JP2001059403A - Turbine control device - Google Patents

Turbine control device

Info

Publication number
JP2001059403A
JP2001059403A JP11232143A JP23214399A JP2001059403A JP 2001059403 A JP2001059403 A JP 2001059403A JP 11232143 A JP11232143 A JP 11232143A JP 23214399 A JP23214399 A JP 23214399A JP 2001059403 A JP2001059403 A JP 2001059403A
Authority
JP
Japan
Prior art keywords
valve
steam flow
steam
flow rate
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11232143A
Other languages
Japanese (ja)
Other versions
JP4225641B2 (en
Inventor
Hitoshi Nakamura
均 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23214399A priority Critical patent/JP4225641B2/en
Publication of JP2001059403A publication Critical patent/JP2001059403A/en
Application granted granted Critical
Publication of JP4225641B2 publication Critical patent/JP4225641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To compensate a desired steam flow by a valve which is opened lastly, even in the case that a steam regulating valve is failed, in a turbine control device by which a plurality of steam regulating valves is sequentially open/close-controlled. SOLUTION: This turbine control device is equipped with abnormality detecting means 35A, 35B, 35C, 35D which when the abnormality of a valve or a valve control system is detected, output an abnormality detection signal to a steam flow command signal outputting means based on opening signals outputted from opening signal outputting means 28A, 28B, 28C, 28D and opening command signals outputted from opening command signal outputting means 27A, 27B, 27C, 27D, and valve closing means 33A, 33B, 33C, 33D which are provided respectively to valve control systems and close the valve based on the abnormality detection signals outputted from the abnormality detecting means 35A, 35B, 35C, 35D. The steam flow command signal outputting means closes the valve whose abnormality is detected based on the abnormality detection signals from the abnormality detecting means 35A, 35B, 35C, 35D, and compensates the steam flow of the valve whose abnormality is detected by a valve which is opened lastly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、火力発電所や原子
力発電所における蒸気タービンの蒸気流量を制御するタ
ービン制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine control device for controlling a steam flow rate of a steam turbine in a thermal power plant or a nuclear power plant.

【0002】[0002]

【従来の技術】火力発電所や原子力発電所における蒸気
タービン制御には、蒸気タービンの蒸気供給系に供給さ
れる蒸気量を蒸気流量要求信号に応じて、蒸気タービン
の蒸気供給系に並列に設けられた複数の弁を順次開閉制
御することにより行われている。
2. Description of the Related Art In steam turbine control in a thermal power plant or a nuclear power plant, the amount of steam supplied to the steam supply system of the steam turbine is provided in parallel with the steam supply system of the steam turbine in accordance with a steam flow rate request signal. This is performed by sequentially controlling the opening and closing of the plurality of valves.

【0003】図8に、火力発電所における蒸気タービン
系統の構成を示す。同図に示すように、蒸気発生器1
が、主蒸気止め弁2、蒸気加減弁(CV)3を介して蒸
気供給配管4によって、高圧タービン5の流入側に接続
されている。この高圧タービン5の軸端側には、タービ
ン速度に比例した速度信号S2を検出するための速度検
出器6が設置されている。蒸気加減弁3は、高圧タービ
ン5に対して並列に4弁(同図では便宜上1弁のみ示
す)設けられており、これらの弁を第1弁から最終弁の
順に開閉制御することにより、高圧タービン5に流入す
る蒸気の蒸気流量を制御するものである。
FIG. 8 shows a configuration of a steam turbine system in a thermal power plant. As shown in FIG.
Is connected to the inflow side of the high-pressure turbine 5 by a steam supply pipe 4 via a main steam stop valve 2 and a steam control valve (CV) 3. At the shaft end of the high-pressure turbine 5, a speed detector 6 for detecting a speed signal S2 proportional to the turbine speed is provided. The steam control valve 3 is provided with four valves in parallel with the high-pressure turbine 5 (only one valve is shown in the figure for convenience), and by controlling the opening and closing of these valves in order from the first valve to the last valve, the high-pressure turbine is controlled. It controls the steam flow rate of the steam flowing into the turbine 5.

【0004】高圧タービン5の流出側には、高圧タービ
ン5で仕事を終えた蒸気に熱を加えるための再熱器7、
この再熱器7からの蒸気量を調整するための中間蒸気弁
(IV)8が蒸気供給配管4によって低圧タービン9の
流入側に接続されている。低圧タービン9の流出側に
は、低圧タービン9で仕事を終えた蒸気を復水するため
の復水器10が設けられており、この復水器10で復水
された水は、復水回収系にて回収される。さらに、低圧
タービン9の軸端には、発電機10が直結されており、
この発電機10は、タービンで得た機械出力を電気エネ
ルギーに変換して負荷11に供給する。
[0004] At the outlet side of the high-pressure turbine 5, there is provided a reheater 7 for adding heat to the steam that has completed work in the high-pressure turbine 5.
An intermediate steam valve (IV) 8 for adjusting the amount of steam from the reheater 7 is connected to the inflow side of the low-pressure turbine 9 by the steam supply pipe 4. On the outflow side of the low-pressure turbine 9, there is provided a condenser 10 for condensing the steam that has finished work in the low-pressure turbine 9, and the water condensed by the condenser 10 is condensed and collected. Collected in the system. Further, a generator 10 is directly connected to a shaft end of the low-pressure turbine 9,
The generator 10 converts the mechanical output obtained by the turbine into electric energy and supplies it to the load 11.

【0005】次に、このような蒸気タービン系統の動作
について説明する。蒸気発生器1にて発生した蒸気は、
タービン運転中は全開となっている主蒸気止め弁2を介
して、蒸気加減弁3に入り、この蒸気加減弁3の開度に
より調整された蒸気量が高圧タービン5に流入する。高
圧タービン5で仕事を終えた蒸気は、再熱器7に入り、
熱が加えられた後に、中間蒸気弁8に入り、この中間蒸
気弁8で調整された蒸気量が低圧タービン9に流入す
る。低圧タービン9で仕事を終えた蒸気は、復水器10
に排出されて復水系へ回収される。低圧タービン9の軸
端に直結されている発電機10は、低圧タービン9より
得た機械力を電気エネルギーに変換して負荷11に供給
する。
Next, the operation of such a steam turbine system will be described. The steam generated by the steam generator 1 is
During the operation of the turbine, the steam enters and closes the steam control valve 3 via the main steam stop valve 2 which is fully open, and the amount of steam adjusted by the opening of the steam control valve 3 flows into the high-pressure turbine 5. The steam that has finished work in the high-pressure turbine 5 enters the reheater 7 and
After the heat is applied, the steam enters the intermediate steam valve 8, and the amount of steam adjusted by the intermediate steam valve 8 flows into the low-pressure turbine 9. The steam that has completed work in the low-pressure turbine 9 is supplied to the condenser 10
And discharged into the condensate system. The generator 10 directly connected to the shaft end of the low-pressure turbine 9 converts the mechanical power obtained from the low-pressure turbine 9 into electric energy and supplies the electric energy to the load 11.

【0006】次に、図9に上述のタービン系統における
蒸気加減弁制御装置の構成を示す。この蒸気加減弁制御
装置は、図8に示した、高圧タービン5の蒸気供給系統
に並列に設けられた蒸気加減弁4を制御するものであ
る。
Next, FIG. 9 shows a configuration of a steam control valve control device in the above-mentioned turbine system. This steam control valve control device controls the steam control valve 4 provided in parallel with the steam supply system of the high-pressure turbine 5 shown in FIG.

【0007】図9に示すように、タービン速度検出器6
の出力側には、タービン基準速度設定器21にて設定さ
れたタービン基準速度S1からタービン速度検出器6に
て検出されたタービン速度信号S2を差し引いて速度偏
差信号S3を出力する加算器22が設けられている。こ
の加算器22の出力側には、CV開度を決定するCV係
数器23が接続されている。 このCV係数器23は、
速度偏差信号S3に対してどの程度の割合でCV開度調
整するかを設定するものである。この調整は、CV速度
調定率と呼ばれており、一般に速度偏差信号S3が定格
タービン速度の約5%で弁開度を100%変化させるよ
うに設定する。そして、加算器25は、運転員によって
出力設定器24に設定された出力設定値P1とCV係数
器23からの出力信号CV0を加算してCV流量指令C
V1として出力する。さらにCV流量指令CV1は、流
量配分制御部26に入力される。流量配分制御部26
は、CV流量指令に基づき各弁、ここでは弁3Aから弁
3Dまでの4弁の流量指令CV2A,CV2B,CV2
C,CV2Dを演算し、これを各々の流量開度変換器2
7A,27B,27C,27Dへ出力する。ここで、弁
3Aないし弁3Dの制御は各々同様であるので、以下、
弁3Aについてのみ説明し、他は省略する。
As shown in FIG. 9, the turbine speed detector 6
The output side of the adder 22 outputs a speed deviation signal S3 by subtracting the turbine speed signal S2 detected by the turbine speed detector 6 from the turbine reference speed S1 set by the turbine reference speed setter 21. Is provided. The output side of the adder 22 is connected to a CV coefficient unit 23 for determining the CV opening. This CV coefficient unit 23
This is for setting the ratio of the CV opening adjustment with respect to the speed deviation signal S3. This adjustment is called a CV speed adjustment rate, and is generally set so that the speed deviation signal S3 changes the valve opening by 100% at about 5% of the rated turbine speed. Then, the adder 25 adds the output set value P1 set by the operator to the output setter 24 and the output signal CV0 from the CV coefficient unit 23, and adds the CV flow command C
Output as V1. Further, the CV flow rate command CV1 is input to the flow rate distribution control unit 26. Flow distribution controller 26
Is a flow rate command CV2A, CV2B, CV2 for each valve, here, 4 valves from 3A to 3D, based on the CV flow rate command.
C, CV2D are calculated, and this is used for each flow rate opening degree converter 2.
7A, 27B, 27C and 27D. Here, since the control of each of the valves 3A to 3D is the same,
Only the valve 3A will be described, and the other will be omitted.

【0008】弁3AのCV流量指令CV2Aは、蒸気加
減弁を流れる蒸気流量指令であり、タービン出力値と比
例した値となっているが、蒸気加減弁開度と蒸気加減弁
を流れる蒸気流量とは、蒸気加減弁の開度特性により比
例していない。つまり、タービン出力値及びCV流量指
令と蒸気加減弁の開度とは非線形の関係にある。そこ
で、流量配分制御部26の出力側には、CV流量指令C
V2Aに比例したCV開度指令信号CV3Aを出力する
流量/開度変換器27Aが接続されている。流量/開度
変換器27Aには、CV開度指令信号CV3A及び弁開
度検出器28Aにて検出された蒸気加減弁3AのCV実
開度信号CV4Aの偏差信号CV5Aを出力する加算器
29Aが接続されている。
The CV flow rate command CV2A of the valve 3A is a steam flow rate command flowing through the steam control valve and has a value proportional to the turbine output value. Is not proportional to the opening degree characteristic of the steam control valve. That is, the turbine output value and the CV flow rate command have a non-linear relationship with the opening of the steam control valve. Therefore, the output side of the flow distribution control unit 26 has a CV flow command C
A flow / opening degree converter 27A that outputs a CV opening degree command signal CV3A proportional to V2A is connected. An adder 29A that outputs a deviation signal CV5A of the CV opening command signal CV3A and the CV actual opening signal CV4A of the steam control valve 3A detected by the valve opening detector 28A is provided in the flow / opening converter 27A. It is connected.

【0009】加算器29Aの出力側には、偏差信号CV
5Aを比例増幅して信号CV6Aとしてそれぞれ出力す
る増幅器30Aが接続されている。増幅器30Aの出力
側には、電気信号であるCV6Aを油圧信号CV7Aと
して出力する電気/油圧変換器31Aが接続されてい
る。電気/油圧変換器31Aは、電気信号が正極性の時
は弁開に、負極性の時は弁閉とし、電気信号の大きさに
比例して弁の開閉速度を変化させて油圧信号CV7Aを
出力するものである。電気/油圧変換器31Aの出力側
には、油圧信号CV7Aを機械位置信号CV8Aに変換
して弁3Aの開度を操作する弁操作器32Aがそれぞれ
接続されている。すなわち、上述の構成は、偏差信号C
V5A、CV6Aが零となるような閉ループ制御となっ
ている。
The output of the adder 29A has a deviation signal CV
An amplifier 30A that proportionally amplifies 5A and outputs each as a signal CV6A is connected. The output side of the amplifier 30A is connected to an electric / hydraulic converter 31A that outputs an electric signal CV6A as a hydraulic signal CV7A. The electric / hydraulic converter 31A opens the valve when the electric signal has a positive polarity and closes the valve when the electric signal has a negative polarity, and changes the opening / closing speed of the valve in proportion to the magnitude of the electric signal to generate the hydraulic signal CV7A. Output. The output side of the electric / hydraulic converter 31A is connected to a valve operator 32A that converts the hydraulic signal CV7A into a mechanical position signal CV8A and controls the opening of the valve 3A. That is, the above-described configuration provides the deviation signal C
The closed loop control is such that V5A and CV6A become zero.

【0010】また、急閉検出器33Aの出力側には、急
閉検出器33Aから出力される急閉検出信号CV9Aを
油圧急閉検出信号CV10Aに変換して出力する急閉操
作器34Aが接続されている。急閉操作器34Aの出力
側には、油圧急閉検出出力CV10Aに基づいて弁3A
Dを急閉させる弁操作器32Aが接続されている。
[0010] Further, a rapid closing operation device 34A for converting the rapid closing detection signal CV9A output from the rapid closing detector 33A into a hydraulic rapid closing detection signal CV10A and outputting the same is connected to the output side of the rapid closing detector 33A. Have been. A valve 3A is provided on the output side of the quick closing operation device 34A based on the hydraulic quick closing detection output CV10A.
A valve operating device 32A for rapidly closing D is connected.

【0011】次に、図10及び図11を用いて蒸気加減
弁制御装置の動作について説明する。タービン基準速度
設定器21にて設定されたタービン基準速度信号S1か
らタービン速度検出器6にて検出されたタービン速度信
号S2を差し引いて得られる速度偏差信号S3は、CV
係数器23に入力される。CV係数器23は、速度偏差
信号S3が定格タービン速度の約5%で弁開度が100
%変化するように設定して信号CV0を出力する。
Next, the operation of the steam control valve control device will be described with reference to FIGS. The speed deviation signal S3 obtained by subtracting the turbine speed signal S2 detected by the turbine speed detector 6 from the turbine reference speed signal S1 set by the turbine reference speed setter 21 is CV
It is input to the coefficient unit 23. When the speed deviation signal S3 is about 5% of the rated turbine speed and the valve opening is 100
%, And outputs the signal CV0.

【0012】そして、出力設定器24からの出力値P1
とCV係数器23からの出力信号CV0は、加算器25
で加算されてCV流量指令CV1として出力される。さ
らに、CV流量指令CV1は流量配分制御部26に入力
される。図10に示すよう、流量配分制御部26には、
蒸気加減弁3A,蒸気加減弁3B,蒸気加減弁3C,蒸
気加減弁3Dが順次開動作するような関数発生器26
A,26B,26C,26Dが設けられているため、各
弁のCV流量指令もCV2A,CV2B,CV2C,C
V2Dの順に開指令が出力される。また、図11に示す
よう通常プラントでは定格出力の95%までは蒸気加減
弁3A,3B,3Cのみの開指令にて得られ、蒸気加減
弁3Dがわずかに開(数%程度)することで95%〜1
00%の出力が得られるように蒸気加減弁の容量が設計
されている。
The output value P1 from the output setting unit 24 is
And the output signal CV0 from the CV coefficient unit 23 are
And output as the CV flow rate command CV1. Further, the CV flow rate command CV1 is input to the flow rate distribution control unit 26. As shown in FIG. 10, the flow distribution control unit 26 includes:
A function generator 26 in which the steam control valve 3A, the steam control valve 3B, the steam control valve 3C, and the steam control valve 3D are sequentially opened.
Since A, 26B, 26C, and 26D are provided, the CV flow rate command for each valve is also CV2A, CV2B, CV2C, C
Open commands are output in the order of V2D. In addition, as shown in FIG. 11, in a normal plant, up to 95% of the rated output can be obtained by opening only the steam control valves 3A, 3B, 3C, and the steam control valve 3D is slightly opened (about several%). 95% -1
The capacity of the steam control valve is designed so that an output of 00% is obtained.

【0013】CV開度指令CV3A及び蒸気加減弁3A
の弁開度検出器28Aで検出されたCV実開度CV4A
は加算器29Aに入力され、この両信号の偏差が偏差信
号CV5Aとして出力される。この偏差信号CV5A
は、増幅器30Aにて比例増幅された後に、信号CV6
Aとして出力され、電気/油圧変換器31Aに入力され
る。電気/油圧変換器31Aは、電気信号を油圧信号C
V7Aに変換して出力する。この時、電気信号が正極性
の時は弁開に、負極性の時は弁閉とし、電気信号の大き
さに比例して弁の開閉速度を変化させて油圧信号CV7
Aを出力する。この油圧信号CV7Aは、弁操作器32
Aにより機械位置信号CV8Aに変換されて出力され、
蒸気加減弁3Aの開度を調整する。また、蒸気加減弁3
Aを高速に全閉させる必要が生じた時には、急閉検出器
33Aにより、急閉電気信号CV9Aを出力して、急閉
操作器34Aに内蔵されている電磁弁を励磁することに
より蒸気加減弁3Aを急速に全閉する。
CV opening command CV3A and steam control valve 3A
CV actual opening CV4A detected by the valve opening detector 28A of FIG.
Is input to the adder 29A, and the difference between the two signals is output as the difference signal CV5A. This deviation signal CV5A
Is proportionally amplified by the amplifier 30A, and then the signal CV6
A is output as A and input to the electric / hydraulic converter 31A. The electric / hydraulic converter 31A converts the electric signal into a hydraulic signal C.
Convert to V7A and output. At this time, when the electric signal has a positive polarity, the valve is opened, and when the electric signal has a negative polarity, the valve is closed. By changing the opening / closing speed of the valve in proportion to the magnitude of the electric signal, the hydraulic signal CV7 is changed.
A is output. The hydraulic signal CV7A is transmitted to the valve operating device 32.
A converts it into a machine position signal CV8A and outputs it.
Adjust the opening of the steam control valve 3A. In addition, steam control valve 3
When it becomes necessary to fully close A at a high speed, the sudden closing detector 33A outputs a sudden closing electric signal CV9A to excite a solenoid valve incorporated in the sudden closing operation device 34A to thereby control the steam control valve. 3A is fully closed rapidly.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、上述の
構成では、複数の弁を順次開閉制御しながらプラントに
要求される所望の出力を得るために運転をしている際
に、蒸気加減弁あるいは各蒸気加減弁の制御系に故障が
発生した場合、所望の出力を得ることができなくなりプ
ラント運転上支障が生ずる恐れがあった。本発明は、上
記実情に鑑みてなされたものであり、蒸気加減弁あるい
は各蒸気加減弁の系統に故障が発生した場合であって
も、故障した系統の弁に替えて最後に開かれる蒸気加減
弁にて開度補償することができるタービン制御装置を提
供することを目的とする。
However, in the above-described configuration, the steam control valve or each of the steam control valves is controlled when a plurality of valves are sequentially opened and closed to obtain a desired output required by the plant. When a failure occurs in the control system of the steam control valve, a desired output cannot be obtained, and there is a possibility that a trouble occurs in plant operation. The present invention has been made in view of the above circumstances, and even when a failure occurs in the steam control valve or the system of each steam control valve, the steam control that is finally opened instead of the valve of the failed system. An object of the present invention is to provide a turbine control device capable of compensating an opening degree by a valve.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に請求項1に係る発明によれば、タービンに供給される
蒸気の蒸気流量を制御する制御系に設けられ、タービン
の蒸気流入側に並列に設けられた複数の弁を蒸気流量要
求信号に応じて各弁毎に順次開閉制御するため、タービ
ンに流れるべき各弁の蒸気流量指令信号を出力する蒸気
流量指令信号出力手段と、各弁の蒸気流量指令信号に基
づいて各弁の開度指令信号を出力する開度指令信号出力
手段と、各弁の制御系にそれぞれ設けられ、各弁の実際
の開度を検出して開度信号を出力する開度信号出力手段
と、各弁の制御系にそれぞれ設けられ、開度指令信号出
力手段から出力された開度指令信号及び開度信号出力手
段から出力された開度信号に基づいて各弁の開閉操作を
行う弁開閉操作手段とを備えたタービン制御装置におい
て、各弁の制御系にそれぞれ設けられ、開度信号出力手
段から出力された開度信号及び開度指令信号出力手段か
ら出力された開度指令信号を基に、各弁または各弁の制
御系の異常を検出し、各弁毎の異常検出信号を蒸気流量
指令信号出力手段に出力する異常検出手段と、各弁の制
御系にそれぞれ設けられ、異常検出手段から出力された
異常検出信号に基づいて各弁を閉じる弁閉手段とを設
け、各弁の蒸気流量指令信号出力手段は異常検出手段か
らの異常検出信号に基づいて、異常検出手段にて検出さ
れた弁を弁閉手段にて閉め、当該弁の蒸気流量を最後に
開かれる弁で補償するようにしたことを特徴とする。こ
れにより、蒸気流量指令に基づき複数の弁を順次開する
蒸気加減弁のうち、異常検出信号により異常が検出され
た弁を弁閉手段により閉じるため、1つの弁に故障が発
生しても、それに替えて最後に開かれる弁にて蒸気流量
を補償することができる。
According to the first aspect of the present invention, there is provided a control system for controlling a steam flow rate of steam supplied to a turbine. Steam flow command signal output means for outputting a steam flow command signal for each valve to flow to the turbine in order to sequentially control the opening and closing of a plurality of valves provided in parallel for each valve in accordance with the steam flow request signal; An opening command signal output means for outputting an opening command signal for each valve based on the steam flow command signal of the valve, and an opening signal provided by a control system for each valve to detect the actual opening of each valve. Output signal outputting means for outputting the opening command signal output from the opening command signal output means and the opening signal output from the opening signal output means provided in the control system of each valve. Valve opening / closing operator who opens / closes each valve In the turbine control device provided with, based on the opening signal output from the opening signal output means and the opening command signal output from the opening signal output means provided respectively in the control system of each valve, Abnormality detection means for detecting an abnormality of each valve or a control system of each valve, and outputting an abnormality detection signal for each valve to the steam flow rate command signal output means, and a control system for each valve, respectively. Valve closing means for closing each valve based on the output abnormality detection signal, and the steam flow command signal output means of each valve is detected by the abnormality detection means based on the abnormality detection signal from the abnormality detection means. The valve is closed by valve closing means, and the steam flow rate of the valve is compensated by the valve that is opened last. With this, among the steam control valves that sequentially open a plurality of valves based on the steam flow rate command, the valve in which the abnormality is detected by the abnormality detection signal is closed by the valve closing unit, so that even if one valve fails, Alternatively, the steam flow can be compensated by a valve that is opened last.

【0016】また、請求項2に係る発明によれば、請求
項1記載のタービン制御装置において、各弁の制御系に
それぞれ設けられ、異常検出手段から出力された異常検
出信号に基づいて各弁を閉じる弁閉手段とを設け、各弁
の蒸気流量指令信号出力手段は異常検出手段からの異常
検出信号に基づいて、蒸気流量を異常が検出された弁の
蒸気流量と同一にするように最後に開かれる弁の蒸気流
量指令信号を出力することにより、当該弁の蒸気流量を
最後に開かれる弁で補償するようにしたことを特徴とす
る。これにより、蒸気流量指令に基づき複数の弁を順次
開する蒸気加減弁のうち、異常検出信号により異常が検
出された弁を弁閉手段により閉じ、さらに、蒸気流量指
令信号出力手段の最後に開かれる弁の蒸気流量指令を異
常が検出された弁の蒸気流量と同一の出力とするため、
1つの弁に故障が発生しても、それに替えて最後に開か
れる弁にて蒸気流量を補償することができる。
According to a second aspect of the present invention, in the turbine control device according to the first aspect, each valve is provided in a control system of each valve, and each valve is provided based on an abnormality detection signal output from abnormality detection means. And a steam flow command signal output means for each valve based on the abnormality detection signal from the abnormality detection means so that the steam flow rate is made equal to the steam flow rate of the valve in which the abnormality is detected. By outputting a steam flow command signal for the valve that is opened at the end, the steam flow of the valve is compensated by the valve that is opened last. Thereby, among the steam control valves that sequentially open a plurality of valves based on the steam flow command, the valve in which the abnormality is detected by the abnormality detection signal is closed by the valve closing means, and further opened at the end of the steam flow command signal output means. In order to make the steam flow command of the valve to be output the same as the steam flow rate of the valve where the abnormality is detected,
If one of the valves fails, the steam flow can be compensated by the valve that is opened last.

【0017】また、請求項3に係る発明によれば、請求
項1記載のタービン制御装置において、蒸気流量指令信
号出力手段は各弁の異常検出手段からの異常検出信号に
基づいて、最後に開かれる弁の蒸気流量指令を出力する
関数発生手段の関数を異常が検出された弁の関数と同一
の関数設定とするための新たな関数発生手段を設けるこ
とにより、当該弁の蒸気流量を最後に開かれる弁で補償
することを特徴とする。これにより、蒸気流量指令に基
づき複数の弁を順次開する蒸気加減弁のうち、異常検出
信号により異常が検出された弁を弁閉手段により閉じ、
さらに、蒸気流量指令信号出力手段内の関数発生手段に
より、最後に開かれる弁の蒸気流量指令を異常が検出さ
れた弁の蒸気流量と同一の出力にするため、1つの弁に
故障が発生しても、それに替えて最後に開かれる弁にて
蒸気流量を補償することができる。
According to a third aspect of the present invention, in the turbine control device according to the first aspect, the steam flow command signal output means is finally opened based on an abnormality detection signal from the abnormality detection means of each valve. By providing a new function generating means for setting the function of the function generating means for outputting the steam flow command of the valve to be set to the same function as the function of the valve in which the abnormality is detected, the steam flow of the valve is finally set. It is characterized by compensation with an opened valve. With this, among the steam control valves that sequentially open a plurality of valves based on the steam flow command, the valve in which the abnormality is detected by the abnormality detection signal is closed by the valve closing unit,
Further, the function generation means in the steam flow rate command signal output means sets the steam flow rate command of the valve to be opened last to the same output as the steam flow rate of the valve in which the abnormality is detected, so that one valve fails. However, the steam flow rate can be compensated by the valve which is opened last instead.

【0018】また、請求項4に係る発明によれば、請求
項1記載のタービン制御装置において、蒸気流量指令信
号出力手段は各弁の異常検出手段からの異常検出信号に
基づいて、最後に開かれる弁の蒸気流量指令を異常が検
出された弁の蒸気流量指令に切替える切替手段を設ける
ことにより、当該弁の蒸気流量を最後に開かれる弁で補
償することを特徴とする。これにより、蒸気流量指令に
基づき複数の弁を順次開する蒸気加減弁のうち、異常検
出信号により異常が検出された弁を弁閉手段により閉
じ、さらに、蒸気流量指令信号出力手段内の切替え手段
により、最後に開かれる弁の蒸気流量指令を異常が検出
された弁の蒸気流量指令に切替えるため、1つの弁に故
障が発生しても、それに替えて最後に開かれる弁にて蒸
気流量を補償することができる。
According to a fourth aspect of the present invention, in the turbine control device according to the first aspect, the steam flow command signal output means is finally opened based on an abnormality detection signal from the abnormality detection means of each valve. By providing switching means for switching the steam flow command of the valve to be switched to the steam flow command of the valve in which an abnormality is detected, the steam flow of the valve is compensated by the valve that is opened last. Thus, among the steam control valves that sequentially open a plurality of valves based on the steam flow command, the valve in which the abnormality is detected by the abnormality detection signal is closed by the valve closing device, and further, the switching device in the steam flow command signal output device is switched. Therefore, the steam flow command of the valve that is opened last is switched to the steam flow command of the valve in which an abnormality is detected, so even if a failure occurs in one valve, the steam flow rate is changed by the valve that is opened last instead. Can compensate.

【0019】また、請求項5に係る発明によれば、請求
項1記載のタービン制御装置において、蒸気流量指令信
号出力手段は各弁の異常検出手段からの異常検出信号に
基づいて、最後に開かれる弁の蒸気流量指令に異常が検
出された弁の蒸気流量指令を加算する加算手段を設ける
ことにより、当該弁の蒸気流量を最後に開かれる弁で補
償することを特徴とする。これにより、蒸気流量指令に
基づき複数の弁を順次開する蒸気加減弁のうち、異常検
出信号により異常が検出された弁を弁閉手段により閉
じ、さらに、蒸気流量指令信号出力手段内の加算手段に
より、第4弁の蒸気流量指令に異常が検出された弁の蒸
気流量指令を加算するため、1つの弁に故障が発生して
も、それに替えて最後に開かれる弁にて蒸気流量を補償
することができる。
According to a fifth aspect of the present invention, in the turbine control device according to the first aspect, the steam flow command signal output means is finally opened based on an abnormality detection signal from the abnormality detection means of each valve. By providing an adding means for adding the steam flow command of the valve in which the abnormality is detected to the steam flow command of the valve to be operated, the steam flow of the valve is compensated by the valve that is opened last. Thus, among the steam control valves that sequentially open the plurality of valves based on the steam flow command, the valve in which the abnormality is detected by the abnormality detection signal is closed by the valve closing device, and the adding device in the steam flow command signal output device is further closed. By adding the steam flow command of the valve in which the abnormality was detected to the steam flow command of the fourth valve, even if one valve fails, the steam flow is compensated by the valve that is opened last instead. can do.

【0020】また、請求項6に係る発明によれば、請求
項1記載のタービン制御装置において、各弁の開度検出
手段により検出させた開度信号を蒸気流量信号相当に変
換する各弁の開度流量変換手段と、各弁の開度流量変換
手段から出力される各弁の蒸気流量信号相当を加算する
第1加算手段と、各弁の蒸気流量信号の総蒸気流量要求
信号から第1加算手段から出力される蒸気流量信号相当
信号の差を検出する第2加算手段と、各弁の蒸気流量指
令信号出力手段から出力される最後に開かれる弁の蒸気
流量指令信号に第2加算手段からの信号を加算する第3
加算手段を設け、第3加算手段への第2加算手段から出力
される信号加算は、異常検出手段から出力された異常検
出信号の動作時のみとすることを特徴とする。これによ
り、蒸気流量指令に基づき複数の弁を順次開する蒸気加
減弁のうち、異常検出信号により異常が検出された弁を
弁閉手段により閉じ、さらに、各弁の蒸気流量信号の総
蒸気流量要求信号と各弁の実際に流れている合計流量と
の差を求め、この差を最後に開かれる弁の蒸気流量指令
に加算するため、故障弁系統は1弁に限らず最後に開か
れる弁が最大開度となるまでは複数の弁に異常が発生し
た場合でも最後に開かれる弁にて不足流量を補償するこ
とができる。
According to a sixth aspect of the present invention, in the turbine control device according to the first aspect, each of the valves for converting the opening signal detected by the opening detecting means of each valve into a steam flow signal is provided. Opening flow rate conversion means, first addition means for adding the steam flow rate signal corresponding to each valve output from the opening flow rate conversion means for each valve, and a first flow rate signal from the total steam flow demand signal of the steam flow rate signal for each valve. A second adding means for detecting a difference between the signals corresponding to the steam flow rate signals output from the adding means, and a second adding means for outputting the steam flow rate command signal of the last valve opened from the steam flow rate command signal output means of each valve. Third to add the signal from
An addition unit is provided, and the addition of the signal output from the second addition unit to the third addition unit is performed only when the abnormality detection signal output from the abnormality detection unit operates. With this, among the steam control valves that sequentially open a plurality of valves based on the steam flow command, the valves in which the abnormality is detected by the abnormality detection signal are closed by the valve closing means, and the total steam flow of the steam flow signal of each valve is further closed. The difference between the request signal and the total flow rate actually flowing through each valve is obtained, and this difference is added to the steam flow command of the valve that is opened last. Even if a plurality of valves have an abnormality until the maximum opening degree is reached, the insufficient flow rate can be compensated by the valve that is opened last.

【0021】また、請求項7に係る発明によれば、請求
項1記載のタービン制御装置において、各弁の開度手段
により検出させた開度信号を蒸気流量信号相当に変換す
る各弁の開度流量変換手段と、各弁の開度流量変換手段
から出力される各弁の蒸気流量信号相当を加算する第1
加算手段と、各弁の蒸気流量信号の総蒸気流量要求信号
から第1加算手段から出力される蒸気流量信号相当信号
の差を検出する第2加算手段を設け、最後に開かれる弁
の蒸気流量指令のみは蒸気流量指令信号出力手段からの
出力に替えて第2加算手段から出力信号を使用して最後
に開かれる弁を制御することを特徴とする。これによ
り、蒸気流量指令に基づき複数の弁を順次開する蒸気加
減弁のうち、異常検出信号により異常が検出された弁を
弁閉手段により閉じ、さらに、各弁の蒸気流量信号の総
蒸気流量要求信号と各弁の実際に流れている合計流量と
の差を求め、この差を最後に開かれる弁の蒸気流量指令
とするため、故障弁系統は1弁に限らず最後に開かれる
弁が最大開度となるまでは複数の弁に異常が発生した場
合でも最後に開かれる弁にて不足流量を補償することが
できる。
According to a seventh aspect of the present invention, in the turbine control device according to the first aspect, the opening signals of the respective valves for converting the opening signals detected by the opening means of the respective valves into a steam flow signal. A flow rate converting means for adding a steam flow rate signal corresponding to each valve output from the opening degree flow rate converting means for each valve.
An adding means, and a second adding means for detecting a difference between a signal corresponding to a steam flow signal output from the first adding means from a total steam flow request signal of the steam flow signal of each valve, and a steam flow rate of a valve which is opened last. Only the command is controlled by using the output signal from the second adding means instead of the output from the steam flow rate command signal output means to control the last valve to be opened. With this, among the steam control valves that sequentially open a plurality of valves based on the steam flow command, the valves in which the abnormality is detected by the abnormality detection signal are closed by the valve closing means. The difference between the request signal and the total flow actually flowing through each valve is determined, and this difference is used as the steam flow command for the valve that is opened last. Until the maximum opening is reached, the insufficient flow can be compensated by the valve that is opened last even if an abnormality occurs in a plurality of valves.

【0022】また、請求項8に係る発明によれば、請求
項1ないし7のうちいずれか1記載のタービン制御装置
において、タービンの蒸気流入側に並列に設けられた弁
を4つとし、異常検出手段で第1弁から第3弁の異常を
検出すると、当該弁の蒸気流量を最後に開かれる第4弁
で補償するようにしたことを特徴とする。これにより、
蒸気流量指令に基づき第1弁から第4弁まで順次開する
蒸気加減弁のうち、異常検出信号により、異常が検出さ
れた弁を弁閉手段により閉じ、異常が検出された弁に替
えて最後に開かれる第4弁にて蒸気流量を補償すること
ができる。
According to an eighth aspect of the present invention, in the turbine control device according to any one of the first to seventh aspects, the number of valves provided in parallel on the steam inflow side of the turbine is four. When the detection means detects abnormality of the first to third valves, the steam flow rate of the valve is compensated by the fourth valve which is opened last. This allows
Among the steam control valves that are sequentially opened from the first valve to the fourth valve based on the steam flow command, the valve in which the abnormality is detected is closed by the valve closing means by the abnormality detection signal, and the last valve is replaced with the valve in which the abnormality is detected. The steam flow rate can be compensated by the fourth valve which is opened at the end.

【0023】[0023]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について説明する。図1に、本発明の第1の実
施の形態に係るタービン制御装置の構成を示す。なお、
図9と同一部分には、同一符号を付してその説明は省略
する。図1に示す本実施の形態においては、蒸気加減弁
3Aの制御系には、弁開度検出器28Aより検出された
蒸気加減弁3Aの実際の開度を示す開度信号CV4A及
び弁3Aに対する開度指令信号CV3Aを基に、弁3A
又は弁3Aの制御系に異常を検出すると異常検出信号F
1Aを急閉検出器33Aに出力する弁異常検出器35A
が設けられている。なお、蒸気加減弁3B,3C,3D
についても各々同様に設けられている。ここで、蒸気加
減弁3Aを例にとれば、上記弁異常検出器35A,35
B,35C,35Dにおける異常の検出は、弁3Aの実
際の開度を示す開度信号CV4A、すなわち、蒸気加減
弁3Aの開度が、蒸気加減弁3Aに対する開度指令信号
CV3Aに追従して動作しなくなった場合に行われる。
弁異常検出器35Aの出力側には、異常検出信号F1A
に基づいて急閉検出信号CV9Aを出力する急閉検出器
33Aが接続されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration of a turbine control device according to a first embodiment of the present invention. In addition,
The same parts as those in FIG. 9 are denoted by the same reference numerals, and description thereof will be omitted. In the present embodiment shown in FIG. 1, the control system of the steam control valve 3A includes an opening signal CV4A indicating the actual opening of the steam control valve 3A detected by the valve opening detector 28A and a valve 3A. Based on the opening command signal CV3A, the valve 3A
Alternatively, when an abnormality is detected in the control system of the valve 3A, the abnormality detection signal F
Valve abnormality detector 35A that outputs 1A to sudden closing detector 33A
Is provided. The steam control valves 3B, 3C, 3D
Are similarly provided. Here, taking the steam control valve 3A as an example, the valve abnormality detectors 35A, 35A
The detection of abnormality in B, 35C, and 35D is based on the opening signal CV4A indicating the actual opening of the valve 3A, that is, the opening of the steam control valve 3A following the opening command signal CV3A for the steam control valve 3A. This is done when it stops working.
An abnormality detection signal F1A is provided on the output side of the valve abnormality detector 35A.
Is connected to a quick-close detector 33A that outputs a quick-close detection signal CV9A based on the above.

【0024】さらに、図2に示すように、流量配分制御
器26に、弁異常検出器35A,35B,35Cから出
力される異常検出信号F1A,F1B,F1C及び蒸気
流量要求信号CV1に基づいて、異常が検出された弁系
の流量配分関数26A又は26B又は26Cと同様の流
量配分関数を蒸気加減弁3Dの流量配分関数器26Dに
セットする関数発生器26Eを設ける。図3に本実施の
形態における関数発生器26Eの入出力特性を示す。こ
の関数発生器は異常検出信号F1Aを入力すると流量配
分関数26Aと同一の関数を流量配分関数器26D
に、同様に異常検出信号F1Bを入力すると流量配分関
数26Bと同一の関数を流量配分関数器26D に、同
様に異常検出信号F1Cを入力すると流量配分関数26
Cと同一の関数を流量配分関数器26D にセットする
特性を有している。
Further, as shown in FIG. 2, the flow rate distribution controller 26 controls the valve abnormality detectors 35A, 35B, 35C based on the abnormality detection signals F1A, F1B, F1C and the steam flow request signal CV1. A function generator 26E is provided for setting a flow distribution function similar to the flow distribution function 26A, 26B, or 26C of the valve system in which an abnormality is detected in the flow distribution function unit 26D of the steam control valve 3D. FIG. 3 shows the input / output characteristics of function generator 26E in the present embodiment. When this function generator receives the abnormality detection signal F1A, the same function as the flow distribution function 26A is applied to the flow distribution function unit 26D.
Similarly, when the abnormality detection signal F1B is input, the same function as the flow distribution function 26B is input to the flow distribution function unit 26D. Similarly, when the abnormality detection signal F1C is input, the flow distribution function 26
It has the characteristic of setting the same function as C in the flow distribution function unit 26D.

【0025】次に、本実施の形態の蒸気タービン制御装
置の動作について説明する。本実施の形態の蒸気タービ
ン制御装置は、プラント出力定格の95%までは蒸気加
減弁3A及び蒸気加減弁3B及び蒸気加減弁3Cが順次
開制御して所望の蒸気流量を流している。今、蒸気加減
弁3A又は蒸気加減弁3Aを制御する弁系統に故障が発
生した場合、弁異常検出器35Aから異常検出信号F1
Aが出力される。弁異常検出器35Aから出力された異
常検出信号F1Aは、急閉検出器33Aに入力され、急
閉検出器33Aは急閉検出信号CV9Aを急閉操作器3
4Aに出力する。急閉操作器34Aは、急閉検出信号C
V9Aを油圧急閉検出信号CV10Aに変換して弁操作
器32Aに出力する。そして弁操作器32Aは油圧急閉
検出信号CV10Aに基づいて蒸気加減弁3Aを全閉す
る。
Next, the operation of the steam turbine control device according to the present embodiment will be described. In the steam turbine control device of the present embodiment, the steam control valve 3A, the steam control valve 3B, and the steam control valve 3C are sequentially controlled to open to a desired steam flow rate up to 95% of the plant output rating. Now, when a failure occurs in the steam control valve 3A or the valve system that controls the steam control valve 3A, the abnormality detection signal F1 is output from the valve abnormality detector 35A.
A is output. The abnormality detection signal F1A output from the valve abnormality detector 35A is input to the sudden closing detector 33A, and the sudden closing detector 33A outputs the sudden closing detection signal CV9A to the sudden closing operation device 3A.
Output to 4A. The quick closing operation device 34A outputs the quick closing detection signal C
V9A is converted into a hydraulic rapid closing detection signal CV10A and output to the valve operating device 32A. Then, the valve operating unit 32A fully closes the steam control valve 3A based on the hydraulic rapid closing detection signal CV10A.

【0026】さらに、異常検出信号F1Aは流量配分制
御器26に出力される。流量配分制御器26内の関数発
生器26Eは異常検出信号F1Aの入力により流量配分
関数26Aと同一の関数を流量配分関数器26Dにセッ
トし、流量配分関数器26Dから出力する蒸気加減弁3
Dを制御するCV流量指令CV2Dは故障の発生した蒸
気加減弁3Aを制御するCV流量指令CV2Aと同一流
量指令となる。
Further, the abnormality detection signal F1A is output to the flow distribution controller 26. The function generator 26E in the flow distribution controller 26 sets the same function as the flow distribution function 26A in the flow distribution function 26D in response to the input of the abnormality detection signal F1A, and outputs the steam control valve 3 output from the flow distribution function 26D.
The CV flow command CV2D for controlling D is the same flow command as the CV flow command CV2A for controlling the failed steam control valve 3A.

【0027】これにより、蒸気加減弁3Dは故障により
弁開度が全閉となっている蒸気加減弁3Aの必要とする
開度を得ることができる。以上、蒸気加減弁3A又は蒸
気加減弁3Aを制御する弁系統に故障が発生した場合に
ついて説明したが、蒸気加減弁3B又は蒸気加減弁3B
を制御する弁系統及び蒸気加減弁3C又は蒸気加減弁3
Cを制御する弁系統に故障が発生した場合にも同様の動
作が行なわれる。
As a result, the steam control valve 3D can obtain the required opening of the steam control valve 3A whose valve opening is fully closed due to a failure. The case where a failure has occurred in the steam control valve 3A or the valve system that controls the steam control valve 3A has been described above, but the steam control valve 3B or the steam control valve 3B has been described.
Control system and steam control valve 3C or steam control valve 3
The same operation is performed when a failure occurs in the valve system that controls C.

【0028】したがって、本実施の形態に係るタービン
制御装置によれば、プラント出力定格の95%までの運
転範囲では、蒸気加減弁3A,3B,3Cあるいは蒸気
加減弁3A,3B,3Cを制御する弁系統に故障が発生
した場合であっても、故障した系統の弁を除外して蒸気
加減弁3Dにより開度補償を行なうことができる。この
ため、タービンの蒸気流量を確保することができ、その
結果プラント出力を変えることなくプラント運転を継続
することができる。また、プラント出力95%〜100
%で蒸気加減弁3Dが開の状態で運転していた時に、蒸
気加減弁3A,3B,3Cが異常になった場合でも、タ
ービン出力を5%減の95%で継続することができター
ビン出力低下を最少に抑えることができる。
Therefore, according to the turbine control device of the present embodiment, the steam control valves 3A, 3B, 3C or the steam control valves 3A, 3B, 3C are controlled within the operating range up to 95% of the plant output rating. Even when a failure occurs in the valve system, the opening degree can be compensated by the steam control valve 3D excluding the valve of the failed system. Therefore, the steam flow rate of the turbine can be secured, and as a result, the plant operation can be continued without changing the plant output. In addition, plant output 95% to 100
% And the steam control valves 3A, 3B, and 3C become abnormal when the steam control valve 3D is operated in an open state, the turbine output can be reduced by 5% and maintained at 95%. Reduction can be minimized.

【0029】図4に、本発明の第2の実施の形態に係る
タービン制御装置内の流量配分制御器26の構成を示
す。なお、流量配分制御器26内の構成の他は、図1に
示す第1の実施の形態と同様であり、図1と同一部分に
は、同一符号を付してその説明を省略する。図4に示す
本実施の形態においては、流量配分制御器26に弁異常
検出器35A,35B,35Cから出力される異常検出
信号F1A,F1B,F1Cにより動作する切替器F1
AS1,F1BS1,F1CS1及びF1AS2,F1
BS2,F1CS2新たにを設ける。
FIG. 4 shows a configuration of a flow distribution controller 26 in a turbine control device according to a second embodiment of the present invention. Except for the configuration inside the flow distribution controller 26, it is the same as the first embodiment shown in FIG. 1, and the same parts as those in FIG. In the present embodiment shown in FIG. 4, the flow distribution controller 26 has the switch F1 operated by the abnormality detection signals F1A, F1B, F1C output from the valve abnormality detectors 35A, 35B, 35C.
AS1, F1BS1, F1CS1 and F1AS2, F1
BS2, F1CS2 are newly provided.

【0030】そして、蒸気加減弁3Dを制御するCV流
量指令CV2Dを出力する回路は、通常、流量配分関数
器26Dからの信号が出力されているが、異常検出信号
F1Aが入力された際には切替器F1AS1が閉及びF
1AS2が開動作し、流量配分関数器26Dからの信号
は切離し、流量配分関数器26Aからの信号が出力され
る。同様に異常検出信号F1Bが入力された際には切替
器F1BS1が閉及びF1BS2が開、異常検出信号F
1Cが入力された際には切替器F1CS1が閉及びF1
CS2が開動作し、流量配分関数器26Dからの信号は
切離し、流量配分関数器26B又は26Cからの信号が
出力されるように構成する。
The circuit that outputs the CV flow rate command CV2D for controlling the steam control valve 3D normally outputs a signal from the flow rate distribution function unit 26D, but when the abnormality detection signal F1A is input, Switch F1AS1 is closed and F
1AS2 opens, the signal from the flow distribution function unit 26D is disconnected, and the signal from the flow distribution function unit 26A is output. Similarly, when the abnormality detection signal F1B is input, the switch F1BS1 is closed and F1BS2 is opened, and the abnormality detection signal F
When 1C is input, the switch F1CS1 is closed and F1CS1 is closed.
CS2 is opened, the signal from the flow distribution function unit 26D is disconnected, and the signal from the flow distribution function unit 26B or 26C is output.

【0031】次に、本実施の形態の蒸気タービン制御装
置の動作について説明する。本実施の形態の蒸気タービ
ン制御装置は、プラント出力定格の95%までは蒸気加
減弁3A及び蒸気加減弁3B及び蒸気加減弁3Cが順次
開制御して所望の蒸気流量を流している。
Next, the operation of the steam turbine control device according to the present embodiment will be described. In the steam turbine control device of the present embodiment, the steam control valve 3A, the steam control valve 3B, and the steam control valve 3C are sequentially controlled to open to a desired steam flow rate up to 95% of the plant output rating.

【0032】今、蒸気加減弁3A又は蒸気加減弁3Aを
制御する弁系統に故障が発生した場合、弁異常検出器3
5Aから異常検出信号F1Aが流量配分制御器26に出
力される。流量配分制御器26内では異常検出信号F1
Aの入力により正常時流量配分関数26Dからの出力で
あったCV流量指令CV2Dは流量配分関数器26Aか
らの出力に切替えられ、故障の発生した蒸気加減弁3A
を制御するのCV流量指令CV2Aと同一と流量指令と
なる。
If a failure occurs in the steam control valve 3A or the valve system that controls the steam control valve 3A, the valve abnormality detector 3
The abnormality detection signal F1A is output to the flow distribution controller 26 from 5A. In the flow distribution controller 26, the abnormality detection signal F1
The CV flow command CV2D, which was the output from the normal flow distribution function 26D by the input of A, is switched to the output from the flow distribution function unit 26A, and the failed steam control valve 3A
Is the same as the CV flow command CV2A for controlling the flow rate command.

【0033】これにより、蒸気加減弁3Dは故障により
弁開度が全閉となっている蒸気加減弁3Aの本来必要と
する開度を得ることができる。以上、蒸気加減弁3A又
は蒸気加減弁3Aを制御する弁系統に故障が発生した場
合について説明したが、蒸気加減弁3B又は蒸気加減弁
3Bを制御する弁系統及び蒸気加減弁3C又は蒸気加減
弁3Cを制御する弁系統に故障が発生した場合にも同様
の動作が行なわれる。したがって、本実施の形態に係る
タービン制御装置によれば、第1の実施の形態と同様の
効果を得ることができる。
As a result, the steam control valve 3D can obtain the originally required opening of the steam control valve 3A whose valve opening is fully closed due to a failure. The case where a failure has occurred in the steam control valve 3A or the valve system for controlling the steam control valve 3A has been described above. However, the steam control valve 3B or the valve system for controlling the steam control valve 3B and the steam control valve 3C or the steam control valve are described. The same operation is performed when a failure occurs in the valve system that controls 3C. Therefore, according to the turbine control device of the present embodiment, the same effects as those of the first embodiment can be obtained.

【0034】図5に、本発明の第3の実施の形態に係る
タービン制御装置内の流量配分制御器26の構成を示
す。なお、流量配分制御器26内の構成の他は、図1に
示す第1の実施の形態と同様であり、図1と同一部分に
は、同一符号を付してその説明を省略する。図5に示す
本実施の形態においては、流量配分制御器26に弁異常
検出器35A,35B,35Cから出力される異常検出
信号F1A,F1B,F1Cにより動作する切替器F1
AS1,F1BS1,F1CS1及び切替器F1AS1
を介した流量配分関数器26Aからの信号と、切替器F
1BS1を介した流量配分関数器26Bからの信号と、
切替器F1CS1を介した流量配分関数器26Cからの
信号と、流量配分関数器26Dからの信号を加算する加
算器26Fを新たにを設ける。
FIG. 5 shows a configuration of a flow distribution controller 26 in a turbine control device according to a third embodiment of the present invention. Except for the configuration inside the flow distribution controller 26, it is the same as the first embodiment shown in FIG. 1, and the same parts as those in FIG. In the present embodiment shown in FIG. 5, the flow distribution controller 26 has a switch F1 operated by abnormality detection signals F1A, F1B, F1C output from the valve abnormality detectors 35A, 35B, 35C.
AS1, F1BS1, F1CS1 and switch F1AS1
From the flow distribution function unit 26A via the switch F
A signal from the flow distribution function unit 26B via the 1BS1,
An adder 26F for adding a signal from the flow distribution function unit 26C via the switch F1CS1 and a signal from the flow distribution function unit 26D is newly provided.

【0035】そして、蒸気加減弁3Dを制御するのCV
流量指令CV2D1を出力する回路は通常、流量配分関
数器26DからのCV2D信号と同一信号が出力される
ようになっているため、異常検出信号F1Aが入力され
た際には切替器F1AS1が動作し、流量配分関数器2
6DからのCV2D信号に、流量配分関数器26Aから
のCV2A信号が加算器26Fにより加算されCV2D
1として出力される。同様に異常検出信号F1Bが入力
された際には切替器F1BS1が、異常検出信号F1C
が入力された際には切替器F1CS1が動作し、流量配
分関数器26DからのCV2D信号に、流量配分関数器
26B又は26CからのCV2B又はCV2C信号が加
算されCV2D1信号として出力されるように構成す
る。
The CV for controlling the steam control valve 3D
Since the circuit that outputs the flow command CV2D1 normally outputs the same signal as the CV2D signal from the flow distribution function unit 26D, the switch F1AS1 operates when the abnormality detection signal F1A is input. , Flow distribution function unit 2
The CV2D signal from the 6D is added to the CV2A signal from the flow distribution function unit 26A by the adder 26F, and the CV2D signal is added.
Output as 1. Similarly, when the abnormality detection signal F1B is input, the switch F1BS1 sets the abnormality detection signal F1C
Is input, the switch F1CS1 operates, and the CV2D signal from the flow distribution function unit 26D is added to the CV2B or CV2C signal from the flow distribution function unit 26B or 26C, and is output as a CV2D1 signal. I do.

【0036】次に、本実施の形態の蒸気タービン制御装
置の動作について説明する。蒸気加減弁3A又は蒸気加
減弁3Aを制御する弁系統に故障が発生した場合、弁異
常検出器35Aから異常検出信号F1Aが流量配分制御
器26に出力される。流量配分制御器26内では異常検
出信号F1Aの入力により正常時流量配分関数26Dか
らの出力のみであったCV流量指令CV2D1は、流量
配分関数器26AからのCV2A信号出力が加算され蒸
気加減弁3Dの流量指令としてCV2D1が出力され
る。
Next, the operation of the steam turbine control device according to the present embodiment will be described. When a failure occurs in the steam control valve 3A or the valve system that controls the steam control valve 3A, an abnormality detection signal F1A is output from the valve abnormality detector 35A to the flow distribution controller 26. In the flow distribution controller 26, the CV flow command CV2D1, which was only the output from the normal flow distribution function 26D due to the input of the abnormality detection signal F1A, is added with the CV2A signal output from the flow distribution function unit 26A to add the steam control valve 3D. Is output as CV2D1.

【0037】これにより、蒸気加減弁3Dは故障により
弁開度が全閉となっている蒸気加減弁3Aの本来必要と
する開度を得ることができる。以上、蒸気加減弁3A又
は蒸気加減弁3Aを制御する弁系統に故障が発生した場
合について説明したが、蒸気加減弁3B又は蒸気加減弁
3Bを制御する弁系統及び蒸気加減弁3C又は蒸気加減
弁3Cを制御する弁系統に故障が発生した場合にも同様
の動作となる。したがって、本実施の形態に係るタービ
ン制御装置によれば、第1の実施の形態と同様の効果を
得ることができる。
Thus, the steam control valve 3D can obtain the originally required opening of the steam control valve 3A whose valve opening is fully closed due to a failure. The case where a failure has occurred in the steam control valve 3A or the valve system for controlling the steam control valve 3A has been described above. However, the steam control valve 3B or the valve system for controlling the steam control valve 3B and the steam control valve 3C or the steam control valve are described. The same operation is performed when a failure occurs in the valve system that controls 3C. Therefore, according to the turbine control device of the present embodiment, the same effects as those of the first embodiment can be obtained.

【0038】図6に、本発明の第4の実施の形態に係る
タービン制御装置に新たに設けた流量演算部400の構
成図を示す。ここで、流量演算部は図1に示すタービン
制御装置の流量配分制御部26と流量/開度変換器27
Dの間に新たに設けたものであり、その他の構成は、図
1に示す第1の実施の形態と同様であり、図1と同一部
分には同一符号を付してその説明を省略する。図6に示
す本実施の形態においては、弁開度検出器28A,28
B,28Cから出力される開度信号CV4A,開度信号
CV4B,開度信号CV4Cから各弁を流れる蒸気流量
信号相当を検出する開度流量変換器40A,40B,4
0Cと開度流量変換器40A,40B,40Cより出力
された各弁の流量相当信号CV20A,CV20B,C
V20Cを加算する加算器41と、CV流量指令CV1
より加算器41の出力信号CV21の偏差信号を演算す
る加算器42と、加算器42より出力される流量偏差信
号CV22と流量配分制御器26内の配分関数器26D
からのCV2D信号とを加算する加算器43と、弁異常
検出器35A、35B,35Cから出力される異常検出
信号F1A,F1B,F1Cにより動作する切替器F1
AS1,F1BS1,F1CS1を、流量演算部400
として新たにを設けた構成とする。ここで、流量演算部
400は、流量配分制御器26DからのCV2D信号に
対して,開度信号CV4A,CV4B,CV4Cの値を
もとに演算処理することによって,蒸気加減弁3Dの蒸
気流量(不足分)を求めるものである。
FIG. 6 shows a configuration diagram of a flow rate calculation unit 400 newly provided in the turbine control device according to the fourth embodiment of the present invention. Here, the flow rate calculation unit includes a flow rate distribution control unit 26 and a flow rate / opening degree converter 27 of the turbine control device shown in FIG.
D is newly provided, and the other configuration is the same as that of the first embodiment shown in FIG. 1. The same parts as those in FIG. . In the present embodiment shown in FIG. 6, the valve opening detectors 28A, 28
B, CC4A, CB4B, and CV4C output from the opening signals CV4B and CV4C, the opening flow rate converters 40A, 40B, and 4 detect the signal corresponding to the steam flow rate flowing through each valve.
0C and the flow rate corresponding signals CV20A, CV20B, C of the valves output from the flow rate converters 40A, 40B, 40C.
An adder 41 for adding V20C and a CV flow rate command CV1
An adder 42 for calculating a deviation signal of the output signal CV21 from the adder 41; a flow deviation signal CV22 output from the adder 42; and a distribution function unit 26D in the flow distribution controller 26.
An adder 43 for adding the CV2D signal from the controller, and a switch F1 operated by abnormality detection signals F1A, F1B, F1C output from the valve abnormality detectors 35A, 35B, 35C.
AS1, F1BS1, and F1CS1 are converted to a flow rate calculation unit 400
As a new configuration. Here, the flow rate calculation unit 400 performs a calculation process on the CV2D signal from the flow rate distribution controller 26D based on the values of the opening degree signals CV4A, CV4B, and CV4C to thereby obtain the steam flow rate of the steam control valve 3D ( Shortage).

【0039】次に、本実施の形態の蒸気タービン制御装
置の動作について説明する。本実施の形態の蒸気タービ
ン制御装置は,プラント出力定格の95%までは蒸気加
減弁3A及び蒸気加減弁3B及び蒸気加減弁3Cが順次
開制御して所望の蒸気流量を流している。
Next, the operation of the steam turbine control device according to the present embodiment will be described. In the steam turbine control device of the present embodiment, the steam control valve 3A, the steam control valve 3B and the steam control valve 3C are sequentially controlled to open to a desired steam flow rate up to 95% of the plant output rating.

【0040】今、蒸気加減弁3A又は蒸気加減弁3Aを
制御する弁系統に故障が発生した場合、弁異常検出器3
5Aから異常検出信号F1Aが出力される。弁異常検出
器35Aから出力された異常検出信号F1Aは,急閉検
出器33Aに入力され、急閉検出器33Aは急閉検出信
号CV9Aを急閉操作器34Aに出力する。急閉操作器
34Aは、急閉検出信号CV9Aを油圧急閉検出信号C
V10Aに変換して弁操作器32Aに出力する。そして
弁操作器32Aは油圧急閉検出信号CV10Aに基づい
て蒸気加減弁3Aを全閉する。
If a failure occurs in the steam control valve 3A or the valve system for controlling the steam control valve 3A, the valve abnormality detector 3
5A outputs an abnormality detection signal F1A. The abnormality detection signal F1A output from the valve abnormality detector 35A is input to the sudden closing detector 33A, and the sudden closing detector 33A outputs the sudden closing detection signal CV9A to the sudden closing operation device 34A. The quick closing operator 34A converts the quick closing detection signal CV9A into the hydraulic quick closing detection signal CV9A.
It is converted to V10A and output to the valve operating device 32A. Then, the valve operating unit 32A fully closes the steam control valve 3A based on the hydraulic rapid closing detection signal CV10A.

【0041】さらに、今回新たに設けられた流量演算部
400により、開度流量変換器40A,40B,40C
により各弁を流れる蒸気流量信号相当を検出し開度流量
変換器40A,40B,40Cより出力された各弁の流
量相当信号CV20A,CV20B,CV20Cを加算
器41により加算することにより第1弁から第3弁で流
れている合計の総蒸気流量相当の信号が検出できる。さ
らに加算器41によりCV流量指令CV1と第1弁から
第3弁の総蒸気流量相当信号CV21との偏差を演算す
ることにより蒸気加減弁3A,3B,3C,3Dで流す
べき所望の蒸気流量に対する不足分が求められる。
Further, the flow rate calculation unit 400 newly provided this time uses the opening degree flow rate converters 40A, 40B, 40C.
, The flow rate signals CV20A, CV20B, CV20C of the valves output from the opening degree flow rate converters 40A, 40B, 40C are added by the adder 41, and the signals from the first valve are added. A signal corresponding to the total steam flow rate flowing through the third valve can be detected. Further, the adder 41 calculates the deviation between the CV flow rate command CV1 and the signal CV21 corresponding to the total steam flow rate of the first valve to the third steam flow rate to obtain a desired steam flow rate to be flowed by the steam control valves 3A, 3B, 3C, 3D. Shortage is required.

【0042】さらに、不足分の蒸気流量信号CV22を
弁異常検出器35A,35B,35Cから出力される異
常検出信号F1A,F1B,F1Cにより動作する切替
器F1AS1,F1BS1,F1CS1を介して加算器
43に入力し蒸気加減弁3DのCV流量指令CV2Dに
加算され、CV流量指令CV23として流量開度変換器
27Dに入力される。これにより所望の蒸気流量に対す
る不足分を蒸気加減弁3Dにて補償することができる。
Further, the insufficient steam flow rate signal CV22 is added to the adder 43 via the switches F1AS1, F1BS1, F1CS1 operated by the abnormality detection signals F1A, F1B, F1C output from the valve abnormality detectors 35A, 35B, 35C. And is added to the CV flow rate command CV2D of the steam control valve 3D, and is input to the flow rate opening converter 27D as the CV flow rate command CV23. Thereby, the shortage with respect to the desired steam flow rate can be compensated by the steam control valve 3D.

【0043】したがって、本実施の形態に係るタービン
制御装置によれば、プラント出力定格の95%までの運
転範囲では、蒸気加減弁3A,3B,3C或いは蒸気加
減弁3A,3B,3Cを制御する弁系統に故障が発生し
た場合であっても、故障した系統の弁を除外して蒸気加
減弁3Dにより補償することができるので、タービンの
蒸気流量を確保することができ、その結果プラント出力
を変えることなくプラント運転を継続することができ
る。さらに、上記説明ではプラント出力が定格の95%
までで説明したが、本実施の形態によればこのプラント
出力を超えたり、また故障弁系統が複数あった場合に
も、蒸気加減弁3Dの弁開度が最大開度となるまでは補
償できることになる。
Therefore, according to the turbine control device of the present embodiment, the steam control valves 3A, 3B, 3C or the steam control valves 3A, 3B, 3C are controlled in the operating range up to 95% of the plant output rating. Even when a failure occurs in the valve system, the valve of the failed system can be excluded and compensated by the steam control valve 3D, so that the steam flow rate of the turbine can be secured, and as a result, the plant output can be reduced. The plant operation can be continued without changing. Further, in the above description, the plant output is 95% of the rated value.
As described above, according to the present embodiment, even if the plant output is exceeded or there are a plurality of failed valve systems, it is possible to compensate until the valve opening of the steam control valve 3D reaches the maximum opening. become.

【0044】図7に、本発明の第5の実施の形態に係る
流量配分制御器の構成を示す。なお、流量配分制御器2
6内の構成の他は、図1に示す第1の実施の形態と同様
であり、図1と同一部分には、同一符号を付してその説
明を省略する。図7に示す本実施の形態においては、流
量配分制御器26に異常検出信号F1A,F1B,F1
Cの入力により動作するCV流量指令回路410を新た
に設ける。このCV流量指令回路410は、弁開度検出
器28A,28B,28Cから出力される開度信号CV
4A,CV4B,CV4Cから各弁を流れる蒸気流量信
号相当を検出する開度流量変換器40A,40B,40
Cと開度流量変換器40A,40B,40Cより出力さ
れた各弁の流量相当信号CV20A,CV20B,CV
20Cを加算する加算器51と、CV流量指令CV1よ
り加算器51の出力信号CV31の偏差信号を演算する
加算器52から構成される。
FIG. 7 shows a configuration of a flow distribution controller according to a fifth embodiment of the present invention. The flow distribution controller 2
6 is the same as the first embodiment shown in FIG. 1, and the same parts as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted. In the present embodiment shown in FIG. 7, the abnormality detection signals F1A, F1B, F1
A CV flow command circuit 410 that operates according to the input of C is newly provided. The CV flow rate command circuit 410 generates an opening signal CV output from the valve opening detectors 28A, 28B, 28C.
Opening flow rate converters 40A, 40B, 40 for detecting signals corresponding to steam flow rates flowing from 4A, CV4B, CV4C through each valve.
C and the flow rate equivalent signals CV20A, CV20B, CV of the respective valves output from the opening degree flow rate converters 40A, 40B, 40C.
It comprises an adder 51 for adding 20C and an adder 52 for calculating a deviation signal of the output signal CV31 of the adder 51 from the CV flow rate command CV1.

【0045】そして、蒸気加減弁3Dを制御するCV流
量指令として、通常、流量配分関数器26Dからの信号
CV2Dが出力されるが、異常検出信号F1A,F1
B,F1Cが入力されたときは、CV流量指令回路41
0が動作し、 信号CV2Dに替えて信号CV32を出
力するように構成する。
Normally, a signal CV2D from the flow distribution function unit 26D is output as a CV flow command for controlling the steam control valve 3D, but the abnormality detection signals F1A, F1
When B and F1C are input, the CV flow rate command circuit 41
0 operates and outputs the signal CV32 in place of the signal CV2D.

【0046】次に、本実施の形態の蒸気タービン制御装
置の動作について説明する。本実施の形態の蒸気タービ
ン制御装置は、蒸気加減弁3A及び蒸気加減弁3B及び
蒸気加減弁3Cを順次開制御して所望の蒸気流量を流し
ている。今、蒸気加減弁3A又は蒸気加減弁3Aを制御
する弁系統に故障が発生した場合、弁異常検出器35A
から異常検出信号F1Aが出力される。弁異常検出器3
5Aから出力された異常検出信号F1Aは、急閉検出器
34Aに入力され、急閉検出器33Aは急閉検出信号C
V9Aを急閉操作器33Aに出力する。急閉操作器34
Aは、急閉検出信号CV9Aを油圧急閉検出信号CV1
0Aに変換して弁操作器32Aに出力する。そして弁操
作器32Aは油圧急閉検出信号CV10Aに基づいて蒸
気加減弁3Aを全閉する。
Next, the operation of the steam turbine control device according to the present embodiment will be described. In the steam turbine control device according to the present embodiment, the steam control valve 3A, the steam control valve 3B, and the steam control valve 3C are sequentially opened to flow a desired steam flow rate. Now, when a failure occurs in the steam control valve 3A or the valve system that controls the steam control valve 3A, the valve abnormality detector 35A
Outputs an abnormality detection signal F1A. Valve abnormality detector 3
Abnormal detection signal F1A output from 5A is input to sudden closing detector 34A, and sudden closing detector 33A outputs sudden closing detection signal C
V9A is output to the rapid closing device 33A. Quick closing actuator 34
A indicates that the sudden closing detection signal CV9A is the hydraulic sudden closing detection signal CV1.
The value is converted to 0A and output to the valve operating device 32A. Then, the valve operating unit 32A fully closes the steam control valve 3A based on the hydraulic rapid closing detection signal CV10A.

【0047】さらに、新たに設けた、蒸気加減弁3Dの
開度を決めるCV流量指令回路410により、開度流量
変換器40A、40B、40Cにより第1弁から第3弁
を流れる蒸気流量信号相当を検出し開度流量変換器40
A、40B、40Cより出力された第1弁から第3弁の
流量相当信号CV20A、CV20B、CV20Cを加
算器51により加算することにより第1弁から第3弁で
流れている蒸気加減弁3A,3B,3Cの合計の総蒸気
流量相当の信号が検出できる。さらに加算器51により
CV流量指令CV1と蒸気加減弁3A,3B,3Cの合
計総蒸気流量相当信号CV31との偏差を演算すること
により蒸気加減弁3A,3B,3Cで流すべき所望の蒸
気流量に対する不足分が求められる。
Further, a newly provided CV flow rate command circuit 410 for determining the opening degree of the steam control valve 3D is used. The opening degree flow rate converters 40A, 40B, 40C correspond to steam flow rate signals flowing from the first valve to the third valve. And the opening degree flow converter 40
A, 40B, and 40C output the first to third flow rate equivalent signals CV20A, CV20B, and CV20C of the third valve by the adder 51 to add the steam control valve 3A, which flows from the first valve to the third valve. A signal corresponding to the total steam flow rate of the sum of 3B and 3C can be detected. Further, the adder 51 calculates a deviation between the CV flow rate command CV1 and the signal CV31 corresponding to the total steam flow rate of the steam control valves 3A, 3B, 3C to obtain a desired steam flow to be flowed by the steam control valves 3A, 3B, 3C. Shortage is required.

【0048】さらに、図1の流量配分関数器26Dをや
め、流量配分関数器26Dで求められたCV流量指令C
V2Dに変えて、加算器52で求められた出力信号CV
32を、蒸気加減弁3DのCV流量指令にすることによ
り、所望の蒸気流量に対する蒸気加減弁3A及び蒸気加
減弁3B及び蒸気加減弁3Cで得られる蒸気流量の不足
分を蒸気加減弁3Dにて得ることができる。言い替えれ
ば蒸気加減弁3A,3B,3Cの各弁にて本来得るべき
蒸気流量が不足分を蒸気加減弁3Dにて得ることができ
る。
Further, the flow distribution function unit 26D of FIG. 1 is stopped, and the CV flow command C obtained by the flow distribution function unit 26D is obtained.
V2D and the output signal CV obtained by the adder 52.
By setting 32 to the CV flow rate command of the steam control valve 3D, the shortage of the steam flow obtained by the steam control valve 3A, the steam control valve 3B, and the steam control valve 3C for the desired steam flow is determined by the steam control valve 3D. Obtainable. In other words, the steam control valve 3D can obtain the shortage of the steam flow which should be originally obtained by each of the steam control valves 3A, 3B, 3C.

【0049】本実施の形態に係るタービン制御装置によ
れば、蒸気加減弁3A,3B,3C或いは蒸気加減弁3
A,3B,3Cを制御する弁系統に故障が発生した場合
であっても、故障した系統の弁を除外して蒸気加減弁3
Dによりの蒸気加減弁3Dの弁開度が最大開度となるま
では補償することができるので、所望のタービンの蒸気
流量を確保することができ、その結果プラント出力を変
えることなくプラント運転を継続することができる。
According to the turbine control device of this embodiment, the steam control valve 3A, 3B, 3C or the steam control valve 3
Even if a failure occurs in the valve system controlling A, 3B, 3C, the steam control valve 3 is excluded by excluding the valve of the failed system.
D can compensate until the valve opening of the steam control valve 3D reaches the maximum opening, so that a desired steam flow rate of the turbine can be secured, and as a result, plant operation can be performed without changing the plant output. Can continue.

【0050】なお、上述の実施の形態においては、蒸気
加減弁が4つの場合について説明しているが、任意の複
数の蒸気加減弁の場合にも同様に適用することができ
る。また、弁閉手段としては、たとえば、弁を急速に閉
じる場合を考慮し、急閉検出器や急閉操作器を用いた
が、これに限るものではない。
In the above-described embodiment, the case where the number of steam control valves is four is described, but the present invention can be similarly applied to a case where a plurality of steam control valves are used. Further, as the valve closing means, for example, a sudden closing detector or a sudden closing operating device is used in consideration of a case where the valve is rapidly closed, but the present invention is not limited to this.

【0051】[0051]

【発明の効果】請求項1ないし請求項8に係る発明によ
れば、最後に開かれる弁の制御を必要としないプラント
出力定格の95%以下の範囲では、1つの弁に故障が発
生した場合にもタービン出力を変えることなくプラント
の運転を継続させることができる。さらに、請求項6ま
たは請求項7の構成によれば、各々に記載の手段により
プラント出力が定格の95%を超えたり、また複数の弁
系統に異常が発生した場合にも、最後に開かれる弁が最
大開度となるまではこの最後に開かれる弁で不足流量を
補償できるため、タービン出力を変えることなくプラン
トの運転を継続させることができる。
According to the first to eighth aspects of the present invention, when one valve fails in the range of 95% or less of the plant output rating which does not require control of the last valve to be opened. The operation of the plant can be continued without changing the turbine output. Furthermore, according to the configuration of claim 6 or claim 7, even if the plant output exceeds 95% of the rated value or an abnormality occurs in a plurality of valve systems by the means described in each of the above, the valve is opened last. Until the valve reaches the maximum opening, the valve that is opened last can compensate for the insufficient flow rate, so that the operation of the plant can be continued without changing the turbine output.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係るタービン制御
装置の構成図
FIG. 1 is a configuration diagram of a turbine control device according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態における流量配分制
御部の内部構成図
FIG. 2 is an internal configuration diagram of a flow distribution control unit according to the first embodiment of the present invention.

【図3】本発明の第1の実施の形態の流量配分制御部内
における関数発生器の入出力特性図
FIG. 3 is an input / output characteristic diagram of a function generator in the flow distribution control unit according to the first embodiment of the present invention.

【図4】本発明の第2の実施の形態における流量配分制
御部の内部構成図
FIG. 4 is an internal configuration diagram of a flow distribution control unit according to a second embodiment of the present invention.

【図5】本発明の第3の実施の形態における流量配分制
御部の内部構成図
FIG. 5 is an internal configuration diagram of a flow distribution control unit according to a third embodiment of the present invention.

【図6】本発明の第4の実施の形態に係るタービン制御
装置の構成を示す図
FIG. 6 is a diagram showing a configuration of a turbine control device according to a fourth embodiment of the present invention.

【図7】本発明の第5の実施の形態に係るタービン制御
装置の構成図
FIG. 7 is a configuration diagram of a turbine control device according to a fifth embodiment of the present invention.

【図8】従来の火力発電所における蒸気タービン系統の
構成図
FIG. 8 is a configuration diagram of a steam turbine system in a conventional thermal power plant.

【図9】従来の蒸気加減弁制御装置の構成図FIG. 9 is a configuration diagram of a conventional steam control valve control device.

【図10】従来の蒸気加減弁制御装置における流量配分制
御部の内部構成図
FIG. 10 is an internal configuration diagram of a flow distribution control unit in a conventional steam control valve control device.

【図11】従来の流量配分制御部内における関数発生器の
入出力特性図
FIG. 11 is an input / output characteristic diagram of a function generator in a conventional flow distribution control unit.

【符号の説明】[Explanation of symbols]

1…蒸気発生器、2…主蒸気止め弁、3,3A,3B,
3C,3D…蒸気加減弁、4…蒸気供給配管、5…高圧
タービン、6…速度検出器、7…再熱器、8…中間蒸気
弁、9…低圧タービン、10…復水器、11…負荷、2
1…タービン基準速度設定器、22…加算器、23…C
V係数器、24…出力設定器、25…加算器、26…流
量配分制御部、26A,26B,26C,26D…流量
配分関数器、26E…関数発生器、26F…加算器、2
7A,27B,27C,27D…流量/開度変換器、2
8A,28B,28C,28D…弁開度検出器、29
A,29B,29C,29D…加算器,30A,30
B,30C,30D…増幅器、31A,31B,31
C,31D…電気/油圧変換器、32A,32B,32
C,32D…弁操作器、33A,33B,33C,33
D…急閉検出器、34A,34B,34C,34D…急
閉操作器、35A,35B,35C,35D…弁異常検
出器、40A,40B,40C…開度/流量変換器、4
1,42,43…加算器、F1AS1,F1AS2,F
1BS1,F1BS2,F1CS1,F1CS2…切替
器、400…流量演算部、410…CV流量指令回路
1. Steam generator, 2. Main steam stop valve, 3, 3A, 3B,
3C, 3D: Steam control valve, 4: Steam supply pipe, 5: High pressure turbine, 6: Speed detector, 7: Reheater, 8: Intermediate steam valve, 9: Low pressure turbine, 10: Condenser, 11 ... Load, 2
1: Turbine reference speed setting device, 22: Adder, 23: C
V coefficient unit, 24: output setting unit, 25: adder, 26: flow distribution control unit, 26A, 26B, 26C, 26D: flow distribution function unit, 26E: function generator, 26F: adder, 2
7A, 27B, 27C, 27D: flow rate / opening degree converter, 2
8A, 28B, 28C, 28D ... valve opening detector, 29
A, 29B, 29C, 29D ... adders, 30A, 30
B, 30C, 30D ... amplifier, 31A, 31B, 31
C, 31D: Electric / hydraulic converter, 32A, 32B, 32
C, 32D: valve actuator, 33A, 33B, 33C, 33
D: sudden closing detector, 34A, 34B, 34C, 34D: sudden closing operation device, 35A, 35B, 35C, 35D: valve abnormality detector, 40A, 40B, 40C: opening / flow rate converter, 4
1, 42, 43... Adders, F1AS1, F1AS2, F
1BS1, F1BS2, F1CS1, F1CS2: switch, 400: flow rate calculation unit, 410: CV flow rate command circuit

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 タービンに供給される蒸気の蒸気流量を
制御する制御系に設けられ、前記タービンの蒸気流入側
に並列に設けられた複数の弁を蒸気流量要求信号に応じ
て各弁毎に順次開閉制御するため、前記タービンに流れ
るべき各弁の蒸気流量指令信号を出力する蒸気流量指令
信号出力手段と、前記各弁の蒸気流量指令信号に基づい
て前記各弁の開度指令信号を出力する開度指令信号出力
手段と、前記各弁の制御系にそれぞれ設けられ、前記各
弁の実際の開度を検出して開度信号を出力する開度信号
出力手段と、前記各弁の制御系にそれぞれ設けられ、前
記開度指令信号出力手段から出力された開度指令信号及
び前記開度信号出力手段から出力された開度信号に基づ
いて前記各弁の開閉操作を行う弁開閉操作手段とを備え
たタービン制御装置において、前記各弁の制御系にそれ
ぞれ設けられ、前記開度信号出力手段から出力された開
度信号及び前記開度指令信号出力手段から出力された開
度指令信号を基に、前記各弁または前記各弁の制御系の
異常を検出し、各弁毎の異常検出信号を前記蒸気流量指
令信号出力手段に出力する異常検出手段と、前記各弁の
制御系にそれぞれ設けられ、前記異常検出手段から出力
された異常検出信号に基づいて前記各弁を閉じる弁閉手
段とを設け、前記各弁の蒸気流量指令信号出力手段は前
記異常検出手段からの異常検出信号に基づいて、前記異
常検出手段にて検出された弁を前記弁閉手段にて閉め、
当該弁の蒸気流量を最後に開かれる弁で補償するように
したことを特徴とするタービン制御装置。
1. A control system for controlling a steam flow rate of steam supplied to a turbine, wherein a plurality of valves provided in parallel on a steam inflow side of the turbine are provided for each valve in accordance with a steam flow rate request signal. A steam flow command signal output means for outputting a steam flow command signal for each valve to flow to the turbine for sequentially controlling the opening and closing, and an opening command signal for each valve based on the steam flow command signal for each valve. Opening degree command signal output means, and opening degree signal output means provided in a control system of each of the valves to detect an actual opening degree of each of the valves and output an opening degree signal, and control of each of the valves. Valve opening / closing operation means provided in each of the systems, and performing opening / closing operations of the respective valves based on an opening command signal output from the opening command signal output means and an opening signal output from the opening signal output means. Control device provided with In the control system of each of the valves, respectively, based on the opening signal output from the opening signal output means and the opening command signal output from the opening command signal output means, each of the valves or Abnormality detection means for detecting an abnormality in the control system of each valve, and outputting an abnormality detection signal for each valve to the steam flow rate command signal output means; and the abnormality detection means provided in the control system of each valve, respectively. Valve closing means for closing each of the valves based on the abnormality detection signal output from the controller. The steam flow command signal output means for each of the valves is configured to output the abnormality detection means based on the abnormality detection signal from the abnormality detection means. The valve detected at is closed by the valve closing means,
A turbine control device wherein the steam flow rate of the valve is compensated by a valve that is opened last.
【請求項2】 請求項1記載のタービン制御装置におい
て、前記各弁の制御系にそれぞれ設けられ、前記異常検
出手段から出力された異常検出信号に基づいて前記各弁
を閉じる弁閉手段とを設け、前記各弁の蒸気流量指令信
号出力手段は前記異常検出手段からの異常検出信号に基
づいて、蒸気流量を異常が検出された弁の蒸気流量と同
一にするように最後に開かれる弁の蒸気流量指令信号を
出力することにより、当該弁の蒸気流量を最後に開かれ
る弁で補償するようにしたことを特徴とするタービン制
御装置。
2. The turbine control device according to claim 1, further comprising: a valve closing unit provided in a control system of each of the valves to close each of the valves based on an abnormality detection signal output from the abnormality detecting unit. The steam flow command signal output means of each valve is provided based on the abnormality detection signal from the abnormality detection means, so that the steam flow is the same as the steam flow of the valve in which the abnormality is detected. A turbine control device, wherein a steam flow rate command signal is output to compensate for a steam flow rate of the valve by a valve that is opened last.
【請求項3】 請求項1記載のタービン制御装置におい
て、前記蒸気流量指令信号出力手段は前記各弁の異常検
出手段からの異常検出信号に基づいて、最後に開かれる
弁の蒸気流量指令を出力する関数発生手段の関数を異常
が検出された弁の関数と同一の関数設定とするための新
たな関数発生手段を設けることにより、当該弁の蒸気流
量を最後に開かれる弁で補償することを特徴とするター
ビン制御装置。
3. The turbine control device according to claim 1, wherein the steam flow command signal output means outputs a steam flow command for a valve which is opened last based on an abnormality detection signal from the abnormality detection means for each valve. By providing a new function generating means for setting the function of the function generating means to the same function as the function of the valve in which the abnormality is detected, it is possible to compensate for the steam flow rate of the valve by the valve that is opened last. Characteristic turbine control device.
【請求項4】 請求項1記載のタービン制御装置におい
て、前記蒸気流量指令信号出力手段は前記各弁の異常検
出手段からの異常検出信号に基づいて、最後に開かれる
弁の蒸気流量指令を異常が検出された弁の蒸気流量指令
に切替える切替手段を設けることにより、当該弁の蒸気
流量を最後に開かれる弁で補償することを特徴とするタ
ービン制御装置。
4. The turbine control device according to claim 1, wherein said steam flow command signal output means outputs a steam flow command to a valve which is opened last based on an abnormality detection signal from an abnormality detection means of each valve. A turbine control device, characterized in that a switching means for switching to a steam flow command for a valve in which a pressure is detected is provided, thereby compensating for a steam flow of the valve by a valve that is opened last.
【請求項5】 請求項1記載のタービン制御装置におい
て、前記蒸気流量指令信号出力手段は前記各弁の異常検
出手段からの異常検出信号に基づいて、最後に開かれる
弁の蒸気流量指令に異常が検出された弁の蒸気流量指令
を加算する加算手段を設けることにより、当該弁の蒸気
流量を最後に開かれる弁で補償することを特徴とするタ
ービン制御装置。
5. The turbine control device according to claim 1, wherein the steam flow command signal output means outputs an abnormality to a steam flow command of a valve that is opened last based on an abnormality detection signal from the abnormality detection means of each valve. A turbine control device, characterized in that an addition means for adding a steam flow command of a valve in which is detected is provided, thereby compensating a steam flow of the valve by a valve which is opened last.
【請求項6】 請求項1記載のタービン制御装置におい
て、前記各弁の開度検出手段により検出させた開度信号
を蒸気流量信号相当に変換する各弁の開度流量変換手段
と、前記各弁の開度流量変換手段から出力される各弁の
蒸気流量信号相当を加算する第1加算手段と、前記各弁
の蒸気流量信号の総蒸気流量要求信号から前記第1加算
手段から出力される蒸気流量信号相当信号の差を検出す
る第2加算手段と、前記各弁の蒸気流量指令信号出力手
段から出力される最後に開かれる弁の蒸気流量指令信号
に前記第2加算手段からの信号を加算する第3加算手段
とを備え、前記第3加算手段への前記第2加算手段から出
力される信号加算は、前記異常検出手段から出力された
異常検出信号の動作時のみとする流量演算部を設けたこ
とを特徴とするタービン制御装置。
6. The turbine control device according to claim 1, wherein the opening degree flow rate converting means for each valve converts an opening degree signal detected by the opening degree detecting means for each valve into a steam flow rate signal. First adding means for adding the steam flow signal corresponding to each valve output from the valve opening degree flow rate converting means, and the first adding means outputting from the total steam flow request signal of the steam flow signal of each valve. A second adding means for detecting a difference between the signals corresponding to the steam flow rate signals, and a signal from the second adding means to a steam flow rate command signal of the last valve to be opened which is output from the steam flow rate command signal output means of each valve. A flow rate calculation unit that includes a third addition unit that performs addition and that adds the signal output from the second addition unit to the third addition unit only when the abnormality detection signal output from the abnormality detection unit operates. Tar characterized by having provided Emissions control device.
【請求項7】 請求項1記載のタービン制御装置におい
て、前記各弁の開度手段により検出させた開度信号を蒸
気流量信号相当に変換する各弁の開度流量変換手段と、
前記各弁の開度流量変換手段から出力される各弁の蒸気
流量信号相当を加算する第1加算手段と、前記各弁の蒸
気流量信号の総蒸気流量要求信号から前記第1加算手段
から出力される蒸気流量信号相当信号の差を検出する第
2加算手段とを備え、最後に開かれる弁の蒸気流量指令
のみは前記蒸気流量指令信号出力手段からの出力に替え
て前記第2加算手段から出力信号を使用して最後に開か
れる弁を制御する回路を設けたことを特徴とするタービ
ン制御装置。
7. The turbine control device according to claim 1, wherein the opening degree flow rate conversion means of each valve converts an opening degree signal detected by the opening degree means of each valve into a steam flow rate signal.
First adding means for adding the steam flow signal equivalent of each valve output from the opening degree flow rate converting means of each valve, and outputting from the first adding means from a total steam flow request signal of the steam flow signal of each valve. And a second adding means for detecting a difference between the signals corresponding to the steam flow rate signals to be output. Only the steam flow rate command of the valve which is opened last is replaced with the output from the steam flow rate command signal output means from the second adding means. A turbine control device comprising a circuit for controlling a valve that is opened last using an output signal.
【請求項8】 請求項1ないし7のうちいずれか1記載
のタービン制御装置において、前記タービンの蒸気流入
側に並列に設けられた弁を4つとし、前記異常検出手段
で前記第1弁から第3弁の異常を検出すると、当該弁の
蒸気流量を最後に開かれる第4弁で補償するようにした
ことを特徴とするタービン制御装置。
8. The turbine control device according to claim 1, wherein four valves are provided in parallel on the steam inflow side of the turbine, and the abnormality detecting means detects the first valve from the first valve. A turbine control device, characterized in that when an abnormality of a third valve is detected, the steam flow rate of the third valve is compensated by a fourth valve that is opened last.
JP23214399A 1999-08-19 1999-08-19 Turbine controller Expired - Fee Related JP4225641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23214399A JP4225641B2 (en) 1999-08-19 1999-08-19 Turbine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23214399A JP4225641B2 (en) 1999-08-19 1999-08-19 Turbine controller

Publications (2)

Publication Number Publication Date
JP2001059403A true JP2001059403A (en) 2001-03-06
JP4225641B2 JP4225641B2 (en) 2009-02-18

Family

ID=16934678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23214399A Expired - Fee Related JP4225641B2 (en) 1999-08-19 1999-08-19 Turbine controller

Country Status (1)

Country Link
JP (1) JP4225641B2 (en)

Also Published As

Publication number Publication date
JP4225641B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
US4437313A (en) HRSG Damper control
US4253308A (en) Turbine control system for sliding or constant pressure boilers
US20090211252A1 (en) Power generation complex plant and plant control method
KR100584836B1 (en) Feedwater Control System in Nuclear Power Plant Considering Feedwater Control Valve Pressure Drop and Control Method thereof
US4007595A (en) Dual turbine power plant and a reheat steam bypass flow control system for use therein
JP4764255B2 (en) Small once-through boiler power generation system and operation control method thereof
JP2001059403A (en) Turbine control device
KR100584835B1 (en) Feedwater control system for steam generator in nuclear power plant and control method thereof
JP3364341B2 (en) Turbine control device
CN108757064B (en) Steam supply system for testing dynamic performance of steam turbine generator unit
JP2599026B2 (en) Steam drum water level control method when water supply control valve is switched
JP2020148194A (en) Turbine control device, turbine control method and turbine power generation facility
JP3468854B2 (en) Turbine control device
JP2823347B2 (en) Turbine control device
JP2000179304A (en) Multi-series gasified combined power generating plant
JPH09189204A (en) Steam turbine control device
JP2531755B2 (en) Water supply control device
JP2645103B2 (en) Geothermal steam turbine bypass controller
JP3272843B2 (en) Turbine control device
JPS6158903A (en) Turbine controller for nuclear reactor
JPH0243881B2 (en)
JPH0270906A (en) Control of bleeding turbine and device thereof
JPS63302107A (en) Control device for steam turbine
JPS59185808A (en) Control device for main steam pressure of power plant
JPH0577501U (en) Steam turbine plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees