JP2001062872A - Method for designing mold - Google Patents

Method for designing mold

Info

Publication number
JP2001062872A
JP2001062872A JP23704599A JP23704599A JP2001062872A JP 2001062872 A JP2001062872 A JP 2001062872A JP 23704599 A JP23704599 A JP 23704599A JP 23704599 A JP23704599 A JP 23704599A JP 2001062872 A JP2001062872 A JP 2001062872A
Authority
JP
Japan
Prior art keywords
mold
gradient
values
molded product
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23704599A
Other languages
Japanese (ja)
Inventor
Hideo Kurihara
英雄 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP23704599A priority Critical patent/JP2001062872A/en
Publication of JP2001062872A publication Critical patent/JP2001062872A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3835Designing moulds, e.g. using CAD-CAM
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/76013Force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76177Location of measurement
    • B29C2945/76254Mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7693Measuring, controlling or regulating using rheological models of the material in the mould, e.g. finite elements method

Abstract

PROBLEM TO BE SOLVED: To suitably design a mold without actually trially molding by sequentially altering a gradient of a mold surface and a mold surface state based on a mold release resisting force to be received at mold surfaces, and obtaining a suitable steel material and the mold surface state in a mold releasing direction. SOLUTION: A mold release resistance value generated at a surface unit of a molding is obtained (S3). If the values falls within predetermined decision values, a gradient and a mold surface state of initial values are adopted as design values (S4). If the initial values exceed the decision values, the gradient is changed (S6). Then, the gradient is again calculated and the mold release resistance value at the changed gradient value is obtained (S8). If the resistance value falls within the predetermined decision value, the changed gradient and the surface state of the initial value are adopted as design values. Similarly, whether the resistance values of the respective surfaces fall within the predetermined decision values or not is decided, and if the resistance values of the surfaces of all the moldings fall within the decision values, the again calculated gradient and the mold surface state of the initial value are adopted as design values (S9).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、射出成形品の金型
設計において離型に影響する金型面を最適化する金型設
計方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold design method for optimizing a mold surface which affects mold release in designing a mold for an injection molded product.

【0002】[0002]

【従来の技術】射出金型設計を行う際に離型性を考慮し
金型の離型方向に対して勾配を設けている。通常は、離
型方向に接触している全部の金型面が一律の勾配面と標
準的な面状態を設計上設定するのが工数的に好ましい。
しかしながら、離型が困難と思われる場所も当然あり、
それは図面等を見ながら勘と経験に頼りながら試行錯誤
で離型方向に対しての勾配や、その勾配面の面状態を決
めている。
2. Description of the Related Art When designing an injection mold, a gradient is provided with respect to the mold releasing direction in consideration of the mold releasability. Normally, it is preferable in terms of man-hours to set a uniform slope surface and a standard surface state in terms of design for all mold surfaces in contact with the mold release direction.
However, there are naturally places where demolding is considered difficult,
It determines the gradient with respect to the mold release direction and the surface condition of the gradient surface by trial and error while relying on intuition and experience while looking at drawings and the like.

【0003】[0003]

【発明が解決しようとする課題】そのため、実際に成形
したときに思った以上に離型性が悪く、成形品が離型不
良を起こすケースも発生する。従って、勾配や面状態を
変更しては離型状況を確認するというプロセスを繰り返
し、最終的に良品が取れるまでに多大な時間を要してい
た。
As a result, the releasability is worse than expected when molding is actually performed, and there are cases in which the molded product suffers from mold release failure. Therefore, the process of checking the mold release state by changing the gradient or the surface state is repeated, and it takes a long time until finally a non-defective product is obtained.

【0004】本発明は、上述の点に鑑みてなされたもの
で、射出成形金型を設計する際に成形品と金型が接触す
る面の離型力を算出することにより、金型面の離型方向
に対する勾配と金型面状態が適正となる値を求めること
で、実際の成形試行を行わずに適正な金型設計が可能な
金型設計方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and calculates the release force of a surface where a molded product and a mold come into contact with each other when designing an injection molding die. An object of the present invention is to provide a mold design method capable of performing an appropriate mold design without performing an actual molding trial by obtaining a value at which a gradient with respect to a mold release direction and a mold surface state are appropriate.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1に係わる金型設計方法は、射出成
形シミュレーションにおける充填・保圧・冷却の解析を
順次行い型開き後の離型開始時点における成形品の各面
が受ける変形量と変形方向を求め、この成形品の各面が
受ける変形量と変形方向からこの成形品と接する金型が
成形品を拘束することによる応力分布を求め、この応力
分布から金型と成形品の接触面に発生する反力を求め、
この反力と金型面の離型方向に対する勾配と金型面状態
から各面が受ける離型抵抗力を求め、この離型抵抗力が
ある範囲に収まるか判定し収まらないときは、その面を
表示し、更にその面に対して離型方向に対する金型面の
勾配と金型面状態を逐次変更して離型方向に対する金型
面の適正な勾配と適正な金型面状態を求めることを特徴
とする。
In order to achieve the above-mentioned object, a method of designing a mold according to the first aspect of the present invention is to sequentially analyze filling, holding pressure, and cooling in an injection molding simulation, and to perform analysis after opening the mold. Determine the amount of deformation and the direction of deformation on each surface of the molded product at the start of mold release, and determine the amount of deformation and the direction of deformation on each surface of this molded product. From the stress distribution, the reaction force generated at the contact surface between the mold and the molded product is determined,
From this reaction force, the gradient of the mold surface with respect to the mold release direction, and the mold surface condition, determine the mold release resistance received by each surface, and determine whether this mold release resistance falls within a certain range. Is displayed, and the gradient of the mold surface with respect to the mold release direction and the mold surface state are sequentially changed to obtain an appropriate gradient of the mold surface with respect to the mold release direction and an appropriate mold surface state. It is characterized by.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0007】(第1の実施の形態)図1は、本発明に係
わる金型設計方法を実施する手順を示すフローチャート
の一部であり、図2は、図1に示すフローチャートの残
部である。図3は、本発明を適用した成形品の3次元モ
デルの例、図4は、成形金型の斜視図である。
(First Embodiment) FIG. 1 is a part of a flowchart showing a procedure for carrying out a mold designing method according to the present invention, and FIG. 2 is a remaining part of the flowchart shown in FIG. FIG. 3 is an example of a three-dimensional model of a molded product to which the present invention is applied, and FIG. 4 is a perspective view of a molding die.

【0008】図3に示す成形品の3次元形状モデルデー
タとそれに基づいて設計された金型において、成形品と
金型形状部が接触する面で離型方向に対して平行若しく
はそれに近い状態である金型の接触面(図4の接触面1
〜8)を求め、その各々の金型の接触面に対しての表面
積を求める(図1のステップS1)。次に、射出成形シ
ミュレーションにおける充填・保圧・冷却の解析を順次
行い、型開き後離型開始時点における成形品の各面の単
位要素毎に生じる変形量と変形方向を求める(図5)。
図5は、成形品の単位要素毎に生じる変形量と変形先を
表すベクトルを表す図である。
[0008] In the three-dimensional shape model data of the molded product shown in FIG. 3 and the mold designed based on the data, the surface where the molded product and the mold shape contact each other is parallel to or close to the release direction. The contact surface of a certain mold (contact surface 1 in FIG. 4)
8), and the surface area of each of the molds with respect to the contact surface is obtained (step S1 in FIG. 1). Next, the filling, holding pressure, and cooling in the injection molding simulation are sequentially analyzed to obtain the deformation amount and the deformation direction generated for each unit element on each surface of the molded product at the time of starting the mold release after the mold opening (FIG. 5).
FIG. 5 is a diagram showing a vector representing a deformation amount and a deformation destination generated for each unit element of a molded product.

【0009】また、成形品の変形方向と変形量のデータ
は、前記射出成形シミュレーション等の解析によるシミ
ュレーションで求める以外に、予め類似形状若しくは同
形状の成形品の変形量と変形方向とを、実験を行い測定
して決めたデータからも求めることも可能である(図
6)。図6は、成形品の変形量と変形方向の変形ベクト
ルデータを表す図である。
The data of the direction and amount of deformation of the molded article are obtained by a simulation based on the analysis such as the injection molding simulation. Can be obtained from the data determined by measurement (FIG. 6). FIG. 6 is a diagram illustrating deformation vector data of a deformation amount and a deformation direction of a molded product.

【0010】成形品が金型から抜ける方向である離型方
向に関しては、金型の駒部分の設計のときに確定してお
り、その結果から求められる。離型方向に対する金型面
の勾配と金型面状態は、初期値としてキー入力若しくは
データベースから標準値が求められる(ステップS
2)。
The mold release direction, which is the direction in which the molded product comes out of the mold, is determined at the time of designing the bridge portion of the mold, and is obtained from the result. The standard values of the gradient of the mold surface and the mold surface state with respect to the mold release direction are obtained by key input as initial values or from a database (step S).
2).

【0011】ステップS2で求められた離型開始時点に
おける成形品の単位要素毎に生じる変形量と変形方向か
ら成形品の各面の単位要素が接触する金型面から成形品
の各面の単位要素が受ける応力分布を求め、この成形品
の各面の単位要素が受ける応力分布から、成形品の各面
の単位要素が受ける金型面から受ける反力を求め、ステ
ップS2で求めた離型方向に対する金型面の勾配と金型
面状態の初期値、更に、成形品の離型方向から成形品の
各面の単位要素が受ける離型抵抗を求め、この成形品の
各面の単位要素が受ける離型抵抗値を成形品の各面毎に
合算することで、成形品の面単位に生じる離型抵抗値が
求められる(ステップS3)。
Based on the amount of deformation and the direction of deformation of each unit element of the molded product at the start of the mold release obtained in step S2, the unit of each surface of the molded product from the mold surface where the unit element of each surface of the molded product comes into contact The stress distribution received by the element is determined, the reaction force received from the mold surface received by the unit element on each surface of the molded product is determined from the stress distribution received by the unit element on each surface of the molded product, and the mold release determined in step S2 The slope of the mold surface with respect to the direction and the initial value of the mold surface state, and the mold release resistance received by the unit element on each surface of the molded product from the mold release direction are determined. By adding the release resistance values received for each surface of the molded product, the release resistance value generated for each surface of the molded product is obtained (step S3).

【0012】ステップS3で求められた成形品の面単位
毎に生じる離型抵抗値が予め決められている離型抵抗判
定値以内であれば、離型性に問題なしとしてステップS
2において求めた離型方向に対する金型面の勾配と金型
面状態の値がそのまま設計値となる。同様にして、成形
品の該当する各面に対して成形品の面単位毎に生じる離
型抵抗値が予め決められている離型抵抗判定値以内か否
かの判定を行い、成形品の全ての面に対して離型抵抗判
定値以内であれば離型性に問題なしとして、ステップS
2において求めた離型方向に対する金型面の勾配と金型
面状態の値がそのまま設計値となり終了する(ステップ
S4)。
If the release resistance value generated for each surface unit of the molded product obtained in step S3 is within the predetermined release resistance determination value, it is determined that there is no problem in the release property and step S
The values of the gradient of the mold surface and the mold surface state with respect to the mold release direction obtained in Step 2 become the design values as they are. In the same manner, it is determined whether or not the release resistance value generated for each surface unit of the molded product for each applicable surface of the molded product is within a predetermined release resistance determination value. If the surface is within the release resistance determination value, it is determined that there is no problem in the release property, and Step S
The gradient of the mold surface with respect to the mold release direction and the value of the mold surface state obtained in step 2 become design values as they are, and the process ends (step S4).

【0013】ステップS4においてステップS3で求め
られた成形品の面単位毎に生じる離型抵抗値が予め決め
られている離型抵抗判定値を超える面が発生したとき
は、該当する成形品の面を3次元形状モデルデータ上で
表示する(ステップS5)(図6)。図7は、3次元形
状モデルデータで離型性が悪い面を表示した例を示す図
である。
In step S4, when a release resistance value generated for each surface unit of the molded product obtained in step S3 exceeds a predetermined release resistance determination value, a surface of the corresponding molded product is determined. Is displayed on the three-dimensional shape model data (step S5) (FIG. 6). FIG. 7 is a diagram illustrating an example in which a surface having poor releasability is displayed in the three-dimensional shape model data.

【0014】ステップS5において、離型抵抗判定値を
超える面として3次元形状モデルデータ上で表示されて
いる成形品の面に対して、離型方向に対する金型面の勾
配の変更を行う。変更に用いる離型方向に対する金型面
の勾配は、予め定められている標準勾配値のデータベー
ス等のデータファイルから求めるか、若しくは人が与え
る等が考えられる(ステップS6)。ステップS6にお
いて離型方向に対する金型面の勾配値を変更する際に、
金型面の勾配値を変更することにより変更する金型面に
対応する成形品側の形状が成り立つか否かのチェックを
行う。例として、図8の場合で考える。図8は、離型方
向の勾配面を変えることにより成形品の先端形状部が機
能的に不具合を生じる例を示す図である。
In step S5, the gradient of the mold surface with respect to the mold release direction is changed with respect to the surface of the molded product displayed on the three-dimensional model data as a surface exceeding the mold release resistance determination value. The gradient of the mold surface with respect to the mold release direction used for the change may be obtained from a data file such as a database of predetermined standard gradient values, or may be given by a person (step S6). When changing the gradient value of the mold surface with respect to the mold release direction in step S6,
By changing the gradient value of the mold surface, it is checked whether or not the shape on the molded product side corresponding to the mold surface to be changed is established. As an example, consider the case of FIG. FIG. 8 is a diagram illustrating an example in which the tip shape portion of the molded product causes a functional defect by changing the slope surface in the mold release direction.

【0015】形状部1は、離型抵抗判定値を超える面
(図8の面1)を含んでいる。この面の離型抵抗値を下
げる一つの方法として離型方向に対する金型面の勾配値
を大きくすることが考えられる。形状部1の突起の根本
部分(図8のa)の厚みを固定にして、離型方向に対す
る金型面の勾配値を大きめに変更すると形状部1の先端
部の形状(図8のb)の肉厚が薄くなり過ぎて成形品の
製品機能上問題が発生する。そこで、変更した離型方向
に対する金型面の勾配値が製品機能上で例えば、肉厚が
薄くなり過ぎる等の問題を生じる値になっていないかを
判定する(ステップS7)。
The shape portion 1 includes a surface (surface 1 in FIG. 8) exceeding the release resistance determination value. One way to reduce the release resistance of this surface is to increase the slope of the mold surface in the release direction. When the thickness of the root portion (FIG. 8A) of the protrusion of the shape portion 1 is fixed and the gradient value of the mold surface with respect to the mold release direction is changed to a relatively large value, the shape of the tip portion of the shape portion 1 (FIG. 8B) The thickness of the molded product becomes too thin, which causes a problem in the product function of the molded product. Therefore, it is determined whether or not the gradient value of the mold surface with respect to the changed release direction is a value that causes a problem such as, for example, an excessively small thickness in the product function (step S7).

【0016】ステップS7において求めた製品機能上問
題無い離型方向に対する金型面の勾配値と、ステップS
2で求めた金型面状態は、初期値と、金型設計時に確定
されている離型方向と、ステップS2において求めた型
開き後、離型開始時点における成形品の各面の単位要素
毎に生じる変形量と変形方向から、再度計算を行い変更
された勾配値での離型抵抗を求める(ステップS8)。
The mold surface gradient value with respect to the mold release direction which is obtained in step S7 and has no problem in product function,
The mold surface state obtained in 2 is the initial value, the mold release direction determined at the time of mold design, and the unit element of each surface of the molded product at the start of mold release after the mold opening obtained in step S2. Is calculated again from the amount of deformation and the direction of deformation occurring in step (1), and the release resistance at the changed gradient value is obtained (step S8).

【0017】ステップS5において離型抵抗判定値を超
える面として3次元形状モデルデータ上で表示されてい
る成形品の面に対してステップS8で再度計算された成
形品の面単位毎に生じる離型抵抗値が、予め決められて
いる離型抵抗判定値以内であれば離型性に問題無しとし
て、ステップS7にて求めた離型方向に対する金型面の
勾配と、ステップS2で求めた金型面状態の値がそのま
ま設計値となる。同様にして、ステップS5で離型抵抗
判定値を超える面として3次元形状モデルデータ上で表
示されている成形品の面があれば、該当する成形品の各
面に対して成形品の面単位毎に生じる離型抵抗値が、予
め決められている離型抵抗判定値以内か否かの判定を行
い、成形品の全ての面に対して離型抵抗判定値以内であ
れば離型性に問題無しとして、ステップS8において求
めた離型方向に対する金型面の勾配とステップS2にお
いて求めた金型面状態の値がそのまま設計値となり終了
する(図2のステップS9)。
In step S5, the surface of the molded product displayed on the three-dimensional shape model data as the surface exceeding the release resistance determination value is a mold release generated for each surface unit of the molded product calculated again in step S8. If the resistance value is within the predetermined release resistance determination value, there is no problem in the release property, and the gradient of the mold surface with respect to the release direction determined in step S7 and the mold determined in step S2. The value of the surface state becomes the design value as it is. Similarly, if there is a molded product surface displayed on the three-dimensional shape model data as a surface exceeding the release resistance determination value in step S5, the surface unit of the molded product is determined for each surface of the corresponding molded product. It is determined whether or not the release resistance value generated every time is within a predetermined release resistance determination value, and if it is within the release resistance determination value for all surfaces of the molded product, the release property is determined. Assuming that there is no problem, the gradient of the mold surface with respect to the mold release direction obtained in step S8 and the value of the mold surface state obtained in step S2 become design values as they are, and the process ends (step S9 in FIG. 2).

【0018】ステップS9においてステップS8で求め
られた成形品の面単位毎に生じる離型抵抗値が、予め決
められている離型抵抗判定値を超える面が発生したとき
は、成形品の該当する面を3次元形状モデルデータ上で
表示する(ステップS10)。ステップS10において
離型抵抗判定値を超える面として3次元形状モデルデー
タ上で表示されている成形品の面に対して、金型面状態
の変更を行う(ステップS11)。変更に用いる金型面
状態の値は、予め決められている標準金型面状態値のデ
ータベース等のデータファイルから求めるか、若しくは
人が与える等が考えられる。
In step S9, when a release resistance value generated for each surface unit of the molded product obtained in step S8 exceeds a predetermined release resistance determination value, a corresponding surface of the molded product is determined. The surface is displayed on the three-dimensional shape model data (step S10). The state of the mold surface is changed for the surface of the molded product displayed on the three-dimensional shape model data as the surface exceeding the release resistance determination value in step S10 (step S11). The value of the mold surface state used for the change may be obtained from a data file such as a database of predetermined standard mold surface state values, or given by a person.

【0019】ステップS7において求めた製品機能上問
題無い離型方向に対する金型面の勾配値と、ステップS
10で求めた金型面状態の値と、金型設計時に確定され
ている離型方向と、ステップS2において求めた型開き
後、離型開始時点における成形品の各面の単位要素毎に
生じる変形量と変形方向から再度計算を行い変更された
面状態での離型抵抗を求める(ステップS12)。ステ
ップS12において離型抵抗判定値を超える面として3
次元形状モデルデータ上で表示されている成形品の面に
対して、ステップS12で再度計算された成形品の面単
位毎に生じる離型抵抗値が、予め決められている離型抵
抗判定値以内であれば離型性に問題無しとして、ステッ
プS7にて求めた離型方向に対する金型面の勾配と、ス
テップS10で求めた金型面状態の値がそのまま設計値
となる。
The slope value of the mold surface with respect to the mold release direction which is determined in step S7 and has no problem with the product function,
The value of the mold surface state determined in step 10, the mold release direction determined at the time of mold design, and the unit element generated on each surface of the molded product at the time of mold release start after mold opening determined in step S2. Calculation is performed again from the deformation amount and the deformation direction to obtain the release resistance in the changed surface state (step S12). In step S12, the surface exceeding the release resistance determination value is set to 3
With respect to the surface of the molded product displayed on the three-dimensional shape model data, the release resistance value generated for each surface unit of the molded product calculated again in step S12 is within a predetermined release resistance determination value. If so, it is determined that there is no problem in the releasability, and the gradient of the mold surface with respect to the mold release direction obtained in step S7 and the value of the mold surface state obtained in step S10 become the design values as they are.

【0020】同様にしてステップS10で離型抵抗判定
値を超える面として3次元形状モデルデータ上で表示さ
れている成形品の面があれば、該当する各面に対して成
形品の面単位毎に生じる離型抵抗値が、予め決められて
いる離型抵抗判定値以内かの判定を行い、成形品の全て
の面に対して離型抵抗判定値以内であれば離型性に問題
無しとして、ステップS8において求めた離型方向に対
する金型面の勾配と、ステップS12において求めた金
型面状態の値がそのまま設計値となり終了する(ステッ
プS13)。
Similarly, if there is a surface of the molded product displayed on the three-dimensional shape model data as a surface exceeding the release resistance determination value in step S10, the corresponding surface is determined for each surface unit of the molded product. It is determined whether the release resistance value generated in the mold release resistance is within a predetermined release resistance determination value, and if it is within the release resistance determination value for all surfaces of the molded product, it is determined that there is no problem with the release property. The gradient of the mold surface with respect to the mold release direction obtained in step S8 and the value of the mold surface state obtained in step S12 become design values as they are, and the process ends (step S13).

【0021】ステップS12において、求められた成形
品の面単位毎に生じる離型抵抗値が、予め決められてい
る離型抵抗判定値を超える面が発生したときは、該当す
る成形品の面を3次元形状モデルデータ上で表示し設計
に戻り形状検討となる(ステップS14)。
In step S12, if the surface of the obtained mold release resistance value generated for each surface unit exceeds a predetermined mold release resistance judgment value, the surface of the corresponding molded product is determined. It is displayed on the three-dimensional shape model data, returns to the design, and the shape is examined (step S14).

【0022】以上、離型方向に対する最適な金型面の勾
配と最適な金型面状態を求める手順の一例について示し
たが、求める順番は先に最適な金型面状態を決めてから
離型方向に対する最適な金型面の勾配値を決める等算出
順序が変わった場合でも適用可能であることは容易に想
像がつく。
As described above, an example of the procedure for obtaining the optimum mold surface gradient with respect to the mold release direction and the optimum mold surface state has been described. It is easy to imagine that the present invention can be applied even when the calculation order is changed, such as determining an optimum mold surface gradient value in the direction.

【0023】[0023]

【発明の効果】以上説明したように、本発明の金型設計
方法によれば、射出成形金型を設計する際に成形品と金
型が接触することにより、金型面の離型方向に対する勾
配と金型面状態が適正となる値を求めることが可能とな
る。しかも、実際の成形試行を行わず、適正な離型方向
に対する金型面の勾配と金型面状態が従来に比べ簡単に
求められるため開発期間の短縮と成形試行回数を減らす
ことができてコストの削減を図ることができる。
As described above, according to the mold designing method of the present invention, when designing the injection molding mold, the molded product comes into contact with the mold, so that the mold surface can be moved with respect to the mold release direction. It is possible to obtain a value that makes the gradient and the mold surface state appropriate. Moreover, the actual molding trial is not performed, and the gradient of the mold surface with respect to the appropriate release direction and the mold surface condition can be obtained more easily than in the past. Can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる金型設計方法を実施する手順を
示すフローチャートの一部である。
FIG. 1 is a part of a flowchart showing a procedure for implementing a mold design method according to the present invention.

【図2】図1に示すフローチャートの残部である。FIG. 2 is the remaining part of the flowchart shown in FIG. 1;

【図3】本発明を適用した成形品の3次元モデルの例で
ある。
FIG. 3 is an example of a three-dimensional model of a molded product to which the present invention is applied.

【図4】成形金型の斜視図である。FIG. 4 is a perspective view of a molding die.

【図5】成形品の単位要素毎に生じる変形量と変形先を
表すベクトルを表す図である。
FIG. 5 is a diagram illustrating a deformation amount generated for each unit element of a molded article and a vector indicating a deformation destination.

【図6】成形品の変形量と変形方向の変形ベクトルデー
タを表す図である。
FIG. 6 is a diagram illustrating deformation vector data of a deformation amount and a deformation direction of a molded product.

【図7】3次元形状モデルデータで離型性が悪い面を表
示した例を示す図である。
FIG. 7 is a diagram showing an example in which a surface having poor releasability is displayed in three-dimensional shape model data.

【図8】離型方向の勾配面を変えることにより成形品の
先端形状部が機能的に不具合を生じる例を示す図であ
る。
FIG. 8 is a view showing an example in which a tip-shaped portion of a molded product functionally malfunctions by changing a slope surface in a releasing direction.

【符号の説明】[Explanation of symbols]

a 勾配を付ける面の根本の厚み b 勾配を付ける面の先端の厚み 4 成形金型 1〜8 金型の接触面 a Root thickness of surface to be graded b Thickness of tip of surface to be graded 4 Molding dies 1-8 Contact surface of dies

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 射出成形シミュレーションにおける充填
・保圧・冷却の解析を順次行い型開き後の離型開始時点
における成形品の各面が受ける変形量と変形方向を求
め、 この成形品の各面が受ける変形量と変形方向からこの成
形品と接する金型が成形品を拘束することによる応力分
布を求め、 この応力分布から金型と成形品の接触面に発生する反力
を求め、 この反力と金型面の離型方向に対する勾配と金型面状態
から各面が受ける離型抵抗力を求め、 この離型抵抗力がある範囲に収まるか判定し収まらない
ときは、その面を表示し、更にその面に対して離型方向
に対する金型面の勾配と金型面状態を逐次変更して離型
方向に対する金型面の適正な勾配と適正な金型面状態を
求めることを特徴とする金型設計方法。
An analysis of filling, holding pressure, and cooling in an injection molding simulation is sequentially performed to determine a deformation amount and a deformation direction to be applied to each surface of a molded product at the time of starting mold release after opening a mold. From the amount of deformation and the direction of the deformation, the stress distribution caused by the mold in contact with the molded article restraining the molded article is determined. From the force, the gradient of the mold surface with respect to the mold release direction, and the mold surface condition, determine the mold release resistance that each surface receives, determine whether the mold release resistance is within a certain range, and if it does not fit, display that surface Further, the gradient of the mold surface and the mold surface state with respect to the mold release direction with respect to that surface are sequentially changed to obtain an appropriate gradient of the mold surface with respect to the mold release direction and an appropriate mold surface state. And mold design method.
JP23704599A 1999-08-24 1999-08-24 Method for designing mold Withdrawn JP2001062872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23704599A JP2001062872A (en) 1999-08-24 1999-08-24 Method for designing mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23704599A JP2001062872A (en) 1999-08-24 1999-08-24 Method for designing mold

Publications (1)

Publication Number Publication Date
JP2001062872A true JP2001062872A (en) 2001-03-13

Family

ID=17009598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23704599A Withdrawn JP2001062872A (en) 1999-08-24 1999-08-24 Method for designing mold

Country Status (1)

Country Link
JP (1) JP2001062872A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101484400B1 (en) 2013-07-18 2015-01-19 주식회사 동희산업 Data Mapping Aided Press Mold Design optimized Method
CN109002020A (en) * 2018-07-26 2018-12-14 广东工业大学 A kind of injection molding machine management simulation method, apparatus and computer readable storage medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101484400B1 (en) 2013-07-18 2015-01-19 주식회사 동희산업 Data Mapping Aided Press Mold Design optimized Method
CN109002020A (en) * 2018-07-26 2018-12-14 广东工业大学 A kind of injection molding machine management simulation method, apparatus and computer readable storage medium
CN109002020B (en) * 2018-07-26 2021-03-30 广东工业大学 Injection molding machine management simulation method and device and computer readable storage medium

Similar Documents

Publication Publication Date Title
Min A study on quality monitoring of injection-molded parts
JP3226447B2 (en) Simulation method of press molding or injection press molding
JPH05507659A (en) Injection molding machine control method and device
US20100036646A1 (en) Analytical model preparation method, and simulation system method for predicting molding failure
JP2012520193A (en) Simulation of protrusion after filling molding
JPH10138310A (en) Determination of optimum molding condition of injection molding machine
JP2001062872A (en) Method for designing mold
JPH079522A (en) Designing method of mold
JP4785587B2 (en) Molding condition setting method, program, and injection molding machine
JPH0622840B2 (en) Molding process simulation system
CN116629062A (en) Method, system, computer equipment and storage medium for evaluating die temperature balance
JP2001205683A (en) Apparatus and method for simulating injection molding process, and storage medium
JPH0785128A (en) Method for designing injection molding resin molding
JPH11105040A (en) Method for designing mold
Kansal et al. Study: temperature and residual stress in an injection moulded gear
Timofeeva et al. Simulation of injection molding process and 3D-printing of forming parts for small-batch production
JP3612973B2 (en) Formability analysis method
JP2009298035A (en) Method for designing mold
JPH0655597A (en) Injection-molding process simulation method and device thereof
Magid et al. Analysis of the main factors affecting mass production in the plastic molding process by using the finite element method
JPH10138308A (en) Method for estimating quality of resin molded product
JP2001088187A (en) System and method for deriving appropriate molding condition of injection molding machine
JP2000211005A (en) Method for predicting and evaluating defect of injection- molded article and apparatus for predicting and evaluating defect
JP3107622B2 (en) Molding process simulation method and apparatus
JP2669489B2 (en) Injection mold manufacturing method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060306

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107