JP2001054271A - Brushless motor - Google Patents

Brushless motor

Info

Publication number
JP2001054271A
JP2001054271A JP22153599A JP22153599A JP2001054271A JP 2001054271 A JP2001054271 A JP 2001054271A JP 22153599 A JP22153599 A JP 22153599A JP 22153599 A JP22153599 A JP 22153599A JP 2001054271 A JP2001054271 A JP 2001054271A
Authority
JP
Japan
Prior art keywords
rotor
stator
eddy current
brushless motor
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22153599A
Other languages
Japanese (ja)
Other versions
JP3280351B2 (en
Inventor
Tokuaki Hino
徳昭 日野
Masaji Kitamura
正司 北村
Motoya Ito
元哉 伊藤
Fumio Tajima
文男 田島
Hideki Nihei
秀樹 二瓶
Takanori Nakada
孝則 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22153599A priority Critical patent/JP3280351B2/en
Publication of JP2001054271A publication Critical patent/JP2001054271A/en
Application granted granted Critical
Publication of JP3280351B2 publication Critical patent/JP3280351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce eddy current loss of a rotor by dividing the circumferential length of the rotor into lengths which are approximately shorter than a wavelength at a specific harmonic component of the exciting force of the stator generated by the stator, and preventing eddy currents from flowing into the divided lengths from flowing into other divided lengths at the boundaries of the divided lengths. SOLUTION: If a yoke 4 is conductive and solid, induced electromotive force is generated at one wavelength λn, and eddy current 14 flows into the yoke 4. The yoke 4 is insulated and split electrically, so as to have a length not longer than the half the wavelength λn of an asynchronous component 8. The solid yoke 4 is split into blocks, and insulated and split electrically with insulating paper 15 put between the blocks. The length of each divided block of the yoke 4 is not longer that the wavelength λn of the asynchronous component 8 in the circumferential direction. By insulating the rotor 1 electically, an eddy current 14 cannot flow flowing along the direction of the induced electromotive force, and loops are formed locally. Consequently, an eddy current 14 is made difficult to flow, and reduction of the eddy current loss becomes feasible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、集中巻した電機子
巻線を有するブラシレスモータに関する。
The present invention relates to a brushless motor having a concentratedly wound armature winding.

【0002】[0002]

【従来の技術】一般に、集中巻の電機子巻線を備えたブ
ラシレスモータはDVD用等の数W程度の超小型モータ
に広く使われている。このような超小型モータでは、固
定子のティースには各々集中的に巻線を施す、いわゆる
集中巻が用いられることが多い。
2. Description of the Related Art In general, brushless motors having concentrated armature windings are widely used for ultra-small motors of about several watts, such as those for DVDs. In such an ultra-small motor, a so-called concentrated winding in which windings are concentratedly applied to the teeth of the stator is often used.

【0003】このような、超小型モータにおいては、全
損失のうち銅損、機械損、風損が大半を占めるため、鉄
損や漂遊損等は無視でき、また、回転子に設けられる磁
石はNd磁石を接着剤で固めたものが使われることが多
く、導電率が低いので渦電流損についても無視できる。
In such a micro motor, copper loss, mechanical loss, and wind loss occupy most of the total loss, so that iron loss and stray loss can be ignored. An Nd magnet hardened with an adhesive is often used, and its conductivity is low, so eddy current loss can be ignored.

【0004】また、回転子は塊状のヨークに磁石を張り
付けて設けるのが一般的である。超小型の集中巻のブラ
シレスモータは殆ど外転型であり、磁石の外側の回転子
(ロータ)ヨークはモータのハウジングの構造材を兼ね
るために一体物の塊状の材料を用いている。
The rotor is generally provided by attaching a magnet to a massive yoke. An ultra-small concentrated winding brushless motor is almost of the abduction type, and a rotor (rotor) yoke outside the magnet is made of an integral mass material to also serve as a structural material of a motor housing.

【0005】一方、近年、数kWの中・大容量のブラシレ
スモータによりダイレクトドライブ方式のエレベータを
駆動することが考えられている。中・大容量のブラシレ
スモータは電機子巻線を分布巻したものが一般に用いら
れている。
On the other hand, in recent years, it has been considered that a direct drive type elevator is driven by a medium and large capacity brushless motor of several kW. In general, a brushless motor having a medium and large capacity in which armature windings are distributed and wound is used.

【0006】しかし、分布巻のブラシレスモータはコイ
ルエンドが大きいのでモータ自体が大型にならざるをえ
ず、コイルエンドの小さい集中巻の電機子巻線を用いた
ブラシレスモータにしてモータ自体をより一層小型化す
ることが要求されている。
However, since the distributed winding brushless motor has a large coil end, the motor itself must be large, and the motor itself is further improved by using a concentrated winding armature winding having a small coil end. There is a demand for miniaturization.

【0007】ブラシレスモータも数kWの中・大容量機に
なると鉄損や漂遊損が損失に占める割合が多くなる。特
に、近年高性能磁石として良く用いられるNd系の磁石が
導電性の材料であること、また、モータの高効率化のた
め、磁石は保持力の高い焼結タイプのものが用いられ導
電率が高いことに起因して渦電流が発生し易くなってい
る。
[0007] When a brushless motor is a medium or large capacity machine of several kW, iron loss and stray loss account for a large proportion of the loss. In particular, Nd-based magnets, which are often used as high-performance magnets in recent years, are conductive materials.In order to increase the efficiency of the motor, sintered magnets with high holding power are used, and the conductivity is high. An eddy current is easily generated due to the high height.

【0008】渦電流損を低減するためには、鉄心を積層
鋼板で構成すること、また、固定子の電機子巻線を分布
巻にして固定子電流が作る磁界の高調波を抑制すること
が考えられる。鉄心を積層鋼板で構成し積層した鉄心を
ブロック化して固定子を構成する場合に、積層鋼板間の
積層方向の電気的絶縁をはかることにより、固定子内の
渦電流損失を抑えることについては例えば、特開平8ー
289491号公報に記載されている。
In order to reduce the eddy current loss, the iron core must be made of laminated steel sheets, and the armature windings of the stator must be distributed windings to suppress the harmonics of the magnetic field generated by the stator current. Conceivable. In the case where the stator is configured by blocking the laminated core by forming the iron core with laminated steel sheets and forming the stator, by suppressing the eddy current loss in the stator by measuring the electrical insulation in the lamination direction between the laminated steel sheets, for example, And JP-A-8-289492.

【0009】[0009]

【発明が解決しようとする課題】数kWの中・大容量のブ
ラシレスモータにおいてもコスト低減の要求は大きく、
鉄心に材料費や形状加工のためにコスト高となる積層鋼
板の代わりに安価な塊状のヨークで構成し、モータ小型
化のために分布巻に比べてコイルエンドの小さな集中巻
にすることが要望されている。
There is a great demand for cost reduction even in a medium and large capacity brushless motor of several kW.
It is demanded that the core be made of an inexpensive massive yoke instead of laminated steel sheet, which is expensive for material cost and shape processing, and that the coil end be concentrated and have a smaller coil end compared to distributed winding to reduce the size of the motor. Have been.

【0010】しかし、数kWクラスの中・大容量機の電機
子巻線を集中巻にすると渦電流損が大きくなり漂遊損が
多く効率が極めて悪くなるという問題点を有する。ま
た、特に外転型モータでは回転子ヨークがモータのハウ
ジングを兼ねるので、その部分を積層鋼板で構成するこ
とは接合や強度の点で実用上難しいという問題点もあ
る。
However, when the armature windings of a medium / large capacity machine of several kW class are concentratedly wound, there is a problem that eddy current loss increases, stray loss increases, and efficiency becomes extremely poor. In addition, since the rotor yoke also serves as the motor housing, particularly in an external rotation type motor, there is also a problem that it is practically difficult to form that portion with a laminated steel plate in terms of bonding and strength.

【0011】本発明の目的は、回転子に塊状のヨークを
用いて電機子巻線を集中巻にしても回転子の渦電流損を
大幅に低減できるブラシレスモータを提供することにあ
る。
An object of the present invention is to provide a brushless motor capable of greatly reducing eddy current loss of the rotor even when the armature winding is concentratedly wound using a massive yoke for the rotor.

【0012】[0012]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、塊状ヨークに複数個の磁石を設けられている回転
子の周方向長さを固定子が生じる固定子起磁力の特定調
波成分における波長のほぼ半分以下の長さに区分し、区
分した区分長の境界に区分長内を流れる渦電流が他の区
分長に流れるのを阻害する渦電流阻害手段を設けたこと
にある。
A feature of the present invention is that a specific harmonic of a stator magnetomotive force generated by a stator is determined by a circumferential length of a rotor provided with a plurality of magnets on a massive yoke. An eddy current inhibiting means is provided which divides the component into a length of approximately half or less of the wavelength, and prevents an eddy current flowing in the section length from flowing to another section length at a boundary between the divided section lengths.

【0013】固定子起磁力の特定調波成分によって流れ
る渦電流を阻害する渦電流阻害手段としては、塊状ヨー
クをその周方向に電気的に絶縁分割する手段や塊状ヨー
クの区分長境界の表面に軸方向のスリットを設ける手段
がある。
The eddy current inhibiting means for inhibiting the eddy current flowing due to the specific harmonic component of the stator magnetomotive force includes means for electrically insulating and dividing the massive yoke in the circumferential direction thereof, and a method for electrically dividing the massive yoke in the circumferential direction. There is a means for providing an axial slit.

【0014】本発明によれば、固定子起磁力の回転子起
磁力と非同期成分である高調波成分のうちの強度(レベ
ル)の大きい特定調波成分によって回転子に流れる渦電
流を小さくできるので回転子の渦電流損を低減できる。
According to the present invention, the eddy current flowing through the rotor can be reduced by a specific harmonic component having a large intensity (level) among harmonic components that are asynchronous components of the rotor magnetomotive force of the stator. Eddy current loss of the rotor can be reduced.

【0015】[0015]

【発明の実施の形態】図1に本発明の一実施例を示す。
図1は固定子の外側に回転子が位置する、いわゆる外転
型のブラシレスモータの例を示している。
FIG. 1 shows an embodiment of the present invention.
FIG. 1 shows an example of a so-called abduction type brushless motor in which a rotor is located outside a stator.

【0016】図1において、固定子2の外側に回転子1
が位置する、いわゆる外転型ブラシレスモータである。
回転子1には10個の磁石3が回転子ヨーク(塊状ヨー
ク)4の表面に等間隔に配置して設けられている。
In FIG. 1, a rotor 1 is provided outside a stator 2.
Is a so-called abduction type brushless motor.
The rotor 1 is provided with ten magnets 3 arranged at equal intervals on the surface of a rotor yoke (lumped yoke) 4.

【0017】回転子ヨーク4は5等分に分割区分されて
おり、一つの区分に磁石3が2個設けられている。5等
分に分割されたそれぞれのヨーク4は塊状に構成され、
等分された区分長の境界は互いに電気的に絶縁するた
め、例えば隙間に絶縁紙を挟むことや、各ブロック(区
分長)毎にブラスチックの型をはめ込むなどして電気的
に絶縁してある。
The rotor yoke 4 is divided into five equal sections, and two magnets 3 are provided in one section. Each yoke 4 divided into five equal parts is configured in a lump,
Since the boundaries of equally divided sections are electrically insulated from each other, they are electrically insulated by, for example, inserting insulating paper in the gaps or inserting a plastic mold into each block (section length). is there.

【0018】磁石3は隣接する磁石の極性が異なるよう
に交互にN極、S極となるように設けられている。
The magnets 3 are provided so as to alternately have N poles and S poles so that adjacent magnets have different polarities.

【0019】一方、固定子2には12個のティース6が
設けられており、それぞれのティース6に電機子巻線の
コイル5が集中巻されている。固定子2は軸7に装着さ
れている。なお、コイル5が巻装される空間であるスロ
ットの開口部は狭くして、コイル5の飛び出し防止とス
ロット開口部によるパーミアンスの変化によるギャップ
部分の磁束密度の高調波磁場を少なくなるようにしてい
る。
On the other hand, the stator 2 is provided with twelve teeth 6, and the coils 6 of the armature winding are concentratedly wound around each of the teeth 6. The stator 2 is mounted on a shaft 7. The opening of the slot, which is the space in which the coil 5 is wound, is made narrow so that the coil 5 is prevented from popping out and the harmonic magnetic field of the magnetic flux density in the gap due to the change in permeance due to the slot opening is reduced. I have.

【0020】図2は図1のブラシレスモータを直線に展
開したもので、コイル5の巻線配置とそれによる固定子
起磁力を示したものである。
FIG. 2 shows the brushless motor of FIG. 1 developed linearly, and shows the arrangement of the windings of the coil 5 and the magnetomotive force of the stator.

【0021】固定子2にはそれぞれコイル5がスロット
の内部に収まっており、U、V、Wの3相のコイル5に
は図示するように位相差が120゜の電流iu、iv、
iwが流れている。
Each of the stators 2 has a coil 5 housed in a slot. The U, V, and W three-phase coils 5 have currents iu, iv,
iw is flowing.

【0022】矩形波12は時刻t=0の固定子2のつく
る起磁力の分布である。時刻t=0ではW相のコイル5
にピーク電流I0が流れており、そのコイル5が巻いて
あるティース6が作る起磁力は最大になる。一方、V相
とU相のコイル5には120゜位相のずれた電流iv、
iwが流れるから、t=0では-(1/2)I0の電流が
流れており、それらのコイル5が巻かれたティース6が
作る起磁力は1/2になる。スロット開口部の問題など
を無視すると、理想的には固定子2が生じる起磁力12
は図示したような矩形波になる。
The rectangular wave 12 is a distribution of the magnetomotive force generated by the stator 2 at time t = 0. At time t = 0, the W-phase coil 5
, And the magnetomotive force generated by the teeth 6 around which the coil 5 is wound is maximized. On the other hand, the currents iv shifted by 120 ° in the V-phase and U-phase coils 5,
Since iw flows, a current of-(1/2) I0 flows at t = 0, and the magnetomotive force generated by the teeth 6 around which the coils 5 are wound becomes 1/2. If the problem of the slot opening is ignored, ideally, the magnetomotive force 12
Is a rectangular wave as shown.

【0023】矩形波12の起磁力には回転子1(磁石
3)が生じる磁場の基本波13と同波長の基本波成分8
aがあり、固定子2の作る起磁力基本波成分8aは磁石
3の作る磁場の基本波成分13とカップリングしてモー
タのトルクを発生する。
The magnetomotive force of the rectangular wave 12 includes a fundamental wave component 8 having the same wavelength as the fundamental wave 13 of the magnetic field generated by the rotor 1 (magnet 3).
a, the magnetomotive force fundamental wave component 8a generated by the stator 2 couples with the fundamental wave component 13 of the magnetic field generated by the magnet 3, and generates a motor torque.

【0024】矩形波12の起磁力には、基本波成分8a
以外にも高調波成分8bなどの高調波成分も多く含まれ
る。矩形波12をフーリエ展開すれば高調波成分を求め
ることができる。固定子2が生じる起磁力12のうち回
転子1が生じる起磁力の基本波13と非同期成分である
高調波成分8bは、基本波成分8aに比べて例えば5/
7の波長で、空間次数が7/5次である。この7/5次
の非同期成分が渦電流の原因になる。
The magnetomotive force of the rectangular wave 12 has a fundamental wave component 8a
In addition, many harmonic components such as the harmonic component 8b are included. If the rectangular wave 12 is subjected to Fourier expansion, a harmonic component can be obtained. Of the magnetomotive force 12 generated by the stator 2, the harmonic component 8b, which is an asynchronous component with the fundamental wave 13 of the magnetomotive force generated by the rotor 1, is, for example, 5 /
At a wavelength of 7, the spatial order is 7/5. This 7 / 5-order asynchronous component causes an eddy current.

【0025】分布巻のモータでは高調波の種類が決まっ
ており、3相モータの場合、奇数次の3の倍数でない高
調波成分しか存在しない。具体的な高調波の次数は5
次、7次、11次、13次であり、基本波、つまり1次
の成分よりも次数が大きい成分である。通常、低次の高
調波ほど渦電流の影響が大きいので、5次や7次の低次
の高調波成分を抑制することによって、モータの特性を
改善するのが一般的である。
In a distributed winding motor, the type of harmonics is determined. In the case of a three-phase motor, only harmonic components that are not odd multiples of 3 exist. The specific harmonic order is 5
It is the next, seventh, eleventh, and thirteenth order, and is a fundamental wave, that is, a component having a higher order than the first order component. Generally, the lower harmonics are more affected by the eddy current, so that the characteristics of the motor are generally improved by suppressing the fifth and seventh lower harmonic components.

【0026】本発明者達はシミュレーションの結果、集
中巻モータにおいては5次、7次よりもさらに次数の低
い高調波が存在し、さらに、固定子のティース数と回転
子の磁石数(極数)の組み合わせによって高調波の種類
もそれぞれ異なることを知得した。高調波の次数は、集
中巻モータの様々なティース数と磁極数の組合せのうち
には、1次である基本波よりも低次、例えば、0.5次
成分なども存在し、また、集中巻モータとして妥当な極
数とティース数の組合せを選んだ場合、最低次数の高調
波成分は分布巻で一般的な5次よりも常に低次側に存在
することも確認できた。
As a result of the simulation, the present inventors have found that in the concentrated winding motor, harmonics having orders lower than the fifth and seventh orders are present, and the number of stator teeth and the number of rotor magnets (the number of poles) ), The types of harmonics are also different. Regarding the order of the harmonics, among various combinations of the number of teeth and the number of magnetic poles of the concentrated winding motor, there is a lower order, for example, a 0.5 order component than the primary wave which is the first order. When an appropriate combination of the number of poles and the number of teeth was selected as a winding motor, it was also confirmed that the lowest order harmonic component was always present on the lower order side than the general fifth order in distributed winding.

【0027】図3に固定子2が生じる固定子起磁力のう
ち回転子1(塊状ヨーク4)が生じる回転子起磁力と非
同期の非同期起磁力成分と渦電流の流れ方の関係を示
す。
FIG. 3 shows the relationship between the rotor magnetomotive force generated by the rotor 1 (lumped yoke 4), the asynchronous magnetomotive force component that is asynchronous, and the eddy current flow among the stator magnetomotive force generated by the stator 2.

【0028】固定子起磁力の回転子起磁力と同期成分は
回転子1から見て磁束が動かないから渦電流を発生しな
い。非同期成分は、回転子1から見て磁界が進行して見
え、n次の起磁力の非同期成分8の波長λnと同じ波長
で渦電流密度の濃淡ができる。
The rotor magnetomotive force and the synchronous component of the stator magnetomotive force do not generate an eddy current because the magnetic flux does not move when viewed from the rotor 1. The non-synchronous component appears as the magnetic field advances when viewed from the rotor 1, and the eddy current density can be changed at the same wavelength as the wavelength λn of the non-synchronous component 8 of the n-th magnetomotive force.

【0029】ヨーク4が導電性で塊状の場合には、図3
(a)に示すように一波長λnの間に図示の上方向と下
方向の向きに誘導起電力が生じ、これに沿ってヨーク4
(回転子1)に渦電流14が流れる。
When the yoke 4 is conductive and massive, FIG.
As shown in FIG. 5A, an induced electromotive force is generated in one upward direction and one downward direction during one wavelength λn.
An eddy current 14 flows through the (rotor 1).

【0030】本発明は非同期成分8の波長λnの半分以
下の長さになるようにヨーク4(回転子1)を電気的に
絶縁分割する。図3(b)は塊状ヨーク4を図1に示す
ようにブロック状(区分長)に分割し、それぞれのブロ
ックの間に絶縁紙15を設けて電気的に絶縁分割してい
る。ヨーク4の区分されたブロック長(区分長)はその
周方向に非同期成分8の波長λnの半分以下になってい
る。
According to the present invention, the yoke 4 (rotor 1) is electrically insulated and divided so as to have a length equal to or less than half the wavelength λn of the asynchronous component 8. In FIG. 3B, the massive yoke 4 is divided into blocks (section lengths) as shown in FIG. 1, and an insulating paper 15 is provided between the blocks to electrically separate the blocks. The divided block length (section length) of the yoke 4 is less than half the wavelength λn of the asynchronous component 8 in the circumferential direction.

【0031】このように、回転子1(塊状ヨーク4)を
電気的に絶縁して分割すれば、誘導起電力の方向に沿っ
て渦電流14が流れることができず、ローカルにループ
を作ることになるから、渦電流14は流れにくくなり、
これにより渦電流損失も低減できる。
As described above, if the rotor 1 (the massive yoke 4) is electrically insulated and divided, the eddy current 14 cannot flow in the direction of the induced electromotive force, and a local loop is formed. Therefore, the eddy current 14 becomes difficult to flow,
Thereby, eddy current loss can also be reduced.

【0032】換言すると、回転子1(塊状ヨーク4)を
固定子起磁力の特定調波成分における波長のほぼ半分以
下の長さに区分し、区分した区分長の境界に区分長内を
流れる渦電流が他の区分長に流れるのを阻害する渦電流
阻害手段を設けていることになる。
In other words, the rotor 1 (mass yoke 4) is divided into a length of approximately half or less of the wavelength of the specific harmonic component of the stator magnetomotive force, and a vortex flowing in the division length at the boundary of the divided division lengths. This means that eddy current inhibiting means for preventing the current from flowing to another section length is provided.

【0033】次に、回転子1の電気的な絶縁分割によっ
て渦電流損失どの程度を低減できるかを説明する。
Next, how the eddy current loss can be reduced by electrically insulating the rotor 1 will be described.

【0034】回転子1は非同期起磁力調波の波長に合わ
せて分割(区分)するが、その場合、渦電流損失に支配
的な起磁力の非同期成分の波長に基づき分割数(区分
長)を決定する。
The rotor 1 divides (divides) according to the wavelength of the asynchronous magnetomotive force harmonic. In this case, the number of divisions (section length) is determined based on the wavelength of the asynchronous component of the magnetomotive force which is dominant in the eddy current loss. decide.

【0035】図4は本発明者達がシミュレーションの結
果により得られた特性図を示すもので、横軸に起磁力調
波の波長λnと電気的に絶縁分割された回転子の周方向
の長さLの比「L/λn」をとり、縦軸に分割しない場
合との渦電流損失比をとったものである。
FIG. 4 is a characteristic diagram obtained by the present inventors as a result of a simulation. The abscissa indicates the wavelength λn of the magnetomotive force harmonic and the length in the circumferential direction of the rotor electrically insulated and divided. The eddy current loss ratio is obtained by taking the ratio L / λn of the length L and not dividing the ordinate into the vertical axis.

【0036】図4から明らかなように、分割長(区分
長)が波長λnの1/2以上では絶縁分割の有無によっ
て発熱は殆ど変わらないが、1/2以下になると回転子
1の発熱が急速に減少する。本発明では分割長(区分
長)を波長λnの1/2以下にして回転子1の発熱を低
減する。
As is clear from FIG. 4, when the division length (section length) is equal to or longer than 1/2 of the wavelength λn, the heat generation hardly changes depending on the presence or absence of the insulation division. Decreases rapidly. In the present invention, the heat generation of the rotor 1 is reduced by setting the division length (section length) to 1 / or less of the wavelength λn.

【0037】次に、どのような非同期成分が渦電流損失
に支配的であるかを本発明者達がシミュレーションの結
果に基づき説明する。
Next, what kind of asynchronous component is dominant in eddy current loss will be described by the present inventors based on the result of simulation.

【0038】一般に、起磁力成分の次数が高くなるほど
磁界が回転子1と固定子2のギャップ内で廻り込み、固
定子2の起磁力調波が回転子1まで到達しなくなる。そ
の様子を図5に示す。
Generally, as the order of the magnetomotive force component increases, the magnetic field wraps around in the gap between the rotor 1 and the stator 2, so that the magnetomotive force harmonic of the stator 2 does not reach the rotor 1. This is shown in FIG.

【0039】図5において、固定子2の作る起磁力のn
次の調波成分8とすると、この起磁力により固定子2か
ら回転子1に磁束9が通る。磁束9は永久磁石3を突き
抜け、回転子ヨーク4に到達し固定子1に戻ってくる。
In FIG. 5, n of the magnetomotive force generated by the stator 2 is shown.
Assuming the next harmonic component 8, the magnetic flux 9 passes from the stator 2 to the rotor 1 due to the magnetomotive force. The magnetic flux 9 penetrates the permanent magnet 3, reaches the rotor yoke 4 and returns to the stator 1.

【0040】起磁力調波が低次の場合には、図5(a)
に示すように回転子ヨーク4にほぼ垂直に磁場が進入
し、この結果磁石3と回転子ヨーク4に渦電流が発生す
る。一方、起磁力調波が高次の場合には、図5(b)に
示すように波長が短いため磁束9がギャップ内で廻り込
み、磁場が回転子1に到達しない。従って、低次の起磁
力の磁場になるほど多くの渦電流を発生する。
In the case where the magnetomotive force harmonic is of a low order, FIG.
As shown in FIG. 5, a magnetic field enters the rotor yoke 4 almost perpendicularly, and as a result, an eddy current is generated in the magnet 3 and the rotor yoke 4. On the other hand, when the magnetomotive force harmonic is of a higher order, the magnetic flux 9 goes around in the gap because the wavelength is short as shown in FIG. 5B, and the magnetic field does not reach the rotor 1. Therefore, more eddy currents are generated as the magnetic field has a lower magnetomotive force.

【0041】上述したように集中巻モータにおいては分
布巻モータで問題になっている5次、7次よりも低い次
数の起磁力の非同期成分があるため、渦電流損失も分布
巻と比較にならないほど大きくなり、また、非同期成分
は集中巻モータの種類、すなわち極数とスロット数の組
合せごとに、次数が異なってくる。
As described above, in the concentrated winding motor, since there is an asynchronous component of the magnetomotive force of the lower order than the fifth and seventh orders which is a problem in the distributed winding motor, the eddy current loss is not compared with the distributed winding. The order of the asynchronous component varies depending on the type of concentrated winding motor, that is, the combination of the number of poles and the number of slots.

【0042】本発明はこのように無数にある集中巻モー
タの極数とスロット数(ティース数)の組合せに着目
し、それぞれの組合せについて非同期成分をシミュレー
ションの結果に基づき整理し、渦電流に支配的な非同期
成分の影響を小さくする。
The present invention focuses on the innumerable combinations of the number of poles and the number of slots (number of teeth) of the innumerable concentrated winding motor, arranges asynchronous components for each combination based on simulation results, and controls the eddy current. The effect of a typical asynchronous component.

【0043】図6に図1に示すような集中巻モータの極
数とティース数を変えただけの3相モータにおける固定
子巻線(電機子巻線)の巻線方法を示す。
FIG. 6 shows a winding method of a stator winding (armature winding) in a three-phase motor in which the number of poles and the number of teeth of the concentrated winding motor as shown in FIG. 1 are changed.

【0044】図6において、8p-9sとは、極数が8
でティース数が9の組み合わせのモータのことであり、
他の極数とティース数の組み合わせについても同様のこ
とを意味している。また、8極9ティースの整数倍の極
数とティース数の組み合わせ、例えば、16極18ティ
ースの組合せについても磁気的には繰り返し構造にな
る。
In FIG. 6, 8p-9s means that the number of poles is eight.
And the number of teeth is 9.
The same applies to other combinations of the number of poles and the number of teeth. Also, a combination of the number of poles and the number of teeth, which is an integral multiple of 8 poles and 9 teeth, for example, a combination of 16 poles and 18 teeth has a magnetically repeating structure.

【0045】図6における8p−9s、10p−9sは
集中巻の巻線方法の一例を示しているが、図1に示した
ようにそれぞれのティース6にコイル5が集中的に巻装
されている。それぞれにティース6には、図6にU、
V、Wで示した3相の電流が流れるようにコイルが巻装
されている。
8p-9s and 10p-9s in FIG. 6 show an example of a concentrated winding winding method. As shown in FIG. 1, the coils 5 are intensively wound around the respective teeth 6 as shown in FIG. I have. Each tooth 6 has a U in FIG.
The coil is wound so that three-phase currents indicated by V and W flow.

【0046】U相コイルが巻いてあるティース6は+
U、-Uと記載しており、+Uと-Uは巻線方向が逆にな
る。また、+Uと+Vと示してあるティース6に巻いて
あるコイルの巻線方向は同じになる。
The teeth 6 around which the U-phase coil is wound have +
U and -U are described, and the winding directions of + U and -U are reversed. Further, the winding directions of the coils wound around the teeth 6 indicated by + U and + V are the same.

【0047】10p−9sと8p−9s、10p−12
sと14p−12s、14p−18sと22p−18s
および2p−3sと4p−3sはそれぞれ巻線方法は同
じとなる。
10p-9s, 8p-9s, 10p-12
s and 14p-12s, 14p-18s and 22p-18s
And the winding method is the same for 2p-3s and 4p-3s.

【0048】このような巻線を施した固定子2が発生す
る起磁力の調波成分の空間次数とその強さをシミュレー
ションによる測定結果を図7〜11に示す。
FIGS. 7 to 11 show measurement results by simulation of the spatial order of harmonic components of the magnetomotive force generated by the stator 2 having such a winding and the strength thereof.

【0049】図7には本発明の対象となる集中巻の起磁
力と一般的な分布巻の起磁力の差を明らかにするために
2p−6s、2p−12sの分布巻の固定子が作る起磁
力を示す。図8〜11は本発明の対象となる集中巻の起
磁力を示し、図8は8p−9sと10p−9s、図9は
10p−12sと14p−12s、図10は14p−1
8sと22p−18sおよび図11は2p−3sと4p
−3sの固定子が作る起磁力を示している。
FIG. 7 shows a 2p-6s, 2p-12s distributed winding stator made in order to clarify the difference between the magnetomotive force of the concentrated winding and the magnetomotive force of the general distributed winding, which is the object of the present invention. Indicates the magnetomotive force. 8 to 11 show the magnetomotive force of concentrated winding which is an object of the present invention. FIG. 8 shows 8p-9s and 10p-9s, FIG. 9 shows 10p-12s and 14p-12s, and FIG.
8s and 22p-18s and FIG. 11 shows 2p-3s and 4p
3 shows the magnetomotive force generated by the −3 s stator.

【0050】図7〜11の横軸は固定子起磁力の調波成
分の空間次数、縦軸にその調波成分の強さを示してい
る。また、黒塗りした成分は同期成分で空間次数1とし
ている。同期成分は回転子1と同期して廻る成分であ
り、回転子1の起磁力の間には相対的な変動がなく、回
転子1に渦電流を発生させない。
7 to 11, the horizontal axis represents the spatial order of the harmonic component of the stator magnetomotive force, and the vertical axis represents the intensity of the harmonic component. The black component is a synchronous component and has a spatial order of 1. The synchronous component is a component that rotates in synchronization with the rotor 1, and there is no relative fluctuation between the magnetomotive forces of the rotor 1 and no eddy current is generated in the rotor 1.

【0051】しかし、その他の成分は回転子1と相対速
度を持って回転する非同期成分であり、この調波起磁力
成分による磁束密度が渦電流の原因になる。これらの調
波成分は、一般的に空間次数が高くなるほど小さくな
り、さらに、図5で説明したように磁界がギャップ内で
廻り込み、固定子2の起磁力調波が回転子1まで到達し
なくなるため影響が少ない。
However, the other components are asynchronous components that rotate at a relative speed to the rotor 1, and the magnetic flux density due to the harmonic magnetomotive force component causes eddy current. These harmonic components generally become smaller as the spatial order becomes higher. Further, as described in FIG. 5, the magnetic field goes around in the gap, and the magnetomotive force harmonic of the stator 2 reaches the rotor 1. There is little effect because it disappears.

【0052】渦電流は近似的に磁場の2乗に比例するか
ら、図7〜11の縦軸にとってある固定子起磁力の強さ
の2乗に比例する。図8から11から分かるように、集
中巻では低次ほど起磁力の強さが大きく、渦電流損の主
な原因であることが分かる。
Since the eddy current is approximately proportional to the square of the magnetic field, it is proportional to the square of the magnitude of the stator magnetomotive force on the vertical axis in FIGS. As can be seen from FIGS. 8 to 11, it can be seen that in the concentrated winding, the lower the order, the stronger the magnetomotive force, which is the main cause of the eddy current loss.

【0053】さて、分布巻と集中巻の違いを検討する
に、まず分布巻についてみると、図7に示す2p−6s
モータでは、渦電流の原因となる最低次の非同期起磁力
調波成分の次数は5次で、この強さは小さく、起磁力の
ほとんどが同期成分で、渦電流の原因となる非同期成分
は非常に少なくなっている。このため、分布巻では固定
子起磁力の非同期成分が回転子1に渦電流を発生させて
も極めて小さく渦電流損が問題になることはない。そし
て、図7に示すように2p−12sとスロット数を増や
すと、さらに5次の非同期成分は少なくなる。
Now, to examine the difference between the distributed winding and the concentrated winding, first look at the distributed winding, see 2p-6s shown in FIG.
In the motor, the order of the lowest-order asynchronous magnetomotive force harmonic component that causes the eddy current is the fifth order, its intensity is small, most of the magnetomotive force is a synchronous component, and the asynchronous component that causes the eddy current is extremely low. To be less. For this reason, in the distributed winding, even if the asynchronous component of the stator magnetomotive force generates an eddy current in the rotor 1, the eddy current loss is not a problem even if it is extremely small. When the number of slots is increased to 2p-12s as shown in FIG. 7, the fifth-order asynchronous component further decreases.

【0054】一方、図8に示す集中巻のモータについて
みると、10p−9sのモータでは、同期成分よりも低
い空間次数の非同期成分が発生している。4/5次の空
間成分は同期成分より大きく、非同期成分の中で最も大
きな渦電流損を発生させている。また、1/5次、2/
5次の調波成分による渦電流損失も無視できない程生じ
ている。
On the other hand, with regard to the concentrated winding motor shown in FIG. 8, an asynchronous component having a spatial order lower than the synchronous component is generated in the 10p-9s motor. The 4 / 5-order spatial component is larger than the synchronous component, and generates the largest eddy current loss among the asynchronous components. Also, 1/5 order, 2 /
The eddy current loss due to the fifth harmonic component also occurs so as not to be ignored.

【0055】図8に示す8p−9sのモータでは、最大
の渦電流を引き起こす起磁力調波成分は4/5次で、そ
の他、同期成分より低次にある1/2次、1/4次の成
分も強度が大きく、これらが引き起こす渦電流も大きく
なっている。
In the 8p-9s motor shown in FIG. 8, the magnetomotive force harmonic component that causes the maximum eddy current is 4/5 order, and other 1/2 order and 1/4 order that are lower than the synchronous component. Are also high in intensity, and the eddy currents caused by these components are also large.

【0056】図9に示す10p−12sのモータでは、
最大の渦電流を引き起こす起磁力調波は7/5次で、そ
の他、同期成分より低次にある1/5次の成分も強度が
大きく、これらが引き起こす渦電流も大きくなってい
る。また、14p−12sのモータでは、最大の渦電流
を引き起こす起磁力調波は5/7次で、その他、同期成
分より低次にある1/7次の成分も強度が大きく、これ
らが引き起こす渦電流も大きくなっている。
In the 10p-12s motor shown in FIG.
The magnetomotive force harmonic that causes the maximum eddy current is the 7 / 5th order, and the 1 / 5th order component that is lower than the synchronous component also has a large intensity, and the eddy currents caused by these components are also large. In a 14p-12s motor, the magnetomotive force harmonic that causes the maximum eddy current is 5 / 7th order, and the 1 / 7th order component that is lower than the synchronous component also has a large intensity. The current is also increasing.

【0057】図10に示す14p−18sのモータで
は、最大の渦電流を引き起こす起磁力調波は11/7次
で、その他、同期成分より低次にある1/7次、5/7
次の成分も強度が大きく、これらが引き起こす渦電流も
大きくなっている。また、22p−18sのモータで
は、最大の渦電流を引き起こす起磁力調波は7/11次
で、その他、同期成分より低次にある1/11次、5/
11次の成分も強度が大きく、これらが引き起こす渦電
流も大きくなっている。
In the 14p-18s motor shown in FIG. 10, the magnetomotive force harmonic that causes the maximum eddy current is the 11 / 7th order, and the 1 / 7th order and the 5 / 7th order which are lower than the synchronous component.
The following components also have high intensity, and the eddy currents caused by them are also high. Also, in the 22p-18s motor, the magnetomotive force harmonic that causes the maximum eddy current is the 7 / 11th order, and the 11th order, 5 /
The eleventh-order components also have a large intensity, and the eddy currents caused by these components are also large.

【0058】図11に示す2p−3sのモータでは、最
大の渦電流を引き起こす起磁力調波は2次で、図8に示
す分布巻の5次に比べて次数が低く、強度も大きいの
で、これらが引き起こす渦電流も大きくなっている。ま
た、4p−3sのモータでは、最大の渦電流を引き起こ
す起磁力調波は1/2次で、同期成分より低次で強度も
大きいので、これらが引き起こす渦電流も大きくなって
いる。
In the 2p-3s motor shown in FIG. 11, the magnetomotive force harmonic that causes the maximum eddy current is of the second order, and has a lower order and a higher strength than the fifth order of the distributed winding shown in FIG. The eddy currents caused by these are also large. Also, in the 4p-3s motor, the magnetomotive force harmonic that causes the maximum eddy current is 低 order, which is lower than the synchronous component and has higher intensity, so that the eddy current generated by these components is also larger.

【0059】以上のように図8〜11に示す測定結果か
ら判るように、集中巻モータでは固定子2が生じる起磁
力の非同期成分の空間次数が低く、強度も大きいので、
通常の分布巻線に比べて渦電流損が多くなる。
As can be seen from the measurement results shown in FIGS. 8 to 11 as described above, in the concentrated winding motor, the spatial order of the asynchronous component of the magnetomotive force generated by the stator 2 is low and the strength is high.
Eddy current loss increases as compared with a normal distributed winding.

【0060】次に、渦電流に支配的な非同期成分の影響
を小さくするための回転子1の分割について説明する。
Next, the division of the rotor 1 for reducing the influence of the asynchronous component which is dominant on the eddy current will be described.

【0061】一般的に非同期成分のn次の空間調波の波
長λnは、「極ピッチ×2/空間次数」となる。例え
ば、分割巻線では図7の特性図から分かるように、2p
−6sと2p−12sのモータとも渦電流の原因となる
最低次の次数は5である。次数と波長λnの関係は「波
長=極ピッチ×2/空間次数」であるから、回転子1の
長さをL、極ピッチをτとすると、L/λnを1/2以
下にするためには、回転子1はτ/5以下の長さになる
ように絶縁分割する必要がある。この場合、一般的な4
極12スロットや、4極24スロットのモータでは、回
転子1を20分割以上しなくてはならず、分割した回転
子を機械的に組み合わせて構成するための工数が多くな
り、また、8極以上の多極モータになるとさらに分割数
が増えるため、殆ど実用的でない。
Generally, the wavelength λn of the n-th spatial harmonic of the asynchronous component is “pole pitch × 2 / spatial order”. For example, as can be seen from the characteristic diagram of FIG.
For both -6s and 2p-12s motors, the lowest order that causes eddy currents is 5. Since the relationship between the order and the wavelength λn is “wavelength = pole pitch × 2 / space order”, if the length of the rotor 1 is L and the pole pitch is τ, it is necessary to make L / λn 1/2 or less. It is necessary to divide the rotor 1 so that the rotor 1 has a length of τ / 5 or less. In this case, the general 4
In the case of a motor having 12 slots of poles and 24 slots of 4 poles, the rotor 1 must be divided into 20 or more, and the number of man-hours required for mechanically combining the divided rotors increases. In the case of the above multi-pole motor, the number of divisions further increases, so that it is hardly practical.

【0062】一方、集中巻の場合には、例えば図8に示
す10p−9sに相当する10極9スロットの渦電流の
原因となる最低次の空間次数は1/5次であり、L/λ
nを1/2以下にするためには、分割した後の回転子1
の分割周長は5τ以下にすればよいことになる。つま
り、10極の回転子を3等分以上すれば渦電流の抑制効
果を得ることができる。また5等分以上すれば、2/5
次の成分による渦電流も抑えることができる。
On the other hand, in the case of concentrated winding, for example, the lowest spatial order causing an eddy current of 10 poles and 9 slots corresponding to 10p-9s shown in FIG.
In order to reduce n to 以下 or less, the rotor 1
Should be set to 5τ or less. That is, if the rotor having 10 poles is divided into three equal parts or more, the effect of suppressing the eddy current can be obtained. If it is divided into 5 or more, 2/5
Eddy current due to the following components can also be suppressed.

【0063】最も効率的に分割の効果を得るためには、
非同期成分の中で最も支配的な渦電流源である4/5次
の成分を抑えれば良いから、9等分以上すればよいこと
になる。この場合でも分布巻に比べて少ない分割数で渦
電流を抑制できる効果があり、分割数も少ないので構造
も複雑にならずに構成できる。
In order to obtain the effect of division most efficiently,
Since it is only necessary to suppress the 4 / 5-order component, which is the most dominant eddy current source among the asynchronous components, it is sufficient to divide the component into nine equal parts or more. Even in this case, there is an effect that the eddy current can be suppressed with a smaller number of divisions as compared with the distributed winding, and since the number of divisions is small, the structure can be configured without being complicated.

【0064】同様に、図8に示す8p−9sに相当する
8極9スロットの集中巻の場合には、渦電流の原因とな
る最低次の空間次数は1/4次であるため、L/λnを
1/2以下にするためには、分割した後の回転子の周長
は4τ以下にすればよいことになる。つまり、8極の回
転子を3等分以上すれば渦電流の抑制効果を得ることが
できる。また、5等分以上すれば、2/5次の成分によ
る渦電流も抑えることができる。最も効率的に分割の効
果を得るためには、非同期成分の中で最も支配的な渦電
流である4/5次の成分を抑えれば良く、11等分以上
すればよいことになる。
Similarly, in the case of concentrated winding of 8 poles and 9 slots corresponding to 8p-9s shown in FIG. 8, since the lowest spatial order causing an eddy current is 1/4, L / L In order to reduce λn to 1 / or less, the circumference of the rotor after division should be set to 4τ or less. That is, if the rotor having eight poles is divided into three or more equal parts, the effect of suppressing the eddy current can be obtained. Further, if the distance is equal to or more than five, the eddy current due to the 2 / 5-order component can be suppressed. In order to obtain the effect of the division most efficiently, it is only necessary to suppress the 4 / 5-order component, which is the most dominant eddy current among the asynchronous components, and it is sufficient to divide it into 11 equal parts or more.

【0065】同様に、図9に示す10p−12sに相当
する10極12スロットの集中巻の場合には、渦電流の
原因となる最低次の空間次数は1/5次であるため、L
/λnを1/2以下にするためには、分割した後の回転
子1の区分周長は5τ以下にすればよいことになる。つ
まり、10極の回転子を3等分割以上すれば渦電流の抑
制効果を得ることができる。例えば、図1に示したヨー
ク4を5等分、磁石3を10個の例において、最も効率
的に分割の効果を得るためには、非同期成分の中で最も
支配的な渦電流である7/5次の成分を抑えれば良く、
15等分以上すればよいことになる。
Similarly, in the case of concentrated winding of 10 poles and 12 slots corresponding to 10p-12s shown in FIG. 9, since the lowest spatial order causing an eddy current is 1/5, L
In order to make / λn equal to or less than 2, the sectional circumference of the rotor 1 after division should be equal to or less than 5τ. That is, if the ten-pole rotor is divided into three or more equal parts, an eddy current suppressing effect can be obtained. For example, in the example shown in FIG. 1 where the yoke 4 is divided into five equal parts and the magnet 3 is ten pieces, the most dominant eddy current among asynchronous components is 7 in order to obtain the effect of division most efficiently. It is sufficient to suppress the / 5th order component,
It suffices to do 15 or more equal parts.

【0066】同様に、14p−12sに相当する14極
12スロットの集中巻の場合には、渦電流の原因となる
最低次の空間次数は1/7次であり、L/λnを1/2
以下にするためには、分割した後の回転子の周長は7τ
以下にすればよいことになる。つまり、14極の回転子
1を3等分以上すれば渦電流の抑制効果を得ることがで
きる。最も効率的に分割の効果を得るためには、非同期
成分の中で最も支配的な渦電流源である5/7次の成分
を抑えれば良く、11等分以上すればよいことになる。
Similarly, in the case of a concentrated winding of 14 poles and 12 slots corresponding to 14p-12s, the lowest spatial order causing an eddy current is 1/7 order, and L / λn is reduced to 1/2.
In order to achieve the following, the circumference of the rotor after division is 7τ
The following should be done. That is, if the rotor 1 having 14 poles is divided into three or more equal parts, the effect of suppressing the eddy current can be obtained. In order to obtain the effect of the division most efficiently, it is only necessary to suppress the 5/7 order component which is the most dominant eddy current source among the asynchronous components, and it suffices to divide it by 11 or more.

【0067】図10に示す14p−18sに相当する1
4極18スロットの集中巻の場合には、渦電流の原因と
なる最低次の空間次数は1/7次であり、L/λnを1
/2以下にするためには、分割した後の回転子1の分割
周長は7τ以下にすればよいことになる。つまり、14
極の回転子1を3等分以上すれば渦電流の抑制効果を得
ることができる。また、11等分以上に分割すれば、5
/7次の成分による渦電流も抑えることができる。最も
効率的に分割の効果を得るためには、非同期成分の中で
最も支配的な渦電流である11/7次の成分を抑えれば
良く、23等分以上すればよいことになる。
1 corresponding to 14p-18s shown in FIG.
In the case of concentrated winding with 4 poles and 18 slots, the lowest spatial order that causes eddy current is 1/7 order, and L / λn is 1
In order to make it equal to or less than / 2, the divided circumference of the rotor 1 after the division should be made 7τ or less. That is, 14
If the pole rotor 1 is divided into three or more equal parts, an eddy current suppressing effect can be obtained. Also, if it is divided into 11 or more equal parts, 5
Eddy current due to the / 7th order component can also be suppressed. In order to obtain the effect of the division most efficiently, the 11 / 7-order component, which is the most dominant eddy current among the asynchronous components, should be suppressed, and it is sufficient to divide it into 23 equal parts or more.

【0068】同様に、22p−18sに相当する22極
18スロットの集中巻の場合には、渦電流の原因となる
最低次の空間次数は1/11次であり、L/λnを1/
2以下にするためには、分割した後の回転子1の周長は
11τ以下にすればよいことになる。つまり、22極の
回転子1を3等分以上すれば渦電流の抑制効果を得るこ
とができる。また、11等分以上すれば、5/11次の
成分による渦電流も抑えることができる。最も効率的に
分割の効果を得るためには、非同期成分の中で最も支配
的な渦電流源である7/11次の成分を抑えれば良く、
15等分以上すればよいことになる。
Similarly, in the case of concentrated winding of 22 poles and 18 slots corresponding to 22p-18s, the lowest spatial order that causes an eddy current is 1/11, and L / λn is 1 / l.
In order to reduce the circumference to 2 or less, the circumference of the rotor 1 after the division may be reduced to 11τ or less. That is, if the rotor 1 having 22 poles is divided into three or more equal parts, an eddy current suppressing effect can be obtained. Further, if the distance is equal to or more than 11 times, the eddy current due to the 5/11 order component can be suppressed. In order to obtain the effect of the division most efficiently, it is sufficient to suppress the 7/11 order component which is the most dominant eddy current source among the asynchronous components.
It suffices to do 15 or more equal parts.

【0069】図11に示す2p−3sに相当する8極1
2スロットの集中巻の場合には、渦電流の原因となる最
低次の空間次数は2次であり、この2次調波成分による
渦電流を抑制するのが最も効果的である。L/λnを1
/2以下にするためには、分割した後の回転子1の周長
はτ/2以下になればよいことになる。つまり、8極の
回転子1を17等分以上すれば渦電流の抑制効果を得る
ことができる。
8 poles 1 corresponding to 2p-3s shown in FIG.
In the case of concentrated winding of two slots, the lowest spatial order that causes an eddy current is the second order, and it is most effective to suppress the eddy current due to the second harmonic component. L / λn is 1
In order to make it equal to or less than / 2, the circumference of the rotor 1 after the division should be equal to or less than τ / 2. That is, if the eight-pole rotor 1 is divided into 17 equal parts or more, an eddy current suppressing effect can be obtained.

【0070】同様に、4p−3sに相当する16極9ス
ロットの集中巻の場合には、渦電流の原因となる最低次
の空間次数は1/2次であり、この調波成分による渦電
流を抑制するのが最も効果的である。L/λnを1/2
以下にするためには、分割した後の回転子1の周長は2
τ以下にすればよいことになる。つまり、16極の回転
子1を17等分以上すれば渦電流の抑制効果を得ること
ができる。
Similarly, in the case of concentrated winding of 16 poles and 9 slots corresponding to 4p-3s, the lowest spatial order causing an eddy current is 1/2 order, and the eddy current due to this harmonic component is Is most effective. L / λn is 1/2
In order to achieve the following, the circumference of the rotor 1 after division is 2
It suffices to set it to τ or less. That is, if the rotor 1 having 16 poles is divided into 17 equal parts or more, the effect of suppressing the eddy current can be obtained.

【0071】以上、極数Pとティース数(スロット数)
Nの異なるモータについて説明したが、各事例を纏める
と次のようになる。
As described above, the number of poles P and the number of teeth (the number of slots)
Although the motors having different Ns have been described, the respective cases are summarized as follows.

【0072】すなわち、回転子1がP極でN個のティー
スに集中的に電機子巻線を巻いた固定子2をもつM相の
ブラシレスモータにおいて、P/2とN/Mの最大公約
数をKとし、モータの回転子1の周方向の長さをLとす
ると、回転子1の周方向の長さをL/2K以下になるよ
うに電気的に絶縁分割することになる。
That is, in an M-phase brushless motor having a stator 2 in which a rotor 1 has P poles and N armatures wound intensively on N teeth, the greatest common divisor of P / 2 and N / M Is K, and the circumferential length of the rotor 1 of the motor is L, so that the circumferential length of the rotor 1 is electrically insulated and divided so as to be L / 2K or less.

【0073】また、最も効果的に分割するためには、同
期成分と同じ起磁力を持つ最低次の次数の成分の波長よ
りも短くすればよいことになる。具体的には、回転子1
がP極でN個のティースに集中的に電機子巻線を巻いた
固定子2をもつブラシレスモータにおいては、モータの
回転子1の周方向の長さをLとすると、回転子1の周方
向の長さをL/(2N−P)以下になるように電気的に
絶縁分割することになる。
For the most effective division, it is necessary to make the wavelength shorter than the wavelength of the lowest order component having the same magnetomotive force as the synchronous component. Specifically, the rotor 1
In a brushless motor having a stator 2 having P poles and armature windings intensively wound around N teeth, if the circumferential length of the rotor 1 of the motor is L, the circumference of the rotor 1 It is electrically insulated and divided so that the length in the direction is L / (2N−P) or less.

【0074】以上のようにして回転子1を電気的に絶縁
分割するのであるが、集中巻の場合には、渦電流に支配
的な非同期成分の波長が長いため、分布巻に比べ分割数
が少なくて済むことが分かり、実用的であるといえる。
As described above, the rotor 1 is electrically insulated and divided. However, in the case of concentrated winding, the number of divisions is larger than that of the distributed winding because the asynchronous component dominant in the eddy current has a long wavelength. It turns out that only a small amount is needed, and it can be said that it is practical.

【0075】このようにして回転子1の塊状ヨーク4を
電気的に絶縁分割するのであるが、換言すると、固定子
が生じる固定子起磁力の特定調波成分における波長のほ
ぼ半分以下の長さに区分し、区分した区分長の境界に区
分長内を流れる渦電流が他の区分長に流れるのを阻害す
るのであるが、固定子起磁力の回転子起磁力と非同期成
分である高調波成分のうちの強度(レベル)の大きい特
定調波成分によって回転子に流れる渦電流を小さくでき
るので回転子の渦電流損を低減できる。
In this manner, the massive yoke 4 of the rotor 1 is electrically insulated and divided. In other words, the length of the stator yoke 4 is approximately half or less of the wavelength of the specific harmonic component of the stator magnetomotive force generated by the stator. The eddy current that flows in the section length at the boundary of the section length is prevented from flowing to other section lengths, but harmonic components that are asynchronous components of the rotor magnetomotive force of the stator magnetomotive force Among them, the eddy current flowing through the rotor can be reduced by the specific harmonic component having a large intensity (level), so that the eddy current loss of the rotor can be reduced.

【0076】また、本発明は回転子ヨーク4がモータの
ハウジングを兼ねるような外転型のブラシレスモータに
用いて特に有効である。つまり、渦電流対策のために積
層鋼板で回転子ヨークを構成すると組立が複雑で強度も
不足するが、塊状ヨーク4を数個程度に分割したものを
組み立てるのは比較的容易なので、簡単で低コストなモ
ータを実現できる。
The present invention is particularly effective when used in an abduction type brushless motor in which the rotor yoke 4 also serves as a motor housing. In other words, if the rotor yoke is formed of laminated steel sheets to prevent eddy currents, the assembly is complicated and the strength is insufficient. However, since it is relatively easy to assemble the mass yoke 4 divided into several pieces, it is simple and low-priced. A costly motor can be realized.

【0077】図12に本発明の他の実施例の要部を示
す。
FIG. 12 shows a main part of another embodiment of the present invention.

【0078】図12の実施例は塊状ヨーク4の表面に軸
方向にスリット11を設けたものである。
In the embodiment shown in FIG. 12, a slit 11 is provided on the surface of the massive yoke 4 in the axial direction.

【0079】回転子1の塊状ヨーク4を流れる渦電流1
4は、表皮効果のため図13に示すように表面に集中す
る。磁石3を設けられている回転子1のヨーク4の表面
に軸方向にスリット11を設ける。スリット11の間隔
はλn/2よりも小さくする。このとき空間次数nは起
磁力調波の最も低い次数で、λn/2=L/2Kとな
る。また、最も効率的には、回転子1の長さをλn/2
=L/(2N−P)以下になるように分割すれば良いこ
とになる。
Eddy current 1 flowing through massive yoke 4 of rotor 1
4 is concentrated on the surface as shown in FIG. 13 due to the skin effect. A slit 11 is provided in the axial direction on the surface of the yoke 4 of the rotor 1 provided with the magnet 3. The interval between the slits 11 is set smaller than λn / 2. At this time, the spatial order n is the lowest order of the magnetomotive force harmonic, and λn / 2 = L / 2K. Most efficiently, the length of the rotor 1 is set to λn / 2
= L / (2N-P) or less.

【0080】図12の実施例は渦電流阻害手段としてス
リット11を設けたもので、この実施例においても固定
子起磁力の回転子起磁力と非同期成分である高調波成分
のうちの強度(レベル)の大きい特定調波成分によって
回転子に流れる渦電流を小さくできるので回転子の渦電
流損を低減できる。
In the embodiment shown in FIG. 12, a slit 11 is provided as eddy current inhibiting means. In this embodiment, the intensity (level) of the harmonic component which is an asynchronous component with the rotor magnetomotive force of the stator magnetomotive force is also used. The eddy current flowing through the rotor can be reduced by the specific harmonic component having a large value of ()), so that the eddy current loss of the rotor can be reduced.

【0081】なお、上述の実施例は回転子が固定子の外
側に位置する外転型について説明したが、回転子が固定
子の内側に位置する内転型のブラシレスモータにも本発
明を用いることができることは勿論のことである。
Although the above embodiment has been described with respect to the abduction type in which the rotor is located outside the stator, the present invention is also applied to an inversion type brushless motor in which the rotor is located inside the stator. Of course you can.

【0082】[0082]

【発明の効果】以上のように本発明によれば、固定子起
磁力の回転子起磁力と非同期成分である高調波成分のう
ちの強度(レベル)の大きい特定調波成分によって回転
子に流れる渦電流を小さくできるので回転子の渦電流損
を低減できる。それも、回転子の塊状ヨークや磁石が導
電性である場合に有効であり、簡単な構造で回転子の渦
電流損失を抑えることができるので、安価で効率の良い
モータを得ることができる。
As described above, according to the present invention, a specific harmonic component having a large intensity (level) among harmonic components which are asynchronous components of the rotor magnetomotive force of the stator magnetomotive force flows to the rotor. Since the eddy current can be reduced, the eddy current loss of the rotor can be reduced. This is also effective when the mass yoke or magnet of the rotor is conductive, and the eddy current loss of the rotor can be suppressed with a simple structure, so that an inexpensive and efficient motor can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing one embodiment of the present invention.

【図2】ブラシレスモータの動作説明図である。FIG. 2 is a diagram illustrating the operation of a brushless motor.

【図3】固定子起磁力の波長と渦電流の説明図である。FIG. 3 is an explanatory diagram of a wavelength of a stator magnetomotive force and an eddy current.

【図4】本発明を説明するための発熱量の特性図であ
る。
FIG. 4 is a characteristic diagram of a calorific value for explaining the present invention.

【図5】回転子が生じる磁束分布の説明図である。FIG. 5 is an explanatory diagram of a magnetic flux distribution generated by a rotor.

【図6】集中巻ブラシレスモータの説明図である。FIG. 6 is an explanatory diagram of a concentrated winding brushless motor.

【図7】固定子起磁力の調波成分分布の説明図である。FIG. 7 is an explanatory diagram of harmonic component distribution of stator magnetomotive force.

【図8】固定子起磁力の調波成分分布の説明図である。FIG. 8 is an explanatory diagram of harmonic component distribution of stator magnetomotive force.

【図9】固定子起磁力の調波成分分布の説明図である。FIG. 9 is an explanatory diagram of harmonic component distribution of stator magnetomotive force.

【図10】固定子起磁力の調波成分分布の説明図であ
る。
FIG. 10 is an explanatory diagram of harmonic component distribution of stator magnetomotive force.

【図11】固定子起磁力の調波成分分布の説明図であ
る。
FIG. 11 is an explanatory diagram of harmonic component distribution of stator magnetomotive force.

【図12】本発明の他の実施例の要部を示す構成図であ
る。
FIG. 12 is a configuration diagram showing a main part of another embodiment of the present invention.

【図13】渦電流の表皮効果の説明図である。FIG. 13 is an explanatory diagram of a skin effect of an eddy current.

【符号の説明】[Explanation of symbols]

1…回転子、 2…固定子、 3…永久磁石、 4…塊
状ヨーク、 5…コイル、 6…ティース、 7…軸
1 ... rotor, 2 ... stator, 3 ... permanent magnet, 4 ... massive yoke, 5 ... coil, 6 ... teeth, 7 ... shaft

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 元哉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 田島 文男 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 二瓶 秀樹 茨城県ひたちなか市市毛1070番地 株式会 社日立製作所水戸工場内 (72)発明者 中田 孝則 茨城県ひたちなか市市毛1070番地 株式会 社日立製作所水戸工場内 Fターム(参考) 5H002 AA03 AE08 5H019 AA04 CC04 CC09 5H621 BB07 BB10 GA01 GA04 HH01 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Motoya Ito 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Fumio Tajima 7-1 Omikacho, Hitachi City, Ibaraki Prefecture No. 1 Hitachi, Ltd.Hitachi Research Laboratories (72) Inventor Hideki Nihei 1070 Ma, Hitachinaka City, Ibaraki Prefecture Inside Mito Factory, Hitachi, Ltd. (72) Inventor Takanori Nakata 1070 Ichimo, Hitachinaka City, Ibaraki Prefecture Stock F-term in the Mito Plant of Hitachi, Ltd. (reference) 5H002 AA03 AE08 5H019 AA04 CC04 CC09 5H621 BB07 BB10 GA01 GA04 HH01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】塊状ヨークに複数個の磁石を設けられてい
る回転子と、電機子巻線を集中巻された固定子とを有す
るブラシレスモータにおいて、前記回転子の周方向長さ
を前記固定子が生じる固定子起磁力の特定調波成分にお
ける波長のほぼ半分以下の長さに区分し、区分した区分
長の境界に区分長内を流れる渦電流が他の区分長に流れ
るのを阻害する渦電流阻害手段を設けた回転子を具備す
ることを特徴とするブラシレスモータ。
1. A brushless motor having a rotor in which a plurality of magnets are provided on a massive yoke, and a stator in which armature windings are concentratedly wound, wherein a circumferential length of the rotor is fixed. The stator generates a stator that divides the length into approximately half the wavelength of the specific harmonic component of the magnetomotive force, and prevents the eddy current flowing in the section length at the boundary of the section length from flowing to other section lengths A brushless motor comprising a rotor provided with eddy current inhibiting means.
【請求項2】塊状ヨークに複数個の磁石を設けられてい
る回転子と、電機子巻線を集中巻された固定子とを有す
るブラシレスモータにおいて、前記塊状ヨークをその周
方向に、前記固定子が生じる固定子起磁力のうち前記回
転子が生じる回転子起磁力と非同期成分の特定非同期成
分における波長のほぼ半分以下の長さに絶縁分割された
回転子を具備することを特徴とするブラシレスモータ。
2. A brushless motor having a rotor in which a plurality of magnets are provided on a massive yoke, and a stator on which armature windings are concentratedly wound. A rotor which is insulated and divided into a length of substantially half or less of a wavelength of a specific asynchronous component of a rotor magnetomotive force generated by the rotor and an asynchronous component of a stator magnetomotive force generated by the rotor. motor.
【請求項3】複数個のティースにそれぞれ集中巻された
電機子巻線を有する固定子と、塊状ヨークに複数個の永
久磁石を設けられている回転子とを有するブラシレスモ
ータにおいて、前記塊状ヨークの周方向長さを前記固定
子が生じる固定子起磁力の特定調波成分における波長の
ほぼ半分以下の長さに区分し、前記塊状ヨークの区分長
境界の表面に軸方向のスリット設けた回転子を具備する
ことを特徴とするブラシレスモータ。
3. A brushless motor comprising: a stator having armature windings wound around a plurality of teeth, respectively; and a rotor having a plurality of permanent magnets provided on a massive yoke. Is divided into a length of approximately half or less of a wavelength in a specific harmonic component of a stator magnetomotive force generated by the stator, and a rotation provided with an axial slit on a surface of a section length boundary of the massive yoke. A brushless motor, comprising:
【請求項4】複数個のティースにそれぞれ集中巻された
電機子巻線を有する固定子と、塊状ヨークに複数個の永
久磁石を設けられ、前記固定子の外側を回転する回転子
とを有するブラシレスモータにおいて、前記塊状ヨーク
をその周方向に、前記電機子巻線が生じる起磁力のうち
前記ティース数と前記永久磁石数により定まる特定調波
成分における波長のほぼ半分以下の長さに絶縁分割され
た回転子を具備することを特徴とするブラシレスモー
タ。
4. A stator having an armature winding wound around a plurality of teeth, respectively, and a rotor provided with a plurality of permanent magnets on a massive yoke and rotating outside the stator. In the brushless motor, the bulk yoke is insulated in a circumferential direction into a length of approximately half or less of a wavelength of a specific harmonic component determined by the number of teeth and the number of permanent magnets in the magnetomotive force generated by the armature winding. A brushless motor, comprising:
【請求項5】塊状ヨークに複数個の磁石を設けられてい
る回転子と、電機子巻線を集中巻きされた固定子とを有
するブラシレスモータにおいて、前記回転子は、前記固
定子が生じる固定子起磁力の特定調波成分における波長
のほぼ半分以下の長さに絶縁分割されることを特徴とす
るブラシレスモータ。
5. A brushless motor having a rotor in which a plurality of magnets are provided on a massive yoke, and a stator in which an armature winding is concentratedly wound, wherein the rotor is a stationary member in which the stator is formed. A brushless motor characterized in that it is insulated and divided into a length of approximately half or less of a wavelength of a specific harmonic component of a magnetomotive force.
【請求項6】塊状ヨークに複数個の磁石を設けられてい
る回転子と、電機子巻線を集中巻きされた固定子とを有
するブラシレスモータにおいて、前記回転子は、前記固
定子が生じる固定子起磁力のうち前記回転子が生じる回
転子起磁力と非同期成分の特定非同期成分における波長
のほぼ半分以下の長さに絶縁分割されることを特徴とす
るブラシレスモータ。
6. A brushless motor having a rotor in which a plurality of magnets are provided on a massive yoke, and a stator in which armature windings are concentratedly wound, wherein the rotor is a stationary member in which the stator is formed. A brushless motor characterized in that it is insulated and divided into a length of approximately half or less of a wavelength of a specific asynchronous component of a rotor magnetomotive force generated by the rotor and an asynchronous component of the rotor magnetomotive force.
【請求項7】塊状ヨークにP極の磁石を設けた回転子
と、N個のティースにそれぞれ集中巻された電機子巻線
を備えた固定子とを有するM相のブラシレスモータにお
いて、P/2とN/Mの最大公約数をKとし、前記回転
子の周方向長さをLとすると、前記回転子の周方向の長
さをL/(2K)以下に電気的に絶縁分割したことを特
徴とするブラシレスモータ。
7. An M-phase brushless motor having a rotor having a block yoke provided with P-pole magnets and a stator having armature windings wound around N teeth, respectively. When the greatest common divisor of 2 and N / M is K, and the circumferential length of the rotor is L, the circumferential length of the rotor is electrically insulated and divided to L / (2K) or less. A brushless motor.
【請求項8】塊状ヨークにP極の磁石を設けた回転子
と、N個のティースにそれぞれ集中巻された電機子巻線
を備えた固定子を有するブラシレスモータにおいて、前
記回転子の周方向の長さをLとすると、前記回転子の周
方向の長さをL/(2N−P)以下に電気的に絶縁分割
したことを特徴とするブラシレスモータ。
8. A brushless motor having a rotor having a mass of yoke provided with P-pole magnets and a stator having armature windings concentratedly wound on N teeth, respectively. The length of the rotor in the circumferential direction is L / (2N-P) or less, and the length is defined as L. The brushless motor is characterized in that:
JP22153599A 1999-08-04 1999-08-04 Brushless motor Expired - Fee Related JP3280351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22153599A JP3280351B2 (en) 1999-08-04 1999-08-04 Brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22153599A JP3280351B2 (en) 1999-08-04 1999-08-04 Brushless motor

Publications (2)

Publication Number Publication Date
JP2001054271A true JP2001054271A (en) 2001-02-23
JP3280351B2 JP3280351B2 (en) 2002-05-13

Family

ID=16768252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22153599A Expired - Fee Related JP3280351B2 (en) 1999-08-04 1999-08-04 Brushless motor

Country Status (1)

Country Link
JP (1) JP3280351B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315250A (en) * 2001-04-09 2002-10-25 Moric Co Ltd Stator of rotating electric apparatus
WO2003055045A1 (en) * 2001-12-20 2003-07-03 Mitsubishi Denki Kabushiki Kaisha Permanent magnet type dynamo-electric machine and wind power generation-use permanent magnet type synchronous generator
JP2006271057A (en) * 2005-03-23 2006-10-05 Toshiba Mitsubishi-Electric Industrial System Corp Rotor of permanent magnet synchronous motor
JP2007221961A (en) * 2006-02-20 2007-08-30 Mitsubishi Electric Corp Electric machine
JP2010004690A (en) * 2008-06-23 2010-01-07 Hitachi Ltd Permanent-magnet dynamo-electric machine and elevator device using the same
JP2010075049A (en) * 2010-01-04 2010-04-02 Toshiba Corp Rotating electric machine
JP2011087361A (en) * 2009-10-13 2011-04-28 Hitachi Ltd Permanent magnet motor
JP2011130664A (en) * 2011-03-31 2011-06-30 Mitsubishi Electric Corp Electric machine
EP2395629A1 (en) 2010-06-11 2011-12-14 Siemens Aktiengesellschaft Stator element
JP2012034564A (en) * 2010-07-01 2012-02-16 Ichinomiya Denki:Kk Motor with resolver and resolver
WO2012120588A1 (en) * 2011-03-04 2012-09-13 三菱電機株式会社 Motor drive device
DE112011101641T5 (en) 2010-05-13 2013-03-21 Denso Corporation Rotor of a rotating electric machine
WO2013080374A1 (en) 2011-12-02 2013-06-06 三菱電機株式会社 Permanent magnet type concentrated winding motor
JP2015130793A (en) * 2015-02-04 2015-07-16 三菱電機株式会社 permanent magnet type motor
US9564779B2 (en) 2011-10-14 2017-02-07 Mitsubishi Electric Corporation Permanent magnet motor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315250A (en) * 2001-04-09 2002-10-25 Moric Co Ltd Stator of rotating electric apparatus
WO2003055045A1 (en) * 2001-12-20 2003-07-03 Mitsubishi Denki Kabushiki Kaisha Permanent magnet type dynamo-electric machine and wind power generation-use permanent magnet type synchronous generator
JPWO2003055045A1 (en) * 2001-12-20 2005-04-28 三菱電機株式会社 Permanent magnet type rotary electric machine and permanent magnet type synchronous generator for wind power generation
US6894413B2 (en) 2001-12-20 2005-05-17 Mitsubishi Denki Kabushiki Kaisha Permanent magnet dynamo electric machine, and permanent magnet synchronous generator for wind power generation
JP2006271057A (en) * 2005-03-23 2006-10-05 Toshiba Mitsubishi-Electric Industrial System Corp Rotor of permanent magnet synchronous motor
JP2007221961A (en) * 2006-02-20 2007-08-30 Mitsubishi Electric Corp Electric machine
US7605514B2 (en) 2006-02-20 2009-10-20 Mitsubishi Electric Corporation Electric machine
JP2010004690A (en) * 2008-06-23 2010-01-07 Hitachi Ltd Permanent-magnet dynamo-electric machine and elevator device using the same
JP2011087361A (en) * 2009-10-13 2011-04-28 Hitachi Ltd Permanent magnet motor
CN102044945A (en) * 2009-10-13 2011-05-04 株式会社日立制作所 Permanent magnet motor
JP2010075049A (en) * 2010-01-04 2010-04-02 Toshiba Corp Rotating electric machine
DE112011101641T5 (en) 2010-05-13 2013-03-21 Denso Corporation Rotor of a rotating electric machine
EP2395629A1 (en) 2010-06-11 2011-12-14 Siemens Aktiengesellschaft Stator element
US9276442B2 (en) 2010-06-11 2016-03-01 Siemens Aktiengesellschaft Stator element with cooling element arranged on the backside of the yoke
JP2012034564A (en) * 2010-07-01 2012-02-16 Ichinomiya Denki:Kk Motor with resolver and resolver
WO2012120588A1 (en) * 2011-03-04 2012-09-13 三菱電機株式会社 Motor drive device
CN103404005A (en) * 2011-03-04 2013-11-20 三菱电机株式会社 Motor drive device
JPWO2012120588A1 (en) * 2011-03-04 2014-07-07 三菱電機株式会社 Motor drive device
JP5642262B2 (en) * 2011-03-04 2014-12-17 三菱電機株式会社 Motor drive device
US9543802B2 (en) 2011-03-04 2017-01-10 Mitsubishi Electric Corporation Motor drive apparatus
JP2011130664A (en) * 2011-03-31 2011-06-30 Mitsubishi Electric Corp Electric machine
US9564779B2 (en) 2011-10-14 2017-02-07 Mitsubishi Electric Corporation Permanent magnet motor
WO2013080374A1 (en) 2011-12-02 2013-06-06 三菱電機株式会社 Permanent magnet type concentrated winding motor
JP2015130793A (en) * 2015-02-04 2015-07-16 三菱電機株式会社 permanent magnet type motor

Also Published As

Publication number Publication date
JP3280351B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
US7605514B2 (en) Electric machine
JP4926107B2 (en) Rotating electric machine
KR100899913B1 (en) Motor
US6924574B2 (en) Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine
US7569962B2 (en) Multi-phase brushless motor with reduced number of stator poles
JP3280351B2 (en) Brushless motor
JP6048191B2 (en) Multi-gap rotating electric machine
JPH11355981A (en) Radial gap type small cylindrical dynamo-electric machine
US20220123635A1 (en) Induction machines without permanent magnets
Ajamloo et al. Multi-objective optimization of an outer rotor BLDC motor based on Taguchi method for propulsion applications
Jussila et al. Guidelines for designing concentrated winding fractional slot permanent magnet machines
JP2017135863A (en) Hybrid field type double gap synchronous machine
TW416179B (en) Permanent magnet type electric motor
Lin et al. Torque ripple reduction techniques for stator DC winding excited vernier reluctance machines
JP2010161832A (en) Permanent magnet rotating electrical machine
Cooke et al. “pseudo” direct drive electrical machines with alternative winding configurations
JP2002165391A (en) Synchronous motor
Kouhshahi et al. An axial flux-focusing magnetically geared motor
JP2005261081A (en) Synchronous rotating electric machine
Ueda et al. Small cogging-torque transverse-flux motor with magnetic short circuit under unloaded condition
JP2001186736A (en) Synchronous reluctance motor and its drive system
US20160329758A1 (en) Magnetically isolated electrical machines
CN114157066A (en) Rotating electrical machine
JP2010045872A (en) Permanent magnet rotary machine
JP6661960B2 (en) Self-starting permanent magnet motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees