JP2001056275A - Electromagnetic force type minute material testing machine with microscope - Google Patents

Electromagnetic force type minute material testing machine with microscope

Info

Publication number
JP2001056275A
JP2001056275A JP11231047A JP23104799A JP2001056275A JP 2001056275 A JP2001056275 A JP 2001056275A JP 11231047 A JP11231047 A JP 11231047A JP 23104799 A JP23104799 A JP 23104799A JP 2001056275 A JP2001056275 A JP 2001056275A
Authority
JP
Japan
Prior art keywords
test piece
output shaft
microscope
test
testing machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11231047A
Other languages
Japanese (ja)
Inventor
Hisafumi Kakio
尚史 垣尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP11231047A priority Critical patent/JP2001056275A/en
Publication of JP2001056275A publication Critical patent/JP2001056275A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic force type minute material testing machine capable of observing accurately behavior of a test piece surface during a bending test, such as continuous and accurate measurement of a crack generated on the test piece surface during the test at the time of the bending test. SOLUTION: An electromotive type actuator 3 is arranged so that an output shaft 3a thereof is faced upward, and an objective lens 9c of a microscope 9 is arranged just above the output shaft 3a oppositely thereto. And, this testing machine is so composed that mounting of a test piece W on the testing machine is executed by forming an opening on the upper side toward the objective lens 9c and by being inserted on both sides of the opening part 55 between a fixing jig 5 abutting on the upper surface of the test piece W and a moving jig 6 mounted on the output shaft 3a and abutting on the under surface of the test piece W, and that the electromotive type actuator 3 is driven in that state to give a bending load. Observation of the upper surface of the test piece W by the microscope 9 is enabled through the opening part 55 during the bending test.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、動電型のアクチュ
エータによって試験片に負荷を与える電磁力式微小材料
試験機に関し、更に詳しくは、負荷中の試験片を顕微鏡
により観察する機能を有する顕微鏡付電磁力式微小材料
試験機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic force type micro-material testing machine for applying a load to a test piece by an electrodynamic actuator, and more particularly, to a microscope having a function of observing a test piece under load with a microscope. The present invention relates to an electromagnetic force type micro material testing machine.

【0002】[0002]

【従来の技術】従来、試験片に負荷を与えるための駆動
力として電磁力を用いた、いわゆる電磁力式微小材料試
験機が知られている。この種の材料試験機においては、
一般に、永久磁石が作る静磁場中にコイルを配置し、そ
のコイルに電流を流すことによって電磁力を発生する動
電型アクチュエータを、試験片に対する負荷用のアクチ
ュエータとして用いる。
2. Description of the Related Art Heretofore, there has been known a so-called electromagnetic force type micromaterial testing machine using an electromagnetic force as a driving force for applying a load to a test piece. In this type of material testing machine,
In general, an electrodynamic type actuator that generates an electromagnetic force by arranging a coil in a static magnetic field generated by a permanent magnet and passing a current through the coil is used as a load actuator for a test piece.

【0003】また、このような電磁力式微小材料試験機
においては、通常、動電型アクチュエータはその出力軸
を鉛直軸に沿うように配置され、適宜の治具を装着して
出力軸を移動させることによって、試験片に対して圧縮
や引張、あるいは曲げ等の負荷を選択的に付与できるよ
うになっている。更に、この種の材料試験機において
は、試験により試験片に生じた亀裂等を観察するための
顕微鏡を備えたものも知られている。
[0003] In such an electromagnetic force type micro material testing machine, an electrodynamic actuator is usually arranged so that its output shaft is along a vertical axis, and the output shaft is moved by attaching an appropriate jig. By doing so, a load such as compression, tension, or bending can be selectively applied to the test piece. Further, there is known a material testing machine of this type which includes a microscope for observing a crack or the like generated in a test piece by a test.

【0004】[0004]

【発明が解決しようとする課題】ところで、材料の曲げ
試験を行う場合、一般に、図4に4点曲げ試験の場合を
例にとって示すように、それぞれ互いに平行な2本のバ
ー材41a,41bまたは42a,42bを有する上下
一対の治具41,42を用い、その各治具41,42の
間に試験片Wを配置して、各バー材41a,41bおよ
び42a,42bを試験片Wの表裏両面に当接させ、治
具41,42のうちの一方を固定し、他方を負荷機構に
接続して駆動することにより、試験片Wに曲げ荷重を加
える。
By the way, when a bending test is performed on a material, generally, as shown in FIG. 4 as an example of a four-point bending test, two bar materials 41a, 41b or 41b parallel to each other are used. Using a pair of upper and lower jigs 41, 42 having 42a, 42b, a test piece W is disposed between the jigs 41, 42, and the bar members 41a, 41b and 42a, 42b are connected to the front and back of the test piece W. A bending load is applied to the test piece W by bringing the jigs 41 and 42 into contact with both sides, fixing one of the jigs 41 and 42, and driving the other by connecting to a load mechanism.

【0005】このような曲げ試験における治具構成は、
電磁力式微小材料試験機においても採用されるのである
が、この治具構成を用いた曲げ試験において、試験片W
に生じる亀裂を観察する場合、治具41,42のいずれ
を移動させたとしても、試験片Wの亀裂発生箇所は、引
張応力が作用する面、つまり治具42への当接面で、か
つ、バー材42a,42bの間であるため、試験中にお
ける亀裂の顕微鏡による観察は、従来、試験片Wの亀裂
発生面に対して斜め方向から行わざるを得ず、正確な亀
裂長さの測定ができないという問題があった。また、試
験の途中または試験終了後に試験片Wを試験機から取り
外して亀裂を顕微鏡観察する方法も採用されているが、
この場合、亀裂の進展の連続測定ができないという問題
がある。
[0005] The jig configuration in such a bending test is as follows.
Although it is also used in an electromagnetic force type micro material testing machine, in a bending test using this jig configuration, a test piece W
When observing the crack that occurs in any one of the jigs 41 and 42, the crack generation part of the test piece W is the surface on which the tensile stress acts, that is, the contact surface with the jig 42, and Since the distance between the bar materials 42a and 42b, the observation of the crack during the test by a microscope must be performed obliquely with respect to the crack initiation surface of the test piece W, and the accurate measurement of the crack length is performed. There was a problem that can not be. Also, a method of removing the test piece W from the test machine during or after the test and observing a crack under a microscope has been adopted.
In this case, there is a problem that the continuous measurement of the crack growth cannot be performed.

【0006】本発明はこのような実情に鑑みてなされた
もので、曲げ試験を行う際にも、その試験中に試験片表
面に生じる亀裂を連続的に正確に測定する等、曲げ試験
中における試験片表面の挙動を正確に観察することので
きる電磁力式微小材料試験機の提供を目的としている。
The present invention has been made in view of such circumstances, and even when performing a bending test, a crack generated on the surface of the test piece during the test is continuously and accurately measured. It is an object of the present invention to provide an electromagnetic force type micromaterial testing machine capable of accurately observing the behavior of a test piece surface.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の顕微鏡付電磁力式微小材料試験機は、試験
片に負荷を与える動電型アクチュエータと、その動電型
アクチュエータの駆動により試験片に作用する荷重また
は変位を検出する検出手段と、その検出手段による検出
結果が設定された目標値に一致するよう上記動電型アク
チュエータをフィードバック制御する制御機構を備えた
電磁力式微小材料試験機において、動電型アクチュエー
タがその出力軸を上方に向けて配置され、かつ、その出
力軸に対向してその直上に顕微鏡の対物レンズが配置さ
れているとともに、試験片は上記出力軸と対物レンズの
間に配置され、上方が対物レンズに向けて開口し、か
つ、その開口部の両側で試験片の上面に当接する固定治
具と、動電型アクチュエータに取り付けられて試験片の
下面に当接する移動治具の間に挟まれた状態で、当該動
電型アクチュエータの駆動により曲げ負荷が与えられる
よう構成されていることによって特徴づけられる。
In order to achieve the above object, an electromagnetic force type micro-material testing machine with a microscope according to the present invention comprises: an electrodynamic actuator for applying a load to a test piece; Detecting means for detecting the load or displacement acting on the test piece by means of the electromagnetic force type microcontroller comprising a control mechanism for feedback-controlling the electro-dynamic actuator so that the detection result by the detecting means matches the set target value. In a material testing machine, an electrokinetic actuator is disposed with its output shaft facing upward, and an objective lens of a microscope is disposed immediately above and opposed to the output shaft. A fixing jig disposed between the test piece and the objective lens, the upper end of which is open toward the objective lens, and which is in contact with the upper surface of the test piece on both sides of the opening; While being sandwiched between the moving jig abuts the lower surface of the mounted test piece in eta, characterized by bending by the drive of the electrodynamic actuator load is configured to be provided.

【0008】本発明は、動電型アクチュエータの出力軸
を上方に向けて配置するとともに、その出力軸の直上に
顕微鏡の対物レンズを対向配置し、その顕微鏡によって
試験中の試験片の亀裂発生面を法線方向から観察するこ
とを可能とし、所期の目的を達成しようとするものであ
る。
According to the present invention, an output shaft of an electrodynamic type actuator is arranged to face upward, an objective lens of a microscope is arranged directly above the output shaft, and a crack generating surface of a test piece under test by the microscope. Is to be observed from the normal direction to achieve the intended purpose.

【0009】すなわち、本発明においては、動電型アク
チュエータの出力軸を上方に向けて配置し、その出力軸
の直上に顕微鏡の対物レンズを対向配置する。曲げ試験
に供すべき試験片は、この出力軸と対物レンズの間に配
置されて、出力軸に装着された移動治具とその上方の固
定軸に挟まれた状態で動電型アクチュエータの駆動によ
って曲げ負荷が与えられる。そして、試験片の上面側に
当接する固定治具には、対物レンズに向けて開口する開
口部を設け、その開口部の両側で試験片の上面に当接さ
せる。これにより、動電型アクチュエータの駆動により
試験片に曲げ負荷を与えながら、試験片の表面(上面)
をその法線方向から顕微鏡により観察することが可能と
なる。
That is, in the present invention, the output shaft of the electrodynamic actuator is arranged upward, and the objective lens of the microscope is arranged directly above the output shaft. The test piece to be subjected to the bending test is placed between this output shaft and the objective lens, and is driven by the electrodynamic actuator while being sandwiched between the moving jig mounted on the output shaft and the fixed shaft above it. A bending load is applied. The fixing jig that contacts the upper surface side of the test piece is provided with an opening that opens toward the objective lens, and is brought into contact with the upper surface of the test piece on both sides of the opening. Thus, while applying a bending load to the test piece by driving the electrokinetic actuator, the surface (upper surface) of the test piece
Can be observed with a microscope from the normal direction.

【0010】[0010]

【発明の実施の形態】以下、図面を参照しつつ本発明の
好適な実施の形態について説明する。図1は本発明の実
施の形態の正面図であり、図2はその部分断面右側面図
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a front view of an embodiment of the present invention, and FIG. 2 is a right side view of a partial section thereof.

【0011】本体フレーム1の上面にX−Yステージ2
が設けられおり、そのX−Yステージ2の上には、動電
型アクチュエータ3と、試験片保持フレーム4が搭載さ
れている。動電型アクチュエータ3は、永久磁石が作る
静磁場中に上下方向に可動のコイルを設けた公知の電磁
力発生機構を有し、コイルに電流を流すことによってそ
のコイルに対して上下方向への電磁力が作用して、その
コイルに一体化された出力軸3aが上下方向に移動する
ようになっている。この動電型アクチュエータ3は、後
述するロードセル7の出力があらかじめ設定された目標
値に一致するように、本体フレーム1内に設けられた制
御回路によってフィードバック制御される。
An XY stage 2 is provided on the upper surface of the main body frame 1.
The electrodynamic actuator 3 and the test piece holding frame 4 are mounted on the XY stage 2. The electrokinetic actuator 3 has a known electromagnetic force generating mechanism in which a vertically movable coil is provided in a static magnetic field generated by a permanent magnet. The output shaft 3a integrated with the coil moves in the vertical direction by the action of the electromagnetic force. The electrodynamic actuator 3 is feedback-controlled by a control circuit provided in the main body frame 1 so that an output of a load cell 7 described later matches a preset target value.

【0012】試験片保持フレーム4は、水平のテーブル
板4aを複数本の脚4bによってX−Yステージ2上に
支持した構造を有し、動電型アクチュエータ3の出力軸
3aはテーブル板4aを貫通し、その上面に設けられた
リニアガイド軸受4cによって鉛直軸に沿ってガイドさ
れる。また、テーブル板4aの上面には、後述する4点
曲げ用の固定治具5が固定されているとともに、動電型
アクチュエータ3の出力軸3aの上端部には、ロードセ
ル7を介して同じく後述する4点曲げ用の移動治具6が
取り付けられており、試験に供される試験片Wはこられ
の固定治具5と移動治具6の間に挟まれた状態で、動電
型アクチュエータ3の駆動によって曲げ負荷が加えられ
る。
The test piece holding frame 4 has a structure in which a horizontal table plate 4a is supported on the XY stage 2 by a plurality of legs 4b, and the output shaft 3a of the electrodynamic actuator 3 is connected to the table plate 4a. It penetrates and is guided along a vertical axis by a linear guide bearing 4c provided on the upper surface thereof. A fixing jig 5 for four-point bending, which will be described later, is fixed on the upper surface of the table plate 4a, and the upper end of the output shaft 3a of the electrodynamic actuator 3 is also provided with a load cell 7 via a load cell 7. A moving jig 6 for four-point bending is attached, and a test piece W to be subjected to a test is sandwiched between the fixing jig 5 and the moving jig 6. The driving of 3 applies a bending load.

【0013】本体フレーム1には、また、その一側縁か
ら上方に立ち上がるコラム8が設けられており、そのコ
ラム8にはレーザ顕微鏡9の本体部9aが鉛直方向に移
動自在に支持されている。レーザ顕微鏡9は、接眼レン
ズ9bと対物レンズ9cを備えた本体部9aと、照明光
源としてのレーザ光源9d等を主体とする公知のもので
あって、レーザ光源9dからのレーザ光は光ファイバ9
eを介して対物レンズ9cの近傍にまで導かれる。そし
て、このレーザ顕微鏡9の本体部9aは、その対物レン
ズ9cが鉛直下方を向いた状態で、動電型アクチュエー
タ3の出力軸3aにその直上で対向するように配置され
ている。なお、レーザ顕微鏡9の視野は、X−Yステー
ジ2を操作して動電型アクチュエータ3および試験片W
を水平面上で移動させることによって、適宜に調整する
ことができる。
The main body frame 1 is provided with a column 8 which rises upward from one side edge thereof, and a main body 9a of a laser microscope 9 is supported on the column 8 so as to be movable in a vertical direction. . The laser microscope 9 is a publicly known one mainly including a main body 9a having an eyepiece 9b and an objective lens 9c, and a laser light source 9d as an illumination light source.
The light is guided to the vicinity of the objective lens 9c via e. The main body 9a of the laser microscope 9 is disposed so as to oppose the output shaft 3a of the electrodynamic actuator 3 immediately above the object lens 9c with the objective lens 9c facing vertically downward. The visual field of the laser microscope 9 is controlled by operating the XY stage 2 and the electrodynamic actuator 3 and the test piece W.
Can be adjusted as appropriate by moving on a horizontal plane.

【0014】図3は前記した4点曲げ用の固定治具5お
よび移動治具6の説明図であり、図3(A)はこれらの
治具の近傍の拡大正面図で、同図(B)はその平面図で
あり、いずれも試験片Wを透視した状態で示している。
FIG. 3 is an explanatory view of the fixing jig 5 and the moving jig 6 for the above-described four-point bending. FIG. 3A is an enlarged front view showing the vicinity of these jigs, and FIG. () Is a plan view of each of them, and shows the test piece W in a see-through state.

【0015】4点曲げ用の固定治具5は、試験片保持フ
レーム4のテーブル板4aの上面に互いに対向するよう
に固定された左側治具5aおよび右側治具5bからな
り、これらの各治具5a,5bは動電型アクチュエータ
3の出力軸3aの軸心に対して左右対称に取り付けら
れ、テーブル板4aにボルト等によって固定するための
水平の取付け部51a,51bと、その取付け部51
a,51bから鉛直に立ち上がる鉛直部52a,52b
と、その鉛直部52a,52bの上端において互いに接
近する向きに水平に伸びる水平部53a,53bと、そ
の水平部53a,53bの下面にそれぞれ取り付けられ
たバー材54a,54bからなり、各バー材54a,5
4bは互いに平行に取り付けられている。この固定治具
5には、従って、左側治具5aと右側治具5bの間に、
動電型アクチュエータ3の出力軸3aの軸心を中心とし
て、レーザ顕微鏡9の対物レンズ9cに向けて開口する
開口部55が形成されていることになる。
The fixing jig 5 for four-point bending includes a left jig 5a and a right jig 5b fixed to the upper surface of the table plate 4a of the test piece holding frame 4 so as to face each other. The fixtures 5a and 5b are mounted symmetrically with respect to the axis of the output shaft 3a of the electrodynamic actuator 3, and have horizontal mounting portions 51a and 51b for fixing to the table plate 4a with bolts and the like, and the mounting portions 51a and 51b.
Vertical parts 52a, 52b rising vertically from a, 51b
And horizontal parts 53a, 53b extending horizontally in directions approaching each other at the upper ends of the vertical parts 52a, 52b, and bar members 54a, 54b attached to the lower surfaces of the horizontal parts 53a, 53b, respectively. 54a, 5
4b are attached parallel to each other. Therefore, the fixing jig 5 is provided between the left jig 5a and the right jig 5b.
An opening 55 that opens toward the objective lens 9c of the laser microscope 9 is formed around the axis of the output shaft 3a of the electrokinetic actuator 3.

【0016】一方、4点曲げ用の移動治具6は、動電型
アクチュエータ3の出力軸3aの先端面にロードセル7
を介して取り付けられる平板部材60と、その平板部材
60の上面に取り付けられた2本のバー材6a,6bか
らなり、これらのバー材6a,6bは、動電型アクチュ
エータ3の出力軸3aの軸心に対して左右対称の位置に
設けられ、また、それぞれ固定治具5のバー材54a,
54bと平行であり、かつ、固定治具5のバー材54
a,54bに対して左右方向内側となる位置に設けられ
ている。
On the other hand, the moving jig 6 for four-point bending is provided with a load cell 7 on the tip end surface of the output shaft 3a of the electrodynamic actuator 3.
And a bar member 6a, 6b attached to the upper surface of the plate member 60. These bar members 6a, 6b are connected to the output shaft 3a of the electrodynamic actuator 3. The bar members 54a and 54a of the fixing jig 5 are provided at symmetrical positions with respect to the axis.
The bar member 54 of the fixing jig 5 is parallel to 54b.
a, 54b are provided at positions on the inner side in the left-right direction.

【0017】試験片Wは、その上面がバー材54a,5
4bに接し、かつ、下面がバー材6a,6bに接するよ
うに固定治具5と移動治具6の間に挟み込まれた状態
で、試験機に取り付けられる。この状態で動電型アクチ
ュエータ3を駆動して、ロードセル7の出力が目標値に
一致するようにその出力軸3aを上方に移動させること
によって、試験片Wに所定の曲げ負荷が加えられる。
The upper surface of the test piece W has the bar members 54a, 5a.
4b and is attached to the tester in a state where it is sandwiched between the fixing jig 5 and the moving jig 6 so that the lower surface contacts the bar members 6a and 6b. In this state, a predetermined bending load is applied to the test piece W by driving the electrodynamic actuator 3 and moving the output shaft 3a upward so that the output of the load cell 7 matches the target value.

【0018】以上の実施の形態においては、水平に配置
された試験片Wの上面が固定治具5の開口部55を介し
てレーザ顕微鏡9の鉛直下方を向く対物レンズ9cに対
して臨んだ状態で、試験片Wに曲げ負荷を与えることが
でき、また、試験片Wの曲げによる引張応力はその上面
に作用するため、曲げ試験の開始当初から終了に至るま
での間、試験片Wの亀裂発生面をその法線方向から一貫
してレーザ顕微鏡9によって観察することができ、曲げ
試験の進行に伴う亀裂の発生やその長さを連続的に、か
つ、正確に測定することが可能である。
In the above embodiment, a state in which the upper surface of the horizontally arranged test piece W faces the objective lens 9c which faces vertically downward of the laser microscope 9 via the opening 55 of the fixing jig 5 is shown. Thus, a bending load can be applied to the test piece W, and the tensile stress due to the bending of the test piece W acts on the upper surface thereof. The generation surface can be observed consistently from the normal direction by the laser microscope 9, and the generation of the crack and the length thereof along with the progress of the bending test can be continuously and accurately measured. .

【0019】なお、以上の実施の形態では、固定治具5
を左側治具5aと右側治具5bに分割した例を示した
が、本発明における固定治具5は、一体構造としてバー
材54a,54bの間に窓を形成してもよく、要はその
上端のバー材54a,54bの間に、試験片Wの上面を
対物レンズ9cに対して臨ませるための開口部55が形
成されていれば、固定治具5の構造は任意である。
In the above embodiment, the fixing jig 5
Is divided into a left jig 5a and a right jig 5b, but the fixing jig 5 in the present invention may have a window formed between the bar members 54a and 54b as an integral structure. The structure of the fixing jig 5 is arbitrary as long as an opening 55 for allowing the upper surface of the test piece W to face the objective lens 9c is formed between the bar members 54a and 54b at the upper end.

【0020】また、以上の実施の形態では4点曲げ試験
について述べたが、動電型アクチュエータ3の出力軸3
aの先端部に取り付けられる移動治具6に1つのバー材
を設けることによって、試験片Wの表面を観察しつつ3
点曲げ試験を行うことができることは勿論である。
Although the four-point bending test has been described in the above embodiment, the output shaft 3 of the electrodynamic actuator 3 has been described.
By providing one bar material on the moving jig 6 attached to the distal end of the test piece W, while observing the surface of the test piece W, 3
Of course, a point bending test can be performed.

【0021】更に、以上の実施の形態では、ロードセル
7による荷重検出結果が目標値に一致するように動電型
アクチュエータ3をフィードバック制御する例を述べた
が、動電型アクチュエータ3の出力軸3aのストローク
を検出する変位検出器を設け、その変位検出結果が目標
値と一致するように動電型アクチュエータ3をフィード
バック制御してもよく、更にまた、レーザ顕微鏡9を通
常の光学顕微鏡に代えてもよいことは言うまでもない。
Further, in the above embodiment, an example has been described in which the electrodynamic actuator 3 is feedback-controlled so that the load detection result by the load cell 7 coincides with the target value. However, the output shaft 3a of the electrodynamic actuator 3 has been described. May be provided, and the electrokinetic actuator 3 may be feedback-controlled so that the displacement detection result matches the target value. Further, the laser microscope 9 is replaced with a normal optical microscope. Needless to say, it is good.

【0022】[0022]

【発明の効果】以上のように、本発明によれば、試験片
に負荷を与える動電型アクチュエータの鉛直の出力軸の
直上に、顕微鏡の対物レンズを鉛直下方を向けて配置す
るとともに、試験片は、これらの出力軸と対物レンズの
間に配置して、上面が対物レンズに向けて開口し、か
つ、その両側で試験片上面に接する固定治具と、動電型
アクチュエータの出力軸に取り付けられて試験片下面に
接する移動治具との間に挟み込まれた状態で曲げ負荷を
与えるから、曲げ試験中の試験片表面を顕微鏡によって
連続的に観察することができ、試験中に斜め方向から顕
微鏡で試験片表面を観察する従来のこの種の試験機に比
して、亀裂長さ等の測定をより正確なものとすることが
できるとともに、試験の途中または終了後に顕微鏡で試
験片表面を観察する場合のように試験途中で試験機を停
止することなく、例えば繰り返し曲げ負荷を与えつつ、
その試験中における試験片表面の亀裂の進展等を連続的
に、かつ、正確に観察することが可能となり、試験効率
を大幅に向上させることができる。
As described above, according to the present invention, the objective lens of the microscope is arranged vertically above the vertical output shaft of the electrodynamic actuator for applying a load to the test piece, and the test is performed. The specimen is placed between these output shafts and the objective lens, and the upper surface is open to the objective lens, and the fixture that contacts the specimen upper surface on both sides, and the output shaft of the electrodynamic actuator Since a bending load is applied while being sandwiched between the attached jig and the moving jig in contact with the lower surface of the test piece, the surface of the test piece during the bending test can be continuously observed with a microscope, and the oblique direction can be observed during the test. Compared to conventional test machines of this type, which observe the specimen surface with a microscope, the measurement of crack length etc. can be made more accurate, and the specimen surface can be measured with a microscope during or after the test. Observe Without stopping the tester halfway tested as case, while providing for example repeated bending loads,
During the test, it is possible to continuously and accurately observe the progress of cracks on the surface of the test piece, and the test efficiency can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の正面図である。FIG. 1 is a front view of an embodiment of the present invention.

【図2】図1の部分断面右側面図である。FIG. 2 is a right side view, partially in section, of FIG. 1;

【図3】本発明の実施の形態に用いられる固定治具5お
よび移動治具6の詳細説明図であり、(A)は図1にお
ける固定治具5および移動治具6の近傍の拡大図で、
(B)はその平面図である。
FIG. 3 is a detailed explanatory view of a fixing jig 5 and a moving jig 6 used in the embodiment of the present invention, and FIG. so,
(B) is a plan view thereof.

【図4】4点曲げ試験を行う際に一般的に用いられてい
る治具構成の例を示す斜視図である。
FIG. 4 is a perspective view showing an example of a jig configuration generally used when performing a four-point bending test.

【符号の説明】[Explanation of symbols]

1 本体フレーム 2 X−Yステージ 3 動電型アクチュエータ 3a 出力軸 4 試験片保持フレーム 4a テーブル面 5 固定治具 5a 左側治具 5b 右側治具 51a,51b 取付け部 52a,52b 鉛直部 53a,53b 水平部 54a,54b バー材 55 開口部 6 移動治具 6a,6b バー材 60 平板部材 7 ロードセル 8 コラム 9 レーザ顕微鏡 9a 本体部 9b 接眼レンズ 9c 対物レンズ W 試験片 DESCRIPTION OF SYMBOLS 1 Main body frame 2 XY stage 3 Electrodynamic actuator 3a Output shaft 4 Test piece holding frame 4a Table surface 5 Fixing jig 5a Left jig 5b Right jig 51a, 51b Mounting parts 52a, 52b Vertical parts 53a, 53b Horizontal Parts 54a, 54b Bar material 55 Opening 6 Moving jig 6a, 6b Bar material 60 Plate member 7 Load cell 8 Column 9 Laser microscope 9a Main body 9b Eyepiece 9c Objective lens W Test piece

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試験片に負荷を与える動電型アクチュエ
ータと、その動電型アクチュエータの駆動により試験片
に作用する荷重または変位を検出する検出手段と、その
検出手段による検出結果が設定された目標値に一致する
よう上記動電型アクチュエータをフィードバック制御す
る制御機構を備えた電磁力式微小材料試験機において、 上記動電型アクチュエータがその出力軸を上方に向けて
配置され、かつ、その出力軸に対向してその直上に顕微
鏡の対物レンズが配置されているとともに、試験片は上
記出力軸と上記対物レンズの間に配置され、上方が上記
対物レンズに向けて開口し、かつ、その開口部の両側で
試験片の上面に当接する固定治具と、上記動電型アクチ
ュエータの出力軸に取り付けられて試験片の下面に当接
する移動治具の間に挟まれた状態で、当該動電型アクチ
ュエータの駆動により曲げ負荷が与えられるよう構成さ
れていることを特徴とする顕微鏡付電磁力式微小材料試
験機。
An electrokinetic actuator for applying a load to a test piece, detection means for detecting a load or displacement acting on the test piece by driving the electrokinetic actuator, and a detection result by the detection means are set. An electromagnetic force type micro-material testing machine comprising a control mechanism for feedback-controlling the electro-dynamic actuator to match a target value, wherein the electro-dynamic actuator is disposed with its output shaft facing upward, and its output An objective lens of the microscope is disposed immediately above the object so as to face the axis, and a test piece is disposed between the output shaft and the objective lens. Between the fixing jig that contacts the upper surface of the test piece on both sides of the part and the moving jig that is attached to the output shaft of the electrodynamic actuator and contacts the lower surface of the test piece In sandwiched state, the electromagnetic force Minute testing machine with a microscope, characterized in that the bending by the drive of the electrodynamic actuator load is configured to be provided.
JP11231047A 1999-08-18 1999-08-18 Electromagnetic force type minute material testing machine with microscope Pending JP2001056275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11231047A JP2001056275A (en) 1999-08-18 1999-08-18 Electromagnetic force type minute material testing machine with microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11231047A JP2001056275A (en) 1999-08-18 1999-08-18 Electromagnetic force type minute material testing machine with microscope

Publications (1)

Publication Number Publication Date
JP2001056275A true JP2001056275A (en) 2001-02-27

Family

ID=16917460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11231047A Pending JP2001056275A (en) 1999-08-18 1999-08-18 Electromagnetic force type minute material testing machine with microscope

Country Status (1)

Country Link
JP (1) JP2001056275A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164524A (en) * 2009-01-19 2010-07-29 Shimadzu Corp Material testing machine
KR101292006B1 (en) * 2011-12-21 2013-08-01 한국항공우주연구원 Desktop Type Bending Test Machine Equipped with Microscope
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
EP3121585A1 (en) * 2015-07-21 2017-01-25 Goodrich Corporation Methods of determining strain limits and designing devices based on strain limits
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
CN113203628A (en) * 2021-05-24 2021-08-03 上海航空材料结构检测股份有限公司 Fracture toughness test buckling-restrained device and test method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
JP2010164524A (en) * 2009-01-19 2010-07-29 Shimadzu Corp Material testing machine
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
KR101292006B1 (en) * 2011-12-21 2013-08-01 한국항공우주연구원 Desktop Type Bending Test Machine Equipped with Microscope
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US11112501B2 (en) 2012-10-05 2021-09-07 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US11815600B2 (en) 2012-10-05 2023-11-14 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10739458B2 (en) 2012-10-05 2020-08-11 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US11035955B2 (en) 2012-10-05 2021-06-15 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
EP3121585A1 (en) * 2015-07-21 2017-01-25 Goodrich Corporation Methods of determining strain limits and designing devices based on strain limits
EP4242625A3 (en) * 2015-07-21 2023-10-25 Goodrich Corporation Method of determining strain limits
US10060840B2 (en) 2015-07-21 2018-08-28 Goodrich Corporation Methods of determining strain limits and designing devices based on strain limits
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
CN113203628A (en) * 2021-05-24 2021-08-03 上海航空材料结构检测股份有限公司 Fracture toughness test buckling-restrained device and test method
CN113203628B (en) * 2021-05-24 2022-02-22 上海航空材料结构检测股份有限公司 Fracture toughness test buckling-restrained device and test method

Similar Documents

Publication Publication Date Title
JP2001056275A (en) Electromagnetic force type minute material testing machine with microscope
WO2009130953A1 (en) Electrodynamic vibration test equipment
CN109632458A (en) Binding test device and method
KR101773086B1 (en) Ultrasonic testing apparatus
JP2014109574A (en) Electrodynamic modal test impactor system and method
JP2008281390A (en) Manufacturing method of bending test tool, bending test tool and bending test device
US20080011097A1 (en) Tensile test method
JP2002107278A (en) Material testing device
KR102549814B1 (en) Apparatus for bending test of panel-shaped or beam-shaped samples
JPH11108816A (en) Tension testing device for resin
KR100727107B1 (en) Specimen grip structure for pure shear
KR100940700B1 (en) Grip Device for Testing Tension of Welded Materials
JP2008111739A (en) Tool for thickness-wise shear test on sheet-like material and thickness-wise shear test machine
KR101723445B1 (en) An apparatus for testing of laminated material
US20050109177A1 (en) Rotary large diameter fiber cleaver
JP2013160674A (en) Material testing machine
JPH11258131A (en) Minute material-testing apparatus
KR20190040616A (en) Apparatus for Indentation Impact Test
JP2001133520A (en) Board holding mechanism, and device for inspecting circuit board
KR20110044635A (en) Biaxial loading test apparatus
KR20150117432A (en) Integration test equipment and that's test method
KR100953521B1 (en) Testing apparatus of load and testing method using the same
JP2005180971A (en) Testpiece grasping device for material testing machine
KR20120032989A (en) Tensile specimen tester of a fixing bar
KR100613726B1 (en) specimen setting system for tensile tester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507