JP2001054392A - MUTANT alpha-AMYLASE - Google Patents

MUTANT alpha-AMYLASE

Info

Publication number
JP2001054392A
JP2001054392A JP2000170517A JP2000170517A JP2001054392A JP 2001054392 A JP2001054392 A JP 2001054392A JP 2000170517 A JP2000170517 A JP 2000170517A JP 2000170517 A JP2000170517 A JP 2000170517A JP 2001054392 A JP2001054392 A JP 2001054392A
Authority
JP
Japan
Prior art keywords
amino acid
gly
asn
asp
tyr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000170517A
Other languages
Japanese (ja)
Other versions
JP4417532B2 (en
JP2001054392A5 (en
Inventor
Keiji Endo
圭二 遠藤
Kazuaki Igarashi
一暁 五十嵐
Yasuhiro Hayashi
康弘 林
Hiroshi Hagiwara
萩原  浩
Katsuya Ozaki
克也 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2000170517A priority Critical patent/JP4417532B2/en
Publication of JP2001054392A publication Critical patent/JP2001054392A/en
Publication of JP2001054392A5 publication Critical patent/JP2001054392A5/ja
Application granted granted Critical
Publication of JP4417532B2 publication Critical patent/JP4417532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a new mutant α-amylase excellent in resistance to chelating agent and specific activity in alkaline region, used for detergent composition or the like obtained by substituting or deleting a part of amino acid residue of an α-amylase having specific amino acid sequence. SOLUTION: This new mutant α-amylase comprises an α-amylase substituting or deleting one or more amino acid residues corresponding either one of the amino acids of the 11th Tyr, the 16th Glu, the 49th Asn, the 84th Glu, the 144th Ser, the 167th Gln, the 169th Tyr, the 178th Ala, the 188th Glu, the 190th Asn, the 205th His and the 209th Gln of the amino acid sequence expressed by the formula or homology >=70% to the amino acid sequence, and is useful as detergents for an automatic dish washer, detergents for clothes or the like. The mutant enzyme is obtained by applying a site-specific mutagenesis to a liquescent α-amylase gene derived from a microorganism and expressing a product mutant gene.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた耐熱性を有
し、特に洗剤用酵素として有用な変異液化型アルカリα
−アミラーゼ及びその遺伝子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mutant liquefied alkali α having excellent heat resistance and particularly useful as an enzyme for detergents.
-Related to amylase and its genes.

【0002】[0002]

【従来の技術】従来、α−アミラーゼ [EC.3.2.1.1]を
洗剤用として利用する場合には、澱粉を高ランダムに分
解でき、アルカリ性で安定で且つキレート成分、酸化漂
白成分に対しても安定である液化型アルカリα−アミラ
ーゼが好ましいとされている。しかしながら、液化型ア
ミラーゼは一般に、酵素の構造維持にカルシウムイオン
が重要であり、キレート剤の存在下ではその安定性が低
下し、また作用至適pHに関しても中性ないし弱酸性領域
であるものが殆どであった。
2. Description of the Related Art Conventionally, when α-amylase [EC.3.2.1.1] is used as a detergent, starch can be decomposed in a highly random manner, is alkaline and stable, and is effective against chelating and oxidative bleaching components. Liquefied alkaline α-amylase, which is stable, is said to be preferred. However, in general, calcium ions are important for maintaining the structure of the liquefied amylase, and its stability is reduced in the presence of a chelating agent. Almost.

【0003】斯かる状況の下、本発明者らは、土壌中か
ら分離した好アルカリ性Bacillus sp KSM-K38(FERM BP
-6946)株及び同KSM-K36(FERM BP-6945)株の生産する
酵素が、従来の液化型α−アミラーゼでは失活が認めら
れる高い濃度のキレート剤によって全く活性の低下を示
さず、更に界面活性剤や酸化剤に対する耐性を有してい
ること、また、従来の液化型α−アミラーゼに比べて、
アルカリ側で高い活性を有し洗剤用として有用であるこ
とを見出している(特願平10−362487号)。
[0003] Under such circumstances, the present inventors have proposed an alkaliphilic Bacillus sp KSM-K38 (FERM BP) isolated from soil.
-6946) and KSM-K36 (FERM BP-6945) show no decrease in activity due to the high concentration of the chelating agent which is inactivated with conventional liquefied α-amylase. Having resistance to surfactants and oxidizing agents, and compared to conventional liquefied α-amylase,
It has been found that it has a high activity on the alkali side and is useful for detergents (Japanese Patent Application No. 10-362487).

【0004】しかし、当該酵素は50℃以上の温度では
失活を示すことから、衣料や食器の洗浄が10〜60℃
付近で行うのが一般的あることを考えるとその耐熱性が
やや不十分であった。
However, since the enzyme is inactivated at a temperature of 50 ° C. or higher, it is difficult to wash clothes and dishes at 10 to 60 ° C.
Considering that it is generally performed in the vicinity, its heat resistance was somewhat insufficient.

【0005】[0005]

【発明が解決しようとする課題】本発明は、アルカリ側
で高い活性を有し、キレート成分、酸化漂白成分に対し
ても安定である液化型アルカリα−アミラーゼであっ
て、且つ優れた耐熱性を有するα−アミラーゼを提供す
ることを目的とする。
DISCLOSURE OF THE INVENTION The present invention relates to a liquefied alkaline α-amylase having high activity on the alkali side, stable against chelating components and oxidative bleaching components, and having excellent heat resistance. It is an object to provide an α-amylase having

【0006】[0006]

【課題を解決するための手段】本発明者らは、液化型ア
ルカリα−アミラーゼについて種々の変異酵素を取得、
検討した結果、KSM−K38由来アミラーゼのアミノ
酸配列(配列番号1)の特定のアミノ酸残基に変異を与
えることにより、キレート剤耐性や酸化剤耐性の特性及
びアルカリ領域に於ける高い比活性を失うことなく耐熱
性が向上すること、またこれらの変異を組み合わせるこ
とによって更なる耐熱化が可能であることを見出した。
Means for Solving the Problems The present inventors have obtained various mutant enzymes for liquefied alkaline α-amylase,
As a result of the examination, the mutation of a specific amino acid residue in the amino acid sequence of KSM-K38-derived amylase (SEQ ID NO: 1) causes loss of chelating agent resistance and oxidizing agent resistance and high specific activity in the alkaline region. It has been found that the heat resistance can be improved without any problem and that further heat resistance can be achieved by combining these mutations.

【0007】即ち、本発明は、配列番号1に示されるア
ミノ酸配列又は該アミノ酸配列に対して70%以上の相
同性を有するα−アミラーゼにおいて、該アミノ酸配列
の11番目のTyr、16番目のGlu、49番目のA
sn、84番目のGlu、144番目のSer、167
番目のGln、169番目のTyr、178番目のAl
a、188番目のGlu、190番目のAsn、205
番目のHis及び209番目のGlnのうちのいずれか
に相当するアミノ酸残基の1残基以上を置換又は欠失さ
せてなる変異α−アミラーゼを提供するものである。ま
た本発明は、配列番号1に示されるアミノ酸配列又は該
アミノ酸配列に対して70%以上の相同性を有するα−
アミラーゼにおいて、該アミノ酸配列のアミノ末端から
11〜100アミノ酸残基に相当する配列を他の液化型
α−アミラーゼの該アミノ酸配列に相当するアミノ酸配
列に置換させてなる変異α−アミラーゼを提供するもの
である。
That is, the present invention relates to an amino acid sequence represented by SEQ ID NO: 1 or an α-amylase having 70% or more homology to the amino acid sequence, wherein Tyr at position 11 and Glu at position 16 of the amino acid sequence are used. , 49th A
sn, 84th Glu, 144th Ser, 167
Gln, 169th Tyr, 178th Al
a, 188th Glu, 190th Asn, 205
It is intended to provide a mutant α-amylase obtained by substituting or deleting one or more amino acid residues corresponding to any of the No. His and the No. 209 Gln. The present invention also relates to an amino acid sequence represented by SEQ ID NO: 1 or an α-amino acid having 70% or more homology to the amino acid sequence.
An amylase which provides a mutant α-amylase obtained by replacing a sequence corresponding to 11 to 100 amino acid residues from the amino terminus of the amino acid sequence with an amino acid sequence corresponding to the amino acid sequence of another liquefied α-amylase It is.

【0008】また本発明は、これらの変異α−アミラー
ゼをコードする遺伝子、該遺伝子を有するベクター、該
ベクターで形質転換された細胞、該形質転換細胞を培養
することを特徴とするこれらの変異α−アミラーゼの製
造方法を提供するものである。更に本発明は、これらの
変異α−アミラーゼを含有する洗浄剤組成物を提供する
ものである。
Further, the present invention provides a gene encoding the mutant α-amylase, a vector having the gene, a cell transformed with the vector, and a method for culturing the transformed cell. -To provide a method for producing amylase. Further, the present invention provides a detergent composition containing these mutant α-amylases.

【0009】[0009]

【発明の実施の形態】本発明の変異α−アミラーゼは、
配列番号1に示したアミノ酸配列又は該配列と70%以
上の相同性を有するアミノ酸配列を有する液化型アルカ
リα−アミラーゼをコードする遺伝子を変異させて得ら
れるものであるが、アミノ酸の欠失・置換により耐熱性
を向上させた例は従来の液化型α−アミラーゼについて
も行われていた。例えば、B. amyloliquefaciens由来の
酵素において177番目のArgから178番目のGl
y残基を欠失させたもの(J. Biol. Chem., 264, 1893
3, 1989)、B. licheniformisの酵素において、133番
目のHisをTyrに置換したもの(J. Biol. Chem., 2
65, 15481, 1990)が報告されている。しかし、本発明で
用いられる液化型アルカリα−アミラーゼは、従来の液
化型α−アミラーゼとのアミノ酸相同性は低く、また上
記の177番目のArgから178番目のGly残基に
相当する部位は既に欠失しており、また、133番目の
His相当のアミノ酸は既にTyrであり、従来酵素の
例が必ずしも適用できるものではない。即ち、本発明に
おける耐熱性を向上させるためのアミノ酸配列の変異は
これまでの例とは全く異なるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The mutant α-amylase of the present invention comprises
It can be obtained by mutating the gene encoding the liquefied alkaline α-amylase having the amino acid sequence shown in SEQ ID NO: 1 or an amino acid sequence having 70% or more homology with the sequence. An example in which the heat resistance is improved by substitution has also been performed for a conventional liquefied α-amylase. For example, in the enzyme derived from B. amyloliquefaciens , the 177th Arg to the 178th Gl
Deletion of y residue (J. Biol. Chem., 264, 1893
3, 1989), in which the 133rd His was replaced with Tyr in the enzyme of B. licheniformis (J. Biol. Chem., 2
65, 15481, 1990). However, the liquefied alkaline α-amylase used in the present invention has low amino acid homology with the conventional liquefied α-amylase, and the site corresponding to the 178th Gly residue from the 177th Arg to the 178th Gly residue is already present. The amino acid corresponding to His at position 133 has already been deleted, and the example of the conventional enzyme is not always applicable. That is, the mutation of the amino acid sequence for improving the heat resistance in the present invention is completely different from the examples described above.

【0010】当該液化型アルカリα−アミラーゼの例と
しては、本発明者らが土壌中から分離したBacillus sp.
KSM-K38(FERM BP-6946)株由来であり、配列番号1の
アミノ酸配列を有する酵素(特願平10−362487
号)、或いは同KSM-K36(FERMBP-6945) 株由来であって
配列番号1のアミノ酸配列と約95%の相同性を有する
酵素(配列番号4)(特願平10−362487号)等
が挙げられる。尚、アミノ酸配列の相同性はLipman-Pea
rson法(Science, 227, 1435, 1985)によって計算され
る。
Examples of the liquefied alkaline α-amylase include Bacillus sp. Isolated from soil by the present inventors.
An enzyme having the amino acid sequence of SEQ ID NO: 1 derived from KSM-K38 (FERM BP-6946) strain (Japanese Patent Application No. 10-362487).
Or an enzyme derived from the same KSM-K36 (FERMBP-6945) strain and having about 95% homology to the amino acid sequence of SEQ ID NO: 1 (SEQ ID NO: 4) (Japanese Patent Application No. 10-362487). No. The homology of the amino acid sequence is Lipman-Pea
It is calculated by the rson method (Science, 227, 1435, 1985).

【0011】本発明の変異α−アミラーゼの取得は、先
ず液化型α−アミラーゼを生産する微生物より、当該液
化型α−アミラーゼをコードする遺伝子をクローニング
するが、その方法は、一般的な遺伝子組換え技術を用い
れば良く、例えば、特開平8−336392号記載の方
法を用いることができる。遺伝子の例としては、配列番
号3及び配列番号5に示されるものが挙げられる。
The mutant α-amylase of the present invention is obtained by first cloning a gene encoding the liquefied α-amylase from a microorganism producing liquefied α-amylase. An alternative technique may be used, for example, the method described in JP-A-8-336392 can be used. Examples of the gene include those shown in SEQ ID NO: 3 and SEQ ID NO: 5.

【0012】次に得られた遺伝子に対して変異を与える
が、その方法としても一般的に行われている部位特異的
変異の方法であればいずれも採用でき、例えば宝酒造社
のSite-Directed Mutagenesis System Mutan-Super Exp
ress Kmキット等を用いて行うことができる。また、リ
コンビナントPCR (polymerase chain reaction)法
(PCR protocols, Academic press, New York, 1990)を
用いることによって、遺伝子の任意の配列を他の遺伝子
の該任意の配列に相当する配列と置換することが可能で
ある。
Next, a mutation is given to the obtained gene, and any method can be used as long as it is a commonly used site-specific mutation method. For example, Site-Directed Mutagenesis by Takara Shuzo Co., Ltd. System Mutan-Super Exp
It can be performed using a ress Km kit or the like. In addition, recombinant PCR (polymerase chain reaction) method
By using (PCR protocols, Academic press, New York, 1990), it is possible to replace an arbitrary sequence of a gene with a sequence corresponding to the arbitrary sequence of another gene.

【0013】本発明における耐熱化変異は、配列番号1
に示されるアミノ酸配列の11番目のTyrに相当する
アミノ酸残基をPhe、16番目のGluに相当するア
ミノ酸残基をPro、49番目のAsnに相当するアミ
ノ酸残基をSer、84番目のGluに相当するアミノ
酸残基をGln、144番目のSerに相当するアミノ
酸残基をPro、167番目のGlnに相当するアミノ
酸残基をGlu、169番目のTyrに相当するアミノ
酸残基をLys、178番目のAlaに相当するアミノ
酸残基をGln、188番目のGluに相当するアミノ
酸残基をAsp、190番目のAsnに相当するアミノ
酸残基をPhe、205番目のHisに相当するアミノ
酸残基をArg又は209番目のGlnに相当するアミ
ノ酸残基をValに置換する変異が望ましい。
In the present invention, the mutation for improving thermostability is SEQ ID NO: 1.
The amino acid residue corresponding to the 11th Tyr of the amino acid sequence represented by Phe, the amino acid residue corresponding to the 16th Glu to Pro, the amino acid residue corresponding to the 49th Asn to Ser, and the 84th Glu to the Glu The corresponding amino acid residue is Gln, the amino acid residue corresponding to Ser at position 144 is Pro, the amino acid residue corresponding to Gln at position 167 is Glu, the amino acid residue corresponding to Tyr at position 169 is Lys, the amino acid residue corresponding to Tyr at position 178 is The amino acid residue corresponding to Ala is Gln, the amino acid residue corresponding to Glu at position 188 is Asp, the amino acid residue corresponding to Asn at position 190 is Phe, the amino acid residue corresponding to His at position 205 is Arg or 209. A mutation that substitutes the amino acid residue corresponding to the Gln with Val is desirable.

【0014】また、本発明の配列番号1のアミノ酸配列
のアミノ末端(Asp)から11〜100アミノ酸残基
に相当するアミノ酸配列、好ましくは、1番目のAsp
から19番目のGlyに相当する配列を、他の液化型α
−アミラーゼの該アミノ酸配列に相当するアミノ酸配列
に置換することによっても耐熱化を達成することができ
る。
Further, the amino acid sequence corresponding to 11 to 100 amino acid residues from the amino terminus (Asp) of the amino acid sequence of SEQ ID NO: 1 of the present invention, preferably the first Asp
The sequence corresponding to the 19th Gly from other liquefied α
-Heat resistance can also be achieved by substituting an amino acid sequence corresponding to the amino acid sequence of amylase.

【0015】置き換える他の液化型α−アミラーゼの例
としては、例えば配列番号2に示されるアミノ酸配列を
有する酵素が挙げられ、その配列の前記1番目のAsp
から19番目のGlyに相当する部位は1番目のHis
から21番目のGlyである。当該酵素は、Bacillus s
p. KSM-AP1378 (FERM BP-3048)株由来の液化型α−アミ
ラーゼであり、その遺伝子配列は特開平8−33639
2号において開示されている。
Examples of other liquefied α-amylases to be replaced include, for example, an enzyme having the amino acid sequence shown in SEQ ID NO: 2, and the first Asp in the sequence.
The site corresponding to the 19th Gly from is the 1st His
Is the 21st Gly from. The enzyme is Bacillus s
p. KSM-AP1378 (FERM BP-3048) is a liquefied α-amylase derived from the strain, and its gene sequence is described in Japanese Patent Application Laid-Open No. 8-33639.
No. 2.

【0016】本発明の変異α−アミラーゼにおいては、
更に上記の各種アミノ酸残基の置換又は欠失及びアミノ
酸配列の置換から選ばれる2種以上の置換又は欠失を組
み合わせた変異も有効であり、組み合わせることによ
り、より耐熱性が向上した変異酵素を得ることができ
る。即ち、変異の組み合わせ方は、各種アミノ酸残基の
置換又は欠失の2種以上を組み合わせたもの、アミノ酸
配列の置換を2種以上組み合わせたもの及びアミノ酸残
基の置換又は欠失とアミノ酸配列の置換を2種以上組み
合わせたものが挙げられるが、好ましくは49番目のA
snに相当するアミノ酸残基をSer、167番目のG
lnに相当するアミノ酸残基をGlu、169番目のT
yrに相当するアミノ酸残基をLys、190番目のA
snに相当するアミノ酸残基をPhe、205番目のH
isに相当するアミノ酸残基をArg若しくは209番
目のGlnに相当するアミノ酸残基をValに置換する
変異、又は1番目のAspから19番目のGlyまでに
相当する配列を配列番号2に示されるアミノ酸配列の1
番目のHisから21番目のGlyまでのアミノ酸配列
に置換する変異のうちいずれか2種以上の変異を適宜組
み合わせるとよい。
In the mutant α-amylase of the present invention,
Furthermore, mutations in which two or more kinds of substitutions or deletions selected from the above-mentioned substitutions or deletions of amino acid residues and substitutions of amino acid sequences are also effective, and by combination, a mutant enzyme having improved heat resistance can be obtained. Obtainable. That is, the method of combining mutations is a combination of two or more substitutions or deletions of various amino acid residues, a combination of two or more substitutions of amino acid sequences, and the substitution or deletion of amino acid residues and the substitution of amino acid sequences. A combination of two or more substitutions is preferred, but preferably the 49th A
The amino acid residue corresponding to sn is replaced with Ser, G at position 167.
The amino acid residue corresponding to ln is Glu, the 169th T
The amino acid residue corresponding to yr is Lys,
The amino acid residue corresponding to sn is Phe, the 205th H
A mutation in which the amino acid residue corresponding to is is substituted with Arg or the amino acid residue corresponding to 209th Gln, or a sequence corresponding to the 1st Asp to the 19th Gly is an amino acid represented by SEQ ID NO: 2. Array 1
Any two or more of the mutations that substitute for the amino acid sequence from the first His to the twenty-first Gly may be appropriately combined.

【0017】更に、最適な組み合わせの例としては、4
9番目のAsnに相当するアミノ酸残基をSer、16
7番目のGlnに相当するアミノ酸残基をGlu、16
9番目のTyrに相当するアミノ酸残基をLys、19
0番目のAsnに相当するアミノ酸残基をPhe、20
5番目のHisに相当するアミノ酸残基をArg及び2
09番目のGlnに相当するアミノ酸残基をValに置
換する変異の組み合わせ、或いは1番目のAspから1
9番目のGlyまでに相当する配列を配列番号2に示さ
れるアミノ酸配列の1番目のHisから21番目のGl
yまでのアミノ酸配列に置換する変異と、167番目の
Glnに相当するアミノ酸残基をGlu、169番目の
Tyrに相当するアミノ酸残基をLys、190番目の
Asnに相当するアミノ酸残基をPhe、209番目の
Glnに相当するアミノ酸残基をValに置換する変異
の組み合わせ等が挙げられる。
Further, as an example of the optimum combination, 4
The amino acid residue corresponding to the ninth Asn is Ser, 16
The amino acid residue corresponding to the seventh Gln is represented by Glu, 16
The amino acid residue corresponding to the ninth Tyr is Lys, 19
The amino acid residue corresponding to the 0th Asn is Phe, 20
The amino acid residue corresponding to the fifth His is Arg and 2
A combination of mutations replacing the amino acid residue corresponding to Gln at position 09 with Val, or 1 from Asp at position 1
The sequence corresponding to the ninth Gly is represented by the amino acid sequence shown in SEQ ID NO: 2 from the first His to the 21st Gl.
a mutation that substitutes for the amino acid sequence up to y, the amino acid residue corresponding to Gln at position 167 is Glu, the amino acid residue corresponding to Tyr at position 169 is Lys, and the amino acid residue corresponding to Asn at position 190 is Phe; Examples include a combination of mutations in which the amino acid residue corresponding to 209th Gln is substituted with Val.

【0018】また、上記の変異に、耐熱性以外の特性を
改良する変異、例えば、酸化剤耐性をより強化する10
7番目のMetに相当するアミノ酸残基をLeuに置換
する変異、更に衣料用洗剤における洗浄力を増強させる
188番目のGluに相当するアミノ酸残基をIleに
置換する変異等を組み合わせることも可能である。
Further, the above-mentioned mutations may be modified to improve properties other than heat resistance, for example, to further enhance oxidant resistance.
It is also possible to combine a mutation in which the amino acid residue corresponding to the 7th Met is replaced with Leu, and a mutation in which the amino acid residue corresponding to the 188th Glu, which enhances the detergency in clothing detergents, is replaced with Ile. is there.

【0019】かくして得られる本発明の変異α−アミラ
ーゼは、高いキレート剤耐性の優れた特性及びアルカリ
領域に於ける高い比活性を失うことなく、熱に対する安
定性が向上することから、自動食器洗浄機用洗浄剤、衣
料用洗浄剤、繊維糊抜き剤として有用である。洗浄剤組
成物中の本発明変異α−アミラーゼの含有量は、0.0
01〜10重量%、特に0.01〜5重量%が好まし
い。
The thus-obtained mutant α-amylase of the present invention has an excellent property of high chelating agent resistance and high heat stability without losing high specific activity in an alkaline region, and therefore, it is used for automatic dishwashing. It is useful as a machine detergent, a clothing detergent, and a fiber desizing agent. The content of the mutant α-amylase of the present invention in the detergent composition is 0.0
It is preferably from 0.01 to 10% by weight, particularly preferably from 0.01 to 5% by weight.

【0020】当該洗浄剤には、上記変異α−アミラーゼ
以外に、更に枝切り酵素(例えばプルラナーゼ、イソア
ミラーゼ、ネオプルラナーゼなど)、α−グルコシダー
ゼ、グルコアミラーゼ、プロテアーゼ、セルラーゼ、リ
パーゼ、ペクチナーゼ、プロトペクチナーゼ、ペクチン
酸リアーゼ、パーオキシダーゼ、ラッカーゼ及びカタラ
ーゼから選ばれる1種または2種以上の酵素を含有させ
ることができる。
In addition to the above-mentioned mutant α-amylase, the detergent may further include a branching enzyme (eg, pullulanase, isoamylase, neopurulanase, etc.), α-glucosidase, glucoamylase, protease, cellulase, lipase, pectinase, protopectinase. , Pectate lyase, peroxidase, laccase and catalase.

【0021】また、洗浄剤には洗浄成分としてアニオン
界面活性剤、両性界面活性剤、ノニオン界面活性剤、カ
チオン界面活性剤等の界面活性剤を1〜90重量%含有
させることができる。また、キレート剤、アルカリ剤、
無機塩、再汚染防止剤、塩素捕捉剤、還元剤、漂白剤、
蛍光染料可溶化剤、香料、ケーキング防止剤、酵素の活
性化剤、酸化防止剤、防腐剤、色素、青味付け剤、漂白
活性化剤、酵素安定化剤、調節剤等を含有させることが
できる。
The detergent may contain 1 to 90% by weight of a surfactant such as an anionic surfactant, an amphoteric surfactant, a nonionic surfactant or a cationic surfactant as a cleaning component. Also, chelating agents, alkaline agents,
Inorganic salts, recontamination inhibitor, chlorine scavenger, reducing agent, bleach,
Fluorescent dye solubilizer, fragrance, anti-caking agent, enzyme activator, antioxidant, preservative, pigment, bluing agent, bleach activator, enzyme stabilizer, regulator, etc. .

【0022】本発明の洗浄剤組成物は、上記変異α−ア
ミラーゼ及び上記公知の洗浄成分を組み合わせて常法に
従い、製造することができる。洗浄剤の形態は、用途に
応じて選択することができ、例えば、液体、粉末、顆粒
等にすることができる。また、本発明洗浄剤組成物は、
衣料用洗浄剤、漂白洗浄剤、自動食器洗浄機用洗浄剤、
配水管洗浄剤、義歯洗浄剤等として使用できるが、特に
衣料用洗浄剤、漂白洗浄剤、自動食器洗浄機用洗浄剤と
して好適に使用することができる。
The detergent composition of the present invention can be produced according to a conventional method by combining the above-mentioned mutant α-amylase and the above-mentioned known detergent components. The form of the cleaning agent can be selected according to the use, and for example, can be liquid, powder, granules, and the like. Further, the cleaning composition of the present invention,
Clothes detergent, bleach detergent, automatic dishwasher detergent,
Although it can be used as a water pipe cleaning agent, a denture cleaning agent, etc., it can be suitably used as a cleaning agent for clothes, a bleaching agent, and a cleaning agent for automatic dishwashers.

【0023】また、本発明の変異α−アミラーゼは、澱
粉液化・糖化用組成物として用いることができ、更にグ
ルコアミラーゼ、マルターゼ、プルラナーゼ、イソアミ
ラーゼ、ネオプルラナーゼ、などから選ばれる1種また
は2種以上の酵素を配合し、変異α−アミラーゼととも
に澱粉に作用させることもできる。
The mutant α-amylase of the present invention can be used as a composition for liquefaction and saccharification of starch. The above enzymes can be blended and act on starch together with the mutant α-amylase.

【0024】更に、本発明の変異α−アミラーゼは、繊
維の糊抜き剤組成物として用いることができ、プルラナ
ーゼ、イソアミラーゼ或いはネオプルラナーゼ等の酵素
を共に含有させることもできる。
Further, the mutant α-amylase of the present invention can be used as a desizing agent composition for fibers, and can also contain an enzyme such as pullulanase, isoamylase or neopurulanase.

【0025】[0025]

【実施例】アミラーゼ活性及びタンパク質量の測定 各酵素のアミラーゼ活性及びタンパク質量は以下に示す
方法で行った。アミラーゼ活性測定は、3,5−ジニト
ロサリチル酸法(DNS法)で測定した。50mMグリ
シン緩衝液(pH10)中に可溶性澱粉を含む反応液
中、50℃で15分間の反応を行った後、生成した還元
糖をDNS法で定量することによって測定した。酵素の
力価は1分間に1μmolのグルコースに相当する還元
糖を生成する酵素量を1単位とした。蛋白量の測定は、
牛血清アルブミンを標準として、Bio-Rad社のProtein A
ssayキットを用いて定量した。
EXAMPLES Measurement of amylase activity and protein content The amylase activity and protein content of each enzyme were determined by the following methods. The amylase activity was measured by the 3,5-dinitrosalicylic acid method (DNS method). After performing a reaction at 50 ° C. for 15 minutes in a reaction solution containing soluble starch in a 50 mM glycine buffer (pH 10), the amount of reducing sugars generated was determined by quantification by a DNS method. The enzyme titer was defined as one unit of the amount of the enzyme producing a reducing sugar corresponding to 1 μmol of glucose per minute. Measurement of protein amount
Using bovine serum albumin as standard, Bio-Rad Protein A
Quantification was performed using a ssay kit.

【0026】参考例1 アルカリ液化型アミラーゼのス
クリーニング 土壌約0.5gを滅菌水に懸濁し、80℃で15分間加
熱処理した。この熱処理液の上清を適当に滅菌水で希釈
して、分離用寒天培地(培地A)に塗布した。次いで、
これを30℃で2日間培養し、集落を形成させた。集落
の周囲に澱粉溶解に基づく透明帯を形成するものを選出
し、これをアミラーゼ生産菌として分離した。更に、分
離菌を培地Bに接種し、30℃で2日間好気的に振盪培
養した。培養後、遠心分離した上清液について、キレー
ト剤(EDTA)耐性能を測定し、更に最適作用pHを測
定して、本発明のアルカリ液化型アミラーゼ生産菌をス
クリーニングした。
Reference Example 1 Screening of Alkaline Liquefied Amylase About 0.5 g of soil was suspended in sterilized water and heated at 80 ° C. for 15 minutes. The supernatant of this heat treatment solution was appropriately diluted with sterile water, and applied to an agar medium for separation (medium A). Then
This was cultured at 30 ° C. for 2 days to form a colony. Those that formed a clear zone based on starch dissolution around the colonies were selected and isolated as amylase-producing bacteria. Further, the isolated bacteria were inoculated on the medium B, and aerobically shake-cultured at 30 ° C. for 2 days. After the cultivation, the supernatant of the centrifuged suspension was measured for chelating agent (EDTA) resistance and, further, the optimum pH was measured to screen the alkaline liquefied amylase-producing bacteria of the present invention.

【0027】上述の方法により、Bacillus sp.KSM-K38
(FERM BP-6946)株及びBacillus sp. KSM-K36(FERM B
P-6945)株を取得することができた。
According to the method described above, Bacillus sp. KSM-K38
(FERM BP-6946) strain and Bacillus sp. KSM-K36 (FERM B
P-6945) We were able to acquire the strain.

【0028】 KSM−K38株及びKSM−K36株の菌学的性質を
表1に示す。
[0028] Table 1 shows the bacteriological properties of the KSM-K38 strain and the KSM-K36 strain.

【0029】[0029]

【表1】 [Table 1]

【0030】参考例2 KSM−K38株及びKSM−
K36株の培養 参考例1の液体培地Bに、KSM−K38株あるいはK
SM−K36株を接種し、30℃で2日間好気的に振盪
培養した。遠心分離上清についてアミラーゼ活性(pH
8.5)を測定した結果、培養液1L当たり、それぞれ
557U及び1177Uの活性を有していた。
Reference Example 2 KSM-K38 strain and KSM-
Culture of strain K36 In the liquid medium B of Reference Example 1, strain KSM-K38 or strain K
The SM-K36 strain was inoculated and cultured at 30 ° C. aerobically with shaking for 2 days. Amylase activity (pH
As a result of measurement of 8.5), 1 L of the culture solution had 557 U and 1177 U of activity, respectively.

【0031】参考例3 アルカリ液化型アミラーゼの精
製 参考例2で得られたKSM−K38株の培養上清液に8
0%飽和濃度になるように硫酸アンモニウムを加えて撹
拌後、生成した沈殿を回収し、2mM CaCl2を含
む10mMトリス塩酸緩衝液(pH7.5)に溶解し、
同緩衝液に対して一晩透析した。得られた透析内液を同
緩衝液で平衡化したDEAE−トヨパール650Mカラ
ムに添着し、同緩衝液を用いて0−1Mの食塩の濃度勾
配によりタンパクを溶出した。活性画分を同緩衝液にて
透析後、ゲル濾過カラムクロマトグラフィーにより得た
活性画分を上記緩衝液にて透析することによってポリア
クリルアミドゲル電気泳動(ゲル濃度10%)及びソデ
ィウムドデシル硫酸(SDS)電気泳動で単一のバンド
を与える精製酵素を得ることができた。尚、KSM−K
36株の培養上清液からも同様の方法で精製酵素を得る
ことができた。
Reference Example 3 Purification of Liquefied Alkaline Amylase The culture supernatant of the KSM-K38 strain obtained in Reference Example 2
After adding ammonium sulfate to a 0% saturation concentration and stirring, the formed precipitate was collected and dissolved in a 10 mM Tris-HCl buffer (pH 7.5) containing 2 mM CaCl 2 ,
The buffer was dialyzed overnight. The resulting dialysis solution was applied to a DEAE-Toyopearl 650 M column equilibrated with the same buffer, and the protein was eluted with the same buffer by a concentration gradient of 0-1 M sodium chloride. The active fraction was dialyzed against the same buffer, and the active fraction obtained by gel filtration column chromatography was dialyzed against the above buffer to obtain polyacrylamide gel electrophoresis (gel concentration: 10%) and sodium dodecyl sulfate (SDS). ) A purified enzyme giving a single band by electrophoresis could be obtained. In addition, KSM-K
Purified enzymes could be obtained from culture supernatants of 36 strains in the same manner.

【0032】参考例4 酵素特性 両精製酵素の特性は以下の通りである。 (1)作用 いずれも、澱粉、アミロース、アミロペクチン及びそれ
らの部分分解物のα−1,4グルコシド結合を分解し、
アミロースからはグルコース(G1)、マルトース(G
2)、マルトトリオース(G3)、マルトテトラオース
(G4)、マルトペンタオース(G5)、マルトヘキサ
オース(G6)及びマルトヘプタオース(G7)を生成
する。ただしプルランには作用しない。 (2)pH安定性(ブリットン−ロビンソン緩衝液) いずれも、40℃、30分間処理条件下で、pH6.5
〜11.0の範囲で70%以上の残存活性を示す。 (3)作用温度範囲及び最適作用温度 いずれも、20〜80℃の広範囲で作用し、最適作用温
度は50〜60℃である。 (4)温度安定性 50mMグリシン水酸化ナトリウム緩衝液(pH10)中
にて温度を変化させ、各温度で30分間処理することに
より失活の条件を調べると、いずれも40℃で80%以
上の残存活性を示し、45℃でも約60%の残存活性を
示した。 (5)分子量 いずれも、ソディウムドデシル硫酸ポリアクリルアミド
ゲル電気泳動法により測定した分子量は55,000±
5,000である。 (6)等電点 いずれも、等電点電気泳動法により測定した等電点は
4.2付近である。
Reference Example 4 Enzyme characteristics The characteristics of both purified enzymes are as follows. (1) Action Both of them decompose α-1,4 glucoside bonds of starch, amylose, amylopectin and their partially decomposed products,
Glucose (G1) and maltose (G
2) produce maltotriose (G3), maltotetraose (G4), maltopentaose (G5), maltohexaose (G6) and maltoheptaose (G7). However, it does not act on pullulan. (2) pH stability (Britton-Robinson buffer) In all cases, pH 6.5 at 40 ° C. for 30 minutes.
It shows a residual activity of 70% or more in the range of ~ 11.0. (3) Working temperature range and optimum working temperature Both work in a wide range of 20 to 80 ° C, and the optimum working temperature is 50 to 60 ° C. (4) Temperature stability The temperature was changed in a 50 mM sodium glycine hydroxide buffer solution (pH 10), and treatment was performed at each temperature for 30 minutes to examine the inactivation conditions. It showed residual activity, and showed about 60% residual activity even at 45 ° C. (5) Molecular weight In each case, the molecular weight measured by sodium dodecyl sulfate polyacrylamide gel electrophoresis was 55,000 ±.
5,000. (6) Isoelectric point In each case, the isoelectric point measured by the isoelectric focusing method is around 4.2.

【0033】(7)界面活性剤の影響 直鎖アルキルベンゼンスルホン酸ナトリウム、アルキル
硫酸エステルナトリウム塩、ポリオキシエチレンアルキ
ル硫酸エステルナトリウム塩、α−オレフィンスルホン
酸ナトリウム、α−スルホン化脂肪酸エステルナトリウ
ム、アルキルスルホン酸ナトリウム、SDS、石鹸及び
ソフタノール等の各種界面活性剤0.1%溶液中で、p
H10、30℃で30分間処理しても、いずれも殆ど活
性阻害を受けない(活性残存率90%以上)。 (8)金属塩の影響 各種金属塩と共存させて、pH10、30℃で30分間
処理してその影響を調べた。K38は、1mMのMn2+
により阻害され(阻害率約75%)、1mMのSr 2+
びCd2+により若干阻害される(阻害率約30%)。K
36は、1mMのMn2+により阻害され(阻害率約95
%)、1mMのHg2+、Be2+及びCd2+により若干阻害
される(阻害率30〜40%)。
(7) Influence of a surfactant Sodium linear alkyl benzene sulfonate, alkyl
Sulfuric acid ester sodium salt, polyoxyethylene alkyl
Sodium sulfate, α-olefin sulfone
Sodium, α-sulfonated fatty acid ester sodium
, Sodium alkyl sulfonate, SDS, soap and
In a 0.1% solution of various surfactants such as sophthanol, p
H10, 30 ° C for 30 min.
It does not suffer from sex inhibition (activity residual rate 90% or more). (8) Influence of metal salts Coexist with various metal salts at pH 10, 30 ° C for 30 minutes
Processing and examining the effects. K38 is 1 mM Mn2+
(Inhibition rate about 75%), 1 mM Sr 2+Passing
And Cd2+(Inhibition rate about 30%). K
36 is 1 mM Mn2+(Inhibition rate of about 95
%) 1 mM Hg2+, Be2+And Cd2+Slightly inhibited by
(Inhibition rate 30-40%).

【0034】実施例1 液化型α−アミラーゼ遺伝子の
クローニング KSM−K38株の菌体からSaitoとMiuraの方法(Bioc
him. Biophys. Acta, 72, 619, 1961)の方法によって
抽出した染色体DNAを鋳型とし、プライマーK38U
S(配列番号19)及びK38DH(配列番号20)を
用いて、PCR反応によって配列番号1に示されるアミ
ノ酸配列を有する液化型アルカリα−アミラーゼ(以下
K38AMYと記載)をコードする遺伝子断片(約1.
5kb)を増幅した。これを制限酵素SalIによって
切断後、発現ベクターpHSP64(特開平6−217
781)のSalI−SmaI部位に挿入することによ
って、pHSP64に含まれるBacillus sp. KSM-64 (F
ERM P-10482)株のアルカリセルラーゼ遺伝子に由来する
強力プロモーターの下流に、K38AMYの構造遺伝子
が結合した組換えプラスミドpHSP−K38を構築し
た(図1)。また、同様にBacillus sp. KSM-AP1378 (F
ERM BP-3048)株(特開平9−336392)から抽出し
た染色体DNAを鋳型とし、プライマーLAUS(配列
番号21)とLADH(配列番号22)を用いたPCR
反応によって増幅した配列番号2に示されるアミノ酸配
列を有する液化型α−アミラーゼ(以下,LAMYと記
載)をコードする遺伝子断片(約1.5kb)を、上記
と同様に発現ベクターpHSP64のSalI−Sma
I部位に挿入することによって、組換えプラスミドpH
SP−LAMYを構築した(図1)。
Example 1 Liquefied α-Amylase Gene
Cloning From the cells of KSM-K38 strain, the method of Saito and Miura (Bioc
him. Biophys. Acta, 72, 619, 1961) and using the chromosomal DNA extracted as a template, primer K38U
Using S (SEQ ID NO: 19) and K38DH (SEQ ID NO: 20), a gene fragment encoding a liquefied alkaline α-amylase (hereinafter referred to as K38AMY) having the amino acid sequence shown in SEQ ID NO: 1 by PCR reaction (about 1) .
5 kb) was amplified. After digestion with the restriction enzyme SalI , the expression vector pHSP64 (JP-A-6-217) is used.
781) into the SalI -SmaI site to obtain Bacillus sp. KSM-64 (F
A recombinant plasmid pHSP-K38 having a structural gene of K38AMY bound thereto was constructed downstream of a strong promoter derived from the alkaline cellulase gene of ERM P-10482) strain (FIG. 1). Similarly, Bacillus sp. KSM-AP1378 (F
PCR using primers LAUS (SEQ ID NO: 21) and LADH (SEQ ID NO: 22) with chromosomal DNA extracted from ERM BP-3048) strain (Japanese Unexamined Patent Publication No. 9-336392) as a template.
Liquefying α- amylase having the amino acid sequence shown in SEQ ID NO: 2 was amplified by the reaction (hereinafter, described as LAMY) gene fragment encoding a (about 1.5 kb), in the same manner as described above for the expression vector pHSP64 Sal I- Sma
I site, the recombinant plasmid pH
SP-LAMY was constructed (FIG. 1).

【0035】実施例2 変異K38AMY遺伝子の調製
−1 部位特異的変異には宝酒造社のSite-Directed Mutagene
sis System Mutan-Super Express Kmキットを用いた。
まず、実施例1で得られた組換えプラスミドpHSP−
K38を鋳型とし、プライマーCLUBG(配列番号2
3)及びK38DH(配列番号20)を用いてPCR反
応を行うことによって、KSM−64株由来の強力プロ
モーターの上流から液化型アルカリα−アミラーゼ遺伝
子の下流までの約2.1kbの断片を増幅させ、これを
上記キットに付属のプラスミドベクターpKF19kの
SmaI部位に挿入し、変異導入用組換えプラスミドp
KF19−K38を構築した(図2)。
Example 2 Preparation of Mutant K38AMY Gene
-1 Site-Directed Mutagene by Takara Shuzo Co., Ltd.
The sis System Mutan-Super Express Km kit was used.
First, the recombinant plasmid pHSP- obtained in Example 1 was used.
Using K38 as a template, primer CLUBG (SEQ ID NO: 2)
3) and a PCR reaction using K38DH (SEQ ID NO: 20) to amplify an approximately 2.1 kb fragment from the upstream of the strong promoter derived from the KSM-64 strain to the downstream of the liquefied alkaline α-amylase gene. And the plasmid vector pKF19k attached to the above kit.
Inserted into the Sma I site, the recombinant plasmid p
KF19-K38 was constructed (FIG. 2).

【0036】次に、配列番号6〜15に示した各種の部
位特異的変異導入用オリゴヌクレオチドプライマーをT
4DNAキナーゼによって5’リン酸化した後、これと
上記のpKF19−K38を用いて、キットの方法に従
って変異導入反応を行い、反応産物によって大腸菌MV
1184株(コンピテントセルMV1184、宝酒造社
製)の形質転換を行った。この結果得られた形質転換体
から組換えプラスミドを抽出し、塩基配列の解析を行っ
て変異の確認を行った。
Next, various oligonucleotides for site-directed mutagenesis shown in SEQ ID NOs: 6 to 15 were
After 5 ′ phosphorylation by 4DNA kinase, a mutagenesis reaction was carried out using this and pKF19-K38 according to the method of the kit, and Escherichia coli MV was determined by the reaction product.
Transformation of 1184 strain (competent cell MV1184, manufactured by Takara Shuzo) was performed. A recombinant plasmid was extracted from the resulting transformant, and the nucleotide sequence was analyzed to confirm the mutation.

【0037】また、変異導入した遺伝子は、上記と同様
にして、発現プロモーター領域と変異K38AMY遺伝
子部分を再度pKF19kのSmaI部位に挿入するこ
とにより、異なる変異を導入する際の鋳型プラスミドと
なり、上記と同様の方法によって更に別の変異を導入し
た。
Further, gene introduced mutation, in the same manner as described above, by inserting the Sma I site of pKF19k expression promoter region and a mutant K38AMY gene portion again becomes a template plasmid upon introducing different mutations, the Still another mutation was introduced in the same manner as described above.

【0038】得られた各変異組換えプラスミドを鋳型と
し、プライマーCLUBG(配列番号23)とK38D
H(配列番号20)を用いてPCR反応を行うことによ
って、各変異K38AMY遺伝子断片を増幅させ、これ
SalIによって切断した後、発現ベクターpHSP
64(特開平6−217781)のSalI−Sma
部位に挿入して、変異K38AMY生産用プラスミドを
構築した(図1)。
Using each of the obtained mutant recombinant plasmids as a template, primers CLUBG (SEQ ID NO: 23) and K38D
H (SEQ ID NO: 20) to perform a PCR reaction to amplify each mutant K38AMY gene fragment, cut it with SalI , and then use the expression vector pHSP
Sal I- Sma I 64 (JP-A-6-217881).
A plasmid for producing mutant K38AMY was constructed by insertion into the site (FIG. 1).

【0039】実施例3 変異K38AMY遺伝子の調製
−2(LAMY遺伝子とのキメラ) K38AMY遺伝子のN末領域をLAMY遺伝子の相当
する領域と置換する変異にはリコンビナントPCR法を
用いた(図3)。まず、実施例1で得られた組換えプラ
スミドpHSP−K38を鋳型とし、プライマーK38
DH(配列番号20)及びLA−K38(配列番号1
7)を用いてPCR反応を行うことによって、配列番号
1に示されるK38AMYのアミノ酸配列のGln20
からC末下流までの配列をコードする断片を増幅した。
一方、組換えプラスミドpHSP−LAMYを鋳型と
し、プライマーCLUBG(配列番号23)とLA−K
38R(配列番号18)を用いたPCR反応によって、
強力プロモーターの上流から、配列番号2のLAMYの
アミノ酸配列の21番目のGlyまでをコードする遺伝
子断片を増幅させた。次に、得られた両DNA断片とプ
ライマーCLUBG(配列番号23)とK38DH(配
列番号20)を用いた2回目のPCR反応を行うことに
よって、末端にプライマーLA−K38(配列番号1
7)及びLA−K38R(配列番号18)に由来する相
補的な配列を持つ両断片が結合し、強力プロモーターの
下流にLAMYの1番目のHisから21番目のGly
までをコードする領域に続いてK38AMYのGln2
0以降C末までをコードする領域が結合した置換変異酵
素(LA−K38AMYと略する)をコードする遺伝子
断片(約2.1kb)が増幅された。これをSalIに
よって切断した後、発現ベクターpHSP64(特開平
6−217781)のSalI−SmaI部位に挿入し
て、変異K38AMY生産用プラスミドを構築した(図
1)。
Example 3 Preparation of Mutant K38AMY Gene
-2 (chimera with LAMY gene) Recombinant PCR was used for the mutation that replaces the N-terminal region of the K38AMY gene with the corresponding region of the LAMY gene (Fig. 3). First, using the recombinant plasmid pHSP-K38 obtained in Example 1 as a template, primer K38
DH (SEQ ID NO: 20) and LA-K38 (SEQ ID NO: 1)
By performing a PCR reaction using 7), Gln20 of the amino acid sequence of K38AMY shown in SEQ ID NO: 1
The fragment encoding the sequence from to the C-terminal downstream was amplified.
On the other hand, using the recombinant plasmid pHSP-LAMY as a template, primer CLUBG (SEQ ID NO: 23) and LA-K
By PCR reaction using 38R (SEQ ID NO: 18),
A gene fragment encoding from the upstream of the strong promoter to Gly at position 21 of the amino acid sequence of LAMY of SEQ ID NO: 2 was amplified. Next, by performing a second PCR reaction using both the obtained DNA fragments, the primer CLUBG (SEQ ID NO: 23) and K38DH (SEQ ID NO: 20), the primer LA-K38 (SEQ ID NO: 1) was added to the end.
7) and both fragments having complementary sequences derived from LA-K38R (SEQ ID NO: 18) bind to each other, and downstream of the strong promoter, from the 1st His to 21st Gly of LAMY.
Followed by Gln2 of K38AMY
A gene fragment (about 2.1 kb) encoding a substitution mutant enzyme (abbreviated as LA-K38AMY) to which a region encoding from 0 to the C-terminal was bound was amplified. This was cut with Sal I, and inserted into the Sal I- Sma I site of the expression vector pHSP64 (Japanese Patent Laid-Open 6-217781), were constructed mutant K38AMY for production plasmid (Figure 1).

【0040】実施例4 変異液化型アルカリα−アミラ
ーゼの生産 実施例2及び3で得られた各種変異K38AMY生産用
プラスミドをプロトプラスト法 (Mol. Gen. Genet., 16
8, 111, 1979)により枯草菌ISW1214株(leuA me
tB5 hsdM1)に導入し、得られた組換え枯草菌を液体培
地(コーンスティープリカー、8%;肉エキス、1%;
リン酸1カリウム、0.02%;マルトース、5%;塩
化カルシウム、5mM;テトラサイクリン、15μg/
mL)で30℃で3日間培養した。得られた培養上清液
をTris−HCl緩衝液(pH7.0)にて透析し、
同緩衝液にて平衡化したDEAE−トヨパール650M
カラムに吸着させ、塩化ナトリウムの濃度勾配で溶出さ
せた。この溶出液を10mMグリシン緩衝液(pH1
0.0)にて透析することにより、各変異K38AMY
の精製酵素を得た。
Example 4 Mutually liquefied alkali α-amilla
Production of various K38AMY mutant plasmids obtained in Examples 2 and 3 was carried out by the protoplast method (Mol. Gen. Genet., 16).
8, 111, 1979) by Bacillus subtilis ISW1214 strain (leu A me
t B5 hsd M1), and the resulting recombinant Bacillus subtilis was transformed into a liquid medium (corn steep liquor, 8%; meat extract, 1%;
Potassium phosphate, 0.02%; maltose, 5%; calcium chloride, 5 mM; tetracycline, 15 μg /
(ml) at 30 ° C for 3 days. The obtained culture supernatant was dialyzed against Tris-HCl buffer (pH 7.0),
DEAE-Toyopearl 650M equilibrated with the same buffer
The column was adsorbed and eluted with a concentration gradient of sodium chloride. This eluate was added to a 10 mM glycine buffer (pH 1).
0.0), each mutant K38AMY
Was obtained.

【0041】実施例5 耐熱性の検定−1 実施例1、2、4に記載の方法により、配列番号1にお
ける11番目のTyrをPheに置換した酵素(Y11
Fと略する)、49番目のAsnをSerに置換した酵
素(N49Sと略する)、84番目のGluをGlnに
置換した酵素(E84Qと略する)、144番目のSe
rをProに置換した酵素(S144Pと略する)、1
67番目のGlnをGluに置換した酵素(Q167E
と略する)、169番目のTyrをLysに置換した酵
素(Y169Kと略する)、178番目のAlaをGl
nに置換した酵素(A178Qと略する)、188番目
のGluをAspに置換した酵素(E188Dと略す
る)、190番目のAsnをPheに置換した酵素(N
190Fと略する)、及び209番目のGlnをVal
に置換した酵素(Q209Vと略する)の精製標品を取
得し、次に示す手法で耐熱性を検定した。対照として野
生型K38AMYを用いた。
Example 5 Assay for heat resistance- 1 According to the method described in Examples 1, 2, and 4, an enzyme in which Tyr at position 11 in SEQ ID NO: 1 was substituted with Phe (Y11
F), an enzyme in which the 49th Asn is substituted with Ser (abbreviated as N49S), an enzyme in which the 84th Glu is substituted with Gln (abbreviated as E84Q), and the 144th Se.
an enzyme in which r is replaced with Pro (abbreviated as S144P), 1
Enzyme in which Gln at position 67 was replaced with Glu (Q167E
169th Tyr was replaced with Lys (abbreviated as Y169K), 178th Ala was replaced with Gl
n-substituted enzyme (abbreviated as A178Q), 188th Glu was substituted with Asp (abbreviated as E188D), and 190th Asn was substituted with Phe (N
190F), and 209th Gln is Val
A purified sample of the enzyme (abbreviated as Q209V) was obtained and its heat resistance was assayed by the following method. Wild-type K38AMY was used as a control.

【0042】あらかじめ50mMグリシン緩衝液(pH
10.0)を50℃にてプレインキュベートした中に、
約1.2U/mLとなるよう酵素を添加後、30分後に
サンプリングし、上記実施例に示す方法で残存するアミ
ラーゼ活性を測定した。それぞれのスタート時の活性を
100%として相対活性を求め、アミラーゼ残存活性と
した。結果を表2に示したが、野生型K38AMYでは
30分後の残存活性が、15%まで減少したことに対
し、いずれの変異酵素も野生型に比べて高い残存活性を
示した。
A 50 mM glycine buffer (pH
10.0) at 50 ° C.
After adding the enzyme to about 1.2 U / mL, sampling was performed 30 minutes later, and the remaining amylase activity was measured by the method described in the above example. The relative activity was determined by defining the activity at the start as 100%, and defined as the amylase residual activity. The results are shown in Table 2, where the residual activity of the wild-type K38AMY after 30 minutes was reduced to 15%, whereas all mutant enzymes showed higher residual activities than the wild-type.

【0043】[0043]

【表2】 [Table 2]

【0044】実施例6 耐熱性の検定−2 実施例5に示した変異のうち、Q167E、Y169
K、N190F及びQ209Vを次の様に組み合わせた
変異酵素を実施例1、2、4に記載の方法により作製し
た。 Q167E/Y169K(配列番号16のプライマー使
用、QEYKと略する) N190F/Q209V(NFQVと略する) Q167E/Y169K/N190F/Q209V(Q
EYK/NFQVと略する)
Example 6 Test of heat resistance-2 Among the mutations shown in Example 5, Q167E and Y169
Mutant enzymes in which K, N190F and Q209V were combined as follows were prepared by the methods described in Examples 1, 2 and 4. Q167E / Y169K (using the primer of SEQ ID NO: 16, abbreviated as QEYK) N190F / Q209V (abbreviated as NFQV) Q167E / Y169K / N190F / Q209V (Q
EYK / NFQV)

【0045】これらについて実施例5と同様の手法によ
り耐熱性を検定した。ただし、熱処理の温度は55℃と
し、対照として、Q167E、Y169K、N190F
及びQ209Vを用いた。この結果、表3に示した様
に、いずれの変異も、組み合わせによる耐熱性の向上が
認められ、4種類の変異を組み合わせたQEYK/NF
QVは55℃においても30分後に85%の残存活性を
示した。
The heat resistance of each of them was tested in the same manner as in Example 5. However, the temperature of the heat treatment was 55 ° C., and Q167E, Y169K, N190F
And Q209V. As a result, as shown in Table 3, all the mutations showed an improvement in heat resistance by the combination, and the QEYK / NF obtained by combining the four types of mutations
QV showed 85% residual activity after 30 minutes even at 55 ° C.

【0046】[0046]

【表3】 [Table 3]

【0047】実施例7 耐熱性の検定−3 実施例6に示した変異NFQVに、実施例5で示した変
異とS144Pを組み合わせた変異酵素、更にこれに1
6番目のGluをProに置換する変異(E16Pと略
する)と組み合せた変異酵素を実施例1、2、4に記載
の方法により作製した。 S144P/NFQV(SP/NFQVと略する) E16P/S144P/NFQV(EPSP/NFQV
と略する) これらについて実施例5と同様の手法(50℃)により
耐熱性を検定した。この結果、表4に示した様に、SP
/NFQVに対してE16Pを組み合わせることで耐熱
性の向上が認められた。
Example 7 Assay of thermostability-3 Mutant enzyme obtained by combining the mutation shown in Example 6 with the mutation shown in Example 5 and S144P in addition to the mutant NFQV shown in Example 6,
Mutant enzymes combined with a mutation (abbreviated as E16P) that substitutes Glu at position 6 for Pro were produced by the methods described in Examples 1, 2, and 4. S144P / NFQV (abbreviated as SP / NFQV) E16P / S144P / NFQV (EPSP / NFQV
These were tested for heat resistance in the same manner as in Example 5 (50 ° C.). As a result, as shown in Table 4, SP
An improvement in heat resistance was observed by combining E16P with / NFQV.

【0048】[0048]

【表4】 [Table 4]

【0049】実施例8 耐熱性の検定−4 実施例4に示した変異のうちQEYK/NFQVに、配
列番号1における107番目のMetをLeuに置換し
た変異(M107Lと略する)、205番目のHisを
Argに置換した変異(H205Rと略する)及び実施
例3で示した変異のうちN49Sを組み合わせた次のよ
うな変異酵素を実施例1、2、4に記載の方法により作
製した。 M107L/QEYK/NFQV(ML/QEYK/N
FQVと略する) N49S/M107L/QEYK/NFQV(NSML
/QEYK/NFQVと略する) N49S/M107L/H205R/QEYK/NFQ
V(NSMLHR/QEYK/NFQVと略する) これらについて実施例5と同様の手法により耐熱性を検
定した。ただし、熱処理の温度は60℃とした。この結
果、ML/QEYK/NFQVにN49S、更にはH2
05Rを組み合わせることによって耐熱性は相加的に向
上し、NSMLHR/QEYK/NFQVは60℃にお
いても30分後に75%の残存活性を示した(表5)。
Example 8 Assay of heat resistance-4 Among the mutations shown in Example 4, QEYK / NFQV had a mutation in which Met at position 107 in SEQ ID NO: 1 was replaced with Leu (abbreviated as M107L), and a mutation at position 205 The following mutant enzymes combining N49S among the mutations in which His was replaced with Arg (abbreviated as H205R) and the mutations shown in Example 3 were produced by the methods described in Examples 1, 2, and 4. M107L / QEYK / NFQV (ML / QEYK / N
N49S / M107L / QEYK / NFQV (NSML)
/ QEYK / NFQV) N49S / M107L / H205R / QEYK / NFQ
V (abbreviated as NSMLHR / QEYK / NFQV) The heat resistance of these was tested in the same manner as in Example 5. However, the temperature of the heat treatment was 60 ° C. As a result, ML / QEYK / NFQV has N49S and H2
By combining 05R, the heat resistance was additionally improved, and NSMLHR / QEYK / NFQV showed 75% residual activity after 30 minutes even at 60 ° C (Table 5).

【0050】[0050]

【表5】 [Table 5]

【0051】実施例9 耐熱性の検定−5 実施例1、3、4に示した方法によって、K38AMY
のAsp1から19番目のGlyまでの配列がLAMY
の1番目のHisから21番目のGlyまでの配列と置
換した変異酵素LA−K38AMYを取得した。この酵
素の耐熱性を実施例5の方法によって検定した結果、表
6に示した様に、置換による耐熱性の向上が認められ
た。
Example 9 Test for heat resistance-5 According to the method described in Examples 1, 3, and 4, K38AMY was used.
Sequence from Asp1 to Gly at position 19 is LAMY
The mutant enzyme LA-K38AMY was obtained by substituting the sequence from the 1st His to the 21st Gly. As a result of testing the heat resistance of this enzyme by the method of Example 5, as shown in Table 6, improvement of the heat resistance by substitution was observed.

【0052】[0052]

【表6】 [Table 6]

【0053】実施例10 耐熱性の検定−6 実施例6に示した変異酵素QEYK/NFQVの遺伝子
について、実施例1及び3と同様の方法により、1番目
のAspから19番目のGlyまでの配列がLAMYの
1番目のHisから21番目のGlyまでの配列と置換
する変異を導入した。この遺伝子を用いて実施例4の方
法により得られた変異酵素LA−K38AMY/QEY
K/NFQVについて実施例8と同様の手法により耐熱
性を検定した(熱処理は60℃)。この結果、組み合わ
せによって耐熱性は相加的に向上し、LA−K38AM
Y/QEYK/NFQVは60℃に於いても30分後に
63%の残存活性を示した(表7)。
Example 10 Assay of thermostability -6 The sequence of the mutant enzyme QEYK / NFQV shown in Example 6 from the first Asp to the 19th Gly by the same method as in Examples 1 and 3. Introduced a mutation that replaces the sequence from the first His to the twenty-first Gly of LAMY. Mutant enzyme LA-K38AMY / QEY obtained by the method of Example 4 using this gene
The heat resistance of K / NFQV was tested in the same manner as in Example 8 (heat treatment was 60 ° C.). As a result, the heat resistance is additively improved by the combination, and LA-K38AM
Y / QEYK / NFQV showed 63% residual activity after 30 minutes even at 60 ° C (Table 7).

【0054】[0054]

【表7】 [Table 7]

【0055】実施例11 自動食器洗浄機用洗浄剤組成
表8に示す配合で自動食器洗浄機用洗浄剤組成物を製造
し、本洗浄剤に各変異酵素を配合して洗浄試験を行っ
た。この結果、同一活性値の酵素を添加した場合、変異
酵素は野生型酵素と比較して優れた洗浄効果を示した。
Example 11 Composition of detergent for automatic dishwasher
A detergent composition for an automatic dishwasher was manufactured with the formulation shown in Table 8, and a washing test was conducted by blending each mutant enzyme with the detergent. As a result, when the enzyme having the same activity value was added, the mutant enzyme showed an excellent washing effect as compared with the wild-type enzyme.

【0056】[0056]

【表8】 [Table 8]

【0057】[0057]

【発明の効果】本発明の変異α−アミラーゼは、高いキ
レート剤耐性の優れた特性及びアルカリ領域における高
い比活性を有し、更に熱に対する優れた安定性を有す
る。従って、自動食器洗浄機用洗浄剤、衣料用洗浄剤、
澱粉液化、糖化用組成物、繊維糊抜き剤として有用であ
る。
The mutant α-amylase of the present invention has excellent properties of high chelating agent resistance, high specific activity in an alkaline region, and also has excellent heat stability. Therefore, detergents for automatic dishwashers, clothing detergents,
It is useful as a starch liquefaction, saccharification composition, and fiber desizing agent.

【0058】[0058]

【配列表】 SEQUENCE LISTING <110>KAO CORPORATION <120>New mutant alpha-amylase <130>P02591206 <150>JP P1999-163569 <151>1999-06-10 <160>23 <210>1 <211>480 <212>PRT <213>Bacillus sp. KSM-K38 <400>1 Asp Gly Leu Asn Gly Thr Met Met Gln Tyr Tyr Glu Trp His Leu Glu 5 10 15 Asn Asp Gly Gln His Trp Asn Arg Leu His Asp Asp Ala Ala Ala Leu 20 25 30 Ser Asp Ala Gly Ile Thr Ala Ile Trp Ile Pro Pro Ala Tyr Lys Gly 35 40 45 Asn Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu 50 55 60 Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys 65 70 75 80 Ala Gln Leu Glu Arg Ala Ile Gly Ser Leu Lys Ser Asn Asp Ile Asn 85 90 95 Val Tyr Gly Asp Val Val Met Asn His Lys Met Gly Ala Asp Phe Thr 100 105 110 Glu Ala Val Gln Ala Val Gln Val Asn Pro Thr Asn Arg Trp Gln Asp 115 120 125 Ile Ser Gly Ala Tyr Thr Ile Asp Ala Trp Thr Gly Phe Asp Phe Ser 130 135 140 Gly Arg Asn Asn Ala Tyr Ser Asp Phe Lys Trp Arg Trp Phe His Phe 145 150 155 160 Asn Gly Val Asp Trp Asp Gln Arg Tyr Gln Glu Asn His Ile Phe Arg 165 170 175 Phe Ala Asn Thr Asn Trp Asn Trp Arg Val Asp Glu Glu Asn Gly Asn 180 185 190 Tyr Asp Tyr Leu Leu Gly Ser Asn Ile Asp Phe Ser His Pro Glu Val 195 200 205 Gln Asp Glu Leu Lys Asp Trp Gly Ser Trp Phe Thr Asp Glu Leu Asp 210 215 220 Leu Asp Gly Tyr Arg Leu Asp Ala Ile Lys His Ile Pro Phe Trp Tyr 225 230 235 240 Thr Ser Asp Trp Val Arg His Gln Arg Asn Glu Ala Asp Gln Asp Leu 245 250 255 Phe Val Val Gly Glu Tyr Trp Lys Asp Asp Val Gly Ala Leu Glu Phe 260 265 270 Tyr Leu Asp Glu Met Asn Trp Glu Met Ser Leu Phe Asp Val Pro Leu 275 280 285 Asn Tyr Asn Phe Tyr Arg Ala Ser Gln Gln Gly Gly Ser Tyr Asp Met 290 295 300 Arg Asn Ile Leu Arg Gly Ser Leu Val Glu Ala His Pro Met His Ala 305 310 315 320 Val Thr Phe Val Asp Asn His Asp Thr Gln Pro Gly Glu Ser Leu Glu 325 330 335 Ser Trp Val Ala Asp Trp Phe Lys Pro Leu Ala Tyr Ala Thr Ile Leu 340 345 350 Thr Arg Glu Gly Gly Tyr Pro Asn Val Phe Tyr Gly Asp Tyr Tyr Gly 355 360 365 Ile Pro Asn Asp Asn Ile Ser Ala Lys Lys Asp Met Ile Asp Glu Leu 370 375 380 Leu Asp Ala Arg Gln Asn Tyr Ala Tyr Gly Thr Gln His Asp Tyr Phe 385 390 395 400 Asp His Trp Asp Val Val Gly Trp Thr Arg Glu Gly Ser Ser Ser Arg 405 410 415 Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asn Gly Pro Gly Gly Ser 420 425 430 Lys Trp Met Tyr Val Gly Arg Gln Asn Ala Gly Gln Thr Trp Thr Asp 435 440 445 Leu Thr Gly Asn Asn Gly Ala Ser Val Thr Ile Asn Gly Asp Gly Trp 450 455 460 Gly Glu Phe Phe Thr Asn Gly Gly Ser Val Ser Val Tyr Val Asn Gln 465 470 475 480[Sequence List] SEQUENCE LISTING <110> KAO CORPORATION <120> New mutant alpha-amylase <130> P02591206 <150> JP P1999-163569 <151> 1999-06-10 <160> 23 <210> 1 <211> 480 <212> PRT <213> Bacillus sp.KSM-K38 <400> 1 Asp Gly Leu Asn Gly Thr Met Met Gln Tyr Tyr Glu Trp His Leu Glu 5 10 15 Asn Asp Gly Gln His Trp Asn Arg Leu His Asp Asp Ala Ala Ala Leu 20 25 30 Ser Asp Ala Gly Ile Thr Ala Ile Trp Ile Pro Pro Ala Tyr Lys Gly 35 40 45 Asn Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu 50 55 60 Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys 65 70 75 80 Ala Gln Leu Glu Arg Ala Ile Gly Ser Leu Lys Ser Asn Asp Ile Asn 85 90 95 Val Tyr Gly Asp Val Val Met Asn His Lys Met Gly Ala Asp Phe Thr 100 105 110 Glu Ala Val Gln Ala Val Gln Val Asn Pro Thr Asn Arg Trp Gln Asp 115 120 125 Ile Ser Gly Ala Tyr Thr Ile Asp Ala Trp Thr Gly Phe Asp Phe Ser 130 135 140 Gly Arg Asn Asn Ala Tyr Ser Asp Phe Lys Trp Arg Trp Phe His Phe 145 150 155 160 Asn Gly Val Asp Trp Asp Gln Arg Tyr Gln Glu Asn Hi s Ile Phe Arg 165 170 175 Phe Ala Asn Thr Asn Trp Asn Trp Arg Val Asp Glu Glu Asn Gly Asn 180 185 190 Tyr Asp Tyr Leu Leu Gly Ser Asn Ile Asp Phe Ser His Pro Glu Val 195 200 205 Gln Asp Glu Leu Lys Asp Trp Gly Ser Trp Phe Thr Asp Glu Leu Asp 210 215 220 Leu Asp Gly Tyr Arg Leu Asp Ala Ile Lys His Ile Pro Phe Trp Tyr 225 230 235 240 Thr Ser Asp Trp Val Arg His Gln Arg Asn Glu Ala Asp Gln Asp Leu 245 250 255 Phe Val Val Gly Glu Tyr Trp Lys Asp Asp Val Gly Ala Leu Glu Phe 260 265 270 Tyr Leu Asp Glu Met Asn Trp Glu Met Ser Leu Phe Asp Val Pro Leu 275 280 285 Asn Tyr Asn Phe Tyr Arg Ala Ser Gln Gln Gly Gly Ser Tyr Asp Met 290 295 300 300 Arg Asn Ile Leu Arg Gly Ser Leu Val Glu Ala His Pro Met His Ala 305 310 315 320 Val Thr Phe Val Asp Asn His Asp Thr Gln Pro Gly Glu Ser Leu Glu 325 330 335 Ser Trp Val Ala Asp Trp Phe Lys Pro Leu Ala Tyr Ala Thr Ile Leu 340 345 350 Thr Arg Glu Gly Gly Tyr Pro Asn Val Phe Tyr Gly Asp Tyr Tyr Gly 355 360 365 Ile Pro Asn Asp Asn Ile Ser Ala Lys Lys Asp Met Ile As p Glu Leu 370 375 380 Leu Asp Ala Arg Gln Asn Tyr Ala Tyr Gly Thr Gln His Asp Tyr Phe 385 390 395 400 400 Asp His Trp Asp Val Val Gly Trp Thr Arg Glu Gly Ser Ser Ser Arg 405 410 415 Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asn Gly Pro Gly Gly Ser 420 425 430 Lys Trp Met Tyr Val Gly Arg Gln Asn Ala Gly Gln Thr Trp Thr Asp 435 440 445 Leu Thr Gly Asn Asn Gly Ala Ser Val Thr Ile Asn Gly Asp Gly Trp 450 455 460 Gly Glu Phe Phe Thr Asn Gly Gly Ser Val Ser Val Tyr Val Asn Gln 465 470 475 480

【0059】 <210>2 <211>485 <212>PRT <213>Bacillus sp. KSM-AP1378 <400>2 His His Asn Gly Thr Asn Gly Thr Met Met Gln Tyr Phe Glu Trp His 5 10 15 Leu Pro Asn Asp Gly Asn His Trp Asn Arg Leu Arg Asp Asp Ala Ala 20 25 30 Asn Leu Lys Ser Lys Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Trp 35 40 45 Lys Gly Thr Ser Gln Asn Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr 50 55 60 Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly 65 70 75 80 Thr Arg Ser Gln Leu Gln Gly Ala Val Thr Ser Leu Lys Asn Asn Gly 85 90 95 Ile Gln Val Tyr Gly Asp Val Val Met Asn His Lys Gly Gly Ala Asp 100 105 110 Gly Thr Glu Met Val Asn Ala Val Glu Val Asn Arg Ser Asn Arg Asn 115 120 125 Gln Glu Ile Ser Gly Glu Tyr Thr Ile Glu Ala Trp Thr Lys Phe Asp 130 135 140 Phe Pro Gly Arg Gly Asn Thr His Ser Asn Phe Lys Trp Arg Trp Tyr 145 150 155 160 His Phe Asp Gly Thr Asp Trp Asp Gln Ser Arg Gln Leu Gln Asn Lys 165 170 175 Ile Tyr Lys Phe Arg Gly Thr Gly Lys Ala Trp Asp Trp Glu Val Asp 180 185 190 Ile Glu Asn Gly Asn Tyr Asp Tyr Leu Met Tyr Ala Asp Ile Asp Met 195 200 205 Asp His Pro Glu Val Ile Asn Glu Leu Arg Asn Trp Gly Val Trp Tyr 210 215 220 Thr Asn Thr Leu Asn Leu Asp Gly Phe Arg Ile Asp Ala Val Lys His 225 230 235 240 Ile Lys Tyr Ser Tyr Thr Arg Asp Trp Leu Thr His Val Arg Asn Thr 245 250 255 Thr Gly Lys Pro Met Phe Ala Val Ala Glu Phe Trp Lys Asn Asp Leu 260 265 270 Ala Ala Ile Glu Asn Tyr Leu Asn Lys Thr Ser Trp Asn His Ser Val 275 280 285 Phe Asp Val Pro Leu His Tyr Asn Leu Tyr Asn Ala Ser Asn Ser Gly 290 295 300 Gly Tyr Phe Asp Met Arg Asn Ile Leu Asn Gly Ser Val Val Gln Lys 305 310 315 320 His Pro Ile His Ala Val Thr Phe Val Asp Asn His Asp Ser Gln Pro 325 330 335 Gly Glu Ala Leu Glu Ser Phe Val Gln Ser Trp Phe Lys Pro Leu Ala 340 345 350 Tyr Ala Leu Ile Leu Thr Arg Glu Gln Gly Tyr Pro Ser Val Phe Tyr 355 360 365 Gly Asp Tyr Tyr Gly Ile Pro Thr His Gly Val Pro Ser Met Lys Ser 370 375 380 Lys Ile Asp Pro Leu Leu Gln Ala Arg Gln Thr Tyr Ala Tyr Gly Thr 385 390 395 400 Gln His Asp Tyr Phe Asp His His Asp Ile Ile Gly Trp Thr Arg Glu 405 410 415 Gly Asp Ser Ser His Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asp 420 425 430 Gly Pro Gly Gly Asn Lys Trp Met Tyr Val Gly Lys His Lys Ala Gly 435 440 445 Gln Val Trp Arg Asp Ile Thr Gly Asn Arg Ser Gly Thr Val Thr Ile 450 455 460 Asn Ala Asp Gly Trp Gly Asn Phe Thr Val Asn Gly Gly Ala Val Ser 465 470 475 480 Val Trp Val Lys Gln 485<210> 2 <211> 485 <212> PRT <213> Bacillus sp.KSM-AP1378 <400> 2 His His Asn Gly Thr Asn Gly Thr Met Met Gln Tyr Phe Glu Trp His 5 10 15 Leu Pro Asn Asp Gly Asn His Trp Asn Arg Leu Arg Asp Asp Ala Ala 20 25 30 Asn Leu Lys Ser Lys Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Trp 35 40 45 Lys Gly Thr Ser Gln Asn Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr 50 55 60 Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly 65 70 75 80 Thr Arg Ser Gln Leu Gln Gly Ala Val Thr Ser Leu Lys Asn Asn Gly 85 90 95 Ile Gln Val Tyr Gly Asp Val Val Met Asn His Lys Gly Gly Ala Asp 100 105 110 Gly Thr Glu Met Val Asn Ala Val Glu Val Asn Arg Ser Asn Arg Asn 115 120 125 Gln Glu Ile Ser Gly Glu Tyr Thr Ile Glu Ala Trp Thr Lys Phe Asp 130 135 140 Phe Pro Gly Arg Gly Asn Thr His Ser Asn Phe Lys Trp Arg Trp Tyr 145 150 155 160 His Phe Asp Gly Thr Asp Trp Asp Gln Ser Arg Gln Leu Gln Asn Lys 165 170 175 Ile Tyr Lys Phe Arg Gly Thr Gly Lys Ala Trp Asp Trp Glu Val Asp 180 185 190 Ile Glu Asn Gly Asn Tyr Asp Tyr Leu Met Tyr Ala Asp Ile Asp Met 195 200 205 Asp His Pro Glu Val Ile Asn Glu Leu Arg Asn Trp Gly Val Trp Tyr 210 215 220 Thr Asn Thr Leu Asn Leu Asp Gly Phe Arg Ile Asp Ala Val Lys His 225 230 235 240 Ile Lys Tyr Ser Tyr Thr Arg Asp Trp Leu Thr His Val Arg Asn Thr 245 250 255 Thr Gly Lys Pro Met Phe Ala Val Ala Glu Phe Trp Lys Asn Asp Leu 260 265 270 Ala Ala Ile Glu Asn Tyr Leu Asn Lys Thr Ser Trp Asn His Ser Val 275 280 285 Phe Asp Val Pro Leu His Tyr Asn Leu Tyr Asn Ala Ser Asn Ser Gly 290 295 300 Gly Tyr Phe Asp Met Arg Asn Ile Leu Asn Gly Ser Val Val Gln Lys 305 310 315 320 His Pro Ile His Ala Val Thr Phe Val Asp Asn His Asp Ser Gln Pro 325 330 335 Gly Glu Ala Leu Glu Ser Phe Val Gln Ser Trp Phe Lys Pro Leu Ala 340 345 350 Tyr Ala Leu Ile Leu Thr Arg Glu Gln Gly Tyr Pro Ser Val Phe Tyr 355 360 365 Gly Asp Tyr Tyr Gly Ile Pro Thr His Gly Val Pro Ser Met Lys Ser 370 375 380 Lys Ile Asp Pro Leu Leu Gln Ala Arg Gln Thr Tyr Ala Tyr Gly Thr 385 390 395 400 400 Gln His Asp Tyr PheAsp His His Asp Ile Ile Gly Trp Thr Arg Glu 405 410 415 Gly Asp Ser Ser His Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asp 420 425 430 Gly Pro Gly Gly Asn Lys Trp Met Tyr Val Gly Lys His Lys Ala Gly 435 440 445 Gln Val Trp Arg Asp Ile Thr Gly Asn Arg Ser Gly Thr Val Thr Ile 450 455 460 Asn Ala Asp Gly Trp Gly Asn Phe Thr Val Asn Gly Gly Ala Val Ser 465 470 475 480 480 Val Trp Val Lys Gln 485

【0060】 <210>3 <211>1753 <212>DNA <213>Bacillus sp. KSM-K38 <220> <221>sig#peptide <222>(162)..(224) <220> <221>mat#peptide <222>(225)..(1664) <220> <221>CDS <222>(162)..(1664) <400>3 gtatgcgaaa cgatgcgcaa aactgcgcaa ctactagcac tcttcaggga ctaaaccacc 60 ttttttccaa aaatgacatc atataaacaa atttgtctac caatcactat ttaaagctgt 120 ttatgatata tgtaagcgtt atcattaaaa ggaggtattt g atg aga aga tgg gta 176 gta gca atg ttg gca gtg tta ttt tta ttt cct tcg gta gta gtt gca 224 gat gga ttg aac ggt acg atg atg cag tat tat gag tgg cat ttg gaa 272 Asp Gly Leu Asn Gly Thr Met Met Gln Tyr Tyr Glu Trp His Leu Glu 1 5 10 15 aac gac ggg cag cat tgg aat cgg ttg cac gat gat gcc gca gct ttg 320 Asn Asp Gly Gln His Trp Asn Arg Leu His Asp Asp Ala Ala Ala Leu 20 25 30 agt gat gct ggt att aca gct att tgg att ccg cca gcc tac aaa ggt 368 Ser Asp Ala Gly Ile Thr Ala Ile Trp Ile Pro Pro Ala Tyr Lys Gly 35 40 45 aat agt cag gcg gat gtt ggg tac ggt gca tac gat ctt tat gat tta 416 Asn Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu 50 55 60 gga gag ttc aat caa aag ggt act gtt cga acg aaa tac gga act aag 464 Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys 65 70 75 80 gca cag ctt gaa cga gct att ggg tcc ctt aaa tct aat gat atc aat 512 Ala Gln Leu Glu Arg Ala Ile Gly Ser Leu Lys Ser Asn Asp Ile Asn 85 90 95 gta tac gga gat gtc gtg atg aat cat aaa atg gga gct gat ttt acg 560 Val Tyr Gly Asp Val Val Met Asn His Lys Met Gly Ala Asp Phe Thr 100 105 110 gag gca gtg caa gct gtt caa gta aat cca acg aat cgt tgg cag gat 608 Glu Ala Val Gln Ala Val Gln Val Asn Pro Thr Asn Arg Trp Gln Asp 115 120 125 att tca ggt gcc tac acg att gat gcg tgg acg ggt ttc gac ttt tca 656 Ile Ser Gly Ala Tyr Thr Ile Asp Ala Trp Thr Gly Phe Asp Phe Ser 130 135 140 ggg cgt aac aac gcc tat tca gat ttt aag tgg aga tgg ttc cat ttt 704 Gly Arg Asn Asn Ala Tyr Ser Asp Phe Lys Trp Arg Trp Phe His Phe 145 150 155 160 aat ggt gtt gac tgg gat cag cgc tat caa gaa aat cat att ttc cgc 752 Asn Gly Val Asp Trp Asp Gln Arg Tyr Gln Glu Asn His Ile Phe Arg 165 170 175 ttt gca aat acg aac tgg aac tgg cga gtg gat gaa gag aac ggt aat 800 Phe Ala Asn Thr Asn Trp Asn Trp Arg Val Asp Glu Glu Asn Gly Asn 180 185 190 tat gat tac ctg tta gga tcg aat atc gac ttt agt cat cca gaa gta 848 Tyr Asp Tyr Leu Leu Gly Ser Asn Ile Asp Phe Ser His Pro Glu Val 195 200 205 caa gat gag ttg aag gat tgg ggt agc tgg ttt acc gat gag tta gat 896 Gln Asp Glu Leu Lys Asp Trp Gly Ser Trp Phe Thr Asp Glu Leu Asp 210 215 220 ttg gat ggt tat cgt tta gat gct att aaa cat att cca ttc tgg tat 944 Leu Asp Gly Tyr Arg Leu Asp Ala Ile Lys His Ile Pro Phe Trp Tyr 225 230 235 240 aca tct gat tgg gtt cgg cat cag cgc aac gaa gca gat caa gat tta 992 Thr Ser Asp Trp Val Arg His Gln Arg Asn Glu Ala Asp Gln Asp Leu 245 250 255 ttt gtc gta ggg gaa tat tgg aag gat gac gta ggt gct ctc gaa ttt 1040 Phe Val Val Gly Glu Tyr Trp Lys Asp Asp Val Gly Ala Leu Glu Phe 260 265 270 tat tta gat gaa atg aat tgg gag atg tct cta ttc gat gtt cca ctt 1088 Tyr Leu Asp Glu Met Asn Trp Glu Met Ser Leu Phe Asp Val Pro Leu 275 280 285 aat tat aat ttt tac cgg gct tca caa caa ggt gga agc tat gat atg 1136 Asn Tyr Asn Phe Tyr Arg Ala Ser Gln Gln Gly Gly Ser Tyr Asp Met 290 295 300 cgt aat att tta cga gga tct tta gta gaa gcg cat ccg atg cat gca 1184 Arg Asn Ile Leu Arg Gly Ser Leu Val Glu Ala His Pro Met His Ala 305 310 315 320 gtt acg ttt gtt gat aat cat gat act cag cca ggg gag tca tta gag 1232 Val Thr Phe Val Asp Asn His Asp Thr Gln Pro Gly Glu Ser Leu Glu 325 330 335 tca tgg gtt gct gat tgg ttt aag cca ctt gct tat gcg aca att ttg 1280 Ser Trp Val Ala Asp Trp Phe Lys Pro Leu Ala Tyr Ala Thr Ile Leu 340 345 350 acg cgt gaa ggt ggt tat cca aat gta ttt tac ggt gat tac tat ggg 1328 Thr Arg Glu Gly Gly Tyr Pro Asn Val Phe Tyr Gly Asp Tyr Tyr Gly 355 360 365 att cct aac gat aac att tca gct aaa aaa gat atg att gat gag ctg 1376 Ile Pro Asn Asp Asn Ile Ser Ala Lys Lys Asp Met Ile Asp Glu Leu 370 375 380 ctt gat gca cgt caa aat tac gca tat ggc acg cag cat gac tat ttt 1424 Leu Asp Ala Arg Gln Asn Tyr Ala Tyr Gly Thr Gln His Asp Tyr Phe 385 390 395 400 gat cat tgg gat gtt gta gga tgg act agg gaa gga tct tcc tcc aga 1472 Asp His Trp Asp Val Val Gly Trp Thr Arg Glu Gly Ser Ser Ser Arg 405 410 415 cct aat tca ggc ctt gcg act att atg tcg aat gga cct ggt ggt tcc 1520 Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asn Gly Pro Gly Gly Ser 420 425 430 aag tgg atg tat gta gga cgt cag aat gca gga caa aca tgg aca gat 1568 Lys Trp Met Tyr Val Gly Arg Gln Asn Ala Gly Gln Thr Trp Thr Asp 435 440 445 tta act ggt aat aac gga gcg tcc gtt aca att aat ggc gat gga tgg 1616 Leu Thr Gly Asn Asn Gly Ala Ser Val Thr Ile Asn Gly Asp Gly Trp 450 455 460 ggc gaa ttc ttt acg aat gga gga tct gta tcc gtg tac gtg aac caa 1664 Gly Glu Phe Phe Thr Asn Gly Gly Ser Val Ser Val Tyr Val Asn Gln 465 470 475 480 taacaaaaag ccttgagaag ggattcctcc ctaactcaag gctttcttta tgtcgcttag 1724 cttaacgctt ctacgacttt gaagcttta 1753<210> 3 <211> 1753 <212> DNA <213> Bacillus sp.KSM-K38 <220> <221> sig # peptide <222> (162) .. (224) <220> <221> mat # peptide <222> (225) .. (1664) <220> <221> CDS <222> (162) .. (1664) <400> 3 gtatgcgaaa cgatgcgcaa aactgcgcaa ctactagcac tcttcaggga ctaaaccacc 60 ttttttccaa aaatgaatcat atataaacaaatgtgt ttatgatata tgtaagcgtt atcattaaaa ggaggtattt g atg aga aga tgg gta 176 gta gca atg ttg gca gtg tta ttt tta ttt cct tcg gta gta gtt gca 224 gat gga ttg aac ggt acg atg atg cag tat tat ggg cat tat tt gag gat cat tat gg g cat tat tt gg g cat tat tat gg tg cat g Thr Met Met Gln Tyr Tyr Glu Trp His Leu Glu 1 5 10 15 aac gac ggg cag cat tgg aat cgg ttg cac gat gat gcc gca gct ttg 320 Asn Asp Gly Gln His Trp Asn Arg Leu His Asp Asp Ala Ala Ala Leu 20 25 30 agt gat gct ggt att aca gct att tgg att ccg cca gcc tac aaa ggt 368 Ser Asp Ala Gly Ile Thr Ala Ile Trp Ile Pro Pro Ala Tyr Lys Gly 35 40 45 aat agt cag gcg gat gtt ggg tac ggt gca tac gat ctt tat gat tta 416 Asn Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu 50 55 60 gga gag ttc aat caa aag ggt act gtt cga acg aaa tac gga act aag 464 Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys 65 70 75 80 gca cag ctt gaa cga gct att ggg tcc ctt aaa tct aat gat atc aat 512 Ala Gln Leu Glu Arg Ala Ile Gly Ser Leu Lys Ser Asn Asp Ile Asn 85 90 95 gta tac gga gat gtc gtg atg aat cat aaa atg gga gct gat ttt acg 560 Val Tyr Gly Asp Val Val Met Asn His Lys Met Gly Ala Asp Phe Thr 100 105 110 gag gca gtg caa gct gtt caa gta aat cca acg aat cgt tgg cag gat 608 Glu Ala Val Gln Ala Val Gln Val Asn Pro Thr Asn Arg Trp Gln Asp 115 120 125 att tca ggt gcc tac acg att gat gcg tgg acg ggt ttc gac ttt tca 656 Ile Ser Gly Ala Tyr Thr Ile Asp Ala Trp Thr Gly Phe Asp Phe Ser 130 135 140 ggg cgt aac aac gcc tat tca gat ttt aag tgg aga tgg ttc cat ttt 704 Gly Arg Asn Asn Ala Tyr Ser Asp Phe Lys Trp Arg Trp Phe His Phe 145 150 155 160 aat ggt gtt gac tgg gat cag cgc tat caa gaa aat cat att ttc cgc 752 Asn Gly Val Asp Trp Asp Gln Ar g Tyr Gln Glu Asn His Ile Phe Arg 165 170 175 ttt gca aat acg aac tgg aac tgg cga gtg gat gaa gag aac ggt aat 800 Phe Ala Asn Thr Asn Trp Asn Trp Arg Val Asp Glu Glu Asn Gly Asn 180 185 190 tat gat tac ctg tta gga tcg aat atc gac ttt agt cat cca gaa gta 848 Tyr Asp Tyr Leu Leu Gly Ser Asn Ile Asp Phe Ser His Pro Glu Val 195 200 205 caa gat gag ttg aag gat tgg ggt agc tgg ttt acc gat gag tta gat 896 Gln Asp Glu Leu Lys Asp Trp Gly Ser Trp Phe Thr Asp Glu Leu Asp 210 215 220 ttg gat ggt tat cgt tta gat gct att aaa cat att cca ttc tgg tat 944 Leu Asp Gly Tyr Arg Leu Asp Ala Ile Lys His Ile Pro Phe Trp Tyr 225 230 235 240 aca tct gat tgg gtt cgg cat cag cgc aac gaa gca gat caa gat tta 992 Thr Ser Asp Trp Val Arg His Gln Arg Asn Glu Ala Asp Gln Asp Leu 245 250 255 ttt gtc gta ggg gaa tat tgg aag gat gac gta ggt gct ctc gaa ttt 1040 Phe Val Val Gly Glu Tyr Trp Lys Asp Asp Val Gly Ala Leu Glu Phe 260 265 270 270 tat tta gat gaa atg aat tgg gag atg tct cta ttc gat gtt cca ctt 1088 Glu Leu AsuMet Asn Trp Glu Met Ser Leu Phe Asp Val Pro Leu 275 280 285 aat tat aat ttt tac cgg gct tca caa caa ggt gga ag tat gat atg 1136 Asn Tyr Asn Phe Tyr Arg Ala Ser Gln Gln Gly Gly Ser Tyr Asp Met 290 295 300 cgt aat att tta cga gga tct tta gta gaa gcg cat ccg atg cat gca 1184 Arg Asn Ile Leu Arg Gly Ser Leu Val Glu Ala His Pro Met His Ala 305 310 315 320 gtt acg ttt gtt gat aat cat gat act cag cca ggg gag tca tta gag 1232 Val Thr Phe Val Asp Asn His Asp Thr Gln Pro Gly Glu Ser Leu Glu 325 330 335 tca tgg gtt gct gat tgg ttt aag cca ctt gct tat gcg aca att ttg 1280 Ser Trp Val Ala Asp Trp Phe Lys Pro Leu Ala Tyr Ala Thr Ile Leu 340 345 350 acg cgt gaa ggt ggt tat cca aat gta ttt tac ggt gat tac tat ggg 1328 Thr Arg Glu Gly Gly Gly Tly Pro Asn Val Phe Tyr Gly Asp Tyr Tyr Gly 355 360 365 att cct aac gat aac att tca gct aaa aaa gat atg att gat gag ctg 1376 Ile Pro Asn Asp Asn Ile Ser Ala Lys Lys Asp Met Ile Asp Glu Leu 370 375 380 ctt gat gca cgt caa aat tac gca tat ggc acg cag cat gac tat ttt 24 Leu Asp Ala Arg Gln Asn Tyr Ala Tyr Gly Thr Gln His Asp Tyr Phe 385 390 395 400 gat cat tgg gat gtt gta gga tgg act agg gaa gga tct tcc tcc aga 1472 Asp His Trp Asp Val Val Gly Trp Thr Arg Glu Gly Ser Ser Ser Arg 405 410 415 cct aat tca ggc ctt gcg act att atg tcg aat gga cct ggt ggt tcc 1520 Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asn Gly Pro Gly Gly Ser 420 425 430 aag tgg atg tat gta gga cgt cag aat gca gga caa aca tgg aca gat 1568 Lys Trp Met Tyr Val Gly Arg Gln Asn Ala Gly Gln Thr Trp Thr Asp 435 440 445 tta act ggt aat aac gga gcg tcc gtt aca att aat ggc gat gga tgg 1616 Leu Thr Gly Asn Asn Gly Ala Ser Val Thr Ile Asn Gly Asp Gly Trp 450 455 460 ggc gaa ttc ttt acg aat gga gga tct gta tcc gtg tac gtg aac caa 1664 Gly Glu Phe Phe Thr Asn Gly Gly Ser Val Ser Val Tyr Val Asn Gln 465 470 475 480 taacaaaaag ccttgagaag ggattcctcc ctaactcaag gctttcttta tgtcgcttag 1724 cttaacgctt ctacgacttt gaagcttta 1753

【0061】 <210>4 <211>480 <212>PRT <213>Bacillus sp. KSM-K36 <400>4 Asp Gly Leu Asn Gly Thr Met Met Gln Tyr Tyr Glu Trp His Leu Glu 5 10 15 Asn Asp Gly Gln His Trp Asn Arg Leu His Asp Asp Ala Glu Ala Leu 20 25 30 Ser Asn Ala Gly Ile Thr Ala Ile Trp Ile Pro Pro Ala Tyr Lys Gly 35 40 45 Asn Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu 50 55 60 Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys 65 70 75 80 Ala Gln Leu Glu Arg Ala Ile Gly Ser Leu Lys Ser Asn Asp Ile Asn 85 90 95 Val Tyr Gly Asp Val Val Met Asn His Lys Leu Gly Ala Asp Phe Thr 100 105 110 Glu Ala Val Gln Ala Val Gln Val Asn Pro Ser Asn Arg Trp Gln Asp 115 120 125 Ile Ser Gly Val Tyr Thr Ile Asp Ala Trp Thr Gly Phe Asp Phe Pro 130 135 140 Gly Arg Asn Asn Ala Tyr Ser Asp Phe Lys Trp Arg Trp Phe His Phe 145 150 155 160 Asn Gly Val Asp Trp Asp Gln Arg Tyr Gln Glu Asn His Leu Phe Arg 165 170 175 Phe Ala Asn Thr Asn Trp Asn Trp Arg Val Asp Glu Glu Asn Gly Asn 180 185 190 Tyr Asp Tyr Leu Leu Gly Ser Asn Ile Asp Phe Ser His Pro Glu Val 195 200 205 Gln Glu Glu Leu Lys Asp Trp Gly Ser Trp Phe Thr Asp Glu Leu Asp 210 215 220 Leu Asp Gly Tyr Arg Leu Asp Ala Ile Lys His Ile Pro Phe Trp Tyr 225 230 235 240 Thr Ser Asp Trp Val Arg His Gln Arg Ser Glu Ala Asp Gln Asp Leu 245 250 255 Phe Val Val Gly Glu Tyr Trp Lys Asp Asp Val Gly Ala Leu Glu Phe 260 265 270 Tyr Leu Asp Glu Met Asn Trp Glu Met Ser Leu Phe Asp Val Pro Leu 275 280 285 Asn Tyr Asn Phe Tyr Arg Ala Ser Lys Gln Gly Gly Ser Tyr Asp Met 290 295 300 Arg Asn Ile Leu Arg Gly Ser Leu Val Glu Ala His Pro Ile His Ala 305 310 315 320 Val Thr Phe Val Asp Asn His Asp Thr Gln Pro Gly Glu Ser Leu Glu 325 330 335 Ser Trp Val Ala Asp Trp Phe Lys Pro Leu Ala Tyr Ala Thr Ile Leu 340 345 350 Thr Arg Glu Gly Gly Tyr Pro Asn Val Phe Tyr Gly Asp Tyr Tyr Gly 355 360 365 Ile Pro Asn Asp Asn Ile Ser Ala Lys Lys Asp Met Ile Asp Glu Leu 370 375 380 Leu Asp Ala Arg Gln Asn Tyr Ala Tyr Gly Thr Gln His Asp Tyr Phe 385 390 395 400 Asp His Trp Asp Ile Val Gly Trp Thr Arg Glu Gly Thr Ser Ser Arg 405 410 415 Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asn Gly Pro Gly Gly Ser 420 425 430 Lys Trp Met Tyr Val Gly Gln Gln His Ala Gly Gln Thr Trp Thr Asp 435 440 445 Leu Thr Gly Asn His Ala Ala Ser Val Thr Ile Asn Gly Asp Gly Trp 450 455 460 Gly Glu Phe Phe Thr Asn Gly Gly Ser Val Ser Val Tyr Val Asn Gln 465 470 475 480<210> 4 <211> 480 <212> PRT <213> Bacillus sp.KSM-K36 <400> 4 Asp Gly Leu Asn Gly Thr Met Met Gln Tyr Tyr Glu Trp His Leu Glu 5 10 15 Asn Asp Gly Gln His Trp Asn Arg Leu His Asp Asp Ala Glu Ala Leu 20 25 30 Ser Asn Ala Gly Ile Thr Ala Ile Trp Ile Pro Pro Ala Tyr Lys Gly 35 40 45 Asn Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu 50 55 60 Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys 65 70 75 80 Ala Gln Leu Glu Arg Ala Ile Gly Ser Leu Lys Ser Asn Asp Ile Asn 85 90 95 Val Tyr Gly Asp Val Val Met Asn His Lys Leu Gly Ala Asp Phe Thr 100 105 110 Glu Ala Val Gln Ala Val Gln Val Asn Pro Ser Asn Arg Trp Gln Asp 115 120 125 Ile Ser Gly Val Tyr Thr Ile Asp Ala Trp Thr Gly Phe Asp Phe Pro 130 135 140 Gly Arg Asn Asn Ala Tyr Ser Asp Phe Lys Trp Arg Trp Phe His Phe 145 150 155 160 Asn Gly Val Asp Trp Asp Gln Arg Tyr Gln Glu Asn His Leu Phe Arg 165 170 175 Phe Ala Asn Thr Asn Trp Asn Trp Arg Val Asp Glu Glu Asn Gly Asn 180 185 190 Tyr Asp Tyr Leu Leu Gly Ser Asn Ile Asp Phe Ser His Pro Glu Val 195 200 205 Gln Glu Glu Leu Lys Asp Trp Gly Ser Trp Phe Thr Asp Glu Leu Asp 210 215 220 Leu Asp Gly Tyr Arg Leu Asp Ala Ile Lys His Ile Pro Phe Trp Tyr 225 230 235 240 Thr Ser Asp Trp Val Arg His Gln Arg Ser Glu Ala Asp Gln Asp Leu 245 250 255 Phe Val Val Gly Glu Tyr Trp Lys Asp Asp Val Gly Ala Leu Glu Phe 260 265 270 Tyr Leu Asp Glu Met Asn Trp Glu Met Ser Leu Phe Asp Val Pro Leu 275 280 285 Asn Tyr Asn Phe Tyr Arg Ala Ser Lys Gln Gly Gly Ser Tyr Asp Met 290 295 300 Arg Asn Ile Leu Arg Gly Ser Leu Val Glu Ala His Pro Ile His Ala 305 310 315 320 Val Thr Phe Val Asp Asn His Asp Thr Gln Pro Gly Glu Ser Leu Glu 325 330 335 Ser Trp Val Ala Asp Trp Phe Lys Pro Leu Ala Tyr Ala Thr Ile Leu 340 345 350 Thr Arg Glu Gly Gly Tyr Pro Asn Val Phe Tyr Gly Asp Tyr Tyr Gly 355 360 365 Ile Pro Asn Asp Asn Ile Ser Ala Lys Lys Asp Met Ile Asp Glu Leu 370 375 380 Leu Asp Ala Arg Gln Asn Tyr Ala Tyr Gly Thr Gln His Asp Tyr Phe 385 390 395 400 Asp His Trp Asp Ile Val Gly Trp Thr Arg Glu Gly Thr Ser Ser Arg 405 410 415 Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asn Gly Pro Gly Gly Ser 420 425 430 Lys Trp Met Tyr Val Gly Gln Gln His Ala Gly Gln Thr Trp Thr Asp 435 440 445 Leu Thr Gly Asn His Ala Ala Ser Val Thr Ile Asn Gly Asp Gly Trp 450 455 460 Gly Glu Phe Phe Thr Asn Gly Gly Ser Val Ser Val Tyr Val Asn Gln 465 470 475 480

【0062】 <210>5 <211>1625 <212>DNA <213>Bacillus sp.KSM-K36 <220> <221>sig#peptide <222>(40)..(102) <220> <221>mat#peptide <222>(103)..(1542) <220> <221>CDS <222>(40)..(1542) <400>5 atgatatatg taagcgttat cattaaaagg aggtatttg atg aaa aga tgg gta 54 gta gca atg ctg gca gtg tta ttt tta ttt cct tcg gta gta gtt gca 102 gat ggc ttg aat gga acg atg atg cag tat tat gag tgg cat cta gag 150 Asp Gly Leu Asn Gly Thr Met Met Gln Tyr Tyr Glu Trp His Leu Glu 1 5 10 15 aat gat ggg caa cac tgg aat cgg ttg cat gat gat gcc gaa gct tta 198 Asn Asp Gly Gln His Trp Asn Arg Leu His Asp Asp Ala Glu Ala Leu 20 25 30 agt aat gcg ggt att aca gct att tgg ata ccc cca gcc tac aaa gga 246 Ser Asn Ala Gly Ile Thr Ala Ile Trp Ile Pro Pro Ala Tyr Lys Gly 35 40 45 aat agt cag gct gat gtt ggg tat ggt gca tac gac ctt tat gat tta 294 Asn Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu 50 55 60 ggg gag ttt aat caa aaa ggt acc gtt cga acg aaa tac ggg aca aag 342 Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys 65 70 75 80 gct cag ctt gag cga gct ata ggg tcc cta aag tcg aat gat atc aat 390 Ala Gln Leu Glu Arg Ala Ile Gly Ser Leu Lys Ser Asn Asp Ile Asn 85 90 95 gtt tat ggg gat gtc gta atg aat cat aaa tta gga gct gat ttc acg 438 Val Tyr Gly Asp Val Val Met Asn His Lys Leu Gly Ala Asp Phe Thr 100 105 110 gag gca gtg caa gct gtt caa gta aat cct tcg aac cgt tgg cag gat 486 Glu Ala Val Gln Ala Val Gln Val Asn Pro Ser Asn Arg Trp Gln Asp 115 120 125 att tca ggt gtc tac acg att gat gca tgg acg gga ttt gac ttt cca 534 Ile Ser Gly Val Tyr Thr Ile Asp Ala Trp Thr Gly Phe Asp Phe Pro 130 135 140 ggg cgc aac aat gcc tat tcc gat ttt aaa tgg aga tgg ttc cat ttt 582 Gly Arg Asn Asn Ala Tyr Ser Asp Phe Lys Trp Arg Trp Phe His Phe 145 150 155 160 aat ggc gtt gac tgg gat caa cgc tat caa gaa aac cat ctt ttt cgc 630 Asn Gly Val Asp Trp Asp Gln Arg Tyr Gln Glu Asn His Leu Phe Arg 165 170 175 ttt gca aat acg aac tgg aac tgg cga gtg gat gaa gag aat ggt aat 678 Phe Ala Asn Thr Asn Trp Asn Trp Arg Val Asp Glu Glu Asn Gly Asn 180 185 190 tat gac tat tta tta gga tcg aac att gac ttt agc cac cca gag gtt 726 Tyr Asp Tyr Leu Leu Gly Ser Asn Ile Asp Phe Ser His Pro Glu Val 195 200 205 caa gag gaa tta aag gat tgg ggg agc tgg ttt acg gat gag cta gat 774 Gln Glu Glu Leu Lys Asp Trp Gly Ser Trp Phe Thr Asp Glu Leu Asp 210 215 220 tta gat ggg tat cga ttg gat gct att aag cat att cca ttc tgg tat 822 Leu Asp Gly Tyr Arg Leu Asp Ala Ile Lys His Ile Pro Phe Trp Tyr 225 230 235 240 acg tca gat tgg gtt agg cat cag cga agt gaa gca gac caa gat tta 870 Thr Ser Asp Trp Val Arg His Gln Arg Ser Glu Ala Asp Gln Asp Leu 245 250 255 ttt gtc gta ggg gag tat tgg aag gat gac gta ggt gct ctc gaa ttt 918 Phe Val Val Gly Glu Tyr Trp Lys Asp Asp Val Gly Ala Leu Glu Phe 260 265 270 tat tta gat gaa atg aat tgg gag atg tct cta ttc gat gtt ccg ctc 966 Tyr Leu Asp Glu Met Asn Trp Glu Met Ser Leu Phe Asp Val Pro Leu 275 280 285 aat tat aat ttt tac cgg gct tca aag caa ggc gga agc tat gat atg 1014 Asn Tyr Asn Phe Tyr Arg Ala Ser Lys Gln Gly Gly Ser Tyr Asp Met 290 295 300 cgt aat att tta cga gga tct tta gta gaa gca cat ccg att cat gca 1062 Arg Asn Ile Leu Arg Gly Ser Leu Val Glu Ala His Pro Ile His Ala 305 310 315 320 gtt acg ttt gtt gat aat cat gat act cag cca gga gag tca tta gaa 1110 Val Thr Phe Val Asp Asn His Asp Thr Gln Pro Gly Glu Ser Leu Glu 325 330 335 tca tgg gtc gct gat tgg ttt aag cca ctt gct tat gcg aca atc ttg 1158 Ser Trp Val Ala Asp Trp Phe Lys Pro Leu Ala Tyr Ala Thr Ile Leu 340 345 350 acg cgt gaa ggt ggt tat cca aat gta ttt tac ggt gac tac tat ggg 1206 Thr Arg Glu Gly Gly Tyr Pro Asn Val Phe Tyr Gly Asp Tyr Tyr Gly 355 360 365 att cct aac gat aac att tca gct aag aag gat atg att gat gag ttg 1254 Ile Pro Asn Asp Asn Ile Ser Ala Lys Lys Asp Met Ile Asp Glu Leu 370 375 380 ctt gat gca cgt caa aat tac gca tat ggc aca caa cat gac tat ttt 1302 Leu Asp Ala Arg Gln Asn Tyr Ala Tyr Gly Thr Gln His Asp Tyr Phe 385 390 395 400 gat cat tgg gat atc gtt gga tgg aca aga gaa ggt aca tcc tca cgt 1350 Asp His Trp Asp Ile Val Gly Trp Thr Arg Glu Gly Thr Ser Ser Arg 405 410 415 cct aat tcg ggt ctt gct act att atg tcc aat ggt cct gga gga tca 1398 Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asn Gly Pro Gly Gly Ser 420 425 430 aaa tgg atg tac gta gga cag caa cat gca gga caa acg tgg aca gat 1446 Lys Trp Met Tyr Val Gly Gln Gln His Ala Gly Gln Thr Trp Thr Asp 435 440 445 tta act ggc aat cac gcg gcg tcg gtt acg att aat ggt gat ggc tgg 1494 Leu Thr Gly Asn His Ala Ala Ser Val Thr Ile Asn Gly Asp Gly Trp 450 455 460 ggc gaa ttc ttt aca aat gga gga tct gta tcc gtg tat gtg aac caa 1542 Gly Glu Phe Phe Thr Asn Gly Gly Ser Val Ser Val Tyr Val Asn Gln 465 470 475 480 taataaaaag ccttgagaag ggattcctcc ctaactcaag gctttcttta tgtcgtttag 1602 ctcaacgctt ctacgaagct tta 1625<210> 5 <211> 1625 <212> DNA <213> Bacillus sp.KSM-K36 <220> <221> sig # peptide <222> (40) .. (102) <220> <221> mat # peptide <222> (103) .. (1542) <220> <221> CDS <222> (40) .. (1542) <400> 5 atgatatatg taagcgttat cattaaaagg aggtatttg atg aaa aga tgg gta 54 gta gca atg ctg gca gtg tta ttt tta ttt cct tcg gta gta gtt gca 102 gat ggc ttg aat gga acg atg atg cag tat tat gag tgg cat cta gag 150 Asp Gly Leu Asn Gly Thr Met Met Gln Tyr Tyr Glu Trp His Leu Glu 1 5 10 15 aat gat ggg caa cac tgg aat cgg ttg cat gat gat gcc gaa gct tta 198 Asn Asp Gly Gln His Trp Asn Arg Leu His Asp Asp Ala Glu Ala Leu 20 25 30 agt aat gcg ggt att aca gct att tgg ata ccc cca gcc tac aaa gga 246 Ser Asn Ala Gly Ile Thr Ala Ile Trp Ile Pro Pro Ala Tyr Lys Gly 35 40 45 aat agt cag gct gat gtt ggg tat ggt gca tac gac ctt tat gat tta 294 Asn Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu 50 55 60 ggg gag ttt aat caa aaa ggt acc gtt cga acg aaa tac ggg aca aag 342 Gly Glu Phe Asn Gln Lys Gly Thr Val Arg T hr Lys Tyr Gly Thr Lys 65 70 75 80 gct cag ctt gag cga gct ata ggg tcc cta aag tcg aat gat atc aat 390 Ala Gln Leu Glu Arg Ala Ile Gly Ser Leu Lys Ser Asn Asp Ile Asn 85 90 95 gtt tat ggg gat gtc gta atg aat cat aaa tta gga gct gat ttc acg 438 Val Tyr Gly Asp Val Val Met Asn His Lys Leu Gly Ala Asp Phe Thr 100 105 110 gag gca gtg caa gct gtt caa gta aat cct tcg aac cgt tgg cag gat 486 Glu Ala Val Gln Ala Val Gln Val Asn Pro Ser Asn Arg Trp Gln Asp 115 120 125 att tca ggt gtc tac acg att gat gca tgg acg gga ttt gac ttt cca 534 Ile Ser Gly Val Tyr Thr Ile Asp Ala Trp Thr Gly Phe Asp Phe Pro 130 135 140 ggg cgc aac aat gcc tat tcc gat ttt aaa tgg aga tgg ttc cat ttt 582 Gly Arg Asn Asn Ala Tyr Ser Asp Phe Lys Trp Arg Trp Phe His Phe 145 150 155 160 aat ggc gtt gac tgg gat caa cgc tat caa gaa aac cat ctt ttt cgc 630 Asn Gly Val Asp Trp Asp Gln Arg Tyr Gln Glu Asn His Leu Phe Arg 165 170 175 ttt gca aat acg aac tgg aac tgg cga gtg gat gaa gag aat ggt aat 678 Phe Tla Asn Thrn Asn Trp Arg Val Asp Glu Glu Asn Gly Asn 180 185 190 tat gac tat tta tta gga tcg aac att gac ttt agc cac cca gag gtt 726 Tyr Asp Tyr Leu Leu Gly Ser Asn Ile Asp Phe Ser His Pro Glu Val 195 200 205 caa gag gaa tta aag gat tgg ggg agc tgg ttt acg gat gag cta gat 774 Gln Glu Glu Leu Lys Asp Trp Gly Ser Trp Phe Thr Asp Glu Leu Asp 210 215 220 tta gat ggg tat cga ttg gat gct att aag cat att cca ttc tgg 822 Leu Asp Gly Tyr Arg Leu Asp Ala Ile Lys His Ile Pro Phe Trp Tyr 225 230 235 240 acg tca gat tgg gtt agg cat cag cga agt gaa gca gac caa gat tta 870 Thr Ser Asp Trp Val Arg His Gln Arg Ser Glu Ala Asp Gln Asp Leu 245 250 255 ttt gtc gta ggg gag tat tgg aag gat gac gta ggt gct ctc gaa ttt 918 Phe Val Val Gly Glu Tyr Trp Lys Asp Asp Val Gly Ala Leu Glu Phe 260 265 270 tat tta gat gaa atg aat tgg atg tct cta ttc gat gtt ccg ctc 966 Tyr Leu Asp Glu Met Asn Trp Glu Met Ser Leu Phe Asp Val Pro Leu 275 280 285 aat tat aat ttt tac cgg gct tca aag caa ggc gga agc tat gat atg 1014 Asn Tyr As Arg Ala Ser Lys Gln Gly Gly Ser Tyr Asp Met 290 295 300 cgt aat att tta cga gga tct tta gta gaa gca cat ccg att cat gca 1062 Arg Asn Ile Leu Arg Gly Ser Leu Val Glu Ala His Pro Ile His Ala 305 310 315 320 gtt acg ttt gtt gat aat cat gat act cag cca gga gag tca tta gaa 1110 Val Thr Phe Val Asp Asn His Asp Thr Gln Pro Gly Glu Ser Leu Glu 325 330 335 tca tgg gtc gct gat tgg ttt aag cca ctt gct tat gcg aca atc ttg 1158 Ser Trp Val Ala Asp Trp Phe Lys Pro Leu Ala Tyr Ala Thr Ile Leu 340 345 350 acg cgt gaa ggt ggt tat cca aat gta ttt tac ggt gac tac tat ggg 1206 Thr Arg Glu Gly Gly Tyr Pro Asn Val Phe Tyr Gly Asp Tyr Tyr Gly 355 360 365 att cct aac gat aac att tca gct aag aag gat atg att gat gag ttg 1254 Ile Pro Asn Asp Asn Ile Ser Ala Lys Lys Asp Met Ile Asp Glu Leu 370 375 380 ctt gat gca cgta caca aat tac gca tat ggc aca caa cat gac tat ttt 1302 Leu Asp Ala Arg Gln Asn Tyr Ala Tyr Gly Thr Gln His Asp Tyr Phe 385 390 395 400 gat cat tgg gat atc gtt gga tgg aca aga gaa ggt aca tcc tca cgt 1 350 Asp His Trp Asp Ile Val Gly Trp Thr Arg Glu Gly Thr Ser Ser Arg 405 410 415 cct aat tcg ggt ctt gct act att atg tcc aat ggt cct gga gga tca 1398 Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asn Gly Pro Gly Gly Ser 420 425 430 aaa tgg atg tac gta gga cag caa cat gca gga caa acg tgg aca gat 1446 Lys Trp Met Tyr Val Gly Gln Gln His Ala Gly Gln Thr Trp Thr Asp 435 440 445 445 tta act ggc aat cac gcg gcg tcg gtt acg att aat ggt gat ggc tgg 1494 Leu Thr Gly Asn His Ala Ala Ser Val Thr Ile Asn Gly Asp Gly Trp 450 455 460 ggc gaa ttc ttt aca aat gga gga tct gta tcc gtg tat gt gtg aac caa 1542 Gly Glu Phe Phe Phe Asn Gly Gly Ser Val Ser Val Tyr Val Asn Gln 465 470 475 480 taataaaaag ccttgagaag ggattcctcc ctaactcaag gctttcttta tgtcgtttag 1602 ctcaacgctt ctacgaagct tta 1625

【0063】 <210>6 <211>30 <212>DNA <213>Artificial Sequence <400>6 atgatgcagt attttgagtg gcatttggaa 30<210> 6 <211> 30 <212> DNA <213> Artificial Sequence <400> 6 atgatgcagt attttgagtg gcatttggaa 30

【0064】 <210>7 <211>33 <212>DNA <213>Artificial Sequence <400>7 tatgagtggc atttgccaaa cgacgggcag cat 33<210> 7 <211> 33 <212> DNA <213> Artificial Sequence <400> 7 tatgagtggc atttgccaaa cgacgggcag cat 33

【0065】 <210>8 <211>33 <212>DNA <213>Artificial Sequence <400>8 ccagcctaca aaggtagtag tcaggcggat gtt 33<210> 8 <211> 33 <212> DNA <213> Artificial Sequence <400> 8 ccagcctaca aaggtagtag tcaggcggat gtt 33

【0066】 <210>9 <211>21 <212>DNA <213>Artificial Sequence <400>9 gcacagcttc aacgagctat t 21<210> 9 <211> 21 <212> DNA <213> Artificial Sequence <400> 9 gcacagcttc aacgagctat t 21

【0067】 <210>10 <211>21 <212>DNA <213>Artificial Sequence <400>10 tttcgacttt ccagggcgta a 21<210> 10 <211> 21 <212> DNA <213> Artificial Sequence <400> 10 tttcgacttt ccagggcgta a 21

【0068】 <210>11 <211>33 <212>DNA <213>Artificial Sequence <400>11 catattttcc gctttcaaaa tacgaactgg aac 33<210> 11 <211> 33 <212> DNA <213> Artificial Sequence <400> 11 catattttcc gctttcaaaa tacgaactgg aac 33

【0069】 <210>12 <211>33 <212>DNA <213>Artificial Sequence <400>12 aactggcgag tggatgatga gaacggtaat tat 33<210> 12 <211> 33 <212> DNA <213> Artificial Sequence <400> 12 aactggcgag tggatgatga gaacggtaat tat 33

【0070】 <210>13 <211>25 <212>DNA <213>Artificial Sequence <400>13 tggatgaaga gttcggtaat tatga 25<210> 13 <211> 25 <212> DNA <213> Artificial Sequence <400> 13 tggatgaaga gttcggtaat tatga 25

【0071】 <210>14 <211>33 <212>DNA <213>Artificial Sequence <400>14 aatatcgact ttagtcgtcc agaagtacaa gat 33<210> 14 <211> 33 <212> DNA <213> Artificial Sequence <400> 14 aatatcgact ttagtcgtcc agaagtacaa gat 33

【0072】 <210>15 <211>33 <212>DNA <213>Artificial Sequence <400>15 agtcatccag aggtcgtaga tgagttgaag gat 33<210> 15 <211> 33 <212> DNA <213> Artificial Sequence <400> 15 agtcatccag aggtcgtaga tgagttgaag gat 33

【0073】 <210>16 <211>33 <212>DNA <213>Artificial Sequence <400>16 gttgactggg atgagcgcaa acaagaaaat cat<210> 16 <211> 33 <212> DNA <213> Artificial Sequence <400> 16 gttgactggg atgagcgcaa acaagaaaat cat

【0074】 <210>17 <211>34 <212>DNA <213>Artificial Sequence <400>17 atttgccaaa tgacgggcag cattggaatc ggtt 34<210> 17 <211> 34 <212> DNA <213> Artificial Sequence <400> 17 atttgccaaa tgacgggcag cattggaatc ggtt 34

【0075】 <210>18 <211>34 <212>DNA <213>Artificial Sequence <400>18 aaccgattcc aatgctgccc gtcatttggc aaat 34<210> 18 <211> 34 <212> DNA <213> Artificial Sequence <400> 18 aaccgattcc aatgctgccc gtcatttggc aaat 34

【0076】 <210>19 <211>40 <212>DNA <213>Artificial Sequence <400>19 gggtcgacca gcacaagccg atggattgaa cggtacgatg 40<210> 19 <211> 40 <212> DNA <213> Artificial Sequence <400> 19 gggtcgacca gcacaagccg atggattgaa cggtacgatg 40

【0077】 <210>20 <211>29 <212>DNA <213>Artificial Sequence <400>20 taaagctttt gttattggtt cacgtacac 29<210> 20 <211> 29 <212> DNA <213> Artificial Sequence <400> 20 taaagctttt gttattggtt cacgtacac 29

【0078】 <210>21 <211>30 <212>DNA <213>Artificial Sequence <400>21 gagtcgacca gcacaagccc atcataatgg 30<210> 21 <211> 30 <212> DNA <213> Artificial Sequence <400> 21 gagtcgacca gcacaagccc atcataatgg 30

【0079】 <210>22 <211>21 <212>DNA <213>Artificial Sequence <400>22 taaagcttca atttatattg g 21<210> 22 <211> 21 <212> DNA <213> Artificial Sequence <400> 22 taaagcttca atttatattg g 21

【0080】 <210>23 <211>27 <212>DNA <213>Artificial Sequence <400>23 ccagatctac ttaccatttt agagtca 27<210> 23 <211> 27 <212> DNA <213> Artificial Sequence <400> 23 ccagatctac ttaccatttt agagtca 27

【図面の簡単な説明】[Brief description of the drawings]

【図1】 KSM−K38株及びKSM−AP1378
株由来のα−アミラーゼ生産用組換えプラスミドの構築
方法を示す図である。
FIG. 1. KSM-K38 strain and KSM-AP1378
FIG. 2 is a diagram showing a method for constructing a recombinant plasmid for producing α-amylase derived from a strain.

【図2】 KSM−K38株由来のα−アミラーゼ遺伝
子の変異導入方法を示す模式図である。
FIG. 2 is a schematic diagram showing a method for introducing a mutation into an α-amylase gene derived from KSM-K38 strain.

【図3】 KSM−K38株由来のα−アミラーゼ遺伝
子のN末配列をKSM−AP1378株由来のα−アミ
ラーゼ遺伝子のN末領域と置換する方法を示す図であ
る。
FIG. 3 is a diagram showing a method of substituting the N-terminal sequence of α-amylase gene derived from KSM-K38 strain with the N-terminal region of α-amylase gene derived from KSM-AP1378 strain.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12N 5/10 C12N 9/28 9/28 5/00 A (72)発明者 林 康弘 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内 (72)発明者 萩原 浩 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内 (72)発明者 尾崎 克也 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C12N 5/10 C12N 9/28 9/28 5/00 A (72) Inventor Yasuhiro Hayashi Shellfish in Haga-gun, Tochigi Prefecture 2606 Kao Corporation, Research Laboratories in Kao Corporation (72) Inventor Hiroshi Hagiwara 2606 Kabanecho, Kaigacho, Haga-gun, Tochigi Prefecture Kao Corporation Research Laboratory (72) Inventor Katsuya Ozaki 2606 Akabane, Kaigamachi, Haga-gun, Tochigi Research by Kao Corporation Inside

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 配列番号1に示されるアミノ酸配列又は
該アミノ酸配列に対して70%以上の相同性を有するα
−アミラーゼにおいて、該アミノ酸配列の11番目のT
yr、16番目のGlu、49番目のAsn、84番目
のGlu、144番目のSer、167番目のGln、
169番目のTyr、178番目のAla、188番目
のGlu、190番目のAsn、205番目のHis及
び209番目のGlnのうちのいずれかに相当するアミ
ノ酸残基の1残基以上を置換又は欠失させてなる変異α
−アミラーゼ。
1. An amino acid sequence represented by SEQ ID NO: 1 or α having at least 70% homology to the amino acid sequence.
-In amylase, the 11th T of the amino acid sequence
yr, 16th Glu, 49th Asn, 84th Glu, 144th Ser, 167th Gln,
Substitution or deletion of one or more amino acid residues corresponding to any of Tyr at position 169, Ala at position 178, Glu at position 188, Asn at position 190, His at position 205 and Gln at position 209 Mutation α
Amylase.
【請求項2】 配列番号1に示されるアミノ酸配列又は
該アミノ酸配列に対して70%以上の相同性を有するα
−アミラーゼにおいて、該アミノ酸配列のアミノ末端か
ら11〜100アミノ酸残基に相当する配列を他の液化
型α−アミラーゼの該アミノ酸配列に相当するアミノ酸
配列に置換させてなる変異α−アミラーゼ。
2. An amino acid sequence represented by SEQ ID NO: 1 or α having 70% or more homology to the amino acid sequence.
A mutant α-amylase obtained by replacing a sequence corresponding to 11 to 100 amino acid residues from the amino terminus of the amino acid sequence with an amino acid sequence corresponding to the amino acid sequence of another liquefied α-amylase.
【請求項3】 配列番号1のアミノ酸配列の1番目のA
spから19番目のGlyまでに相当する配列を他の液
化型α−アミラーゼの該アミノ酸配列に相当するアミノ
酸配列に置換させたものである請求項2記載の変異α−
アミラーゼ。
3. The first A of the amino acid sequence of SEQ ID NO: 1.
The mutant α- according to claim 2, wherein the sequence corresponding to sp to the 19th Gly is replaced with an amino acid sequence corresponding to the amino acid sequence of another liquefied α-amylase.
amylase.
【請求項4】 他の液化型α−アミラーゼが配列番号2
に示されるアミノ酸配列を有するものである請求項2又
は3記載の変異α−アミラーゼ。
(4) another liquefied α-amylase has the sequence of SEQ ID NO: 2;
The mutant α-amylase according to claim 2 or 3, which has an amino acid sequence represented by the formula:
【請求項5】 配列番号1に示されるアミノ酸配列又は
該アミノ酸配列に対して70%以上の相同性を有するα
−アミラーゼに対して、請求項1記載のアミノ酸残基の
置換又は欠失及び請求項2〜4のいずれかに記載のアミ
ノ酸配列の置換から選ばれる2種以上の置換又は欠失を
組み合わせて変異させた変異α−アミラーゼ。
5. An amino acid sequence represented by SEQ ID NO: 1 or α having at least 70% homology to the amino acid sequence.
-Amylase is mutated by combining two or more substitutions or deletions selected from the substitution or deletion of the amino acid residue according to claim 1 and the substitution of the amino acid sequence according to any one of claims 2 to 4. Mutated α-amylase.
【請求項6】 アミノ酸残基の置換が配列番号1のアミ
ノ酸配列の11番目のTyrに相当するアミノ酸残基を
Phe、16番目のGluに相当するアミノ酸残基をP
ro、49番目のAsnに相当するアミノ酸残基をSe
r、167番目のGlnに相当するアミノ酸残基をGl
u、169番目のTyrに相当するアミノ酸残基をLy
s、190番目のAsnに相当するアミノ酸残基をPh
e、205番目のHisに相当するアミノ酸残基をAr
g又は209番目のGlnに相当するアミノ酸残基をV
alに置換させてなるものであり、アミノ酸配列の置換
が配列番号1の1番目のAspから19番目のGlyま
でのアミノ酸配列を配列番号2の1番目のHisから2
1番目のGlyまでのアミノ酸配列に置換させてなるも
のである請求項5記載の変異α−アミラーゼ。
6. The substitution of an amino acid residue in the amino acid sequence of SEQ ID NO: 1 corresponds to the amino acid residue corresponding to Tyr at position 11 and the amino acid residue corresponding to Glu at position 16 corresponds to Phe.
ro, the amino acid residue corresponding to the 49th Asn
r, the amino acid residue corresponding to Gln at position 167 is represented by Gl
u, the amino acid residue corresponding to the 169th Tyr is Ly
s, the amino acid residue corresponding to Asn at position 190 is Ph
e, the amino acid residue corresponding to His at position 205 is Ar
g or the amino acid residue corresponding to Gln at position 209 is represented by V
al, and the amino acid sequence is replaced with the amino acid sequence from Asp at position 1 to Gly at position 19 in SEQ ID NO: 1 from His at position 1 in SEQ ID NO: 2.
The mutant α-amylase according to claim 5, which is obtained by substituting the amino acid sequence up to the first Gly.
【請求項7】 請求項1〜6のいずれか1項記載の変異
α−アミラーゼをコードする遺伝子又は当該遺伝子を含
有するベクター。
7. A gene encoding the mutant α-amylase according to claim 1 or a vector containing the gene.
【請求項8】 請求項7に記載のベクターで形質転換さ
れた細胞。
8. A cell transformed with the vector according to claim 7.
【請求項9】 請求項8に記載の形質転換細胞を培養す
ることを特徴とする変異α−アミラーゼの製造方法。 【請求10】 請求項1〜6のいずれか1項記載の変異
α−アミラーゼを含有する洗浄剤組成物。
9. A method for producing a mutant α-amylase, which comprises culturing the transformed cell according to claim 8. 10. A detergent composition comprising the mutant α-amylase according to any one of claims 1 to 6.
JP2000170517A 1999-06-10 2000-06-07 Mutant α-amylase Expired - Fee Related JP4417532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000170517A JP4417532B2 (en) 1999-06-10 2000-06-07 Mutant α-amylase

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16356999 1999-06-10
JP11-163569 1999-06-10
JP2000170517A JP4417532B2 (en) 1999-06-10 2000-06-07 Mutant α-amylase

Publications (3)

Publication Number Publication Date
JP2001054392A true JP2001054392A (en) 2001-02-27
JP2001054392A5 JP2001054392A5 (en) 2006-09-21
JP4417532B2 JP4417532B2 (en) 2010-02-17

Family

ID=26488967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000170517A Expired - Fee Related JP4417532B2 (en) 1999-06-10 2000-06-07 Mutant α-amylase

Country Status (1)

Country Link
JP (1) JP4417532B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004508815A (en) * 2000-08-01 2004-03-25 ノボザイムス アクティーゼルスカブ Alpha-amylase mutants with altered properties
US6743616B2 (en) 2000-10-11 2004-06-01 Kao Corporation Highly productive alpha-amylases
JP2011125341A (en) * 2003-04-01 2011-06-30 Genencor Internatl Inc Variant humicola grisea cbh1.1
CN110628748A (en) * 2017-01-16 2019-12-31 广东溢多利生物科技股份有限公司 Alpha-amylase mutant BasAmy-2 capable of improving specific activity and coding gene and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004508815A (en) * 2000-08-01 2004-03-25 ノボザイムス アクティーゼルスカブ Alpha-amylase mutants with altered properties
JP4855632B2 (en) * 2000-08-01 2012-01-18 ノボザイムス アクティーゼルスカブ Α-Amylase mutants with altered properties
US6743616B2 (en) 2000-10-11 2004-06-01 Kao Corporation Highly productive alpha-amylases
US7297527B2 (en) 2000-10-11 2007-11-20 Kao Corporation Highly productive α-amylases
JP2011125341A (en) * 2003-04-01 2011-06-30 Genencor Internatl Inc Variant humicola grisea cbh1.1
US9644192B2 (en) 2003-04-01 2017-05-09 Danisco Us Inc., Genencor Division Variant Humicola grisea CBH1.1
CN110628748A (en) * 2017-01-16 2019-12-31 广东溢多利生物科技股份有限公司 Alpha-amylase mutant BasAmy-2 capable of improving specific activity and coding gene and application thereof

Also Published As

Publication number Publication date
JP4417532B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
JP4426716B2 (en) High productivity α-amylase
AU718509B2 (en) An improved laundry detergent composition comprising amylase
US6297037B1 (en) Oxidatively stable alpha-amylase
EP0722490B1 (en) Amylase variants
AU686007B2 (en) An improved cleaning composition
US20090226961A1 (en) Mutant alpha-amylases
JP2001506496A (en) Proteins with improved stability
JP4126098B2 (en) Mutant α-amylase
JP2001054392A (en) MUTANT alpha-AMYLASE
JP4077095B2 (en) New amylase
JP4220611B2 (en) Mutant α-amylase
JP4510856B2 (en) Amylase variant
JP2000184883A (en) New amylase
JP4153553B2 (en) New amylase

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees