JP2001058170A - Waste treatment method - Google Patents

Waste treatment method

Info

Publication number
JP2001058170A
JP2001058170A JP11235370A JP23537099A JP2001058170A JP 2001058170 A JP2001058170 A JP 2001058170A JP 11235370 A JP11235370 A JP 11235370A JP 23537099 A JP23537099 A JP 23537099A JP 2001058170 A JP2001058170 A JP 2001058170A
Authority
JP
Japan
Prior art keywords
solid
copper
separated
waste
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11235370A
Other languages
Japanese (ja)
Inventor
Tsutomu Suzuki
務 鈴木
Keiichi Miura
啓一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP11235370A priority Critical patent/JP2001058170A/en
Publication of JP2001058170A publication Critical patent/JP2001058170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a waste treatment method capable of efficiently separating lead or cooper remaining in waste at a low cost to utilize the treated waste as a cement raw material. SOLUTION: In a waste treatment method, waste is treated with an acid to leach a copper component and this acid leached slurry is subjected to solid- liquid separation treatment and a separated solid is treated with alkali and subsequently subjected to solid-liquid separation treatment to be recovered as a cement raw material. Zinc or iron is added to the filtrate of the acid leached slurry to precipitate copper in the slurry and this copper precipitate is subjected to solid-liquid separation treatment and the separated filtrate is neutralized or sulfurized to precipitate zinc or iron which is, in turn, recovered by solid-liquid separation treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄物中に残留す
る鉛や銅などを分離除去する廃棄物の処理方法に関し、
特に廃棄物から鉛や銅を除去してセメント原料として使
用できるようにする廃棄物の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating waste which separates and removes lead, copper and the like remaining in the waste.
In particular, the present invention relates to a waste treatment method for removing lead and copper from the waste so that the waste can be used as a cement raw material.

【0002】[0002]

【従来技術とその問題点】一般の産業廃棄物や生活廃棄
物やその焼却灰は、従来から大部分が埋め立て処理され
ているが、処分場を設けるのは次第に難しくなってお
り、その有効な処理対策が求められている。また、これ
らの廃棄物には鉛や銅などの金属が数%程度含まれてお
り、これらの廃棄物をそのまま埋立処理すると鉛などの
重金属が流出して環境汚染を引き起こす問題があり、こ
れらの金属を出来るだけ分離除去することが求められ
る。
2. Description of the Related Art Conventional industrial waste, household waste and incinerated ash have been mostly landfilled, but it has become increasingly difficult to set up a disposal site. Treatment measures are required. In addition, these wastes contain several percent of metals such as lead and copper. If these wastes are landfilled, heavy metals such as lead will flow out and cause environmental pollution. It is necessary to separate and remove metals as much as possible.

【0003】従来、このような廃棄物を硫酸で処理する
ことによって銅などの重金属を浸出させ、これを硫化物
に転じて沈殿させ、回収する処理方法が提案されている
が、この硫化処理では液中に含まれる多くの金属が一緒
に沈澱するので、銅などの有価金属の品位が低くなる問
題がある。また、鉛は硫酸処理の際に硫酸鉛に転じて残
渣中に残るので、カルシウム分の多い渣物でも鉛含有量
が高いためにセメント原料に適さない。さらに、カルシ
ウムも硫酸処理により石膏となって含まれるので、これ
をセメント原料として用いるとセメントに硫酸根を過剰
に持ち込むことになり、この点からもセメント原料化が
難しい。
Conventionally, there has been proposed a treatment method in which heavy metals such as copper are leached by treating such wastes with sulfuric acid, and are converted into sulfides to be precipitated and recovered. Since many metals contained in the solution precipitate together, there is a problem that the quality of valuable metals such as copper is lowered. Further, since lead is converted into lead sulfate in the residue during sulfuric acid treatment and remains in the residue, even a residue having a high calcium content is not suitable as a cement raw material due to a high lead content. Furthermore, since calcium is also included as gypsum by sulfuric acid treatment, if this is used as a cement raw material, an excessive amount of sulfate is brought into the cement, which makes it difficult to convert the cement raw material.

【0004】本発明は、従来の廃棄物処理における上記
問題を解決したものであり、廃棄物に残留する鉛や銅な
どを簡単に効率よく分離除去し、しかも処理した廃棄物
をセメント原料として有効に利用できる処理方法を提供
するものである。
The present invention solves the above-mentioned problems in the conventional waste treatment, and easily and efficiently separates and removes lead, copper, and the like remaining in the waste, and uses the treated waste as a cement raw material. It is intended to provide a processing method that can be used for:

【0005】[0005]

【課題を解決するための手段】本発明の第一の態様は、
廃棄物に残留する金属類を除去する方法に係るものであ
り、以下の構成からなる処理方法に関する。 (1) 廃棄物を酸処理して残留する金属類を浸出させる
工程、この酸浸出スラリーを固液分離する工程、酸処理
によって浸出した金属(浸出金属)よりも卑な金属(置換
金属)を酸浸出スラリーの濾液に添加して浸出金属を析
出させる工程(置換析出工程)、この析出沈殿物を固液分
離する工程、分離した濾液を中和処理ないし硫化処理す
ることにより置換金属を沈殿させる工程、これを固液分
離する工程を有することを特徴とする廃棄物の処理方
法。 (2) 上記(1)の酸浸出工程において、浸出スラリーのp
Hを2〜4に調整して廃棄物中の金属類を浸出させる廃
棄物の処理方法。 (3) 上記(1)の置換析出工程において、酸浸出した液中
の銅に対し、置換金属として亜鉛ないし鉄を用い、亜鉛
ないし鉄を液中の銅イオン濃度の0.8〜1.1倍当量添
加して銅を析出させる廃棄物の処理方法。 (4) 上記(1)の中和処理工程において、置換析出沈殿物
を分離した濾液にアルカリを加えて液性をpH8以上に
調整し、液中の鉄ないし亜鉛を沈殿させる廃棄物の処理
方法。
According to a first aspect of the present invention, there is provided:
The present invention relates to a method for removing metals remaining in waste, and relates to a processing method having the following configuration. (1) A step of leaching wastes by acid treatment of wastes, a step of solid-liquid separation of the acid leached slurry, and a step of removing a metal (substituted metal) which is more base than the metal leached by the acid treatment (leached metal). A step of adding leachate to the filtrate of the acid leaching slurry to precipitate leached metal (substitution precipitation step), a step of solid-liquid separation of the precipitate, and a step of neutralizing or sulfurizing the separated filtrate to precipitate the substitution metal. A method for treating waste, comprising a step and a step of solid-liquid separation thereof. (2) In the acid leaching step of the above (1), p
A waste treatment method in which H is adjusted to 2 to 4 to leach metals in the waste. (3) In the substitution precipitation step of the above (1), zinc or iron is used as a substitution metal with respect to copper in the acid-leached liquid, and zinc or iron is used in a concentration of 0.8 to 1.1 of copper ion in the liquid. A method for treating waste in which double equivalents are added to precipitate copper. (4) In the above neutralization treatment step (1), a method of treating a waste in which the filtrate obtained by separating the substituted precipitate is adjusted to pH 8 or more by adding alkali to precipitate iron or zinc in the liquid. .

【0006】本発明の第二の態様は、廃棄物のセメント
原料化に係るものであり、以下の構成からなる処理方法
に関する。 (5) 廃棄物を酸処理して残留する金属類を浸出させる
工程、この酸浸出スラリーを固液分離する工程、分離し
た固形分をアルカリ処理して固形分の鉛分を浸出させる
と共にカルシウム分を水酸化カルシウムに転じて固形分
に残存させる工程、この固形分を固液分離する工程を有
することを特徴とする廃棄物の処理方法。 (6) 上記(5)の処理方法において、水酸化カルシウムを
含む固形分を分離後、回収してセメント原料として用い
る廃棄物の処理方法。 (7) 上記(5)の処理方法において、水酸化カルシウムを
含む固形分を分離後、その濾液中の鉛分を沈殿化し、こ
れを固液分離して回収する廃棄物の処理方法。
A second aspect of the present invention relates to the conversion of waste into a raw material for cement, and relates to a treatment method having the following configuration. (5) acid treatment of waste to leaching residual metals, solid-liquid separation of the acid leached slurry, alkali treatment of the separated solids to leach lead solids and calcium A process of converting calcium hydroxide to calcium hydroxide to remain as a solid content, and a process of solid-liquid separation of the solid content. (6) In the treatment method of the above (5), a method for treating a waste material which is used after separating and collecting a solid content containing calcium hydroxide and using it as a cement raw material. (7) The method for treating waste according to the treatment method of (5) above, wherein a solid content containing calcium hydroxide is separated, a lead content in the filtrate is precipitated, and the precipitate is solid-liquid separated and recovered.

【0007】本発明の第三の態様は、廃棄物に残留する
金属類の除去とセメント原料化とを連続して行う処理方
法であり、以下の構成からなる処理方法に関する。 (8) 廃棄物を酸処理して銅や鉛を浸出させた後に、こ
の酸浸出スラリーを固液分離し、分離した固形分をアル
カリ処理した後に固液分離して回収し、セメント原料と
する一方、酸浸出スラリーの濾液に亜鉛ないし鉄を添加
して液中の銅を析出させ、この銅沈殿物を固液分離し、
分離した濾液を中和処理ないし硫化処理して亜鉛ないし
鉄を沈殿させ、これを固液分離して回収することを特徴
とする廃棄物の処理方法。
A third aspect of the present invention is a processing method for continuously removing metals remaining in waste and converting it into a cement raw material, and relates to a processing method having the following configuration. (8) After the waste is subjected to acid treatment to leach copper and lead, the acid leached slurry is subjected to solid-liquid separation, and the separated solid is subjected to alkali treatment and then collected by solid-liquid separation to be used as a cement raw material. On the other hand, zinc or iron is added to the filtrate of the acid leaching slurry to precipitate copper in the solution, and this copper precipitate is separated into a solid and a liquid,
A method for treating waste, comprising subjecting a separated filtrate to a neutralization treatment or a sulfuration treatment to precipitate zinc or iron, and separating and collecting the solid or liquid.

【0008】[0008]

【発明の実施の形態】以下、本発明を実施態様に基づい
て詳細に説明する。本発明に係る処理方法の概略を図1
に示す。図示するように、本発明の処理方法は、第一段
階として、廃棄物の酸浸出工程およびこの酸浸出スラリ
ーを固液分離する工程からなる処理工程A、酸浸出スラ
リーの濾液から金属分を分離除去する処理工程B、分離
した固形分をセメント原料化する処理工程Cを有する。
各処理工程について以下に具体的に説明する。なお、本
発明において、銅および/または銅化合物、鉛および/
または鉛化合物を便宜上それぞれ銅分、鉛分と云う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments. FIG. 1 schematically shows a processing method according to the present invention.
Shown in As shown in the drawing, the treatment method of the present invention comprises, as a first step, a treatment step A comprising a step of leaching acid waste and a step of solid-liquid separation of the acid leached slurry, and separating a metal component from a filtrate of the acid leached slurry. There is a processing step B for removing and a processing step C for converting the separated solid content into a cement raw material.
Each processing step will be specifically described below. In the present invention, copper and / or a copper compound, lead and / or
Alternatively, the lead compound is referred to as copper and lead for convenience.

【0009】(A) 酸浸出処理工程 (A-1)廃棄物 本発明の処理方法の対象とする廃棄物は、一般の産業廃
棄物や生活廃棄物、各種鉱工業の製造工程で排出される
廃棄物、あるいはこれらの焼却灰や溶融スラグ飛灰など
を含む。先に述べたように、これらの廃棄物には暫々鉛
や銅が数%程度含まれている。
(A) Acid Leaching Treatment Step (A-1) Waste The waste to be treated in the treatment method of the present invention is general industrial waste, domestic waste, and waste discharged in the manufacturing processes of various mining industries. Waste, or incineration ash or molten slag fly ash. As mentioned earlier, these wastes contain some percent of lead and copper for some time.

【0010】酸浸出処理に先立ち、必要に応じ、上記廃
棄物に適当な固液比となるように水を加えて固液分離す
るとよい。これにより廃棄物に含まれる水溶性の塩素化
合物が溶出して固形分が脱塩される。また水溶性のアル
カリ金属化合物や鉛化合物の一部なども塩素と共に溶出
する。
Prior to the acid leaching treatment, if necessary, water may be added to the above-mentioned waste so as to have an appropriate solid-liquid ratio, and solid-liquid separation may be performed. Thereby, the water-soluble chlorine compound contained in the waste is eluted and the solid content is desalted. In addition, some of the water-soluble alkali metal compounds and lead compounds elute with chlorine.

【0011】(A-II)酸浸出 上記廃棄物に酸を加えてスラリーとし、廃棄物に残留す
る金属類を液中に浸出させる(酸浸出した金属を浸出金
属と略称する)。ここで用いる酸は廃棄物に残留する鉛
分を不溶化する一方、銅や亜鉛などをスラリー中に浸出
させる酸であればよい。具体的には硫酸が好適である。
このスラリーは、固液比500g/l以下が適当であり、
pH2〜4の酸性スラリーが好ましい。酸の濃度にもよ
るが浸出時間は20分以上が適当であり、概ね30分程
度でよい。スラリーのpHが4を越えると銅の浸出効率
が低下することがあるので好ましくない。またpHが2
未満の場合には次工程のアルカリ処理の負担が増すので
好ましくない。
(A-II) Acid Leaching An acid is added to the above-mentioned waste to form a slurry, and metals remaining in the waste are leached into a liquid (the acid-leached metal is abbreviated as a leached metal). The acid used here may be any acid that insolubilizes the lead remaining in the waste while leaching copper, zinc or the like into the slurry. Specifically, sulfuric acid is preferred.
This slurry has a solid-liquid ratio of preferably 500 g / l or less,
Acidic slurries of pH 2-4 are preferred. Although depending on the acid concentration, the leaching time is suitably 20 minutes or more, and may be about 30 minutes. If the pH of the slurry exceeds 4, the leaching efficiency of copper may decrease, which is not preferable. PH 2
If it is less than the above, the load of the alkali treatment in the next step increases, which is not preferable.

【0012】この酸浸出処理によって廃棄物に残留する
銅や亜鉛などは液中に浸出する。一方、廃棄物中に含ま
れる鉛分は初め液中に浸出するが、直ちに硫酸鉛などの
不溶性の鉛化合物を形成して固形化し、浸出残渣に残
る。さらに、廃棄物に含まれるカルシウムも石膏(硫酸
カルシウム)に転じて固形化し、浸出残渣に残留する。
[0012] Copper and zinc remaining in the waste by the acid leaching process leach into the liquid. On the other hand, the lead content contained in the waste is leached into the liquid at first, but immediately forms an insoluble lead compound such as lead sulfate, solidifies, and remains in the leach residue. Further, calcium contained in the waste is converted into gypsum (calcium sulfate) and solidified, and remains in the leaching residue.

【0013】(A-II) 固液分離 上記酸浸出スラリーを濾過して固形分を分離する。この
固形分にはカルシウム分が多く含まれており、後述のア
ルカリ処理工程を経てセメント原料として利用すること
ができる。一方、分離した濾液は以下の銅分離工程に送
られる。
(A-II) Solid-Liquid Separation The above-mentioned acid leached slurry is filtered to separate a solid content. This solid content contains a large amount of calcium, and can be used as a cement raw material through an alkali treatment step described below. On the other hand, the separated filtrate is sent to the following copper separation step.

【0014】(B) 浸出金属の処理工程 (B-I)置換析出 酸浸出工程で固液分離した濾液に、浸出金属よりも卑な
金属、すなわち浸出金属よりイオン化傾向が大きい金属
を添加して液中の浸出金属を析出沈殿させる。添加した
イオン化傾向の大きい金属が液中に溶解するのに伴い、
これよりイオン化傾向の小さい浸出金属が代わって析出
する。なお、本発明では便宜上、浸出金属よりもイオン
化傾向の大きい金属を置換金属と略称し、この析出を置
換析出と略称する。置換金属は浸出金属よりイオン化傾
向が大きいものであればよく、具体的には、浸出金属が
銅であるとき、置換金属として亜鉛粉や鉄粉を用いるこ
とができる。亜鉛を用いれば本発明の一連の処理工程に
より最終的に硫酸亜鉛溶液が得られるので、これを亜鉛
製錬原料として用い、亜鉛電解などにより亜鉛を回収す
ることができる。一方、鉄粉は経済的に有利である。
(B) Leaching Metal Treatment Step (BI) Substitution Precipitation Addition of a metal that is more noble than the leachable metal, ie, a metal that has a higher ionization tendency than the leachable metal, to the filtrate separated by solid-liquid in the acid leaching step Of leached metal is precipitated. As the added metal with high ionization tendency dissolves in the liquid,
Thus, a leached metal having a low ionization tendency is deposited instead. In the present invention, for convenience, a metal having a higher ionization tendency than a leached metal is abbreviated as a substitution metal, and this precipitation is abbreviated as a substitution precipitation. The replacement metal has only to have a higher ionization tendency than the leached metal. Specifically, when the leached metal is copper, zinc powder or iron powder can be used as the replacement metal. If zinc is used, a zinc sulfate solution is finally obtained by a series of processing steps of the present invention, and this can be used as a zinc smelting raw material to recover zinc by zinc electrolysis or the like. On the other hand, iron powder is economically advantageous.

【0015】一般に、置換金属の添加量は液中の浸出金
属に対してやや過剰、例えば、浸出金属の濃度の1〜3
倍当量が適当である。置換金属をやや過剰に添加するこ
とによって液中の浸出金属の殆ど全量を析出させること
ができる。一方、浸出金属を高品位で回収するには、置
換金属の添加量は浸出金属の濃度に対して0.8〜1.1
当量程度が適当である。例えば、液中に浸出した銅に対
して亜鉛粉や鉄粉を添加して銅を回収する場合、亜鉛の
添加量が液中の銅濃度より多過ぎると未溶解の亜鉛や鉄
が液中に残り、これが銅の析出沈殿物に混入して回収し
た銅の品位を低下させる。一方、銅回収後に亜鉛粉等を
除去した液を硫酸浸出液として再利用するときには液中
に銅が少量存在しても支障がない。従って、これらの添
加量は液中の銅濃度に対して0.8〜1.1当量程度がよ
い。
Generally, the amount of the substituted metal is slightly excessive with respect to the leached metal in the liquid, for example, 1 to 3 times the concentration of the leached metal.
Double equivalents are appropriate. Almost all of the leached metal in the liquid can be precipitated by adding the substitution metal in a slightly excessive amount. On the other hand, in order to recover the leached metal with high quality, the amount of the replacement metal added is 0.8 to 1.1 with respect to the concentration of the leached metal.
An equivalent amount is appropriate. For example, when recovering copper by adding zinc powder or iron powder to copper leached into the liquid, if the amount of zinc added is too high than the copper concentration in the liquid, undissolved zinc or iron will be added to the liquid. This is mixed with the copper precipitate and reduces the quality of the recovered copper. On the other hand, when the liquid from which zinc powder or the like has been removed after copper recovery is reused as a sulfuric acid leaching solution, there is no problem even if a small amount of copper is present in the liquid. Therefore, the addition amount of these is preferably about 0.8 to 1.1 equivalents to the copper concentration in the liquid.

【0016】この置換析出では、亜鉛や鉄などの置換金
属よりイオン化傾向が大きいカルシウム等は沈澱しない
ので高品位の銅を回収することができる。因みに、硫酸
浸出液を硫化処理して銅を回収する従来の方法では、液
中に混在する亜鉛や鉄などが銅と共に硫化物として共沈
するので、回収した銅の品位が低い。一方、本処理方法
では90%以上の高品位の銅を回収することができる。
In this substitution precipitation, calcium and the like, which have a higher ionization tendency than substituted metals such as zinc and iron, do not precipitate, so that high-grade copper can be recovered. Incidentally, in the conventional method of recovering copper by sulfurating a sulfuric acid leaching solution, zinc and iron mixed in the solution co-precipitate as sulfide with copper, so that the quality of recovered copper is low. On the other hand, in this treatment method, high-grade copper of 90% or more can be recovered.

【0017】この置換析出においては、液のpHを2以
上に調整するのが好ましい。pHが2未満であると置換
金属から放出される電子が銅イオンのみならず水素イオ
ンによっても費されるため、置換金属の添加量をかなり
増やすことが必要になる。置換析出によって生じた沈殿
物は高品位の銅を含むので、これを固液分離して回収
し、銅製錬の原料として利用することができる。
In this substitution precipitation, it is preferable to adjust the pH of the solution to 2 or more. If the pH is less than 2, electrons emitted from the substituted metal are consumed not only by copper ions but also by hydrogen ions, so that it is necessary to considerably increase the amount of the substituted metal added. Since the precipitate generated by the substitutional precipitation contains high-grade copper, it can be recovered by solid-liquid separation and used as a raw material for copper smelting.

【0018】(B-II) 置換金属の回収 上記置換析出によって生じた浸出金属の沈殿物を分離し
た後に、その濾液(酸浸出液)を中和処理または硫化処理
し、添加した亜鉛や鉄などの置換金属を沈澱させて分離
回収する。すなわち、上記硫酸浸出液に苛性ソーダなど
のアルカリ液を加えて浸出液のpHを8以上、好ましく
は9〜12に調整して亜鉛ないし鉄を水酸化物に転じて
沈澱させる。亜鉛ないし鉄を分離した濾液は酸浸出工程
に循環して再利用すると良い。
(B-II) Recovery of Substituted Metal After the precipitate of the leached metal generated by the above-mentioned substitutional precipitation is separated, the filtrate (acid leached solution) is neutralized or sulfurized, and the added zinc or iron is removed. The substituted metal is precipitated and separated and recovered. That is, an alkaline solution such as caustic soda is added to the sulfuric acid leachate to adjust the pH of the leachate to 8 or more, preferably 9 to 12, to convert zinc or iron to hydroxide and precipitate it. The filtrate from which zinc or iron has been separated may be recycled to the acid leaching step and reused.

【0019】この中和処理に代えて硫化処理を行っても
良い。すなわち、上記硫酸浸出液に水硫化ソーダなどの
硫化剤を添加して亜鉛ないし鉄の硫化物を沈澱させる。
硫化剤の添加量は液中の亜鉛、鉄の含有量に対して1〜
2当量が好ましい。この硫化処理では亜鉛ないし鉄を分
離した液のpHはほぼ中性なので、新たに少量の硫酸を
添加することにより硫酸浸出に循環して再利用すること
ができる。回収した亜鉛、鉄の水酸化物ないし硫化物は
製錬原料として利用することができる。とくに、硫化物
は硫黄分が発熱源となるので製錬原料として好ましい。
A sulfurizing treatment may be performed instead of the neutralizing treatment. That is, a sulfurizing agent such as sodium hydrosulfide is added to the sulfuric acid leachate to precipitate zinc or iron sulfide.
The addition amount of the sulfurizing agent is 1 to the zinc and iron contents in the liquid.
Two equivalents are preferred. In this sulfidation treatment, the pH of the liquid from which zinc or iron is separated is almost neutral, so that by adding a small amount of new sulfuric acid, it can be recycled to sulfuric acid leaching and reused. The recovered zinc or iron hydroxide or sulfide can be used as a raw material for smelting. In particular, sulfide is preferable as a smelting raw material because the sulfur content is a heat source.

【0020】(C) セメント原料化工程 (C-I) アルカリ処理 上記酸浸出工程後の固液分離によって得た渣物に、アル
カリを加えて固形分に含まれる鉛分(主に硫酸鉛)を浸出
させる。アルカリとしては苛性ソーダが好適である。苛
性ソーダの濃度は1N以上、好ましくは2N以上が適当
であり、固液比は75g/l以下、好ましくは50g/l以下
が適当である。溶液のpHは12〜14が好ましい。こ
のアルカリ処理により残渣に含まれている硫化鉛の大部
分は液中に溶出する。一方、残渣中のカルシウム(主に
石膏)は水酸化カルシウムに転じて残渣中に残る。この
アルカリ処理したスラリーを固液分離して固形分を回収
し、液分を次の回収工程に送る。
(C) Cement Raw Material Making Step (CI) Alkali Treatment The residue obtained by the solid-liquid separation after the above acid leaching step is added with alkali to leach out the lead content (mainly lead sulfate) contained in the solid content. Let it. Caustic soda is preferred as the alkali. The concentration of caustic soda is suitably 1 N or more, preferably 2 N or more, and the solid-liquid ratio is suitably 75 g / l or less, preferably 50 g / l or less. The pH of the solution is preferably 12-14. Most of the lead sulfide contained in the residue is eluted into the liquid by this alkali treatment. On the other hand, calcium (mainly gypsum) in the residue is converted into calcium hydroxide and remains in the residue. The alkali-treated slurry is subjected to solid-liquid separation to recover a solid content, and the liquid content is sent to the next recovery step.

【0021】固形分に含まれるカルシウムは硫酸根を含
む石膏が水酸化カルシウムに転化して硫酸根が除去され
ているのでセメント原料として好適であり、セメント中
に過剰な硫酸根を持ち込む虞がない。また、セメント原
料として用いることにより、廃棄物にダイオキシン等の
有機塩素化合物が含まれていても、セメント製造時の高
温焼成によって容易に分解し、無害化できる利点があ
る。
Calcium contained in the solid content is suitable as a cement raw material since the gypsum containing sulfate is converted into calcium hydroxide to remove the sulfate, and there is no possibility that excessive sulfate is introduced into the cement. . Further, when used as a cement raw material, there is an advantage that even if an organic chlorine compound such as dioxin is contained in the waste, it can be easily decomposed and detoxified by high-temperature firing during the production of cement.

【0022】(C-II) 硫化処理 一方、アルカリ処理後、固液分離した濾液に水硫化ソー
ダなどの硫化剤を加えて液中の鉛などを硫化物に転じて
沈澱させる。添加する硫化剤の量は液中の鉛含有量に対
して1〜2当量が適当である。これを濾過して硫化鉛等
を回収する。回収した硫化鉛等を鉛製錬の原料として利
用すれば、硫黄分が発熱源となるので好ましい。また、
硫化鉛等を分離した濾液は強アルカリ液であるので、こ
れをアルカリ浸出工程に循環して再利用することができ
る。なお、硫化剤を用いる方法に代えて、電解などの手
段により鉛を析出させて回収しても良い。
(C-II) Sulfurization Treatment On the other hand, after alkali treatment, a sulfide agent such as sodium hydrogen sulfide is added to the filtrate which has been subjected to solid-liquid separation to convert lead and the like in the liquid to sulfide to precipitate. The amount of the sulfurizing agent to be added is suitably 1 to 2 equivalents to the lead content in the liquid. This is filtered to recover lead sulfide and the like. It is preferable to use the recovered lead sulfide or the like as a raw material for lead smelting because the sulfur content becomes a heat source. Also,
Since the filtrate from which lead sulfide or the like has been separated is a strong alkaline solution, it can be recycled and reused in the alkaline leaching step. Note that lead may be precipitated and recovered by a method such as electrolysis instead of the method using a sulfide agent.

【0023】[0023]

【実施例】本発明を実施例によって以下に具体的に示
す。
EXAMPLES The present invention will be specifically described below by way of examples.

【0024】実施例1 溶融スラグ飛灰(Cu:1.2wt%、Pb:2.5wt%、Zn:10wt
%、Ca:3wt%)300gに水1000mlを加えて水性スラリ
ーとし、これを固液分離した。この濾液の塩素濃度は
4.8wt%であった。分離した固形分に水1080mlおよび
濃度4Nの硫酸を120ml加えてpH3の硫酸浸出スラ
リーとし、これを固液分離した。この濾液の銅および亜
鉛の濃度は各々3000ppm、25500ppmであり、飛
灰に含まれる銅および亜鉛の大部分が浸出された。一
方、この残渣90gに濃度2Nの苛性ソーダ1800ml
を加えて30分間混合し、pH13のアルカリ浸出スラ
リーとし、これを固液分離した。分離した固形分を粉末
X線回折により分析したところ、石膏のピークは認めら
れず水酸化カルシウムのピークが認められた。引き続
き、上記固形分を分離した濾液に水硫化ソーダ1.8g
を加えて沈澱を生成させ、これを固液分離して沈澱5.
6gを回収した。粉末X線回折により、回収物が硫化鉛
であることを確認した。
Example 1 Molten slag fly ash (Cu: 1.2 wt%, Pb: 2.5 wt%, Zn: 10 wt%
%, Ca: 3 wt%), and 300 ml of water was added to 1000 ml of water to form an aqueous slurry, which was subjected to solid-liquid separation. The filtrate had a chlorine concentration of 4.8% by weight. 1080 ml of water and 120 ml of 4N sulfuric acid were added to the separated solid to obtain a sulfuric acid leached slurry having a pH of 3, which was subjected to solid-liquid separation. The concentrations of copper and zinc in the filtrate were 3000 ppm and 25500 ppm, respectively, and most of the copper and zinc contained in the fly ash were leached. On the other hand, 1800 ml of 2N caustic soda was added to 90 g of the residue.
Was added and mixed for 30 minutes to obtain a pH 13 alkaline leaching slurry, which was subjected to solid-liquid separation. When the separated solid was analyzed by powder X-ray diffraction, a gypsum peak was not found and a calcium hydroxide peak was found. Subsequently, 1.8 g of sodium hydrogen sulfide was added to the filtrate from which the solid content was separated.
To form a precipitate, which is separated into a solid and a liquid by precipitation.
6 g were recovered. It was confirmed by powder X-ray diffraction that the recovered material was lead sulfide.

【0025】実施例2 実施例1の溶融スラグ飛灰の硫酸浸出固形分について、
表1に示す濃度(0.5N、1.0N、2.0N)の苛性ソーダを加え
て固液比50g/lのアルカリ浸出スラリーとし、これを
固液分離した。この濾液の重金属濃度を苛性ソーダの濃
度と共に表1に示した。表示するように、苛性ソーダの
濃度が2Nの場合には最も鉛の浸出量が多く、しかもカ
ルシウムの浸出量が少ない。苛性ソーダの濃度が0.5
Nでは鉛の浸出量が低下し、カルシウムの浸出量が増
す。この結果から、苛性ソーダの濃度は1N以上が適当
であり、2N以上の好ましい。
Example 2 Regarding the solid content of sulfuric acid leached from the molten slag fly ash of Example 1,
Caustic soda having a concentration (0.5N, 1.0N, 2.0N) shown in Table 1 was added to obtain an alkaline leached slurry having a solid-liquid ratio of 50 g / l, which was subjected to solid-liquid separation. The heavy metal concentration of this filtrate is shown in Table 1 together with the concentration of caustic soda. As shown, when the concentration of caustic soda is 2N, the amount of lead leached is the largest and the amount of calcium leached is the smallest. The caustic soda concentration is 0.5
In N, the amount of lead leached decreases and the amount of calcium leached increases. From these results, the concentration of caustic soda is suitably 1N or more, and preferably 2N or more.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例3 実施例1の溶融スラグ飛灰の硫酸浸出固形分について、
1N濃度の苛性ソーダを加えて、表2に示す固液比に調
整したアルカリ浸出スラリーとし、これを固液分離し
た。浸出液中の重金属濃度を固液比ごとに表2に示し
た。表示するように、固液比が100g/lではカルシウ
ムの浸出率が高く、鉛の浸出率が低い。固液比が50g/
lでは鉛の浸出率が大幅に増加するので、この中間の固
液比75g/l以下が適当であり、50g/l以下が良い。
Example 3 The sulfuric acid leached solid content of the molten slag fly ash of Example 1 was
1N caustic soda was added to obtain an alkali leached slurry adjusted to a solid-liquid ratio shown in Table 2, and this was subjected to solid-liquid separation. Table 2 shows the heavy metal concentration in the leachate for each solid-liquid ratio. As shown, when the solid-liquid ratio is 100 g / l, the leaching rate of calcium is high and the leaching rate of lead is low. Solid-liquid ratio 50g /
In the case of l, the lead leaching rate is greatly increased, so that the intermediate solid-liquid ratio of 75 g / l or less is appropriate and 50 g / l or less is good.

【0028】[0028]

【表2】 [Table 2]

【0029】実施例4 溶融スラグ飛灰(Cu:2.1wt%)150gに水1000mlを
加え、これに硫酸を加えてpH約3のスラリーとし、こ
れを固液分離した。分離した濾液1000mlに鉄粉2.
6gを加えて混合し、30分経過後、生じた沈澱を固液
分離して銅3.5gを回収した。回収した銅の表面は一
部酸化されたが、銅品位は約90%であった。一方、銅
を回収した濾液1000mlに水硫化ソーダ16gを添加
し、生じた沈澱を固液分離して硫化鉄と硫化亜鉛の混合
物27gを回収した。
Example 4 1000 ml of water was added to 150 g of molten slag fly ash (Cu: 2.1 wt%), and sulfuric acid was added thereto to form a slurry having a pH of about 3, which was subjected to solid-liquid separation. Iron powder is added to 1000 ml of the separated filtrate.
6 g was added and mixed, and after 30 minutes, the resulting precipitate was subjected to solid-liquid separation to recover 3.5 g of copper. Although the surface of the recovered copper was partially oxidized, the copper quality was about 90%. On the other hand, 16 g of sodium bisulfide was added to 1000 ml of the filtrate from which copper was recovered, and the resulting precipitate was subjected to solid-liquid separation to recover 27 g of a mixture of iron sulfide and zinc sulfide.

【0030】実施例5 溶融スラグ飛灰(Cu:2.1wt%)150gに水1000mlを
加え、これに硫酸を加えてpH約3のスラリーとし、こ
れを固液分離した。分離した濾液1000mlに亜鉛粉3
gを加えて混合し、30分経過後、生じた沈澱を固液分
離して銅3.4gを回収した。回収した銅の表面は一部酸
化されたが銅品位は約93%であった。一方、銅を回収
した濾液1000mlに水硫化ソーダ16gを添加し、生
じた沈澱を固液分離して硫化亜鉛27gを回収した。
Example 5 To 150 g of molten slag fly ash (Cu: 2.1 wt%), 1000 ml of water was added, and sulfuric acid was added thereto to form a slurry having a pH of about 3, which was separated into a solid and a liquid. Zinc powder 3 in 1000 ml of separated filtrate
g was added and mixed, and after 30 minutes, the resulting precipitate was solid-liquid separated to recover 3.4 g of copper. Although the surface of the recovered copper was partially oxidized, the copper quality was about 93%. On the other hand, 16 g of sodium hydrogen sulfide was added to 1000 ml of the filtrate from which copper was recovered, and the resulting precipitate was subjected to solid-liquid separation to recover 27 g of zinc sulfide.

【0031】実施例6 溶融スラグ飛灰(Cu:2.1wt%)150gに水1000mlを
加え、これに硫酸を加えてpH約3のスラリーとし、こ
れを固液分離した。分離した濾液1000mlに鉄粉2.
6gを加えて混合し、30分経過後、生じた沈澱を固液
分離して銅3.5gを回収した。回収した銅の表面は一部
酸化されたが銅品位は約93%であった。一方、銅を回
収した後の濾液1000mlに苛性ソーダを加えてpH9
に調整し、生じた沈澱を固液分離し、水酸化鉄と水酸化
亜鉛の混合物27gを回収した。
Example 6 Water (1000 ml) was added to 150 g of molten slag fly ash (Cu: 2.1 wt%), and sulfuric acid was added thereto to form a slurry having a pH of about 3, which was subjected to solid-liquid separation. Iron powder is added to 1000 ml of the separated filtrate.
6 g was added and mixed, and after 30 minutes, the resulting precipitate was subjected to solid-liquid separation to recover 3.5 g of copper. Although the surface of the recovered copper was partially oxidized, the copper quality was about 93%. On the other hand, caustic soda was added to 1000 ml of the filtrate after copper was recovered to adjust the pH to 9%.
The resulting precipitate was subjected to solid-liquid separation, and 27 g of a mixture of iron hydroxide and zinc hydroxide was recovered.

【0032】実施例7 溶融スラグ飛灰(Cu:2.1wt%)150gに水1000mlを
加え、これに硫酸を加えてpH約3のスラリーとし、こ
れを固液分離した。分離した濾液1000mlに亜鉛粉3
gを加えて混合し、30粉経過後、生じた沈澱を固液分
離して銅3.4gを回収した。回収した銅の表面は一部酸
化されたが銅品位は約93%であった。一方銅を回収し
た後の濾液1000mlに苛性ソーダを加えてpH9に調
整し、生じた沈澱を固液分離し、水酸化鉄と水酸化亜鉛
の混合物27gを回収した。
Example 7 To 150 g of molten slag fly ash (Cu: 2.1 wt%) was added 1000 ml of water, and sulfuric acid was added thereto to form a slurry having a pH of about 3, which was subjected to solid-liquid separation. Zinc powder 3 in 1000 ml of separated filtrate
g was added and mixed, and after the elapse of 30 powders, the resulting precipitate was subjected to solid-liquid separation to recover 3.4 g of copper. Although the surface of the recovered copper was partially oxidized, the copper quality was about 93%. On the other hand, caustic soda was added to 1000 ml of the filtrate after copper was recovered to adjust the pH to 9, and the resulting precipitate was subjected to solid-liquid separation to recover 27 g of a mixture of iron hydroxide and zinc hydroxide.

【0033】実施例8 溶融スラグ飛灰(Cu:2.2wt%、Pb:6.1wt%、Zn:4.5wt
%、Ca:10.2wt%)300gに水1000mlを加えて水性
スラリーとし、これを固液分離した。分離した固形分に
水200mlと濃度4Nの硫酸400mlを加えてpH3に
調整し、硫酸浸出スラリーとし、これを固液分離した。
この濾液の銅濃度は11000ppmおよび亜鉛濃度は2
2500ppmであり、飛灰に含まれる銅および亜鉛の大
部分が浸出された。この固形分30gに濃度2Nの苛性
ソーダ600mlを加えて30分間混合し、pH13のア
ルカリ浸出スラリーとし、これを固液分離した。分離し
た固形分を粉末X線回折により分析したところ、石膏の
ピークは認められず水酸化カルシウムのピークが認めら
れた。引き続き、アルカリ浸出スラリーを固液分離した
濾液に水硫化ソーダ5.2gを加えて沈澱を生成させ、
これを固液分離して固形分148gを回収した。粉末X
線回折によってこの回収物が硫化鉛であることを確認し
た。一方、硫酸浸出スラリーの濾液500mlに鉄粉4.
9gを加えて混合し、30分経過後、生じた沈澱を固液
分離して銅6.1gを回収した。回収した銅の表面は一
部酸化されたが、銅品位は約90%であった。さらに、
銅を回収した濾液500mlに水硫化ソーダ17.4gを
添加し、生じた沈澱を固液分離して硫化鉄と硫化亜鉛の
混合物24gを回収した。
Example 8 Fly ash from molten slag (Cu: 2.2 wt%, Pb: 6.1 wt%, Zn: 4.5 wt%
%, Ca: 10.2 wt%) to 300 g of water to obtain an aqueous slurry, which was subjected to solid-liquid separation. To the separated solid content, 200 ml of water and 400 ml of 4N sulfuric acid were added to adjust the pH to 3 to obtain a sulfuric acid leached slurry, which was subjected to solid-liquid separation.
The filtrate had a copper concentration of 11,000 ppm and a zinc concentration of 2 ppm.
2500 ppm, and most of the copper and zinc contained in the fly ash were leached. 600 ml of 2N caustic soda was added to 30 g of this solid content and mixed for 30 minutes to obtain a pH 13 alkaline leaching slurry, which was subjected to solid-liquid separation. When the separated solid was analyzed by powder X-ray diffraction, a gypsum peak was not found and a calcium hydroxide peak was found. Subsequently, 5.2 g of sodium hydrosulfide was added to the filtrate obtained by solid-liquid separation of the alkaline leaching slurry to form a precipitate,
This was subjected to solid-liquid separation to recover 148 g of a solid content. Powder X
The recovered material was confirmed to be lead sulfide by X-ray diffraction. On the other hand, iron powder 4.
9 g was added and mixed, and after 30 minutes, the resulting precipitate was subjected to solid-liquid separation to recover 6.1 g of copper. Although the surface of the recovered copper was partially oxidized, the copper quality was about 90%. further,
17.4 g of sodium hydrogen sulfide was added to 500 ml of the filtrate from which copper was recovered, and the resulting precipitate was subjected to solid-liquid separation to recover 24 g of a mixture of iron sulfide and zinc sulfide.

【0034】実施例9 硫酸浸出スラリーの濾液500mlに、鉄粉に代えて亜鉛
5.7gを添加した他は実施例1と同様にして銅5.9g
を回収した。回収した銅の表面は一部酸化されたが、銅
品位は約93%であった。また、この銅回収後の濾液か
ら回収された硫化鉄と硫化亜鉛の混合物の量は24.5
gであった。
Example 9 Copper 5.9 g was prepared in the same manner as in Example 1 except that 5.7 g of zinc was added instead of iron powder to 500 ml of the filtrate of the sulfuric acid leaching slurry.
Was recovered. Although the surface of the recovered copper was partially oxidized, the copper quality was about 93%. The amount of the mixture of iron sulfide and zinc sulfide recovered from the filtrate after the recovery of copper was 24.5.
g.

【0035】[0035]

【発明の効果】本発明の処理方法によれば、各種の廃棄
物に含まれる銅や鉛、亜鉛などを効率よく分離回収する
ことができ、しかもカルシウム含有量が多い廃棄物につ
いて、この処理固形分をセメント原料に利用できる利点
がある。即ち、従来の処理方法では、廃棄物に含まれる
カルシウムは大部分が硫酸化合物である石膏として固形
分に残留するのでセメント原料に適さないが、本発明の
処理方法によれば、カルシウムは水酸化物として固形分
に残るので、これをセメント原料に用いても過剰な硫酸
根がセメント成分に導入される虞がないので好ましい。
さらに、本発明の処理方法は廃棄物から回収した銅や鉛
の品位が高い。また金属銅の粉末として回収されるの
で、利用しやすい。
According to the treatment method of the present invention, it is possible to efficiently separate and recover copper, lead, zinc and the like contained in various kinds of wastes, and furthermore, to treat wastes having a high calcium content in the treated solids. There is an advantage that a portion can be used as a cement raw material. That is, in the conventional treatment method, most of the calcium contained in the waste remains in the solid content as gypsum, which is a sulfate compound, and thus is not suitable for a cement raw material. Since it remains in the solid content as a substance, it is preferable that even if this is used as a cement raw material, there is no risk of excessive sulfate groups being introduced into the cement component.
Further, the treatment method of the present invention has high quality of copper and lead recovered from waste. In addition, since it is recovered as metallic copper powder, it is easy to use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の処理方法を示す工程図FIG. 1 is a process chart showing a processing method of the present invention.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物を酸処理して残留する金属類を浸
出させる工程、この酸浸出スラリーを固液分離する工
程、酸処理によって浸出した金属(浸出金属)よりも卑な
金属(置換金属)を酸浸出スラリーの濾液に添加して浸出
金属を析出させる工程(置換析出工程)、この析出沈殿物
を固液分離する工程、分離した濾液を中和処理ないし硫
化処理することにより置換金属を沈殿させる工程、これ
を固液分離する工程を有することを特徴とする廃棄物の
処理方法。
1. A step of subjecting waste to acid treatment to leach out residual metals, a step of solid-liquid separation of the acid leached slurry, and a metal (substituted metal) that is less basic than the metal leached by the acid treatment (leached metal). ) Is added to the filtrate of the acid leaching slurry to precipitate leached metal (substitution precipitation step), a step of solid-liquid separation of the deposited precipitate, and a neutralization treatment or a sulfuration treatment of the separated filtrate to remove the substituted metal. A method for treating waste, comprising a step of precipitating and a step of solid-liquid separation.
【請求項2】 請求項1の酸浸出工程において、浸出ス
ラリーのpHを2〜4に調整して廃棄物中の金属類を浸
出させる廃棄物の処理方法。
2. The method for treating waste according to claim 1, wherein in the acid leaching step, the pH of the leached slurry is adjusted to 2 to 4 to leaches metals in the waste.
【請求項3】 請求項1の置換析出工程において、酸浸
出した液中の銅に対し、置換金属として亜鉛ないし鉄を
用い、亜鉛ないし鉄を液中の銅イオン濃度の0.8〜1.
1倍当量添加して銅を析出させる廃棄物の処理方法。
3. The substitution precipitation step of claim 1, wherein zinc or iron is used as a substitution metal with respect to copper in the acid-leached liquid, and zinc or iron has a copper ion concentration of 0.8 to 1.0.
A method for treating waste which adds one equivalent to precipitate copper.
【請求項4】 請求項1の中和処理工程において、置換
析出沈殿物を分離した濾液にアルカリを加えて液性をp
H8以上に調整し、液中の鉄ないし亜鉛を沈殿させる廃
棄物の処理方法。
4. In the neutralization treatment step of claim 1, an alkali is added to the filtrate from which the substituted precipitate has been separated to adjust the liquid property to p.
A method for treating waste which is adjusted to H8 or more to precipitate iron or zinc in a liquid.
【請求項5】 廃棄物を酸処理して残留する金属類を浸
出させる工程、この酸浸出スラリーを固液分離する工
程、分離した固形分をアルカリ処理して固形分の鉛分を
浸出させると共にカルシウム分を水酸化カルシウムに転
じて固形分に残存させる工程、この固形分を固液分離す
る工程を有することを特徴とする廃棄物の処理方法。
5. A step of leaching wastes by acid treatment of wastes, a step of solid-liquid separation of the acid leached slurry, and a step of alkali-treating the separated solids to leaching lead of solids. A method for treating waste, comprising: a step of converting calcium into calcium hydroxide to remain in solids; and a step of solid-liquid separation of the solids.
【請求項6】 請求項5の処理方法において、水酸化カ
ルシウムを含む固形分を分離後、回収してセメント原料
として用いる廃棄物の処理方法。
6. The method for treating waste according to claim 5, wherein solids containing calcium hydroxide are separated, recovered, and used as a cement raw material.
【請求項7】 請求項5の処理方法において、水酸化カ
ルシウムを含む固形分を分離後、その濾液中の鉛分を沈
殿化し、これを固液分離して回収する廃棄物の処理方
法。
7. The method for treating waste according to claim 5, wherein a solid content containing calcium hydroxide is separated, a lead content in the filtrate is precipitated, and solid content is separated and recovered.
【請求項8】 廃棄物を酸処理して銅や鉛を浸出させた
後に、この酸浸出スラリーを固液分離し、分離した固形
分をアルカリ処理した後に固液分離して回収し、セメン
ト原料とする一方、酸浸出スラリーの濾液に亜鉛ないし
鉄を添加して液中の銅を析出させ、この銅沈殿物を固液
分離し、分離した濾液を中和処理ないし硫化処理して亜
鉛ないし鉄を沈殿させ、これを固液分離して回収するこ
とを特徴とする廃棄物の処理方法。
8. After the waste is acid-treated to leach copper and lead, the acid-leached slurry is solid-liquid separated, and the separated solid is alkali-treated and then solid-liquid separated and collected to obtain a cement raw material. On the other hand, zinc or iron is added to the filtrate of the acid leaching slurry to precipitate copper in the solution, the copper precipitate is separated into solid and liquid, and the separated filtrate is neutralized or sulfurized to obtain zinc or iron. A method for treating waste, comprising precipitating and collecting solids and liquids.
【請求項9】 廃棄物から分離した鉛含有沈殿物を回収
して鉛製錬原料として用い、銅含有沈殿物を回収して銅
製錬原料として用いる請求項1〜8の何れかに記載する
廃棄物の処理方法。
9. The waste according to claim 1, wherein a lead-containing precipitate separated from the waste is recovered and used as a lead smelting raw material, and a copper-containing precipitate is recovered and used as a copper smelting raw material. How to handle things.
JP11235370A 1999-08-23 1999-08-23 Waste treatment method Pending JP2001058170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11235370A JP2001058170A (en) 1999-08-23 1999-08-23 Waste treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11235370A JP2001058170A (en) 1999-08-23 1999-08-23 Waste treatment method

Publications (1)

Publication Number Publication Date
JP2001058170A true JP2001058170A (en) 2001-03-06

Family

ID=16985090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11235370A Pending JP2001058170A (en) 1999-08-23 1999-08-23 Waste treatment method

Country Status (1)

Country Link
JP (1) JP2001058170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198449A (en) * 2005-01-17 2006-08-03 Nikko Kinzoku Kk Valuable recovery method from melting flying ash
CN105174761A (en) * 2015-09-25 2015-12-23 湖南省小尹无忌环境能源科技开发有限公司 Method for harmlessly preparing sulfate binding material through electrolysis zinc acid leached residues

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198449A (en) * 2005-01-17 2006-08-03 Nikko Kinzoku Kk Valuable recovery method from melting flying ash
JP4505840B2 (en) * 2005-01-17 2010-07-21 日鉱金属株式会社 Method for recovering valuable materials from molten fly ash
CN105174761A (en) * 2015-09-25 2015-12-23 湖南省小尹无忌环境能源科技开发有限公司 Method for harmlessly preparing sulfate binding material through electrolysis zinc acid leached residues
CN105174761B (en) * 2015-09-25 2017-03-29 湖南省小尹无忌环境能源科技开发有限公司 A kind of method of use electrolytic zinc acid leaching slag harmlessness Sulphuric acid salt Binder Materials

Similar Documents

Publication Publication Date Title
JP4478585B2 (en) How to recover valuable materials from fly ash
KR102556133B1 (en) Wastewater Treatment Method
JP3802046B1 (en) Method for processing heavy metal-containing powder
JP3924981B2 (en) Waste material processing method for cement
JP2002018394A (en) Treating method for waste
JP4417152B2 (en) Fly ash treatment method
JP2003225633A (en) Method of treating chloride-containing dust
JP3568569B2 (en) Recycling of heavy metals by detoxifying incinerated ash or fly ash
JP2001058170A (en) Waste treatment method
JP2894477B2 (en) Method of treating substances containing zinc, lead, mercury and chlorine
JP2001046996A (en) Treatment of waste
JPH08309313A (en) Wet treatment method for fly ash containing heavy metal from high temperature treatment furnace
JP5084272B2 (en) Method for treating heavy metals containing zinc and substances containing chlorine
JP3574928B2 (en) Method for treating fly ash from incinerators and melting furnaces
JP3536901B2 (en) Method of recovering valuable metals from fly ash
JP4505840B2 (en) Method for recovering valuable materials from molten fly ash
JP3794260B2 (en) Waste disposal method
JP2005126798A (en) Wet type treating method for fly ash
JP4044068B2 (en) Method for treating substances containing heavy metals
JPH10109077A (en) Method for recovering heavy metal from molten fry ash
JP3733452B2 (en) Waste disposal method
JP2005177757A (en) Calcium-and heavy metal-containing matter treatment method
JP3524601B2 (en) Method for treating fly ash from incinerators and melting furnaces
JP3470594B2 (en) Processing method of molten fly ash
JP2000212654A (en) Recovery of heavy metal from substance containing heavy metal and chlorine