JP2001057226A - Manufacture of fuel cell and fuel cell - Google Patents

Manufacture of fuel cell and fuel cell

Info

Publication number
JP2001057226A
JP2001057226A JP11232506A JP23250699A JP2001057226A JP 2001057226 A JP2001057226 A JP 2001057226A JP 11232506 A JP11232506 A JP 11232506A JP 23250699 A JP23250699 A JP 23250699A JP 2001057226 A JP2001057226 A JP 2001057226A
Authority
JP
Japan
Prior art keywords
fuel
hole
electrode
fuel cell
intermediate adapter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11232506A
Other languages
Japanese (ja)
Other versions
JP4089099B2 (en
Inventor
Hideo Maeda
秀雄 前田
Hisatoshi Fukumoto
久敏 福本
Koji Hamano
浩司 濱野
Kenro Mitsuta
憲朗 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23250699A priority Critical patent/JP4089099B2/en
Priority to US09/631,989 priority patent/US6500579B1/en
Publication of JP2001057226A publication Critical patent/JP2001057226A/en
Application granted granted Critical
Publication of JP4089099B2 publication Critical patent/JP4089099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a fuel cell capable of produc ing a fuel cell layered body having high assembling accuracy at a low cost with high accuracy. SOLUTION: This manufacturing method as shown below. Through-holes 45 of cells 6 and separator plates 39, 40 are sequentially fitted on a cylindrical intermediate adapter 60 (a) to form a unit block 70 (b). Next, by inserting a shaft 72 through through-holes 62 of the intermediate adapter 60, plural unit blocks 70 are stacked to form a layered body (c), then the layered body is fastened with the shaft 72 as an axis to manufacture a fuel cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気化学的な反応
を利用して発電する例えば電気自動車等で使用される燃
料電池に関するものである。以下、本明細書では、特に
固体高分子型燃料電地について記述しているが、リン酸
型燃料電池にも適用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell for generating electric power by utilizing an electrochemical reaction, for example, used in an electric vehicle or the like. Hereinafter, although the present specification particularly describes a polymer electrolyte fuel cell, the present invention can also be applied to a phosphoric acid fuel cell.

【0002】[0002]

【従来の技術】燃料電池は周知のように、電解質を介し
て一対の電極を有し、この電極の一方に燃料を、他方の
電極に酸化剤を供給し、燃料と酸化剤とを電池内で電気
化学的に反応させることにより化学エネルギーを直接電
気エネルギーに変換する装置である。燃料電池には電解
質によりいくつかの型があるが、近年高出力の得られる
燃料電池として、電解質に固体高分子電解質膜を用いた
固体高分子型燃料電池が注目されている。例えば燃料電
極に水素ガスを、酸化剤電極に酸素ガスを供給し、外部
回路より電流を取り出すときに下記化学反応式(1)お
よび(2)で示されるような反応が生じる。 陰極反応:H2→2H++2e- ・・(1) 陽極反応:2H++2e-+(1/2)O2→H2O ・・(2)
2. Description of the Related Art As is well known, a fuel cell has a pair of electrodes via an electrolyte, and supplies fuel to one of the electrodes and an oxidant to the other electrode. Is a device that directly converts chemical energy into electrical energy by causing an electrochemical reaction in the device. There are several types of fuel cells depending on the type of electrolyte. In recent years, a polymer electrolyte fuel cell using a solid polymer electrolyte membrane as an electrolyte has attracted attention as a fuel cell capable of obtaining high output. For example, when hydrogen gas is supplied to the fuel electrode and oxygen gas is supplied to the oxidant electrode, and current is taken out from an external circuit, reactions represented by the following chemical reaction formulas (1) and (2) occur. Cathodic reaction: H 2 → 2H + + 2e (1) Anodic reaction: 2H + + 2e + (1/2) O 2 → H 2 O (2)

【0003】この反応が生じるとき、燃料電極上で水素
はプロトンとなり、水を伴って電解質体中を酸化剤電極
上まで移動し、酸化剤電極上で酸素と反応して水を生ず
る。従って、上記のような燃料電池の運転には、反応ガ
スの供給と排出、電流の取り出しが必要となる。
When this reaction occurs, hydrogen becomes a proton on the fuel electrode, moves with the water through the electrolyte to the oxidant electrode, and reacts with oxygen on the oxidant electrode to produce water. Therefore, the operation of the fuel cell as described above requires the supply and discharge of the reaction gas and the extraction of the current.

【0004】燃料電池から電流を取り出すとともに、ガ
スと水を効率よく流通させるセパレータ板が、例えば特
開昭58―161270号公報、特開昭58―1612
69号公報および特開平3―206763号公報に示さ
れている。図6は、特開平3―206763号公報に示
されている燃料電池における単位電池の概念的な構成を
説明するための断面図であり、図において、1、2は導
電性のセパレータ板、3は酸化剤電極、4は燃料電極、
5は例えばプロトン導電性の固体高分子を用いた電解質
体であり、電解質体5、酸化剤電極3および燃料電極4
により単セル6を構成する。
A separator plate for extracting current from a fuel cell and for efficiently flowing gas and water is disclosed in, for example, JP-A-58-161270 and JP-A-58-1612.
No. 69 and JP-A-3-206676. FIG. 6 is a cross-sectional view for explaining a conceptual configuration of a unit cell in the fuel cell disclosed in Japanese Patent Laid-Open Publication No. Hei 3-206763. In FIG. Is an oxidant electrode, 4 is a fuel electrode,
Reference numeral 5 denotes an electrolyte using a proton conductive solid polymer, for example, the electrolyte 5, the oxidant electrode 3, and the fuel electrode 4.
Constitutes the single cell 6.

【0005】図7は、上記図6に示した燃料電池におけ
るセパレータ板の上面を示す説明図であり、以下図6を
併用して説明する。即ち、20はセパレータ板1の主表
面、21はセパレータ板1における電極3を支持する電
極支持部分、22はセパレータ板1に形成され酸化剤と
して空気を供給する酸化剤供給口、23は空気を排出す
るための酸化剤排出口、24は燃料を供給する燃料供給
口、25は燃料を排出するための燃料排出口である。な
お、上記セパレータ板1、2においては、主表面20を
削って形成された溝と電極3、4に囲まれた空間によっ
てそれぞれ酸化剤流路10および燃料流路11が構成さ
れる。
FIG. 7 is an explanatory view showing the upper surface of the separator plate in the fuel cell shown in FIG. 6, and will be described with reference to FIG. That is, reference numeral 20 denotes a main surface of the separator plate 1, reference numeral 21 denotes an electrode supporting portion for supporting the electrode 3 in the separator plate 1, reference numeral 22 denotes an oxidant supply port formed in the separator plate 1 and supplies air as an oxidant, and reference numeral 23 denotes air. An oxidant discharge port for discharging the fuel, 24 is a fuel supply port for supplying fuel, and 25 is a fuel discharge port for discharging fuel. In the separator plates 1 and 2, the oxidant flow path 10 and the fuel flow path 11 are respectively formed by the grooves formed by cutting the main surface 20 and the space surrounded by the electrodes 3 and 4.

【0006】以下、上記燃料電池の動作を上記図6およ
び図7を用いて説明する。セパレータ板1の酸化剤供給
口22より供給された酸素ガスは、並行して走る複数の
酸化剤流路10を通って酸化剤電極3に供給され、一
方、水素ガスは、上記酸化剤と同様に、燃料ガス流路1
1より燃料電極4に供給される。このとき、酸化剤電極
3と燃料電極4は電気的に外部で接続されているので、
酸化剤電極3側では上記化学反応式(2)の反応が生
じ、酸化剤ガス流路10を通って未反応ガスと水が酸化
剤排出口23に排出される。また、このとき燃料電極4
側では上記化学反応式(1)の反応が生じ、未反応ガス
は同様に燃料ガス流路11を通じて燃料排出口25より
排出されることとなる。この反応によって得られた電子
は電極3、4から電極支持部分21を経由してセパレー
タ板1、2を通って流れる。
Hereinafter, the operation of the fuel cell will be described with reference to FIGS. 6 and 7. Oxygen gas supplied from the oxidant supply port 22 of the separator plate 1 is supplied to the oxidant electrode 3 through a plurality of oxidant passages 10 running in parallel, while hydrogen gas is supplied in the same manner as the oxidant. And the fuel gas flow path 1
1 to the fuel electrode 4. At this time, since the oxidant electrode 3 and the fuel electrode 4 are electrically connected outside,
The reaction of the chemical reaction formula (2) occurs on the oxidant electrode 3 side, and the unreacted gas and water are discharged to the oxidant discharge port 23 through the oxidant gas flow path 10. At this time, the fuel electrode 4
On the side, the reaction of the chemical reaction formula (1) occurs, and the unreacted gas is similarly discharged from the fuel outlet 25 through the fuel gas passage 11. The electrons obtained by this reaction flow from the electrodes 3 and 4 via the electrode supporting portions 21 and the separator plates 1 and 2.

【0007】上記従来の燃料電池において、単セルあた
りの電圧が1V以下であり、実用上の有用な100V以
上の電圧を得るためには、特開平4―121914号公
報に記載のように、百枚以上の単セルとセパレータ板を
積層する必要がある。
In the above-mentioned conventional fuel cell, the voltage per unit cell is 1 V or less, and in order to obtain a practically useful voltage of 100 V or more, as described in JP-A-4-121914, It is necessary to stack more than one unit cell and separator plate.

【0008】[0008]

【発明が解決しようとする課題】しかし、数百枚の単セ
ルおよびセパレータ板を一度に積層するのは作業効率が
悪く、積層した際の位置合わせ精度の確保が困難である
だけでなく、運転時の振動等によりずれが生じ、最悪ガ
ス供給口や排出口のずれによるガス漏れ等の恐れがある
という課題があった。
However, laminating several hundred single cells and separator plates at one time is not only inefficient in work efficiency, it is difficult to secure alignment accuracy when laminating, but also in operation. There has been a problem that the displacement may occur due to vibration or the like at the time, and the gas may be leaked due to the displacement of the gas supply port or the discharge port in the worst case.

【0009】本発明はかかる課題を解消するためになさ
れたもので、組立精度の高い燃料電池積層体が低コス
ト、高効率で生産できる燃料電池の製造方法および運転
中の機械的形状の安定性が向上した燃料電池を得ること
を目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and a method of manufacturing a fuel cell capable of producing a fuel cell laminate having high assembly accuracy at low cost and high efficiency, and stability of a mechanical shape during operation. It is an object of the present invention to obtain a fuel cell having an improved performance.

【0010】[0010]

【課題を解決するための手段】本発明に係る第1の燃料
電池の製造方法は、電解質膜を燃料電極および酸化剤電
極で狭持し上記電極面に第1の貫通孔を有する単セルを
得る工程、この単セルと、上記燃料電極に燃料流体を供
給する燃料流路と上記酸化剤電極に酸化剤流体を供給す
る酸化剤流路を備え主表面に第2の貫通孔を有するセパ
レータ板を、上記第1および第2の貫通孔に、シャフト
を挿入する第3の貫通孔を有する中間アダプターを挿嵌
して、順次積層し単位ブロックを得る工程、並びに上記
複数個の単位ブロックの上記中間アダプターの第3の貫
通孔にシャフトを挿嵌し、上記単位ブロックを積層して
積層体を得、上記シャフトを軸として上記積層体を締め
付ける工程を施す方法である。
According to a first method of manufacturing a fuel cell according to the present invention, a single cell having an electrolyte membrane sandwiched between a fuel electrode and an oxidant electrode and having a first through hole in the electrode surface is provided. Step of obtaining a separator plate comprising the single cell, a fuel flow path for supplying a fuel fluid to the fuel electrode, and an oxidant flow path for supplying an oxidant fluid to the oxidant electrode, and having a second through hole in a main surface. A step of inserting an intermediate adapter having a third through-hole into which the shaft is inserted into the first and second through-holes, and sequentially stacking to obtain a unit block; In this method, a shaft is inserted into a third through-hole of the intermediate adapter, the unit blocks are stacked, a laminate is obtained, and the laminate is tightened around the shaft.

【0011】本発明に係る第2の燃料電池の製造方法
は、上記第1の燃料電池の製造方法において、中間アダ
プターは円筒であって、第3の貫通孔はシャフトを挿嵌
できる寸法で、外径は第1の貫通孔および第2の貫通孔
に挿嵌できる寸法の方法である。
In a second method for manufacturing a fuel cell according to the present invention, in the first method for manufacturing a fuel cell, the intermediate adapter is a cylinder, and the third through hole has a dimension capable of inserting a shaft. The outer diameter is a method of a dimension that can be inserted into the first through hole and the second through hole.

【0012】本発明に係る第3の燃料電池の製造方法
は、上記第2の燃料電池の製造方法において、第1貫通
孔、第2の貫通孔および中間アダプターの横断面形状が
楕円形のものである。
A third method of manufacturing a fuel cell according to the present invention is the method of manufacturing the second fuel cell, wherein the first through hole, the second through hole, and the intermediate adapter have an elliptical cross-sectional shape. It is.

【0013】本発明に係る第1の燃料電池は、電解質膜
を燃料電極および酸化剤電極で狭持した単セルと、上記
燃料電極に燃料流体を供給する燃料流路と上記酸化剤電
極に酸化剤流体を供給する酸化剤流路を備えたセパレー
タ板を、貫通孔を有する中間アダプターを上記単セルと
セパレータ板に挿嵌して、順次積層してなる単位ブロッ
クを複数個積層したものである。
A first fuel cell according to the present invention comprises a single cell in which an electrolyte membrane is sandwiched between a fuel electrode and an oxidant electrode, a fuel flow path for supplying a fuel fluid to the fuel electrode, and an oxidant electrode oxidized by the oxidant electrode. A separator plate provided with an oxidizing agent flow path for supplying an agent fluid, an intermediate adapter having a through hole is inserted into the single cell and the separator plate, and a plurality of unit blocks are sequentially laminated. .

【0014】[0014]

【発明の実施の形態】実施の形態1.図1(a)〜
(c)は本発明の燃料電池の製造方法を工程順に示す工
程図で、図中、6は単セル、39は燃料流路と冷却水流
路を設けたセパレータ板、40は酸化剤流路を設けたセ
パレータ板、45は単セル6およびセパレータ板39、
40に設けた貫通孔(第1、第2の貫通孔)で、単セル
6およびセパレータ板39、40が単セルの各電極に各
流体が効率よく供給できるように対応して設けられてい
る。72は積層体を締め付けるためのシャフト、60は
中間アダプターで、内部にシャフト72を挿嵌可能な貫
通孔(第3の貫通孔)62を設けている。70は単セル
とセパレータ板の貫通孔45に、中間アダプター60を
挿嵌して、単セルとセパレータ板を、順次複数枚積層し
て得られた単位ブロックである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 (a)-
(C) is a process drawing showing a method of manufacturing a fuel cell of the present invention in the order of steps, in which 6 is a single cell, 39 is a separator plate provided with a fuel flow path and a cooling water flow path, and 40 is an oxidant flow path. The provided separator plate, 45 is the single cell 6 and the separator plate 39,
In the through-holes (first and second through-holes) provided in the unit 40, the unit cell 6 and the separator plates 39 and 40 are provided correspondingly so that each fluid can be efficiently supplied to each electrode of the unit cell. . Reference numeral 72 denotes a shaft for tightening the laminated body, and reference numeral 60 denotes an intermediate adapter, in which a through hole (third through hole) 62 into which the shaft 72 can be inserted is provided. Reference numeral 70 denotes a unit block obtained by inserting the intermediate adapter 60 into the through hole 45 of the single cell and the separator plate, and sequentially stacking a plurality of single cells and separator plates.

【0015】即ち、有効面積200cm2の単セル6お
よびセパレータ板39、40には同じ位置に直径13m
mの貫通孔45を設けている。これらを、外径13m
m、内径10mm、長さ40mmの円筒状の中間アダプ
ター60に順次はめあわせていき{図1(a)}、単位
ブロック70を形成する{図1(b)}。次に、直径1
0mmのシャフト72を、複数個の単位ブロック70の
貫通孔62に挿嵌して、複数個の単位ブロック70を積
層して積層体を形成し{図1(c)}、シャフト72を
軸として積層体を締め付け、燃料電池を製造する。図
中、完全な積層体の締付け具、集電板等は図示していな
い。
That is, the single cell 6 having an effective area of 200 cm 2 and the separator plates 39 and 40 have a diameter of 13 m at the same position.
m through holes 45 are provided. These have an outer diameter of 13m
M, an inner diameter of 10 mm, and a length of 40 mm are sequentially fitted to a cylindrical intermediate adapter 60 (FIG. 1A), and a unit block 70 is formed (FIG. 1B). Next, the diameter 1
A 0 mm shaft 72 is inserted into the through holes 62 of the plurality of unit blocks 70, and the plurality of unit blocks 70 are stacked to form a laminate {FIG. 1 (c)}, with the shaft 72 as an axis. The stack is tightened to produce a fuel cell. In the figure, the fasteners, current collectors, etc. of the complete laminate are not shown.

【0016】なお、上記製造方法により燃料電池を製造
することにより、10セルを積層した単位ブロック70
は、縦120mm、横250mm、厚さ30mm(中間
アダプターの出っ張り含まず)、重さ700gのブロッ
クとなり、少しの力で移動できるので、力の弱い人でも
扱える上、ロボットに扱わせてもブロックを傷めること
なく扱える。さらに、この単位ブロックを10個積層す
るだけで、余分な位置合わせ用の治具等を用いなくても
100セルの燃料電池積層体(10kW相当)を形成さ
せることができた。
The fuel cell is manufactured by the above-described manufacturing method, so that a unit block 70 having ten stacked cells is manufactured.
Is a block of 120mm in length, 250mm in width, 30mm in thickness (excluding the protrusion of the intermediate adapter), and weighs 700g. Can be handled without damage. Furthermore, a 100-cell fuel cell stack (equivalent to 10 kW) could be formed by merely stacking ten unit blocks without using an extra positioning jig or the like.

【0017】本実施の形態において、発電規模に合わせ
た積層体の生産を一枚一枚の積層からではなく、保管や
輸送が容易な10セル単位の単位ブロックを重ねるだけ
で形成できるので作業効率やコストが大幅に削減でき
た。また、中間アダプターを位置合わせの指標として、
積層体中の各構成材の位置が確定した数セル毎の単位ブ
ロックを形成することができ、また、中間アダプターに
より積層体が結束しているので積層体の位置のずれが生
じなくなり、従来積層体を横方向に設置すると重力によ
り生じていたたわみがでなくなった。さらに、本実施の
形態においては、中間アダプターにはポリプロピレンを
用いたので、中間アダプターが絶縁材となり、締付け用
のシャフトを通じた電流の短絡等が生じることもなくな
った。
In the present embodiment, the production efficiency can be improved because the production of the laminated body according to the power generation scale can be performed not by stacking one by one but only by stacking unit blocks of 10 cells, which are easy to store and transport. And costs were greatly reduced. Also, the intermediate adapter is used as an index for positioning,
It is possible to form a unit block every few cells where the position of each component in the laminate is fixed, and since the laminate is bound by the intermediate adapter, the displacement of the laminate does not occur, and the conventional laminate When the body was placed sideways, the deflection caused by gravity disappeared. Furthermore, in the present embodiment, since polypropylene was used for the intermediate adapter, the intermediate adapter became an insulating material, and there was no occurrence of a short circuit of current through the fastening shaft.

【0018】実施の形態2.実施の形態1において、中
間アダプター60として、図2に示すものを用いる他は
実施の形態1と同様にして燃料電池を製造した。図2は
本発明の第2の実施の形態で用いたセパレータ板の貫通
孔45に中間アダプター60を挿入した状態を示すため
に、例えばセパレータ板39の上面の一部を切り欠いて
示す模式図で、63は中間アダプター60の外周部に設
けた突起である。貫通孔45に対し、中間アダプターの
外径は12.5mmで0.25mm隙間をもたせた。し
かし、4方向に突起63を有し、突起部を含めた外接円
は13.2mmと貫通孔45より若干大きくした。実施
の形態1では、単位ブロックを形成する際、寸法精度に
ばらつきがあると、セパレータ板や単セルをはめ込むこ
とが困難な場合があったが、本実施の形態では、中間ア
ダプター60と貫通孔45間には隙間があるので、楽に
挿入することが可能となった。さらに、隙間が大きすぎ
て単位ブロックから端部の構成材料が脱落することがあ
ったが、本実施の形態では、突起63が必ず貫通孔45
に圧接しているので、しっかりと固定することができ
た。つまり組立が容易になるとともに形成したブロック
の機械的安定性も向上させることができた。なお、上記
突起を中間アダプターの貫通孔62の内壁に設けてもよ
い。
Embodiment 2 FIG. In the first embodiment, a fuel cell was manufactured in the same manner as the first embodiment except that the intermediate adapter 60 shown in FIG. 2 was used. FIG. 2 is a schematic diagram showing, for example, a part of an upper surface of a separator plate 39 cut away to show a state where an intermediate adapter 60 is inserted into a through hole 45 of the separator plate used in the second embodiment of the present invention. Reference numeral 63 denotes a projection provided on the outer peripheral portion of the intermediate adapter 60. The intermediate adapter had an outer diameter of 12.5 mm and a gap of 0.25 mm with respect to the through hole 45. However, projections 63 were provided in four directions, and the circumscribed circle including the projections was 13.2 mm, which was slightly larger than through-hole 45. In the first embodiment, when the unit block is formed, if the dimensional accuracy varies, it may be difficult to insert the separator plate or the single cell. However, in the present embodiment, the intermediate adapter 60 and the through hole Since there is a gap between the 45, it is possible to easily insert them. Furthermore, although the gap may be too large, the constituent material at the end may fall off from the unit block.
Because it was pressed against, it could be fixed firmly. That is, assembling was facilitated and the mechanical stability of the formed block could be improved. Note that the protrusion may be provided on the inner wall of the through hole 62 of the intermediate adapter.

【0019】実施の形態3.実施の形態1において、中
間アダプター60を図3に示すものを用いる他は実施の
形態1と同様にして燃料電池を製造した。図3は本実施
の形態で用いた中間アダプター60の側面の断面図であ
り、65、66は、隣接する単位ブロックの中間アダプ
ターと重ねるための重ねしろ部で、重ねしろ部65は直
径11.8mm、重ねしろ部66は直径12mmであ
り、単位ブロックを積層した場合に飛び出した中間アダ
プターを重ねることで、厚みの調節や運転中の伸縮を行
うことが可能となった。
Embodiment 3 A fuel cell was manufactured in the same manner as in the first embodiment except that the intermediate adapter 60 shown in FIG. 3 was used. FIG. 3 is a cross-sectional view of a side surface of the intermediate adapter 60 used in the present embodiment. Numerals 65 and 66 denote overlapping portions for overlapping with the intermediate adapters of the adjacent unit blocks. The overlap portion 66 has a diameter of 8 mm, and the overlap portion 66 has a diameter of 12 mm. It is possible to adjust the thickness and expand and contract during operation by stacking the intermediate adapters that have protruded when the unit blocks are stacked.

【0020】実施の形態4.実施の形態1において、中
間アダプター60を図4に示すものを用いる他は実施の
形態1と同様にして燃料電池を製造した。図4は本実施
の形態で用いた中間アダプター60の側面の説明図であ
り、凸部68および凹部67を端部の重ねしろ部に設け
た。凸部68の外周は、本体と同径であり、積層体の厚
みが変化して中間アダプター間の重なり具合が変化して
も中間アダプターの外接円は常に一定となり、積層体の
伸縮時にセパレータ板または単セルが中間マニホールド
の重なり(接合)部分で位置が狂うことがなくなった。
Embodiment 4 A fuel cell was manufactured in the same manner as in the first embodiment except that the intermediate adapter 60 shown in FIG. 4 was used. FIG. 4 is an explanatory diagram of a side surface of the intermediate adapter 60 used in the present embodiment, in which a convex portion 68 and a concave portion 67 are provided in an overlap portion at an end. The outer circumference of the convex portion 68 has the same diameter as the main body, and the circumcircle of the intermediate adapter is always constant even if the thickness of the laminate changes and the degree of overlap between the intermediate adapters changes. Or, the position of the unit cell at the overlapping (joining) portion of the intermediate manifold is not lost.

【0021】実施の形態5.図5は本発明の第5の実施
の形態における、中間アダプター60をセパレータ板3
9に挿入した状態を示す断面図で、実施の形態1におい
て、図5に示す断面形状の中間アダプター60と図5に
示す断面形状の貫通孔45を有するセパレータ板を用い
る他は実施の形態1と同様にして燃料電池を製造した。
図5は、本発明の中間アダプター60およびセパレータ
板39の貫通孔45が長径15mm、短径12mmの楕
円で、真円でない場合の単位ブロックの上から見た平面
模式図である。
Embodiment 5 FIG. 5 shows a fifth embodiment of the present invention in which the intermediate adapter 60 is connected to the separator plate 3.
9 is a cross-sectional view showing a state of being inserted in FIG. 9, and is different from the first embodiment in that an intermediate adapter 60 having a cross-sectional shape shown in FIG. 5 and a separator plate having a through-hole 45 having a cross-sectional shape shown in FIG. A fuel cell was manufactured in the same manner as described above.
FIG. 5 is a schematic plan view of a unit block when the through hole 45 of the intermediate adapter 60 and the separator plate 39 of the present invention is an ellipse having a major axis of 15 mm and a minor axis of 12 mm and is not a perfect circle.

【0022】実施の形態3、4では、中間アダプターに
より積層体が結束しているので積層体のXY方向の位置
のずれはなかったが、中間アダプターを中心とした回転
によるずれはまれにではあるが生じる可能性があった。
しかし、本実施の形態のように断面形状を楕円にしたた
めに回転を防止することができ、一本の貫通孔だけで完
全な位置合わせとずれ防止ができるようになった。な
お、本実施の形態では断面形状を楕円としたが、方形や
三角形のような真円からずれた形状であれば同様の効果
を期待することが可能である。
In the third and fourth embodiments, since the laminated body is bound by the intermediate adapter, there is no deviation in the position of the laminated body in the X and Y directions, but the deviation due to the rotation about the intermediate adapter is rare. Could occur.
However, since the cross-sectional shape is made elliptical as in the present embodiment, rotation can be prevented, and complete alignment and deviation prevention can be performed with only one through hole. In the present embodiment, the cross-sectional shape is an ellipse. However, similar effects can be expected as long as the shape deviates from a perfect circle such as a square or a triangle.

【0023】[0023]

【発明の効果】本発明の第1の燃料電池の製造方法は、
電解質膜を燃料電極および酸化剤電極で狭持し上記電極
面に第1の貫通孔を有する単セルを得る工程、この単セ
ルと、上記燃料電極に燃料流体を供給する燃料流路と上
記酸化剤電極に酸化剤流体を供給する酸化剤流路を備え
主表面に第2の貫通孔を有するセパレータ板を、上記第
1および第2の貫通孔に、シャフトを挿入する第3の貫
通孔を有する中間アダプターを挿嵌して、順次積層し単
位ブロックを得る工程、並びに上記複数個の単位ブロッ
クの上記中間アダプターの第3の貫通孔にシャフトを挿
嵌し、上記単位ブロックを積層して積層体を得、上記シ
ャフトを軸として上記積層体を締め付ける工程を施す方
法で、組立精度の高い燃料電池が低コスト、高効率で生
産できるとともに、運転中の機械的形状の安定性も向上
するという効果がある。
According to the first method of manufacturing a fuel cell of the present invention,
A step of obtaining a single cell having a first through hole in the electrode surface by sandwiching an electrolyte membrane between a fuel electrode and an oxidant electrode, the single cell, a fuel flow path for supplying a fuel fluid to the fuel electrode, and the oxidation cell; A separator plate having an oxidizing agent flow path for supplying an oxidizing agent fluid to the agent electrode and having a second through hole on the main surface; and a third through hole for inserting a shaft into the first and second through holes. A step of inserting and stacking the intermediate adapters in order to obtain a unit block by sequentially stacking, and inserting a shaft into the third through hole of the intermediate adapter of the plurality of unit blocks, and stacking and stacking the unit blocks A method of obtaining a body and tightening the laminate with the shaft as an axis, thereby producing a fuel cell with high assembling accuracy at low cost and high efficiency, and improving the stability of the mechanical shape during operation. The effect is That.

【0024】本発明の第2の燃料電池の製造方法は、上
記第1の燃料電池の製造方法において、中間アダプター
は円筒であって、第3の貫通孔はシャフトを挿嵌できる
寸法で、外径は第1の貫通孔および第2の貫通孔に挿嵌
できる寸法の方法で、組立精度の高い燃料電池が低コス
ト、高効率で生産できるとともに、運転中の機械的形状
の安定性も向上するという効果がある。
According to a second method for manufacturing a fuel cell of the present invention, in the first method for manufacturing a fuel cell, the intermediate adapter is a cylinder, the third through-hole has a size capable of inserting a shaft, and has an outer shape. The diameter is a method that can be inserted into the first through hole and the second through hole. A fuel cell with high assembly accuracy can be produced at low cost and high efficiency, and the stability of the mechanical shape during operation is improved. There is an effect of doing.

【0025】本発明に係る第3の燃料電池の製造方法
は、上記第2の燃料電池の製造方法において、第1貫通
孔、第2の貫通孔および中間アダプターの横断面形状が
楕円形の方法で、さらに組立精度の高い燃料電池が低コ
スト、高効率で生産できるとともに、運転中の機械的形
状の安定性も向上するという効果がある。
According to a third method of manufacturing a fuel cell according to the present invention, there is provided the method of manufacturing the second fuel cell, wherein the first through hole, the second through hole and the intermediate adapter have an oval cross-sectional shape. Thus, a fuel cell with higher assembling accuracy can be produced at low cost and with high efficiency, and the stability of the mechanical shape during operation is improved.

【0026】本発明の第1の燃料電池は、電解質膜を燃
料電極および酸化剤電極で狭持した単セルと、上記燃料
電極に燃料流体を供給する燃料流路と上記酸化剤電極に
酸化剤流体を供給する酸化剤流路を備えたセパレータ板
を、貫通孔を有する中間アダプターを上記単セルとセパ
レータ板に挿嵌して、順次積層してなる単位ブロックを
複数個積層したもので、運転中の機械的形状の安定性が
向上するという効果がある。
The first fuel cell of the present invention comprises a single cell in which an electrolyte membrane is sandwiched between a fuel electrode and an oxidant electrode, a fuel flow path for supplying a fuel fluid to the fuel electrode, and an oxidant A separator plate provided with an oxidizing agent channel for supplying a fluid, an intermediate adapter having a through hole is inserted into the single cell and the separator plate, and a plurality of unit blocks are sequentially laminated, and the operation is performed. There is an effect that the stability of the inside mechanical shape is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施の形態の燃料電池の製造
方法の工程図である。
FIG. 1 is a process chart of a method for manufacturing a fuel cell according to a first embodiment of the present invention.

【図2】 本発明の第2の実施の形態で用いたセパレー
タ板の貫通孔に、中間アダプターを挿入した状態を示す
ために、セパレータ板の上面の一部を切り欠いて示す模
式図である。
FIG. 2 is a schematic diagram showing a part of an upper surface of a separator plate cut away to show a state in which an intermediate adapter is inserted into a through hole of a separator plate used in a second embodiment of the present invention. .

【図3】 本発明の第3の本実施の形態で用いた中間ア
ダプターの側面の断面図である。
FIG. 3 is a side sectional view of an intermediate adapter used in a third embodiment of the present invention.

【図4】 本発明の第4の本実施の形態で用いた中間ア
ダプターの側面の説明図である。
FIG. 4 is an explanatory side view of an intermediate adapter used in a fourth embodiment of the present invention.

【図5】 本発明の第5の本実施の形態で用いた単位ブ
ロックを上から見た平面模式図である。
FIG. 5 is a schematic plan view of a unit block used in the fifth embodiment of the present invention as viewed from above.

【図6】 従来の燃料電池における単位電池の概念的な
構成を説明するための断面図である。
FIG. 6 is a cross-sectional view for explaining a conceptual configuration of a unit cell in a conventional fuel cell.

【図7】 従来の燃料電池におけるセパレータ板の上面
を示す説明図である。
FIG. 7 is an explanatory view showing an upper surface of a separator plate in a conventional fuel cell.

【符号の説明】[Explanation of symbols]

6 単セル、39、40 セパレータ板、45、62
貫通孔、60 中間アダプター、70 単位ブロック、
71 積層体、72 シャフト。
6 Single cell, 39, 40 Separator plate, 45, 62
Through hole, 60 intermediate adapter, 70 unit block,
71 laminate, 72 shaft.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱野 浩司 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 光田 憲朗 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5H026 AA04 AA05 AA06 CC03 CC08 HH03  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Koji Hamano 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Norio Mitsuda 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation F-term (reference) 5H026 AA04 AA05 AA06 CC03 CC08 HH03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電解質膜を燃料電極および酸化剤電極で
狭持し上記電極面に第1の貫通孔を有する単セルを得る
工程、この単セルと、上記燃料電極に燃料流体を供給す
る燃料流路と上記酸化剤電極に酸化剤流体を供給する酸
化剤流路を備え主表面に第2の貫通孔を有するセパレー
タ板を、上記第1および第2の貫通孔に、シャフトを挿
入する第3の貫通孔を有する中間アダプターを挿嵌し
て、順次積層し単位ブロックを得る工程、並びに上記複
数個の単位ブロックの上記中間アダプターの第3の貫通
孔にシャフトを挿嵌し、上記単位ブロックを積層して積
層体を得、上記シャフトを軸として上記積層体を締め付
ける工程を施す燃料電池の製造方法。
1. A step of obtaining a single cell having a first through hole in the electrode surface by sandwiching an electrolyte membrane between a fuel electrode and an oxidant electrode, and a fuel for supplying a fuel fluid to the single cell and the fuel electrode. A separator plate having an oxidizing agent channel for supplying an oxidizing agent fluid to the channel and the oxidizing agent electrode and having a second through hole in the main surface is inserted into a shaft through the first and second through holes. A step of inserting an intermediate adapter having three through holes and sequentially stacking them to obtain a unit block, and inserting a shaft into a third through hole of the intermediate adapter of the plurality of unit blocks, A fuel cell manufacturing method comprising the steps of: laminating a laminate to obtain a laminate, and tightening the laminate around the shaft.
【請求項2】 中間アダプターは円筒であって、第3の
貫通孔はシャフトを挿嵌できる寸法で、外径は第1の貫
通孔および第2の貫通孔に挿嵌できる寸法であることを
特徴とする請求項1に記載の燃料電池の製造方法。
2. The intermediate adapter is a cylinder, the third through-hole has a size capable of inserting the shaft, and the outer diameter has a size capable of being inserted into the first through-hole and the second through-hole. The method for manufacturing a fuel cell according to claim 1, wherein:
【請求項3】 第1貫通孔、第2の貫通孔および中間ア
ダプターの横断面形状が楕円形であることを特徴とする
請求項2に記載の燃料電池の製造方法。
3. The method according to claim 2, wherein the first through hole, the second through hole, and the intermediate adapter have an elliptical cross-sectional shape.
【請求項4】 電解質膜を燃料電極および酸化剤電極で
狭持した単セルと、上記燃料電極に燃料流体を供給する
燃料流路と上記酸化剤電極に酸化剤流体を供給する酸化
剤流路を備えたセパレータ板を、貫通孔を有する中間ア
ダプターを上記単セルとセパレータ板に挿嵌して、順次
積層してなる単位ブロックを複数個積層した燃料電池。
4. A single cell having an electrolyte membrane sandwiched between a fuel electrode and an oxidant electrode, a fuel flow path for supplying a fuel fluid to the fuel electrode, and an oxidant flow path for supplying an oxidant fluid to the oxidant electrode. A fuel cell in which a plurality of unit blocks are stacked by sequentially inserting a separator plate provided with an intermediate adapter having a through-hole into the single cell and the separator plate, and stacking the unit blocks.
JP23250699A 1999-08-19 1999-08-19 Fuel cell manufacturing method and fuel cell Expired - Fee Related JP4089099B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP23250699A JP4089099B2 (en) 1999-08-19 1999-08-19 Fuel cell manufacturing method and fuel cell
US09/631,989 US6500579B1 (en) 1999-08-19 2000-08-03 Fuel cell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23250699A JP4089099B2 (en) 1999-08-19 1999-08-19 Fuel cell manufacturing method and fuel cell

Publications (2)

Publication Number Publication Date
JP2001057226A true JP2001057226A (en) 2001-02-27
JP4089099B2 JP4089099B2 (en) 2008-05-21

Family

ID=16940406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23250699A Expired - Fee Related JP4089099B2 (en) 1999-08-19 1999-08-19 Fuel cell manufacturing method and fuel cell

Country Status (1)

Country Link
JP (1) JP4089099B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045980A1 (en) * 2003-11-07 2005-05-19 Nissan Motor Co., Ltd. Device and method for manufacturing fuel cell
JP2005276481A (en) * 2004-03-23 2005-10-06 Nissan Motor Co Ltd Manufacturing method of fuel cell and manufacturing device of fuel cell
JP2006185738A (en) * 2004-12-27 2006-07-13 Toyota Motor Corp Manufacturing method of fuel cell
JP2007273097A (en) * 2006-03-30 2007-10-18 Nissan Motor Co Ltd Fuel cell stack structure and manufacturing method therefor
WO2008133256A1 (en) * 2007-04-19 2008-11-06 Toyota Jidosha Kabushiki Kaisha Fastening structure for fuel cell stack
DE112004002237B4 (en) * 2003-11-20 2010-03-11 Nissan Motor Co., Ltd., Yokohama-shi Method and device for producing a fuel cell
US7993798B2 (en) 2003-12-02 2011-08-09 Nissan Motor Co., Ltd Manufacture of fuel cell
KR101093701B1 (en) * 2004-06-07 2011-12-19 삼성에스디아이 주식회사 Stack for fuel cell and fuel cell
JP2013217743A (en) * 2012-04-06 2013-10-24 Gunze Ltd Gas sensor
JP2017157371A (en) * 2016-03-01 2017-09-07 本田技研工業株式会社 Fuel cell stack

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045980A1 (en) * 2003-11-07 2005-05-19 Nissan Motor Co., Ltd. Device and method for manufacturing fuel cell
DE112004002237B4 (en) * 2003-11-20 2010-03-11 Nissan Motor Co., Ltd., Yokohama-shi Method and device for producing a fuel cell
US7981572B2 (en) 2003-11-20 2011-07-19 Nissan Motor Co., Ltd. Fuel cell and production of fuel cell stack
US8247137B2 (en) 2003-11-20 2012-08-21 Nissan Motor Co., Ltd. Fuel cell and production of fuel cell stack
US8771902B2 (en) 2003-12-02 2014-07-08 Nissan Motor Co., Ltd. Manufacture of fuel cell
US8470498B2 (en) 2003-12-02 2013-06-25 Nissan Motor Co., Ltd. Manufacture of fuel cell
US7993798B2 (en) 2003-12-02 2011-08-09 Nissan Motor Co., Ltd Manufacture of fuel cell
JP2005276481A (en) * 2004-03-23 2005-10-06 Nissan Motor Co Ltd Manufacturing method of fuel cell and manufacturing device of fuel cell
JP4604530B2 (en) * 2004-03-23 2011-01-05 日産自動車株式会社 Fuel cell manufacturing method and fuel cell manufacturing apparatus
KR101093701B1 (en) * 2004-06-07 2011-12-19 삼성에스디아이 주식회사 Stack for fuel cell and fuel cell
JP2006185738A (en) * 2004-12-27 2006-07-13 Toyota Motor Corp Manufacturing method of fuel cell
JP4670345B2 (en) * 2004-12-27 2011-04-13 トヨタ自動車株式会社 Manufacturing method of fuel cell
US8377604B2 (en) 2006-03-30 2013-02-19 Nissan Motor Co., Ltd. Fuel cell stack structure with tie rod including inner shaft and outer cylinder fastened together with joining material and manufacturing method
JP2007273097A (en) * 2006-03-30 2007-10-18 Nissan Motor Co Ltd Fuel cell stack structure and manufacturing method therefor
WO2008133256A1 (en) * 2007-04-19 2008-11-06 Toyota Jidosha Kabushiki Kaisha Fastening structure for fuel cell stack
JP2013217743A (en) * 2012-04-06 2013-10-24 Gunze Ltd Gas sensor
JP2017157371A (en) * 2016-03-01 2017-09-07 本田技研工業株式会社 Fuel cell stack

Also Published As

Publication number Publication date
JP4089099B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
US6858338B2 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
US7491460B2 (en) Fuel cell and fuel cell stack
JP3064023B2 (en) Gas separator for fuel cells
US7709132B2 (en) Fuel cell stack
US7544432B2 (en) Fuel cell and fuel cell stack
JP2001057226A (en) Manufacture of fuel cell and fuel cell
US7517602B2 (en) Fuel cell and fuel cell stack
JPH11283637A (en) Fuel cell
US8455149B2 (en) Connecting structure to cell of voltage detecting connector and fuel cell
JP4165876B2 (en) Fuel cell stack
US7442463B2 (en) Fuel cell
US7572538B2 (en) Fuel cell
US7638219B2 (en) Fuel cell without Z-like connection plates and the method producing the same
JP4773055B2 (en) FUEL CELL STACK, SEPARATOR INTERMEDIATE AND SEPARATOR MANUFACTURING METHOD
JP2006120572A (en) Fuel cell
JP2010086695A (en) Fuel battery separator
JP2009164081A (en) Fuel battery and separator sealing structure
US7651809B2 (en) Channel member for providing fuel gas to separators forming a plurality of fuel gas fields on one surface
US7531262B1 (en) High-volume-manufacture fuel cell arrangement and method for production thereof
JP2006156176A (en) Fuel cell
JP2004146145A (en) Solid polyelectrolyte fuel cell
JP4322754B2 (en) Structure for connecting voltage detection connector to cell and fuel cell
JP4494125B2 (en) Structure for connecting voltage detection connector to cell and fuel cell
JP2004303651A (en) Planar laminated layer type fuel battery
JP2006344586A (en) Fuel cell

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees