JP2001056060A - Two way valve for regulating coolant flow rate in heating and cooling device - Google Patents

Two way valve for regulating coolant flow rate in heating and cooling device

Info

Publication number
JP2001056060A
JP2001056060A JP11228916A JP22891699A JP2001056060A JP 2001056060 A JP2001056060 A JP 2001056060A JP 11228916 A JP11228916 A JP 11228916A JP 22891699 A JP22891699 A JP 22891699A JP 2001056060 A JP2001056060 A JP 2001056060A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
pipe
flow rate
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11228916A
Other languages
Japanese (ja)
Inventor
Isamu Toyama
勇 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji International Corp
Original Assignee
Fuji International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji International Corp filed Critical Fuji International Corp
Priority to JP11228916A priority Critical patent/JP2001056060A/en
Publication of JP2001056060A publication Critical patent/JP2001056060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a two way valve for regulating coolant flow rate in a heating and cooling device capable of properly performing a flow control, making coolant flow as a straight flow by a pipe to pipe, improving a problem of lowering of heating and cooling efficiency in the two way valve, simplifying a structure of a two way main body part and reducing cost. SOLUTION: Opening surfaces of a coolant input pipe 11 and a coolant output pipe 12 are opposed each other, a rotating valve element 14 rotating with a fan-shaped rotation angle is interposed between the opposed opening surfaces, fan-shaped rotation is performed for the rotating valve element 14 in a direction orthogonally crossed with an axis passing the opening surfaces of both of the pipes 11, 12 and both of the pipes 11, 12 are arranged so as to switch either one of communication and interruption or either one of large area communication and small area communication.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は暖房時における室内
熱交換器の入口側又は出口側と室外熱交換器の入口側又
は出口側(冷房時における室内熱交換器の出口側又は入
口側と室外熱交換器の出口側又は入口側)、或いは冷房
時における室内熱交換器の中間部に配置される冷暖房装
置における冷媒流量調整用二方弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inlet / outlet side of an indoor heat exchanger during heating and an inlet / outlet side of an outdoor heat exchanger (external or outdoor side of an indoor heat exchanger during cooling). The present invention relates to a two-way valve for adjusting the flow rate of refrigerant in a cooling / heating device arranged at the middle of an indoor heat exchanger during cooling.

【0002】[0002]

【従来の技術】特開昭55−121363号公報は、こ
の種冷暖房装置における冷媒流量調整用二方弁の代表例
を示しており、この二方弁は電磁ソレノイドのケーシン
グに対し冷媒入力パイプと冷媒出力パイプとを直角方向
に配し、ケーシング内の電磁ソレノイドのプランジャー
を進退させて進退方向に配置した一方のパイプに通ずる
弁孔を遮断又は連通させ、冷媒の入出力を制御してい
る。
2. Description of the Related Art Japanese Patent Laying-Open No. 55-121363 shows a typical example of a two-way valve for adjusting the flow rate of a refrigerant in a cooling and heating apparatus of this type. This two-way valve is connected to a casing of an electromagnetic solenoid by a refrigerant input pipe. A refrigerant output pipe is disposed at right angles to the plunger of the electromagnetic solenoid in the casing to advance and retreat, and a valve hole communicating with one of the pipes arranged in the advance and retreat direction is blocked or communicated to control the input and output of the refrigerant. .

【0003】例えば冷房時には、ケーシングの側壁に配
した冷媒入力パイプからケーシング内へ冷媒を導入し、
該ケーシング内の冷媒をケーシング底壁に配した冷媒出
力パイプへ流出させ、この流出と遮断を上記プランジャ
ーによって図るようにしている。上記冷媒の直角変向は
電磁ソレノイドを用いることによる不可避的な構造であ
る。
[0003] For example, during cooling, refrigerant is introduced into the casing from a refrigerant input pipe arranged on the side wall of the casing,
The refrigerant in the casing is caused to flow out to a refrigerant output pipe arranged on the bottom wall of the casing, and the outflow and the interruption are controlled by the plunger. The right angle deflection of the refrigerant is an unavoidable structure by using an electromagnetic solenoid.

【0004】[0004]

【発明が解決しようとする課題】然しながら上記従来の
冷暖房装置における冷媒流量調整用二方弁においては、
冷媒流が直角変向されることによる圧力損失のため、効
率低下を招く問題を有し、加えて冷媒を一方のパイプか
ら一旦ケーシング内空間に導入してケーシング内冷媒を
他方のパイプへ導出させるから、同様に圧力損失を招
き、冷暖房効率を低下せしめる原因となっている。
However, in the two-way valve for adjusting the refrigerant flow rate in the above-mentioned conventional cooling and heating apparatus,
Due to the pressure loss due to the refrigerant flow being deflected at right angles, there is a problem that the efficiency is reduced.In addition, the refrigerant is once introduced into the casing internal space from one pipe and the refrigerant in the casing is led out to the other pipe. Therefore, a pressure loss is similarly caused, which causes a decrease in cooling / heating efficiency.

【0005】上記引用公報においては説明上簡略的に図
示されているが、実際にこれを実行するためには二方弁
本体部に様々な構成部品を要し、構造が複雑で煩雑な設
計仕様を要する。この問題は、近年実用化されているス
テッピングモーター方式の二方弁においても同様であ
る。
In the above cited gazette, although it is simply illustrated for the sake of explanation, in order to actually execute this, various components are required in the two-way valve body, and the structure is complicated and complicated design specifications are required. Cost. This problem is the same in a stepping motor type two-way valve that has been put into practical use in recent years.

【0006】[0006]

【課題を解決するための手段】本発明は上記問題を解決
し、冷媒をpipe to pipeで直線流となって
流しながら流量制御が適正に行えるようにした冷暖房装
置における冷媒流量調整用二方弁を提供する。これによ
って二方弁部における冷暖房効率の低下の問題を可及的
に改善する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has a two-way valve for adjusting the flow rate of a refrigerant in a cooling and heating apparatus in which the flow rate can be properly controlled while flowing the refrigerant in a linear flow in a pipe-to-pipe manner. I will provide a. Thereby, the problem of the decrease in the cooling / heating efficiency in the two-way valve portion is improved as much as possible.

【0007】更に二方弁本体部の構造の簡素化を図り、
コストダウンを達成し得る冷暖房装置における冷媒流量
調整用二方弁を提供する。
Further, the structure of the two-way valve body is simplified,
Provided is a two-way valve for adjusting the flow rate of a refrigerant in a cooling and heating device capable of achieving cost reduction.

【0008】要述すると、本発明に係る冷暖房装置にお
ける冷媒流量調整用二方弁は、冷媒入力パイプと冷媒出
力パイプの開口面を互いに対向させ、該対向する開口面
間に扇形回動角を以って回動する回動弁体を介在してい
る。
[0008] In short, the two-way valve for adjusting the refrigerant flow rate in the cooling and heating apparatus according to the present invention has the opening surfaces of the refrigerant input pipe and the refrigerant output pipe facing each other, and has a fan-shaped rotation angle between the opposing opening surfaces. Accordingly, a rotating valve body that rotates is interposed.

【0009】そして上記回動弁体を上記両パイプの開口
面を通る軸線と直交する方向に扇形回動して上記両パイ
プを連通と遮断の何れか又は大面積連通と小面積連通の
何れかに切り換えるように配置した構造を持つ。
Then, the rotary valve body is sector-rotated in a direction orthogonal to an axis passing through the opening surfaces of the two pipes to open or close the two pipes, or to communicate either a large area or a small area. It has a structure arranged so that it can be switched.

【0010】上記回動弁体は一適例して、これを扇形の
プレート形弁体にて形成し、該プレート形弁体を第1弁
座と第2弁座間に介在して同弁体基部を上記第1弁座又
は第2弁座に上記パイプ軸線と平行な回動軸線を以って
回動可に軸支し上記切り換えを図る構成とする。
The above-mentioned rotary valve element is formed as a fan-shaped plate-type valve element, and the plate-type valve element is interposed between a first valve seat and a second valve seat. The base is rotatably supported on the first valve seat or the second valve seat with a rotation axis parallel to the pipe axis to achieve the switching.

【0011】又上記回動弁体の他の適例として、これを
上記両パイプ軸線と直交する回動軸線を以って回動する
円柱形弁体にて形成し上記切り換えを図る構成とする。
上記各回動弁体はモーターにて駆動される減速ギアを介
して回動する。
As another suitable example of the rotary valve element, the rotary valve element is formed by a cylindrical valve element that rotates about a rotation axis orthogonal to the pipe axes, and the switching is performed. .
Each of the rotary valve bodies rotates via a reduction gear driven by a motor.

【0012】上記回動弁体は冷媒入力パイプと冷媒出力
パイプとを全通せしめる大径弁孔と部分連通せしめる小
径弁孔とを併有し、該回動弁体の回動により両者を選択
的に切り換える構造にする。この大径弁孔は通常の冷暖
房運転時における冷媒の流量を確保し、上記小径弁孔は
限定された冷媒の通流を許容して除湿運転等を行わせ
る。
The rotary valve has a large-diameter valve hole for allowing the refrigerant input pipe and the refrigerant output pipe to pass through the entirety, and a small-diameter valve hole for partially communicating the refrigerant output pipe. The structure is to be switched. The large-diameter valve hole secures the flow rate of the refrigerant during a normal cooling and heating operation, and the small-diameter valve hole allows a limited flow of the refrigerant to perform a dehumidifying operation or the like.

【0013】[0013]

【発明の実施の形態】以下本発明の実施の形態例を図1
乃至図9に基づいて詳述する。
FIG. 1 shows an embodiment of the present invention.
This will be described in detail with reference to FIGS.

【0014】図1は冷暖房装置における暖房サイクル
と、本発明に係る冷暖房装置における冷媒流量調整用二
方弁の配置とその動作を示す。又図2は冷房サイクル
と、上記位置に配置した本発明に係る冷暖房装置におけ
る冷媒流量調整用二方弁の動作を示す。
FIG. 1 shows a heating cycle in a cooling and heating apparatus, and the arrangement and operation of a two-way valve for adjusting a refrigerant flow rate in the cooling and heating apparatus according to the present invention. FIG. 2 shows the cooling cycle and the operation of the two-way valve for adjusting the refrigerant flow rate in the cooling / heating device according to the present invention disposed at the above position.

【0015】先ず図1に基づき、暖房サイクルの原理に
ついて説明すると、圧縮機1から吐出された高圧冷媒は
四方弁2を通して室内熱交換器Aの一端に供給され、同
他端から膨張弁3を経て室外熱交換器Bの一端へ供給さ
れ、同他端から四方弁2を経由して圧縮機1へ吸入され
暖房サイクルを構成する。
First, the principle of the heating cycle will be described with reference to FIG. 1. The high-pressure refrigerant discharged from the compressor 1 is supplied to one end of the indoor heat exchanger A through the four-way valve 2, and the expansion valve 3 is supplied from the other end. The heat is supplied to one end of the outdoor heat exchanger B through the four-way valve 2 from the other end to the compressor 1 to form a heating cycle.

【0016】次に図2に基づき冷房サイクルの原理につ
いて説明すると、圧縮機1から吐出された高圧冷媒は四
方弁2を通して室外熱交換器Bの一端に供給され、同他
端から膨張弁3を得て室内熱交換器Aの一端へ供給さ
れ、同他端から四方弁2を経由して圧縮機1吸入され冷
房サイクルを構成する。
Next, the principle of the cooling cycle will be described with reference to FIG. 2. The high-pressure refrigerant discharged from the compressor 1 is supplied to one end of the outdoor heat exchanger B through the four-way valve 2, and the expansion valve 3 is supplied from the other end. Then, it is supplied to one end of the indoor heat exchanger A, and is sucked from the other end via the four-way valve 2 to the compressor 1 to constitute a cooling cycle.

【0017】上記室内熱交換器Aとしては、A1とA2
に示す構造のものが存し、同様に室外熱交換器Bとして
は、B1とB2に示す構造のものが存する。
The indoor heat exchanger A includes A1 and A2.
Similarly, as the outdoor heat exchanger B, there is a structure shown in B1 and B2.

【0018】室内熱交換器A1は単位熱交換器4a,4
b,4cを直列に配管接続した構造を有する。又室外熱
交換器B1は単位熱交換器5a,5b,5cを直列に配
管接続した構造を有する。
The indoor heat exchanger A1 includes unit heat exchangers 4a, 4
b, 4c are connected in series by piping. The outdoor heat exchanger B1 has a structure in which unit heat exchangers 5a, 5b, and 5c are connected in series by piping.

【0019】又室内熱交換器A2は単位熱交換器4a,
4b,4cを並列に配管接続した構造を有する。又室外
熱交換器B2は単位熱交換器5a,5b,5cを並列に
配管接続した構造を有する。
The indoor heat exchanger A2 is a unit heat exchanger 4a,
4b and 4c are connected in parallel by piping. The outdoor heat exchanger B2 has a structure in which the unit heat exchangers 5a, 5b, and 5c are connected in parallel by piping.

【0020】本発明に係る冷暖房装置における室内熱交
換器A1においては、冷媒流量調整用二方弁10−1
を、単位熱交換器4a,4b,4c間の直列配管部6に
設置する。
In the indoor heat exchanger A1 in the air conditioner according to the present invention, the two-way valve 10-1 for adjusting the refrigerant flow rate is provided.
Is installed in the series piping section 6 between the unit heat exchangers 4a, 4b, 4c.

【0021】又室内熱交換器A2においては、上記冷媒
流量調整用二方弁10−2,10−3を、単位熱交換器
4a,4b,4cの入口側の並列配管部7a(又は9
a)又は出口側並列配管部9a(又は7a)に設置す
る。
In the indoor heat exchanger A2, the two-way valves 10-2 and 10-3 for adjusting the refrigerant flow rate are connected to the parallel pipe sections 7a (or 9) on the inlet side of the unit heat exchangers 4a, 4b and 4c.
a) or the outlet side parallel piping section 9a (or 7a).

【0022】又室外熱交換器B2においては、上記冷媒
流量調整用二方弁10−4,10−5を、上記単位熱交
換器5a,5b,5cの入口側並列配管部7b(又は9
b)又は出口側並列配管部9b(又は7b)に設置す
る。
In the outdoor heat exchanger B2, the two-way valves 10-4 and 10-5 for adjusting the refrigerant flow rate are connected to the inlet side parallel pipe portions 7b (or 9) of the unit heat exchangers 5a, 5b and 5c.
b) or the outlet side parallel piping section 9b (or 7b).

【0023】而して、上記暖房サイクルにおいては、室
内熱交換器A1における二方弁10−1は全開状態にお
かれ、二方弁としての機能を有せず、この二方弁10−
1は冷房サイクルにおいて冷媒の絞り乃至完全連通機能
を有する(遮断機能は有しない)。
In the heating cycle, the two-way valve 10-1 of the indoor heat exchanger A1 is fully opened, and does not have a function as a two-way valve.
Numeral 1 has a function of restricting or completely communicating the refrigerant in the cooling cycle (having no shutoff function).

【0024】他方暖房サイクル及び冷房サイクルの双方
においては、室内熱交換器A2の入口側又は出口側並列
配管部7a,9a並びに室外熱交換器B2の入口側又は
出口側並列配管部7b,9bに配置した二方弁10−2
乃至10−5が、所定の連通と遮断の何れか又は大面積
連通と小面積連通(絞り機能)の何れかに切り換えられ
て熱交換器の機能を効率良く制御する二方弁としての機
能を果たす。
On the other hand, in both the heating cycle and the cooling cycle, the inlet side or outlet side parallel pipe sections 7a, 9a of the indoor heat exchanger A2 and the inlet side or outlet side parallel pipe sections 7b, 9b of the outdoor heat exchanger B2 are connected. Arranged two-way valve 10-2
10-5 are switched to one of predetermined communication and cutoff or one of large-area communication and small-area communication (throttle function) to perform a function as a two-way valve for efficiently controlling the function of the heat exchanger. Fulfill.

【0025】本発明においては、上記二方弁10−1乃
至10−5を選択的に使用する。
In the present invention, the two-way valves 10-1 to 10-5 are selectively used.

【0026】以下上記冷暖房装置における冷媒流量調整
用二方弁10−1乃至10−5の具体構造例を図3乃至
図8に基づいて説明する。
Hereinafter, a specific structural example of the two-way valves 10-1 to 10-5 for adjusting the flow rate of the refrigerant in the cooling and heating apparatus will be described with reference to FIGS.

【0027】上記冷媒流量調整用二方弁10は、冷媒入
力パイプ11と冷媒出力パイプ12間に設けられた扇形
回動角を以って定支点回動される回動弁体14を備え
る。
The refrigerant flow adjusting two-way valve 10 includes a rotary valve body 14 provided between the refrigerant input pipe 11 and the refrigerant output pipe 12 and rotated at a fixed fulcrum with a fan-shaped rotation angle.

【0028】回動弁体14を一定ストローク(一定扇形
回動角)で扇形回動される、例えば扇形のプレート形弁
体から成る回動弁体14にて構成し、該回動弁体14を
軸20にて回動可に支持する。以下回動弁体14を扇形
回動弁体14として説明する。
The rotary valve element 14 is constituted by a rotary valve element 14 formed of, for example, a fan-shaped plate-shaped valve element which is sector-rotated by a fixed stroke (constant sector-shaped rotation angle). Is rotatably supported on a shaft 20. Hereinafter, the rotary valve element 14 will be described as a sector-shaped rotary valve element 14.

【0029】上記扇形回動弁体14に上記冷媒入力パイ
プ11の出口側開口から吐出される冷媒を通流する弁孔
15を設け、該扇形回動弁体14の回動角を制御して上
記弁孔15と上記冷媒入出力パイプ11,12の開口と
の連通面積を調整し、上記室内熱交換器A1又はA2又
は室外熱交換器B2へ流入又は流出される冷媒の流量を
調整する構成とする。
The fan-shaped rotary valve body 14 is provided with a valve hole 15 through which the refrigerant discharged from the outlet side opening of the refrigerant input pipe 11 flows, and the rotary angle of the fan-shaped rotary valve body 14 is controlled. A configuration in which the communication area between the valve hole 15 and the openings of the refrigerant input / output pipes 11 and 12 is adjusted, and the flow rate of the refrigerant flowing into or out of the indoor heat exchanger A1 or A2 or the outdoor heat exchanger B2 is adjusted. And

【0030】上記扇形回動弁体14は冷媒入力パイプ1
1の出口側開口端面と冷媒出力パイプ12の入口側開口
端面との間に介在する。
The fan-shaped rotary valve element 14 is connected to the refrigerant input pipe 1.
1 between the outlet end face of the outlet and the inlet end face of the refrigerant output pipe 12.

【0031】図3に示すように、上記扇形回動弁体14
はモーター16を駆動源とし、該モーター16の回転軸
17の回転駆動力を減速ギア機構18を介して扇形回動
弁体14に伝達し、これを減速回動せしめる。
As shown in FIG. 3, the fan-shaped rotary valve element 14
Uses a motor 16 as a drive source, transmits the rotational driving force of a rotating shaft 17 of the motor 16 to a sector-shaped rotary valve body 14 via a reduction gear mechanism 18, and rotates the sector-shaped rotary valve body 14 at a reduced speed.

【0032】上記減速ギア機構18の軸22を中心とし
て回動する出力ギア19は、軸20を中心に扇形回動す
る扇形回動弁体14の端部に設けた扇形ラック21と噛
み合い、モーター16の正逆回転方向と正逆回転量を制
御することにより出力ギア19と扇形ラック21の正逆
回動方向と正逆回動角を制御し、よって扇形回動弁体1
4の正逆回動方向と正逆回動角を制御し、上記冷媒通流
弁孔15と上記冷媒入出力パイプ11,12の開口との
連通面積を調整し、上記室内熱交換器A1又はA2又は
室外熱交換器B2へ供給される冷媒の流量を調整する構
成とする。
The output gear 19 that rotates about the shaft 22 of the reduction gear mechanism 18 meshes with a fan rack 21 provided at the end of the fan-shaped rotary valve element 14 that rotates in a fan shape about the shaft 20, and By controlling the forward / reverse rotation direction and the forward / reverse rotation amount of the fan gear 16, the forward / reverse rotation direction and forward / reverse rotation angle of the output gear 19 and the sector rack 21 are controlled.
4 to adjust the area of communication between the refrigerant flow valve hole 15 and the openings of the refrigerant input / output pipes 11 and 12, thereby controlling the indoor heat exchanger A1 or The configuration is such that the flow rate of the refrigerant supplied to A2 or the outdoor heat exchanger B2 is adjusted.

【0033】上述の通り、上記扇形回動弁体14を冷媒
入力パイプ11の出口側開口端面と冷媒出力パイプ12
の入口側開口端面との間に介在する。
As described above, the fan-shaped rotary valve element 14 is connected to the outlet-side opening end face of the refrigerant input pipe 11 and the refrigerant output pipe 12.
Interposed between the end face of the opening on the inlet side.

【0034】詳述すると図3に示すように、冷媒入力パ
イプ11の端部開口面と冷媒出力パイプ12の端部開口
面とを、ケーシング23内において同一軸線において対
向させ、他方ケーシング23内に設けた上記扇形回動弁
体14を両パイプ11,12の開口端面間に介在し、軸
線と直交する方向に扇形回動可に設置する。
More specifically, as shown in FIG. 3, the end opening surface of the refrigerant input pipe 11 and the end opening surface of the refrigerant output pipe 12 are opposed to each other on the same axis in the casing 23, and The provided fan-shaped rotary valve element 14 is interposed between the open end faces of the pipes 11 and 12 and is installed so as to be fan-shaped rotatable in a direction orthogonal to the axis.

【0035】例えば図3乃至図5に示すように、ケーシ
ング本体24を一体プレス成形又は一体合成樹脂成形し
て成るカップ形にし、該カップ形ケーシング本体24の
開口部に板材から成る第1弁座25と同第2弁座26を
気密的に且つ平行に嵌着し、該第1弁座25と第2弁座
26間に板材から成る上記扇形回動弁体14を介在し、
該弁体14が第1,第2弁座25,26の内面に摺接し
つつ同弁座と平行に扇形回動できるように配置する。
For example, as shown in FIGS. 3 to 5, the casing main body 24 is formed into a cup shape formed by integral press molding or integral synthetic resin molding, and a first valve seat made of a plate material is formed in an opening of the cup-shaped casing main body 24. 25 and the second valve seat 26 are fitted in an airtight and parallel manner, and the fan-shaped rotary valve body 14 made of a plate material is interposed between the first valve seat 25 and the second valve seat 26;
The valve element 14 is disposed so as to be able to rotate in a sector shape in parallel with the first and second valve seats 25 and 26 while slidingly contacting the inner surfaces of the valve seats.

【0036】扇形回動弁体14は軸20によって第1弁
座25又は第2弁座26に扇形回動可に軸支する。
The fan-shaped rotary valve element 14 is rotatably supported by the shaft 20 on the first valve seat 25 or the second valve seat 26 so as to be fan-rotatable.

【0037】図3においては、減速ギア機構18を上記
ケーシング23内に内装し、同ギア機構18の出力軸2
2を第1弁座25又は第2弁座26に軸支し、該出力軸
22を中心に回動する出力ギア19を第1弁座25と第
2弁座26の間に介在し、上記扇形回動弁体14の端部
に設けた扇形ラック21と噛み合せて運動伝達を行い、
扇形回動弁体14を第1,第2弁座25,26間におい
て扇形回動可にする。
In FIG. 3, the reduction gear mechanism 18 is provided inside the casing 23, and the output shaft 2 of the gear mechanism 18 is provided.
2 is pivotally supported on the first valve seat 25 or the second valve seat 26, and an output gear 19 rotating about the output shaft 22 is interposed between the first valve seat 25 and the second valve seat 26, By engaging with a fan-shaped rack 21 provided at the end of the sector-shaped rotary valve body 14, motion is transmitted,
The sector-shaped rotary valve element 14 can be sector-rotated between the first and second valve seats 25 and 26.

【0038】他方図3においては、冷媒入力パイプ11
の端部をケーシング23の天壁、即ちカップ形ケーシン
グ本体24の底壁より貫通してケーシング23内に突入
させ、該パイプ11端部を上記第1弁座25に支持させ
ると共に、同パイプ11の端部開口を第1弁座25に設
けた弁孔27と同芯に連通させ、更に冷媒出力パイプ1
2の端部を第2弁座26に支持させると共に、同パイプ
12の端部開口を第2弁座26に設けた弁孔28と同芯
に連通させ、よって全通時には弁孔27,28を同芯に
連通させ、且つこれら15,27,28と両パイプ1
1,12の開口とを相互に同芯に連通せしめる。要は、
両パイプ11,12を扇形回動弁体14を介して同芯に
連通せしめる。
On the other hand, in FIG.
Is penetrated from the top wall of the casing 23, that is, the bottom wall of the cup-shaped casing main body 24, and protrudes into the casing 23. The end of the pipe 11 is supported by the first valve seat 25, and the pipe 11 is Of the refrigerant output pipe 1 is concentrically communicated with a valve hole 27 provided in the first valve seat 25.
2 is supported by the second valve seat 26, and the end opening of the pipe 12 is communicated concentrically with the valve hole 28 provided in the second valve seat 26; Are concentrically connected, and these 15, 27, 28 and both pipes 1
The openings 1 and 12 are concentrically communicated with each other. In short,
The two pipes 11 and 12 are concentrically connected via a fan-shaped rotary valve element 14.

【0039】他方図6においては、筒形ケーシング本体
24の上部開口と下部開口とをトップカバー34とボト
ムカバー35とにより密閉し気密ケーシング23を形成
し、該ケーシング23内に第1弁座25と第2弁座26
を重ね合わせて内蔵し、両弁座25,26間に扇形プレ
ートから成る扇形回動弁体14を介在し、上記冷媒入力
パイプ11の端部をトップカバー34にろう付け等して
垂設し、同パイプ11の端部開口を第1弁座25に設け
た弁孔27と同芯に連通させ、更にボトムカバー35に
冷媒出力パイプ12をろう付け等して垂設し、同パイプ
12の端部開口を第2弁座26に設けた弁孔28と同芯
に連通させ、よって全通時には弁孔15と弁孔27,2
8を同芯に連通させ、且つこれら15,27,28と両
パイプ11,12の開口とを相互に同芯に連通せしめ
る。要は、両パイプ11,12を扇形回動弁体14を介
して同芯に連通せしめる。
On the other hand, in FIG. 6, an upper opening and a lower opening of the cylindrical casing main body 24 are sealed by a top cover 34 and a bottom cover 35 to form an airtight casing 23, in which a first valve seat 25 is provided. And the second valve seat 26
And a fan-shaped rotary valve body 14 formed of a fan-shaped plate is interposed between the two valve seats 25 and 26, and the end of the refrigerant input pipe 11 is vertically attached to the top cover 34 by brazing or the like. The end opening of the pipe 11 is communicated concentrically with the valve hole 27 provided in the first valve seat 25, and the refrigerant output pipe 12 is further suspended from the bottom cover 35 by brazing or the like. The end opening is communicated concentrically with the valve hole 28 provided in the second valve seat 26, so that the valve hole 15 and the valve holes 27, 2 are provided at the time of full communication.
8 are concentrically communicated, and these 15, 27, 28 and the openings of both pipes 11, 12 are mutually concentrically communicated. In short, the two pipes 11 and 12 are concentrically connected via the fan-shaped rotary valve element 14.

【0040】又図6においては、上記ケーシング23の
トップカバー34と一体に気密ギアケース36を設け、
該ギアケース36内に前記減速機構18を内蔵し、出力
ギアと一体に回転する出力軸22を出力ギアの軸線上に
延在し、該出力軸22をトップカバー34を貫通してそ
の軸端に前記扇形回動弁体14の基部を軸支せしめる。
In FIG. 6, an airtight gear case 36 is provided integrally with the top cover 34 of the casing 23,
The speed reduction mechanism 18 is built in the gear case 36, and the output shaft 22 that rotates integrally with the output gear extends on the axis of the output gear. Then, the base of the fan-shaped rotary valve element 14 is pivotally supported.

【0041】よって出力ギアの減速回転力により出力軸
22を回動し、該出力ギアの回動により前記ラック・ギ
ア19,21を介さずに扇形回動弁体14を所定角度扇
形回動せしめる。
Accordingly, the output shaft 22 is rotated by the reduced rotational force of the output gear, and the rotation of the output gear causes the sector-shaped rotary valve element 14 to rotate by a predetermined angle without the intervention of the rack gears 19 and 21. .

【0042】本発明は冷媒の出口と同入口とを同芯に対
向させ、同出口と入口間に同軸芯と直交する方向に回動
弁体14を回動させて冷媒の流量を調整するようにした
思想を示している。
In the present invention, the outlet and the inlet of the refrigerant are concentrically opposed to each other, and the flow rate of the refrigerant is adjusted by rotating the rotary valve 14 between the outlet and the inlet in a direction orthogonal to the coaxial core. It shows the thought that was made.

【0043】図3における上記モーター16はケーシン
グ23の天壁、即ちカップ形ケーシング本体24の底壁
外表面側に取り付け支持し、又図6におけるモーター1
6はギアケース36のトップカバー34′に取り付け支
持して上記両パイプ11,12と平行なモーター回転軸
17に上記減速ギア機構18を連結する。該減速ギア機
構18とモーター16の回転軸17間には、永久磁石2
9を介在してモーターの回転駆動力を永久磁石29を介
して減速ギア機構18に伝達する。
The motor 16 in FIG. 3 is mounted and supported on the top wall of the casing 23, that is, on the outer surface of the bottom wall of the cup-shaped casing main body 24.
Reference numeral 6 is attached to and supported by a top cover 34 'of a gear case 36, and connects the reduction gear mechanism 18 to a motor rotation shaft 17 parallel to the pipes 11 and 12. A permanent magnet 2 is provided between the reduction gear mechanism 18 and the rotating shaft 17 of the motor 16.
9 transmits the rotational driving force of the motor to the reduction gear mechanism 18 via the permanent magnet 29.

【0044】詳述すると、モーター16の回転軸17に
永久磁石29を一体に取り付け、他方減速ギア機構18
の入力ギアに設けた磁性体から成る吸着板30を設け、
モーター16の駆動によって永久磁石29が回動すると
吸着板30が回動し、この吸着板30の回動により減速
ギア機構18を回動し、図3における出力ギア19又は
図6における出力軸22を回動するようにする。
More specifically, a permanent magnet 29 is integrally attached to the rotating shaft 17 of the motor 16 while the reduction gear mechanism 18
A suction plate 30 made of a magnetic material provided on the input gear of
When the permanent magnet 29 is rotated by the drive of the motor 16, the suction plate 30 is rotated, and the rotation of the suction plate 30 rotates the reduction gear mechanism 18, and the output gear 19 in FIG. 3 or the output shaft 22 in FIG. Is rotated.

【0045】上記扇形回動弁体14はサーミスターに代
表される冷暖房温度又は冷凍温度を検出する温度センサ
ー等の検出信号によりその正逆回動と正逆回動角が制御
され、この正逆回動位置において扇形回動弁体14を正
確に停止させるためのストッパー31,32を備える。
The forward / reverse rotation and forward / reverse rotation angle of the fan-shaped rotary valve body 14 are controlled by a detection signal from a temperature sensor or the like for detecting a cooling / heating temperature or a freezing temperature represented by a thermistor. Stoppers 31 and 32 are provided for accurately stopping the sector-shaped rotary valve element 14 in the rotary position.

【0046】上記ストッパー31,32は第1,第2弁
座25,26間の空間に立設されたピンにて形成する。
扇形回動弁体14の扇形回動角はストッパー31,32
たる一対のピン間においてその最大扇形回動角が制限さ
れる。
The stoppers 31, 32 are formed by pins provided upright in the space between the first and second valve seats 25, 26.
The fan-shaped turning angle of the fan-shaped turning valve body 14 is determined by stoppers 31 and 32.
The maximum fan-shaped pivot angle between the pair of barrel pins is limited.

【0047】図4に示すように、扇形回動弁体14が一
方のストッパー32に当接している時、弁孔15と弁孔
27,28とは部分的に連通した状態に置かれる。即ち
最小連通開口面積において連通し待機する。
As shown in FIG. 4, when the fan-shaped rotary valve element 14 is in contact with one of the stoppers 32, the valve hole 15 and the valve holes 27 and 28 are placed in a partially connected state. That is, the communication waits at the minimum communication opening area.

【0048】又は図4に示す一方への扇形回動時に弁孔
15と弁孔27,28を部分連通させずに全閉状態にす
る制御方法を含む。
Alternatively, the control method includes a control method of bringing the valve hole 15 and the valve holes 27 and 28 into a fully closed state without partially communicating with each other during the one-sided sector rotation shown in FIG.

【0049】即ち、回動弁体14を上記両パイプ11,
12の開口面を通る軸線と直交する方向に扇形回動して
上記両パイプ11,12を連通と遮断の何れか又は大面
積連通と小面積連通の何れかに切り換えるように配置す
る。
That is, the rotary valve element 14 is connected to the two pipes 11,
The pipes 11 and 12 are arranged so as to be switched in a sector-wise manner in a direction orthogonal to an axis passing through the opening surface of the pipe 12 so as to switch between communication and blocking or between large-area communication and small-area communication.

【0050】他方図5に示すように、扇形回動弁体14
がストッパー31へ向け一定量回動されることにより、
弁孔15と弁孔27,28との連通面積が増大され、ス
トッパー31に弁体14が当接することにより、弁孔1
5と弁孔27,28とは全開口面積において連通する。
即ち、最大連通開口面積となる。
On the other hand, as shown in FIG.
Is rotated by a fixed amount toward the stopper 31,
The communication area between the valve hole 15 and the valve holes 27 and 28 is increased, and the valve body 14 comes into contact with the stopper 31 so that the valve hole 1
5 and the valve holes 27 and 28 communicate with each other over the entire opening area.
That is, it is the maximum communication opening area.

【0051】この連通面積の制御により、室内熱交換器
A1又はA2又は室外熱交換器B2へ流入又は流出され
る冷媒の流量が制御されるのである。例えばモーター1
6の回転時間を検出するか、又はホール素子等のセンサ
ーにてモーター16の回転数を検出し、これら検出信号
によって回動弁体14の回動角を制御し設定する。
By controlling the communication area, the flow rate of the refrigerant flowing into or out of the indoor heat exchanger A1 or A2 or the outdoor heat exchanger B2 is controlled. For example, motor 1
6 or the number of rotations of the motor 16 is detected by a sensor such as a Hall element, and the rotation angle of the rotation valve body 14 is controlled and set by these detection signals.

【0052】他方図7A,Bは上記扇形回動弁体14の
他例を示している。この回動弁体14はその回動軌跡上
に冷媒入力パイプ11と冷媒出力パイプ12とを全通せ
しめる大径弁孔15と部分連通せしめる小径弁孔15′
とを併有し、図7Bに示すように、回動弁体14の一方
の扇形回動により大径弁孔15と冷媒入出力パイプ1
1,12の端部開口とを全通せしめ、図7Aに示すよう
に、他方への扇形回動により小径弁孔15′を冷媒入出
力パイプ11,12の中心部において部分連通させ、冷
媒流量を絞り制御するようにしている。
FIGS. 7A and 7B show another example of the sector-shaped rotary valve element 14. FIG. The rotary valve element 14 has a small-diameter valve hole 15 ′ partially communicating with a large-diameter valve hole 15 that allows the refrigerant input pipe 11 and the refrigerant output pipe 12 to fully communicate with each other on the rotation trajectory.
As shown in FIG. 7B, the large-diameter valve hole 15 and the refrigerant input / output pipe 1
As shown in FIG. 7A, the small-diameter valve hole 15 ′ is partially connected to the center of the refrigerant input / output pipes 11 and 12 by sector rotation to the other side, and the refrigerant flow rate is increased. Aperture control.

【0053】即ち、回動弁体14を上記両パイプ11,
12の開口面を通る軸線と直交する方向に扇形回動して
上記両パイプ11,12を大径弁孔15による大面積連
通と小径弁孔15′による小面積連通の何れかに切り換
えるように配置する。
That is, the rotary valve element 14 is connected to the two pipes 11,
The two pipes 11 and 12 are switched to one of a large-area communication by a large-diameter valve hole 15 and a small-area communication by a small-diameter valve hole 15 ′ by rotating in a sector shape in a direction orthogonal to an axis passing through an opening surface of the pipe 12. Deploy.

【0054】次に図8は上記扇形回動板から成る回動弁
体に代えて、上記両パイプ11,12軸線と直交する回
動軸線を以って回動する円柱形弁体にて回動弁体14を
形成している。この円柱形回動弁体14は図9A,Bに
示すように、円筒形の気密ハウジング23内に内蔵さ
れ、該円筒形ハウジング23は円筒形ケース本体24と
ギアケース36のボトムカバーを兼ねるトップカバー3
4とボトムカバー35とによって形成され、上記円柱形
弁体14を前記減速ギア機構18の出力ギア19と同一
軸線上において、該出力ギア19と一体に回転するよう
に軸支する。
Next, FIG. 8 shows a cylindrical valve element which rotates about a rotation axis orthogonal to the axes of the pipes 11 and 12, instead of the rotary valve element comprising the fan-shaped rotary plate. The valve train 14 is formed. As shown in FIGS. 9A and 9B, the cylindrical rotary valve element 14 is housed in a cylindrical hermetic housing 23, and the cylindrical housing 23 is a top that also serves as a bottom cover of the cylindrical case main body 24 and a gear case 36. Cover 3
4 and the bottom cover 35, and supports the cylindrical valve element 14 on the same axis as the output gear 19 of the reduction gear mechanism 18 so as to rotate integrally with the output gear 19.

【0055】上記円柱形弁体14はその直径方向に貫通
する大径弁孔15と小径弁孔15′とを有する。この大
径弁孔15と小径弁孔15′とは互いに直交するように
配置する。
The cylindrical valve element 14 has a large-diameter valve hole 15 and a small-diameter valve hole 15 'penetrating in the diameter direction. The large-diameter valve hole 15 and the small-diameter valve hole 15 'are arranged so as to be orthogonal to each other.

【0056】従って図9Aに示すように、円柱形弁体1
4を90度回動させることにより、冷媒入出力パイプ1
1,12の端部開口と大径弁孔15とが同一軸線におい
て連通し、冷媒の全通状態を形成する。
Therefore, as shown in FIG.
4 is rotated 90 degrees, so that the refrigerant input / output pipe 1
The end openings 1 and 12 and the large-diameter valve hole 15 communicate with each other on the same axis to form a state in which the refrigerant is completely passed.

【0057】又図9Bに示すように、図9Aの状態から
円柱形弁体14を更に90度逆転させると、入出力冷媒
パイプ11,12の中心部において同パイプ11,12
の端部開口と小径弁孔15′とが連通し、所謂部分連通
状態が形成され、冷媒入力パイプ11から供給される限
定された量の冷媒を小径弁孔15′を通じて冷媒出力パ
イプ12に供給する。この小径弁孔15′は所謂冷媒の
絞り手段を有し、除湿手段として機能する。
As shown in FIG. 9B, when the cylindrical valve body 14 is further rotated 90 degrees from the state shown in FIG.
Is connected to the small-diameter valve hole 15 ′ to form a so-called partial communication state, in which a limited amount of refrigerant supplied from the refrigerant input pipe 11 is supplied to the refrigerant output pipe 12 through the small-diameter valve hole 15 ′. I do. The small-diameter valve hole 15 'has a so-called refrigerant throttling means and functions as a dehumidifying means.

【0058】以上の構成を有する室内熱交換器A1に設
けた冷媒流量調整用二方弁10−1によって、冷房時に
おける単位熱交換器4b,4c間に流れる冷媒の流量を
制御する。
The refrigerant flow rate between the unit heat exchangers 4b and 4c during cooling is controlled by the two-way refrigerant flow control valve 10-1 provided in the indoor heat exchanger A1 having the above configuration.

【0059】又室内熱交換器A2に設けた冷媒流量調整
用二方弁10−2,10−3と室外熱交換器B2に設け
た冷媒流量調整用二方弁10−4,10−5によって、
単位熱交換器4b,4c,5b,5cに流入又は流出す
る冷媒の冷暖房時における冷媒の流量を制御する。
The refrigerant flow control two-way valves 10-2 and 10-3 provided in the indoor heat exchanger A2 and the refrigerant flow control two-way valves 10-4 and 10-5 provided in the outdoor heat exchanger B2 are provided. ,
It controls the flow rate of the refrigerant flowing into or out of the unit heat exchangers 4b, 4c, 5b, 5c during cooling and heating.

【0060】[0060]

【発明の効果】本発明によれば、冷媒をpipe to
pipeで直線流となって流しながら流量制御が適正
に行え、二方弁部における冷暖房効率の低下の問題を改
善し、更に二方弁本体部の構造の簡素化を図り、コスト
ダウンを達成し得る冷暖房装置における冷媒流量調整用
二方弁を提供できる。
According to the present invention, the refrigerant is piped to
Flow control can be performed properly while flowing in a straight line with pipes, improving the problem of lowering of cooling and heating efficiency in the two-way valve part, and further simplifying the structure of the two-way valve body to achieve cost reduction. A two-way valve for adjusting the refrigerant flow rate in the obtained cooling and heating device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】暖房サイクルを説明するブロック図。FIG. 1 is a block diagram illustrating a heating cycle.

【図2】冷房サイクルを説明するブロック図。FIG. 2 is a block diagram illustrating a cooling cycle.

【図3】上記冷暖房装置における冷媒流量調整用二方弁
の縦断面図。
FIG. 3 is a vertical sectional view of a two-way valve for adjusting a refrigerant flow rate in the cooling and heating device.

【図4】上記冷媒流量調整用二方弁の部分連通状態を示
す横断面図。
FIG. 4 is a cross-sectional view showing a partial communication state of the two-way valve for adjusting a refrigerant flow rate.

【図5】上記冷媒流量調整用二方弁の全通状態を示す横
断面図。
FIG. 5 is a transverse cross-sectional view showing a full flow state of the two-way valve for adjusting a refrigerant flow rate.

【図6】上記冷媒流量調整用二方弁の他例を示す縦断面
図。
FIG. 6 is a longitudinal sectional view showing another example of the two-way valve for adjusting the refrigerant flow rate.

【図7】上記冷媒流量調整用二方弁における扇形回動弁
体の他例を示し、Aは部分連通状態を、Bは全通状態を
夫々示す平面図。
FIG. 7 is a plan view showing another example of the fan-shaped rotary valve body in the two-way valve for adjusting the refrigerant flow rate, wherein A is a partially communicating state, and B is a full communicating state.

【図8】上記冷媒流量調整用二方弁の更に他例を示す縦
断面図。
FIG. 8 is a longitudinal sectional view showing still another example of the two-way valve for adjusting the refrigerant flow rate.

【図9】Aは上記冷媒流量調整用二方弁における扇形回
動弁体の全通状態を、Bは部分連通通状態を夫々示す横
断図。
FIG. 9A is a cross-sectional view showing a full-flow state of the fan-shaped rotary valve body in the two-way valve for adjusting a refrigerant flow rate, and FIG. 9B is a cross-sectional view showing a partial communication state.

【符号の説明】[Explanation of symbols]

A1,A2 室内熱交換器 B1,B2 室外熱交換器 1 圧縮機 2 四方弁 3 膨張弁 4a,4b,4c 単位熱交換器 5a,5b,5c 単位熱交換器 6 直列配管部 7a,7b 並列配管部 9a,9b 並列配管部 10 冷媒流量調整用二方弁 11 冷媒入力パイプ 12 冷媒出力パイプ 14 回動弁体 15 弁孔 16 モーター 17 回転軸 18 減速ギア機構 19 出力ギア 20 軸 21 扇形ラック 22 出力軸 23 ケーシング 24 ケーシング本体 25 第1弁座 26 第2弁座 27,28 弁孔 29 永久磁石 30 吸着板 31,32 ストッパー 34,34′ トップカバー 35 ボトムカバー 36 ギアケース A1, A2 Indoor heat exchanger B1, B2 Outdoor heat exchanger 1 Compressor 2 Four-way valve 3 Expansion valve 4a, 4b, 4c Unit heat exchanger 5a, 5b, 5c Unit heat exchanger 6 Series piping 7a, 7b Parallel piping Unit 9a, 9b Parallel piping unit 10 Two-way valve for adjusting refrigerant flow rate 11 Refrigerant input pipe 12 Refrigerant output pipe 14 Rotating valve element 15 Valve hole 16 Motor 17 Rotating shaft 18 Reduction gear mechanism 19 Output gear 20 Shaft 21 Fan rack 22 Output Shaft 23 Casing 24 Casing main body 25 First valve seat 26 Second valve seat 27, 28 Valve hole 29 Permanent magnet 30 Attraction plate 31, 32 Stopper 34, 34 'Top cover 35 Bottom cover 36 Gear case

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 41/06 F25B 41/06 U Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F25B 41/06 F25B 41/06 U

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】冷媒入力パイプと冷媒出力パイプの開口面
を互いに対向させ、該対向する開口面間に扇形回動角を
以って回動する回動弁体を介在し、該回動弁体を上記両
パイプの開口面を通る軸線と直交する方向に扇形回動し
て上記両パイプを連通と遮断の何れか又は大面積連通と
小面積連通の何れかに切り換えるように配置したことを
特徴とする冷暖房装置における冷媒流量調整用二方弁。
An opening surface of a refrigerant input pipe and an opening surface of a refrigerant output pipe are opposed to each other, and a rotation valve body that rotates at a fan-shaped rotation angle is interposed between the opposed opening surfaces. The body is arranged so as to be sectorally rotated in a direction orthogonal to an axis passing through the opening surfaces of the two pipes and to switch the two pipes to one of communication and blocking or to one of large area communication and small area communication. A two-way valve for adjusting a refrigerant flow rate in a cooling and heating device.
【請求項2】上記回動弁体が扇形のプレート形弁体にて
形成され、該プレート形弁体を第1弁座と第2弁座間に
介在して同弁体基部を該第1弁座又は第2弁座に上記パ
イプ軸線と平行な回動軸線を以って回動可に軸支したこ
とを特徴とする請求項1記載の冷暖房装置における冷媒
流量調整用二方弁。
2. The rotary valve body is formed of a fan-shaped plate-shaped valve body, and the plate-shaped valve body is interposed between a first valve seat and a second valve seat, and the base of the valve body is connected to the first valve. The two-way valve for adjusting a refrigerant flow rate in a cooling and heating device according to claim 1, wherein the seat or the second valve seat is rotatably supported by a rotation axis parallel to the pipe axis.
【請求項3】上記回動弁体が上記両パイプ軸線と直交す
る回動軸線を以って回動する円柱形弁体にて形成したこ
とを特徴とする請求項1記載の冷暖房装置における冷媒
流量調整用二方弁。
3. A refrigerant in a cooling and heating apparatus according to claim 1, wherein said rotary valve element is formed by a cylindrical valve element which rotates on a rotation axis orthogonal to said pipe axes. Two-way valve for flow adjustment.
【請求項4】上記回動弁体がモーターにて駆動される減
速ギアを介して回動されることを特徴とする請求項1又
は2又は3記載の冷暖房装置における冷媒流量調整用二
方弁。
4. A two-way valve for adjusting a refrigerant flow rate in a cooling and heating apparatus according to claim 1, wherein said rotary valve body is rotated via a reduction gear driven by a motor. .
【請求項5】上記回動弁体が冷媒入力パイプと冷媒出力
パイプとを全通せしめる大径弁孔と部分連通せしめる小
径弁孔とを併有し、回動弁体の回動により両者を選択的
に切り換えできるように配置したことを特徴とする請求
項1又は2又は3記載の冷暖房装置における冷媒流量調
整用二方弁。
5. The rotary valve body has a large-diameter valve hole for allowing the refrigerant input pipe and the refrigerant output pipe to pass through the entirety, and a small-diameter valve hole for partially communicating the refrigerant input pipe and the refrigerant output pipe. 4. A two-way valve for adjusting a refrigerant flow rate in a cooling and heating apparatus according to claim 1, wherein the two-way valve is arranged so as to be selectively switched.
JP11228916A 1999-08-12 1999-08-12 Two way valve for regulating coolant flow rate in heating and cooling device Pending JP2001056060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11228916A JP2001056060A (en) 1999-08-12 1999-08-12 Two way valve for regulating coolant flow rate in heating and cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11228916A JP2001056060A (en) 1999-08-12 1999-08-12 Two way valve for regulating coolant flow rate in heating and cooling device

Publications (1)

Publication Number Publication Date
JP2001056060A true JP2001056060A (en) 2001-02-27

Family

ID=16883874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11228916A Pending JP2001056060A (en) 1999-08-12 1999-08-12 Two way valve for regulating coolant flow rate in heating and cooling device

Country Status (1)

Country Link
JP (1) JP2001056060A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509311A (en) * 2000-09-14 2004-03-25 エックスディーエックス・インコーポレーテッド Expansion device for vapor compression system
CN1306198C (en) * 2003-02-20 2007-03-21 日本电产三协株式会社 Flow control device
CN1308606C (en) * 2003-04-01 2007-04-04 日本电产三协株式会社 Flow controller
CN102213331A (en) * 2010-04-05 2011-10-12 株式会社不二工机 Multi-way reversing valve
JP2011220369A (en) * 2010-04-05 2011-11-04 Fuji Koki Corp Multi-way reversing valve
KR20190117206A (en) * 2018-04-06 2019-10-16 한온시스템 주식회사 Integrated fluid control valve having a function of expansion valve

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509311A (en) * 2000-09-14 2004-03-25 エックスディーエックス・インコーポレーテッド Expansion device for vapor compression system
CN1306198C (en) * 2003-02-20 2007-03-21 日本电产三协株式会社 Flow control device
CN1308606C (en) * 2003-04-01 2007-04-04 日本电产三协株式会社 Flow controller
CN102213331A (en) * 2010-04-05 2011-10-12 株式会社不二工机 Multi-way reversing valve
JP2011220367A (en) * 2010-04-05 2011-11-04 Fuji Koki Corp Multi-way reversing valve
JP2011220369A (en) * 2010-04-05 2011-11-04 Fuji Koki Corp Multi-way reversing valve
US8820356B2 (en) 2010-04-05 2014-09-02 Fujikoki Corporation Multi-way reversing valve
KR101772698B1 (en) 2010-04-05 2017-08-29 가부시기가이샤 후지고오키 Multi direction changeover valve
KR20190117206A (en) * 2018-04-06 2019-10-16 한온시스템 주식회사 Integrated fluid control valve having a function of expansion valve
KR102579769B1 (en) * 2018-04-06 2023-09-18 한온시스템 주식회사 Integrated fluid control valve having a function of expansion valve

Similar Documents

Publication Publication Date Title
KR100329930B1 (en) Apparatus for selecting directional refrigerant passage of a cooling and heat pump type air-conditioner
WO2017094148A1 (en) Air conditioning device
JP5363472B2 (en) Expansion valve with distributor
JP3067107B1 (en) Cooling / heating cycle device and refrigeration cycle device
JP2001153236A (en) Two-stage motor-driven expansion valve
JP2001056060A (en) Two way valve for regulating coolant flow rate in heating and cooling device
CN110162121B (en) Environmental control system for environmental chamber and environmental chamber
JP4612226B2 (en) Motorized valve with dehumidifying function and air conditioner equipped with the motorized valve
JP2000314575A (en) Flow path control valve, air conditioner, and multi- chamber type air conditioner
JP2001343076A (en) Control valve
JP2005256853A (en) Flow passage change-over valve
JP4602593B2 (en) Electric motor switching valve
US20090138129A1 (en) Freezer Heat Exchanger Coolant Flow Divider Control Device
JPH0311666Y2 (en)
JP2005207574A (en) Refrigerant flow control valve and air-conditioner
JP3427979B2 (en) Gas-liquid separator in refrigerant compressor
JP4009091B2 (en) Four-way selector valve
JP4668480B2 (en) Motorized valve
JP2816260B2 (en) Four-way valve
JP2002005317A (en) Rotary four-way valve
JP3111351B2 (en) Flow switching device for working medium in air conditioner
KR102512686B1 (en) Micro flow rate control valve
JPS5813281A (en) Four-way switching valve
JP3123901B2 (en) Composite valve for refrigeration cycle
JP2001141334A (en) Refrigerant channel on/off valve in cooler/heater