirally wound at an angle of 30 to 70 degrees with respect to the longitudinal direction of the core material, and the long fibers and the core material are interposed via a foamed resin binder. According to the composite material of the present invention, the foamed resin is three-dimensionally reinforced with long fibers, is lightweight,
Since it has a sufficient breaking strength and the breaking form gradually progresses, when used for a synthetic sleeper, for example, it has an effect of being very reliable.

【0050】つぎに、本発明の複合材の製造法は、上述
のように、芯材に対して発泡性樹脂バインダを含浸させ
た長繊維を、芯材の長手方向に対し30〜70度の角度
で螺旋状に巻き付ける工程と、発泡性樹脂バインダを発
泡させる工程とを有し、さらに、その外周に複数回上記
2つの工程を繰り返し、型内に導き賦形させることを特
徴とするもので、本発明の方法によれば、上記のように
優れた性質を有する複合材を成形することができ、しか
も複雑な装置を必要とせずに、設備費が安くつくという
効果を奏する。
Next, as described above, according to the method for producing a composite material of the present invention, a long fiber obtained by impregnating a core material with a foamable resin binder is applied to the core material at an angle of 30 to 70 degrees with respect to the longitudinal direction of the core material. A step of spirally winding at an angle, and a step of foaming a foamable resin binder, and further, repeating the above two steps a plurality of times on the outer periphery thereof, and guiding and shaping the mold into a mold. According to the method of the present invention, it is possible to form a composite material having excellent properties as described above, and there is an effect that the equipment cost is reduced without requiring a complicated apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複合材の製造法を実施する装置の概略
を示す側面図である。
FIG. 1 is a side view schematically showing an apparatus for carrying out a method for producing a composite material according to the present invention.

【図2】同正面図である。FIG. 2 is a front view of the same.

【図3】複合材の製造過程における芯材の樹脂含浸長繊
維の巻付け状態を順に示すもので、図3(a)は図2a
ーa線に沿う拡大断面図、図3(b)は同図bーb線に
沿う拡大断面図、図3(c)は同図cーc線に沿う拡大
断面図、図3(d)は同図dーd線に沿う拡大断面図で
ある。
3A and 3B sequentially show a winding state of a resin-impregnated long fiber of a core material in a manufacturing process of a composite material, and FIG.
3 (b) is an enlarged sectional view taken along the line bb in FIG. 3, and FIG. 3 (c) is an enlarged sectional view taken along the line cc in FIG. 3 (d). FIG. 3 is an enlarged sectional view taken along the line dd in FIG.

【図4】複合材の製造法において、芯材に対する樹脂含
浸長繊維の巻付け状態を示す部分拡大側面図である。
FIG. 4 is a partially enlarged side view showing a winding state of a resin-impregnated long fiber around a core material in a method of manufacturing a composite material.

【図5】本発明の複合材の拡大断面図である。FIG. 5 is an enlarged sectional view of the composite material of the present invention.

【符号の説明】[Explanation of symbols]

1 芯材 2 長繊維 3 発泡樹脂バインダ 4 発泡成形体 10 複合材 11 ワインダー DESCRIPTION OF SYMBOLS 1 Core material 2 Long fiber 3 Foam resin binder 4 Foam molded object 10 Composite material 11 Winder

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 芯材の表面に発泡樹脂バインダと長繊維
からなる発泡倍率1.1〜10倍の発泡成形体が積層さ
れた複合材であって、長繊維が芯材の長手方向に対し3
0〜70度の角度で螺旋状に巻き付けられ、発泡樹脂バ
インダを介して長繊維と芯材とが一体化されたことを特
徴とする、複合材。
1. A composite material comprising a core material and a foamed molded body comprising a foamed resin binder and long fibers having a foaming ratio of 1.1 to 10 times laminated on a surface of the core material, wherein the long fibers are arranged in a longitudinal direction of the core material. 3
A composite material characterized by being helically wound at an angle of 0 to 70 degrees and integrating long fibers and a core material via a foamed resin binder.
【請求項2】 芯材に対して発泡性樹脂バインダを含浸
させた長繊維を、芯材の長手方向に対し30〜70度の
角度で螺旋状に巻き付ける工程と、発泡性樹脂バインダ
を発泡させる工程とを有し、さらに、その外周に複数回
上記2つの工程を繰り返し、型内に導き賦形させること
を特徴とする、請求項1記載の複合材の製造法。
2. A step of helically winding a core material impregnated with a foamable resin binder at an angle of 30 to 70 degrees with respect to the longitudinal direction of the core material, and foaming the foamable resin binder. 2. The method for producing a composite material according to claim 1, further comprising the steps of: repeating the above two steps a plurality of times on the outer periphery thereof to guide and shape the inside of the mold.
【請求項3】 発泡性樹脂に熱硬化性樹脂と発泡性樹脂
粒子を用いることを特徴とする、請求項2記載の複合材
の製造法。
3. The method for producing a composite material according to claim 2, wherein a thermosetting resin and expandable resin particles are used as the expandable resin.
【請求項4】 請求項1記載の複合材の合成枕木として
の使用。
4. Use of the composite according to claim 1 as a synthetic sleeper.
【請求項5】 請求項2または3記載の方法により製造
された複合材の合成枕木としての使用。
5. Use of a composite produced according to claim 2 or 3 as a synthetic sleeper.
JP24380299A 1999-08-30 1999-08-30 Composite material and manufacture thereof Pending JP2001062950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24380299A JP2001062950A (en) 1999-08-30 1999-08-30 Composite material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24380299A JP2001062950A (en) 1999-08-30 1999-08-30 Composite material and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2001062950A true JP2001062950A (en) 2001-03-13

Family

ID=17109171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24380299A Pending JP2001062950A (en) 1999-08-30 1999-08-30 Composite material and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2001062950A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007753A1 (en) * 2005-07-12 2007-01-18 Bridgestone Corporation Shock absorber
WO2010022547A1 (en) * 2008-08-29 2010-03-04 纸艺制品有限公司 A paper-based composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007753A1 (en) * 2005-07-12 2007-01-18 Bridgestone Corporation Shock absorber
JP2007022146A (en) * 2005-07-12 2007-02-01 Bridgestone Corp Impact absorbing material
WO2010022547A1 (en) * 2008-08-29 2010-03-04 纸艺制品有限公司 A paper-based composite material

Similar Documents

Publication Publication Date Title
JP7129098B2 (en) Composite fibers and methods of producing fibers
US7045210B2 (en) Reinforcing bar and method for the production thereof
CA1325504C (en) In-line core filled pultruded profiles
EP0308237B1 (en) Carbon fibre-reinforced composite resin pultrusion products and method for manufacturing the same
US11827005B2 (en) Structure applying the glass fiber-reinforced resin foam having excellent fatigue resistance and insulating properties and manufacturing method thereof
US3554851A (en) Glass reinforced foam structure and method of making the same
US3385749A (en) Gradient density reinforced structural material
JP2001062950A (en) Composite material and manufacture thereof
US20110052904A1 (en) Pultrusion process and related article
JP4213291B2 (en) Composite material, synthetic sleeper using the composite material, and method for producing composite material
JP2000204267A (en) Composite material, production thereof, and synthetic railroad tie
JP2000167966A (en) Composite material and crosstie
JPH01166937A (en) Long-sized, light-weight and fiber-reinforced composite draw molding and its manufacture
JP2005262572A (en) Method for producing fiber-reinforced resin molding, fiber-reinforced resin molding obtained by the method, and synthetic resin railroad tie
JP2001246685A (en) Plural-layer body, manufacturing method thereof and synthetic sleeper
JP2000296574A (en) Composite material and synthetic tie using the same
JP2000085043A (en) Synthetic resin laminate and sleeper
JP2004074427A (en) Continuous production method for molded object and molded object
JPH0149108B2 (en)
JPS6155463B2 (en)
JP2002127174A (en) Method for producing foamed fiber-reinforced resin laminate
KR101614850B1 (en) Fiber reinforced polymer bar of a multi-divisional and production method therefor
JPH0724923A (en) Fiber reinforced resin long material and its manufacture
JP2001239606A (en) Composite material and method for preparing it and synthetic sleeper
Goldsworthy Continuous manufacturing processes